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FACTORIZATION THEOREMS FOR HOMOGENEOUS MAPS ON
BANACH FUNCTION SPACES AND APPROXIMATION OF
COMPACT OPERATORS

PILAR RUEDA AND ENRIQUE A. SANCHEZ-PEREZ

ABSTRACT. In this paper we characterize compact linear operators from Ba-
nach function spaces to Banach spaces by means of approximations with
bounded homogeneous maps. To do so, we undertake a detailed study of
such maps, proving a factorization theorem and paying special attention to
the equivalent strong domination property involved. Some applications to
compact maximal extensions of operators are also given.

Banach function space and p-th power and compact operator and homoge-
neous operator. 46E30 and 47B38 and 46B42 and 46B28

INTRODUCTION

It is well-known that compact linear operators between Banach spaces can be
approximated by a sequence of “elementary maps” — finite range linear operators—
whenever the approximation property is considered. Here we are interested in
compact linear operators defined on Banach function spaces into Banach spaces.
We will see that, in this case, no approximation properties are required to get
approximations by other elementary maps: bounded homogeneous maps with some
nice properties. These properties are related to the way homogeneous maps can
factor. As far as we know, there are no powerful classical factorization theorems
for homogeneous operators others than the so called Maurey-Rosenthal theorems
(see for example [2, 3]). Therefore, we provide a factorization theorem for a class of
homogeneous maps, that will give interesting information in our study of compact
linear operators.

These considerations yield to two main purposes in this paper. On one hand
to isolate those homogeneous maps that factor through a given homogeneous map
and to characterize them by means of a strong domination property. On the other
hand, to apply this study of strongly dominated homogeneous maps to characterize
compact operators, from Banach function spaces into Banach spaces, as norm limits
of homogeneous maps that satisfy a domination property. We prove that in some
cases it is also possible to obtain a factorization of the compact operator itself. To
get such characterizations, we consider those homogeneous maps that are dominated
by a distinguished homogeneous map, the so-called ¢,. This map will allow to
describe order bounded sets, that play an important role in the study of compact
operators. Some applications to operators allowing a compact extension to their
optimal domain —i.e. to the biggest Banach function space to which they can be
extended— are also given. Our most basic ideas are inspired in a classical technique
that has its roots in the Grothendieck’s description of weakly compact sets. The
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2 PILAR RUEDA AND ENRIQUE A. SANCHEZ-PEREZ

fact of considering the setting of Banach function spaces allows to combine these
techniques with tools as p-convexifications or Maurey-Rosenthal type theorems.

The paper is organized as follows. In Section 1 we fix notation and review defi-
nitions and basic properties on Banach functions spaces. In Section 2 we introduce
strongly dominated homogeneous maps and characterize them by means of a factor-
ization scheme. We define the distinguished homogeneous map ¢, : X () — X1 /]
where X(u) is a Banach function space and Xy, is its p-convexification, by
dp(-) == (HVP||(-)||*/?" and use it to characterize order bounded sets in X. In
particular, homogeneous maps that are strongly dominated by ¢, take the unit
ball of X to a uniformly p-absolutely continuous set. A weaker domination by ¢,
described as a norm inequality (see Proposition 2), is also characterized by means
of a factorization property, and yields to a property closely related to uniformly
p-absolutely continuity. This property transforms essentially compact operators
to compact operators as shown in next section (Proposition 3). In Section 3 we
develop the consequences of the previous factorization/domination results to the
study of compact linear operators T : X (u) — F, where X (u) is a Banach function
space and E is a Banach space. The main characterizations of compact opera-
tors are included in Theorem 3. Finally, in Section 4 we give some applications to
characterize compact optimal extensions of (compact) operators.

1. BACKGROUND AND NOTATION

Our notation is standard. If F is a Banach space, Bg and Sg are the closed unit
ball and the unit sphere, respectively. We will write E* for its topological dual.
If ¢ : U — E is a homogeneous map —i.e. a map that satisfies ¢(Ax) = Ao(z),
for all x € U and all A > 0— from a homogeneous subset U of a Banach space
F, we will call ||§| := sup,eynp, [|[¢(z)| the norm of ¢ on U. Convergence of
sequences of homogeneous maps will be considered in the sense of convergence with
respect to this norm. Given 1 < p < oo, we write p’ for the conjugate of p, i.e.
% + 1% = 1. Along the paper, (2,3, 1) denotes a finite measure space, and L°(u)
the space of equivalence classes of py-measurable functions. Following the definition
in [7, Def.1.b.17, p.28], we say that a real Banach space X (1) of (equivalence classes
of) y-measurable functions in LO(u) is a Banach function space (also called Kothe
function space) over p if X () C L*(u) and contains all the characteristic functions
of measurable sets, and the norm | - ||x(,) satisfies that if f € LO(p), g € X(u)
and |f| < |g| pae. then f € X(u) and [|f[lxy < llgllx(u- The inclusions
L>®(u) C X(u) C L'(u) are always continuous, since they are positive. We will
write X instead of X (u) if the measure is clear in the context. A Banach function
space X is order continuous if increasing sequences that are bounded pu-a.e. are
convergent in norm. If X(u) and Z(u) are Banach function spaces and X C Z,
we define the space of multiplication operators X% as the space of (classes of)
measurable functions defining operators from X to Z by pointwise multiplication,
endowed with the operator norm. It is also a Banach function space over p. This
space can also be defined between Banach function spaces X (v) and X (u), when
the measures v and p are defined on the same o-algebra and are equivalent.

A relevant space of multiplication operators is given by X Ll(”), the Kothe dual
of X (u), also called the associate space. It is the order ideal of L°(y) defined by

X(w) ={ge€Ln):g-X(u) C L (n)}.
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Each g € X(u) can be identified with a continuous functional on X (u) via the
integral of the multiplication operator f € X (u) — fg € L'(p).

If Q = [0, 1], we always consider Lebesgue measure on the space. For 1 < r < oo,
we write L"[0, 1] for the Lebesgue space of r—integrable functions.

Let 0 < p < co. If f is a measurable function, we write f/? for the measurable
function sign{f}|f|'/?. If X(u) is a Banach function space, the p-convexification
of X is defined as

Xpp = {f € L) : |f]7 € X}

that is a quasi-Banach function space over u when endowed with the seminorm
1fllx,, = I1fI¥/?|%, f € X}y It is a Banach space and the above expression
defines a norm if and only if X is p-convex with p-convexity constant 1. For instance,
Lr[0,1]; = L'0,1] and L*[0,1]1/, = LP[0,1] isometrically. It is important to
note that every Banach function space X (u) is r-convex (with r-convexity constant
equal to one) if 0 < r < 1, and so X}, is always a Banach function space with
the norm given above. Other important fact that can be easily verified is that for
1 <p < oo and for each f € X(p)p1/p), its norm can be computed as || f| x;,,, ==
SWhepy |fhllx. Moreover, the space of multiplication operators (X[ /)%
from X7y /) to X is the Fatou completion X[y, of X711 (see this definition under
the name of maximal normed extension and also Theorem 5 in [8]). We say that
a homogeneous subset U of a Banach function space X is solid if for every f € U
and A€ X, fxa€U.

Let E be a real Banach space and let (,3) be a measurable space. A vector
measure from ¥ into F is a set function m : ¥ — F which is countably additive.
In particular, we are interested in vector measures defined by operators: given an
operator T : X (p) — E, we write mr for the vector measure given by mr(A) :=
T(xa) for A€ X. If m: X — FE is a vector measure, the variation |m| of m on a
measurable set A is defined by |m|(A) :=sup )z [[m(B)|| for A € X, where the
supremum is computed over all finite measurable partitions IT of A. It defines a
(non necessarily finite) monotone countably additive function on 3, i.e. a positive
scalar measure. The semivariation of m is defined by [|m|[(A) := supgc 4 |m(B)|],
A,BeX. Aset A€ Xism-nullif |m](4) =0. An operator T': X (u) — E is said
to be p-determined if each mp-null set is p-null.

A Y-measurable function f is scalarly integrable with respect to m (scalarly m-
integrable) if it is integrable with respect to each scalar measure (m,z’) given by
(m,a')(:) :== (m(-),a’). If besides for every A € ¥ there is an element [, fdm € E
such that ([, fdm,z') = [, fd{m,2’), 2’ € E', then it is said that f is integrable
with respect to m (m-integrable). The set of all the (classes of m—a.e. equal)
scalarly m—integrable functions L. (m) defines a Banach function space with the
Fatou property and with weak unit xo —in the sense of [7, Def.1.b.17]— over any
Rybakov measure v = |(m, x(,)| for m (see [4, Ch.IX,2]) with the norm

1oty = sup / fldlm. ), f € Li(m).
aZ'EBE/ Q

The space L'(m) of (classes of) m-integrable functions is a Banach function sub-
space of Ly (m) — with norm || - |1y = || - 21 (m)— and it is always order
continuous and has a weak unit. The formula sup scx, || [, fdml|, f € L (m), gives
an equivalent expression of the norm in this space. Recall that a Rybakov measure
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has the same null sets that m. The reader can find the definitions and fundamental
results concerning the space L'(m) and L} (m) in [12] and the references therein.

If 1 < p < o0, the spaces LP(m) and L% (m) are defined extending the definition
above in the natural manner. In fact, they can be defined as the 1/p-convexifications
of L*(m) and L}, (m), i.e. LP(m) := L*(m)p ) and L2 (m) := Ly, (m)p /p), respec-
tively. In particular, they are p-convex Banach function spaces with weak unit xq
over a Rybakov measure, with the norm

1
1 llzomy = WP sy f € LP(m).

Again, LP(m) is order continuous and LP (m) has the Fatou property. It can be
easily seen that LP(m) C L'(m). The reader can find more information on these
spaces in [5, 6, 12, 13]. Two interesting facts that will be used in the paper are that
the space of multiplication operators from L?(m) to L'(m) is L? (m), and

£l = _sw | [ fodmle= sw gl 1€ Lym),
) g

9EB 1 v/ (1 p’ (m)

(see [12, Ch.3]). The expression sup x| [, |f|Pdm||*/? provides an equivalent
norm.

We will consider the integration operator I, : L'(m) — E given by I,,(f) :=
Jo fdm, f € L'(m), and its restriction to LP(m), for which the same symbol will
be used. The properties of the integration map has been largely studied in several
papers (see [11, 12] and the references therein). We will be interested in spaces
LY(mr) for vector measures defined by operators T' from order continuous Banach
function space X (1) to a Banach space E: it is well known that L'(mr) represents
the optimal domain for T, i.e. the greatest order continuous Banach function space
to which the operator can be extended.

The terminology regarding order properties and compactness properties of oper-
ators on Banach lattices is variate and often confusing. So let us finish this section
by establishing it clearly. We will deal mainly with two classes of (homogeneous
norm bounded) operators 7' from an order continuous Banach function space X (u)
with a weak unit —u being finite— to a Banach function space Z(v) or to a Banach
space FE.

1) A set B C Z(v) is approximately order bounded if for each € > 0 there is
f € Z(v) such that B C [—f,f] + eBz. A (bounded homogeneous) operator
T: X(p) — Z(v) is semicompact if T(Bx) is approximately order bounded (see
Section 3.6 and Definition 3.6.9 in [9]). A set B C Z(v) is uniformly v-absolutely
continuous if

lim sup||fxallz=0
v(A)—0 feB ” H

(see Section 2 and the comments around Lemma 2.37 in [12]). These sets are
also sometimes called uniformly p-integrable sets. We will deal with maps T :
X (p) = Z(v) that satisfy that T'(By) is a uniformly v-absolutely continuous subset
of Z, and call them uniformly v-absolutely continuous maps. For the case of order
continuous Banach function spaces, the class of uniformly v-absolutely continuous
operators and semicompact operators coincide (see Lemma 2.37 in [12]).

2) A continuous linear operator T : X () — F is said to be essentially compact if the
set {T'(xa) : A € ¥} is relatively (norm) compact in E. If X (1) is order continuous
and mr is the vector measure associated to T', this is equivalent to the range of my
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being relatively compact. Trivially, if m is a vector measure then the integration
operator I, is essentially compact if and only if the range of m is relatively compact.
It is easy to see that essential compactness of an operator T is equivalent to the
fact that the restriction of T' to the space L>°(u) is compact; in fact, the arguments
on the paper uses often that for order continuous Banach function spaces this is
equivalent to the operator being AM-compact in the terminology of [9], i.e. T maps
order bounded sets to relatively compact sets (see Section 3.7 in [9]).

2. A DOMINATION THEOREM FOR HOMOGENEOUS MAPS

In this section we introduce a strong domination property between homogeneous
operators and its equivalent formulation in terms of a factorization. This factoriza-
tion theorem for strong dominated homogeneous operators is based in a separation
argument that has shown to be the key for proving factorization theorems for op-
erators between Banach function spaces. Similar arguments for the case of the
factorization of linear operators have been recently developed in [3] (see also [2]).
In what follow we show that they also work for the case of homogeneous opera-
tors. Whenever a homogeneous map S : X — X can factorize through X/, then
bounded sets of X are mapped by S to approximately order bounded sets. This
will allow us to characterize compactness of linear operators. First let us recall Ky
Fan’s lemma (see e.g. [12, Lemma 6.12]).

Ky Fan’s lemma. Let W be a compact conver subset of a Hausdorff topological
vector space and let U be a concave family of lower semi-continuous, convex, R-
valued functions on W. Let ¢ € R. Suppose, for every 1 € W, that there exists
xy € W such that Y(xy) < c. Then there exists x € W such that ¥(z) < ¢ for all
e v,

Let E be a Banach space, and let Y (v) and Z(v) be Banach function spaces
such that Y (v) C Z(v). Let U C E be a homogeneous set, and ¢ : U — Y (v) and
P : U — Z(v) be bounded homogeneous maps. Assume also that Y'Z has the Fatou
property and (Y#)’ is order continuous. Then, for K > 0, the following statements
are equivalent.

(i) For every z1,...,x, € U and Ay, ..., A, € &,

1> 1P,
i=1
(ii) There is a function g € K Byz such that

[P(z)] < gle(@)]  p—ae.
(iii) There is a function g € K By z such that for every x € U there is a function
hy € Bre(,) depending only on x/[[z| such that P(z) = g - hs - ¢(x).
In other words, P factorizes through the homogeneous map q@ given by

o(x) := hy - ¢(x) as

! (vzy'

"< K[| 3 lo@alxa,
i=1

In this case we will say that P is strongly dominated by ¢.
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Proof. Since YZ has the Fatou property and (Y#)’ is order continuous, we have
that YZ = (Y%)” = ((Y%)")* (see [7, p.28-30]). Suppose (i) holds. For every
finite sequence z1,..x, € U and Aj,..., A, € 3, we define the convex function
1¥: Byz — R by

Y(g) = |P(x)[xa,dv — K |p(z:)|xa, dv,
g ;/ X4 ;/g XA

for all g € By-z. 1 is continuous for the weak* topology on the compact convex set
By z. Let F be the concave family of all these functions . If ¢ € F is defined by
means of z1,..z, € Xy and A4, ..., 4, € X, take gy € Byz in such a way that

H;W(zi)XAJ (v2y _/gw;|¢(xi)XAi|dV.

This element can be assumed to belong to the positive cone. This implies, by (i),
that 9(gy) < 0. By Ky Fan’s lemma, there exists a function gy € Byz such that
¥(go) <0 for all ) € F. This means that

[ 1P@lar < & [ glota)lar

A A

for every x € U and A € ¥. This clearly implies that
|P(z)| < Kgolp(x)]  p—a.e.

and (ii) is proved.
If we assume (ii), there is a function h, € Bpe(,) such that P(x) = Khygoo(x).
It only rests to note that since P and ¢ are homogeneous,

P(z) = K||z||hy /2 g0t (x/[2]])

and so by writing gig(x) = ha|z|®(x) and g = Kgo, we obtain the desired factor-

ization through the homogeneous operator ngS given in (iii).
A direct calculation gives (iii) implies (i). O

Take U = X(u) = Z and Y = X}y for 1 < p < oo. Let 0 < h € X3/, The

homogeneous map P : X — X given by P(f) := sgn(f)| f]] (% A h), feX, is

an example of a map satisfying (iii) in Theorem 2, since it factors as P = i, o ¢,
for ¢ = P, where i), : X|1,,) — X is the inclusion map.

In the sequel, we will center our attention in the case U = E = X (u), Z(v) =
X(p) and Y (v) = X (1)1 /p) for a fized 1 < p < co.

Recall that the space of multiplication operators Xi;,,) — X coincides with

the Fatou completion of Xi;,,), that we denote by X[;,,1. In the case that X
has the Fatou property, then X[/, has also the Fatou property. Thus, we have
that X1/, = X[1/p (see [8, p.325]). Therefore, (X[1/,)* = X[1/,). Besides, if
X is order continuous then X[/, is p’-convex and so (X{;/,,)" is p-concave, this
dual space is also order continuous. Thus, X[/, has the Fatou property and so
Xp/p = X/ = (X)) = (Xpyp))*. Therefore, the hypotheses of Theorem
2 are satisfied for order continuous Banach function space with the Fatou property.
Let X (u) be an order continuous Banach function space with the Fatou property
and 1 < p < oco. Let P: X(u) — X(pu) and ¢ : X () — X(u)[1/p) be bounded
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homogeneous maps. If P is strongly dominated by ¢ then P(Bx) is a uniformly
p-absolutely continuous set.

Proof. By Remark 2 the space of multiplication operators Xy, — X fulfills the
conditions required in Theorem 2. By Theorem 2(ii), there is a function g € X1/,
such that |P(f)| < gl¢(f)|, f € X(p). Consequently, for each A € ¥ and f € By,

IP(F)xall < llgxad(DI < llgxallx, 6l xu . < laxallx, ., 2l
The order continuity of X{;,, gives the result. |

Let 1 < p < co. A relevant particular case of homogeneous operator is the map
¢p : X(p) = X(1)[1/p) given by

éo(f) = FPIFINY . f € X(u).

In this case, Proposition 2 can be refined in order to give a characterization of
order bounded sets in X (u). Recall that a bounded subset B in the order continuous
space X (u) is uniformly p-absolutely continuous if and only if for every € > 0 there
is a function g. € X(u)* such that B C [—g., .| + €Bx, i.e. it is approzimately
order bounded (see for instance Lemma 2.37(iii) in [12]).

If B C X(u) is a homogeneous set, we call the homogeneous operator ¢p :
X — X given by ¢p(f) := f if f belongs to B and ¢g(f) := 0 otherwise, the
characteristic homogeneous operator of B. We say that a homogeneous set B C
X (p) is order bounded if BN By is order bounded.

Let X (p) be an order continuous space with the Fatou property. Let 1 < p < oc.
An homogeneous set B € X (u) is order bounded if and only if its characteristic
homogeneous operator ¢p is strongly dominated by ¢,,.

Proof. Suppose that the characteristic homogeneous operator of B is strongly dom-
inated by ¢,. Then by Theorem 2(ii) and Remark 2 there is a function g € X[/,
such that [¢pg(-)] < g|¢p(-)|.- Then for every function f in B we have that

O < glFMP - P15

Thus, [f47 = |f1/|7]47 < gl ", and therefore |f] < g |flLx. Since g € X,
this gives the result.

For the converse, let h be the order bound for B N Bx. For every norm one
element fy of B, |fo|'/?" < h'/?" and so for every f € B, (|f|/IfIDY/? < n'/?
which gives the strong domination

\F = 1FIVPLEP < F1MP) £ R

of ¢p by ¢p.
O

Let ¢ : X — X be a bounded homogeneous map defined from an order contin-
uous Banach function space with the Fatou property X (u) such that the norm of
the inclusion X < L'(p) is equal to one. Suppose that ||¢|| = 1 and it satisfies that
o(|f1MPxa) = |6(f)|MPxa, f € X, A € . For instance, let f € Xy [ 2 xe,
and consider

Ur ={g € L°(u) : there exists K > 0 so that |g| < K f"}.

Note that |g|'/? € Uy whenever g € Uy and that L>(u) = U,,,.
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Since X is order continuous and has the Fatou property, we have that (X[ ;) )X =
Xpyp and ((Xp/p)')* = X[1/p) (see Remark 2). Assume that ¢ is also well defined
and positively 1-summing when considered as a function ¢ : (X71/,7)" — LP(u), that
is, there is a constant K > 0 such that for all positive elements g1, ...g, € X,

> 160 lle ) < K _suwp > Kgirh)
i=1

/e i=1
In this case, for all f1,..., f, € X,

H iw(m

Z (A ool I £ < K sup Z|<|fi\1/”»h>|\\fil\§/p

i=1 h€Bx(y /pr1 i=1

<K' s [ (LIRS ) ldn < K Y1
hEBXu/p/] i=1 i=1

where K’ = K||¢||/?". Then ¢ satisfies the inequality in (i) of Theorem 2 for the

homogeneous map ¢,, i.e ¢, strongly dominates ¢.

Whenever X () is an order continuous Banach function space with the Fatou
property and P : X (u) — X (u) is a homogeneous bounded map strongly dominated
by ¢p, the factorization in Theorem 2 reads as follows: there is g € X[/, such
that for every f € X there is a function hy € Bpe(,) depending only on f/||f||x
such that P(f) = ghyo,(f). In other words, P factors through the homogeneous

map (ﬁp given by qAbp(f) = hyop(f) as

X(w)

X(1)11/p)

Moreover, by Proposition 2 the set P(Bx) is uniformly p-absolutely continuous.

Let us see analogous results when considering bounded homogeneous maps with
values on a general Banach space E. Note that, when E = X () is order continuous
and satisfies the Fatou property, condition (i) in the next result is weaker than
strong domination of S by ¢,.

Let X (u) be an order continuous Banach function space and let E' be a Banach
space. The following statements for a bounded homogeneous operator S : X (u) —
E and a function 0 < g € X{;/,) are equivalent.

(i) For all functions h € X1/,
ISR < B2 1Y - [lgh]x-

(ii) The homogeneous operator S factorizes through

n

= 2 Ul <Z||¢> AR P AT

b
Kpypn)’

X(p)

X(p) E
A
y R
v g
()11 /) > X(p),
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where R is a bounded homogeneous operator with |R|| < 1.
In this case, S satisfies that lim,a)_osupsep, [1S(fxa)|l = 0.

Proof. (1)=-(ii). Let us prove that the operator S factors through the proposed
scheme. The map ¢,(h) = h'/?||h||'/?", h € X, is a bijection, and

fp
BTG
X

Clearly, since g € X[,y we have that the multiplication map f — gf is well
defined and continuous. Define R as follows. If h € g X[y, then

(h/g)" )
1 /

/gyl

and R(h) = 0 for the functions h that do not belong to gX|;,,. Note that the map

is homogeneous.
Let us show that R is bounded. Let h € gX[;/,). Then

o, (f)

R(h) = S(¢, " (h/g)) = S (

. (h/g)?
R(W)| = |1S(¢; " (h =ls 2
IR =158, (/D) H <Il(h/9)p||§!p>H
_ Isr/aMl I(h/9)? I 11l x

O N O A

(ii)cﬁ(i). Is the consequence of the following calculation. If h € X[/}, then h? € X
and so

1/p’ 1/p’
IS2)| = I1R(g6p (B < [ RIgh?) /2 [IR7 (X7 11x < llghllx |71
The last assertion lim,a)—0supsep, [|S(fxa)ll = 0 follows from the calcula-
tions below and the order continuity of Xi;,,). Let f € X then
1 /
ISl < IFxall¥” s xallx

1 /
Ex AN Nlgxallx o 1F/PX Al X000

1
ExANE Ngxallx,, o £ XAl

Ifxallxllgxallx,,,, < Ifllxlgxallx;,,.

< [lAllx-

IN

IN

1/p’
X

O

Let us summarize in the next theorem some sufficient conditions for a homoge-
neous operator to satisfy that the ball of X is uniformly p-absolutely continuous
with respect to the seminorm ||T(-)||. We need the following lemma.

Let E be a Banach space. The norm limit T of a sequence (S,,),, of homogeneous
bounded operators S,, : X (u) — E satisfying

lim sup |5, =0
Jdm s S, ()l

for each n, is bounded, homogeneous and satisfies

lim sup ||T =0.
s IT()
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Proof. Let T be the norm limit of the sequence (Sy,),. It is clearly homogeneous
and bounded. Let € > 0 and take ng such that for all n > ng, ||S, — T < /2.
Using the triangular inequality, we find that there is § > 0 such that if u(A) < 9,

sup [|T(fxa)ll <e/24 sup [[Sn,(fxa)ll <e.
feBx f€Bx
([l

Let X (p) be an order continuous Banach function space and let T': X (u) — F
be a bounded homogeneous operator. Each of the followings statements implies the
next one.

(i) X has the Fatou property and there is a sequence of solid homogeneous
order bounded sets (B,,), in X (1) and a sequence of bounded homogeneous
maps R, : X(u) = F such that R, o ¢p, converges to T in the norm.

(ii) X (p) has the Fatou property and there is a sequence of solid homogeneous
sets B, C X such that their characteristic homogeneous operators are
strongly dominated by ¢,

and a sequence of bounded homogeneous maps R, : X(u) — E such
that R, o ¢p, — T in the operator norm.

(iii) X (u) has the Fatou property and there is a sequence of homogeneous maps
P, : X — X that are strongly dominated by ¢, and a sequence of bounded
homogeneous maps R, : X(u) — E such that R,, o P, converges to T in

the norm.
(iv) T is the norm limit of a sequence S,, of homogeneous operators factoring
as
X () — E
A
Pn Ry
Y

X (1)) o= X (),

where R, are bounded homogeneous maps, g, € X1/ and [¢,| < [¢p].
(v) There is a sequence of homogeneous operators .S,, so that there are functions
gn € X[l/p/] such that

1S (NI < 11K - lgnf P Ix, fEX,

and S, — T in the operator norm.
(vi) The operator T satisfies

lim sup ||T(fxa)|l =0.
s [T

Proof. (i)=-(ii) is a consequence of Proposition 2. (ii) clearly implies (iii). If X (p)
has the Fatou property, then (iii) is equivalent to (iv) by Proposition 2. The
same computations that proves (ii)=-(i) in Proposition 2 gives that (iv) implies (v).
Proposition 2 and Lemma 2 give (v) implies (vi).

(]
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3. COMPACT LINEAR OPERATORS

Compactness of operators between Banach spaces is nowadays well understood,
and there are also a lot of characterizations of this property when the spaces in-
volved are Banach function spaces. Let X (u) be an order continuous Banach func-
tion space. It is clear that a homogeneous operator T : X (u) — E that factors
through a uniformly p-absolutely continuous (non necessarily linear) homogeneous
map and an essentially compact operator is compact (see [9, Proposition 3.7.4] or
the argument in the proof of Proposition 3 below). In this section we are interested
in analyzing how far the converse of this statement is true, that is, if every compact
operator can be factored in this way.

Let T : X (1) — FE be a compact operator. Then for each € > 0 we can consider
the set T(Sx), that is relatively compact in E. A simple compactness argument
provides a number of functions fi, ..., f,, € Sx such that the balls B.(T(f;)) of
radius € and centers T'(f;) cover T(Sx). An inductive disjointification with the sets
T~YB:(T(f:))) provides a finite disjoint family Bj, ..., B, of subsets that covers
Sx. Define the homogeneous map P-(f) := || f||fi if f/|If|l € Bi, i =1,...,n. Note
that P.(Bx) is order bounded. For each f € X (u) thereisi € {1,...,n} such that

ﬁ € B;. Then,

S

I17(5) =TI = W7 (7

)15

| < Il

Hence,

lim |T'— T o Pe|| = lim sup || T(f) = T(P=(f))ll = 0.

e—0 e=0 teBy
Therefore, T" is the norm limit of the sequence of homogeneous maps (1" o Py, )n,
where obviously each of them factors through X by means of the order bounded
homogeneous map P, /,,. This construction proves in fact the following

Let X () be an order continuous Banach function space. An operator T :

X (p) — E is compact if and only if it is essentially compact and there is an order
continuous Banach function space Z(v) containing X such that T" extends to Z and
a sequence of uniformly v-absolutely continuous homogeneous maps @, : X — Z
satisfying that 7" is the norm limit of the sequence (T o Qp, ).

Proof. The comments above prove the factorization for a compact operator, with
Z = X. For the converse, just note that for each n the set @, (Bx) is uniformly
v-absolutely continuous and essentially compact operators map this kind of sets to
relatively compact ones ([12, Proposition 2.41]). Therefore, the norm convergence
of (T oQ,)y to T allows to approximate T'(By ) by relatively compact sets, so it is
compact. (I

The next result allows to characterize when a particular sequence of homoge-
neous maps (¢, ), taking values in a Banach function space gives for an operator
T a uniformly v-absolutely continuous homogeneous map ¢ such that T = T o ¢.
We will see that not all sequences of homogeneous operators provide such a good
factorization, although after Proposition 3 we know that it is always possible to ap-
proximate a compact operator by means of homogeneous maps that are uniformly
v-absolutely continuous. Recall that we always have that X C L!(mg) for a u-
determined operator 7' : X — E, and T can be extended to any order continuous
Banach function space Z(n) such that X C Z C L'(mz).
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Let X (1) be an order continuous Banach function space. The following assertions
for a compact p-determined operator T': X (u) — E and a Rybakov measure v for
mp are equivalent.

(i) There is an order continuous Banach function space Z(n), X C Z C
L'(mr), and a sequence of uniformly n-absolutely continuous homogeneous
maps (¢n)n from X to Z such that 7' = lim,, T o ¢,, and

lim sup sup [|T'((¢n(f) = ¢m(f))xa)ll = 0.

n,m fEBx AeX

(ii) There is a uniformly v-absolutely continuous homogeneous map ¢ : X —
L'(mr) such that T =T o ¢.

Proof. (ii)=>(i). Take ¢,, = ¢ and n = v. (i)=>(ii). Since ¢, : X — Z(n) C L'(m7),
v is a Rybakov measure for mp and the following inequalities hold

lim sup H(bn(f) - (bm(f)”Ll(mT) < 2lim sup sup ||T((¢n(f) - (bm(f))XA)”a
n’meBx nvmeBX Aexy

we have that the limit ¢(f) := lim, ¢, (f) is well defined for every f € X and
belongs to L!(mr), and (¢, ), norm converges to ¢, that is also a homogeneous map.
Let us show that it is uniformly v-absolutely continuous. Let € > 0 and fix ng € N
such that ||¢— ¢n, || < €. By the fact that ¢y, is uniformly n-absolutely continuous,
there is p > 0 such that 7(A) < p implics [, (NXAllz1 () < Idn,(Fxallz < 2
for all f € Bx. Now, since T is u-determined we have that y < v, andsopu~n = v
by X C Z C L'(mz). Thus there is § > 0 such that v(A) < & implies n(A) < p.
Then there is ng such that

1o(F)xAllLr(mr) < MS(F) = Gno (F)XAlL1(mr) + | Eno (F)XANL1 ) < 2¢

for all A € ¥ such that v(A) < §. Therefore, ¢ is also uniformly r-absolutely
continuous. This gives the result. (Il

Let us show an example of a compact operator satisfying the statements in
Proposition 3.

(1) Let X be a reflexive Banach function space over u. Take a p-determined
compact operator T : L'(u) — E, and consider its restriction Tx to X. Since
LY(mr) = LY(Jmr|) we have that Bx is a relatively weakly compact subset of
LY(Jmr|) and so it is approximately order bounded (uniformly |mr|-absolutely
continuous). So in this case the inclusion map i : X — L!(mr) provides a suitable
homogeneous map ¢ = i such that T o¢ = T oi = T'x. However, the definition of ¢
as i does not provide always the desired factorization, as will be shown in Example
3.

(2) Consider the integration map I : L'[0,1] — R defined by Lebesgue measure.
For each n € N we define ¢,(f) = k/n| fllxj, if [f/Iflldz € (kgl, %] for
—n+1 <k <n,and ¢, (f) := =1 fllxp,11 if [ f/|Iflldx = —1. Clearly lim,, To¢,, =
I. In fact, if we define ¢(f) := ([ fdz)xp,1, f € L'[0,1], we have that lim,, ¢,, = ¢
in the norm.

Clearly, each essentially compact operator T' that satisfies the requirements of
the result above is compact. However, there are sequences of homogeneous maps
approximating compact operators as above that do not converge to a homogeneous
map in any Banach function space. Let us show this with an example.

Let F be a Banach lattice. Consider a compact integration map I,,, : L*(m) —
F associated to a positive vector measure m. Then it is known that L'(m) =
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LY(Jm|). Consider a sequence of homogeneous maps (¢,), from L*(m) to L'(m)
approximating I,,, in the sense given in Proposition 3 that satisfies ¢, (fxa)xa =
én(fxa) for all m and A € . Suppose that it converges in L!(m) to a homogeneous
map ¢ as in Proposition 3. Then ¢ satisfies also the equality

(1) d(fxa)xa = é(fxa)

for f € L'(m) and A € X. Thus, the set ¢(Bpi(y,) is uniformly v-absolutely
continuous, where v is a Rybakov measure for m. Since v and m are equivalent
measures, they are also equivalent to |m|, and so the set ¢(Bpri(y,)) is uniformly
|m|-absolutely continuous. The solid hull C' of |¢(Bri(my)| is still uniformly v-
absolutely continuous. This implies that it is relatively weakly compact, by the
characterization of weakly compact sets in L!-spaces. Since in this case the space
L'(m) is not reflexive, we can find a function f € Br1(m) not belonging to C. So
there is a non-null measurable set B € ¥ such that |fxg| > gxp for all g € C:
otherwise we should have that f € C, since C is solid. Therefore the positivity of
m gives

0 <[llfIxs = o fIxB)XxBl L1 (m) = ITm(fIxB — ¢(IfIxB)I,

which gives a contradiction. The required condition (1) on each ¢, is satisfied for
example for ¢, (f) = sign(f)|| fI|(|f/IIf]| Anxa). Also homogeneous maps that are
strongly dominated by ¢, satisfy this requirement.

It is well-known that compactness and essential compactness are not equivalent
properties for operators on Banach function spaces. An example that will be useful
also in the next section is the Volterra operator. Let 1 < r < oo. Consider the
Volterra operator V,. : L"[0,1] — L"[0,1] given by V,.(f)(z) := [y f(t)dt, = € [0,1],
f € L"[0,1]. Tt is known to be compact (see Example 3.10 in [12]). However,
the integration map I,, : L'(v,) — L"[0,1] associated to the Volterra measure
vp(A) :=V,.(xa) for any Borel set A in [0, 1], is not compact, while it is essentially
compact as a consequence of V,. being compact (see Remark 3.57(ii) and Proposition
3.52 in [12]). The first aim of this section is to characterize the difference between
these two properties for general operators from order continuous Banach function
spaces into locally convex spaces.

Proposition 3 suggests that uniformly p-absolutely continuous maps are the nat-
ural elements appearing in a reasonable factorization for compact operators. A rel-
evant class of p-absolutely continuous sets is the one defined by subsets of the unit
ball of the p-convexifications X7y /) of X (1) when considered as subsets of X (u). As
far as we know no specific description of compactness using the p-convexifications
of the spaces —their 1/p-th powers in the terminology of [12]— has been given. We
will show how useful are p-convexifications for our purposes. Actually, our second
aim of this section is to characterize compact operators as limits of homogeneous
maps that factor though a space X[, for a given 1 < p < oo.

We need the next lemma, that is a consequence of Holder’s inequality ||gh||x <
l9llxp,m 1Rlx, . for g € Xp1/p and b € X1/, (see [6, Lemma 3.8] and Proposition
2.41 in [12] for similar arguments).

Let 1 < p < oco. Let X (1) be an order continuous Banach function space and E
be a Banach space. A continuous operator T : X (u) — E is essentially compact if
and only if for every h € X[/, the map T}, : X{y/p) — E given by Ty,(:) :=T'(h-),
is compact.
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Proof. Assume that T is essentially compact. Then {T'(xpna) : A € X} is relatively
compact for all B € ¥, and so the operator T}, is compact for simple functions h. Let
now h be an arbitrary function in X[;,,/). Since the set of simple functions is dense
in X[1/p, for € > 0 there is a simple function hg such that a [|h — hol|x,,,,, < €.
Then, if g € X{1/y),

[Th(g) — Tho (9) I IT((h = ho)g)|

IT[I[[P = hollx, i 19l x7, 0 < elT NNl 0, -

INIA

Thus, the fact that compact operators are closed for the operator norm gives that
T}, is compact for all h € X1 /,,. The converse is obvious. (]

Let 1 < p < oo. Let X(u) be an order continuous Banach function space and let
F be a Banach space. The following statements for a continuous linear operator
T : X — E are equivalent:
(i) T is compact.
(ii) T is essentially compact and for every € > 0 there exists g. € X[;/, such
that T(Bx) C T(QEBX[l/p]) + eBg.
(iii) T is essentially compact and for every € > 0 there exists K. > 0 such that
T(Bx) C T(KEBX[l/p]) + eBg.

Proof. (i)=(ii). By the compactness argument described before Proposition 3,
given € > 0 there exist finitely many f1,..., fi € Bx such that

T(Bx) C U_,T(f;) + eBg.
For each i = 1,...,1 write f; = g;h;, where g; € BX[l/p/] and h; € BX[ Notice

1/p]"

that by the lattice properties of the norm of X[y, for any g1, g2 € X1, satisfying
|g1] < |g2| a.e., we have that 91Bx,,, < |§2|BX[1/p]. Indeed, given h € Bx,

define g(z) = |§l§§§| if go(x) # 0 and g(x) = 0 if go(x) = 0. Then § = g|g2|

and |hg|? < |h|P. By the ideal property of Banach function spaces it follows that
hg € Bx, ,,- Therefore g1h = g|ga|h € |ga2| Bx,

1/p]”
l . .
Define ge = >, _; |gi|. Since |g;| < ge, we obtain that 9iBx,,, C 9¢Bx,,, and
so T'(9iBxy,,,;) C T(9eBx,,,) for alli =1,... 1. Therefore,

Ui, T(9:Bxy,,) + €Be C T(geBx,,,) + ¢Bg

and (ii) is proved.

Let us prove (ii)=>(iii). Let ¢ > 0 and consider g € X1/, given by (ii). By
continuity there exists § > 0 such that T'(0Bx) C §Bg. Since simple functions
are dense in X[/, we find a simple function s such that [|(g: — s)fllx < [lgg —
sllx;,,,, < 6 for every f € Bx,,,, and so T((95 — s)Bx,,)) € 5Bp. Take

K. := ||s]| (). Then, again by the ideal property of Xp; ), we obtain

3 £
T(Bx) C T(Q%BX[l/p]) + §BE - T(SBX[I/p]) + T((g% - S)BX[l/p]) + EBE

3 3
- T(SBX[I/p]) + iBE + iBE - T(KsBX[l/p]) + eBg.

This gives the result.

We prove (ii)=(i) (the proof for (iii)=(i) is the same). Take an arbitrary € > 0
and chose g. € X[/ such that T(Bx) C T(g9:Bx,,,) + ¢Bg. By Lemma 3
the set T(gEBX[1 /p]) is relatively compact in E. Then we have shown that for
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any € > 0, there is a relatively compact set T'(geBx,,,,,) such that T(Bx) C
T(g-B Xi /p]) + eBg. By Grothendieck’s characterization of compactness it follows

that T'(Bx) is relatively compact.
(]

Notice that in fact the requirement of order continuity is just needed to assure
that simple functions are dense in the involved spaces, so the result is also true
just assuming this fact. This let us include the relevant case of L>°(u) which can
be considered in a sense as a limit case of the above theorem in which the second
assumption in (ii) and (iii) is trivially satisfied, although the space is not order
continuous (see Proposition 2.41 in [12]). In this case, we have that Xj;,, =
L>®(p)pyp = L(p) = X isometrically, and so an operator 7' : L>(u) — E is
compact if and only if its essential range is relatively compact, since T'(Br(,)) is
included in the closure of the absolutely convex hull of the essential range of T.

Next result, that is already known (see the arguments that prove Corollaries 5.16
and 5.20 of [12]) is a direct consequence of Lemma 3.

Let 1 < p < co. Let X(u) be an order continuous Banach function space and
let E be a Banach space. If T : X(u) — FE is a continuous essentially compact
operator then the restriction T|X[1/p] : X1/p) = E is compact.

1.- Both conditions in (ii) and (iii) are necessary for the result above to be true,
even if the operator T involved is positive. Let us see some examples.
(i) Take X(u) = L'[0,1] and 1 < p < oco. Then X[y, = LP[0,1] isometrically.
Consider a partition {4;}32, of [0,1], where u(A;) > 0 for all ¢ € N. Take a
sequence of non-null measurable sets {B;}°, such that B, C A; for all ¢ and
r; = u(Bi)/p(A;) L 0 and the operator T : L'[0,1] — ¢ given by T(f) =
i ([, fdu)es € €1, f € L'0,1]. Let us show that the requirement on {T'(x4) :
A € ¥} of being relatively compact is fulfilled. Consider the sequence {r;e;}$2;.
For every A € %,
oo (oo}
T(xa) =Y u(Bi N A)e; <Y u(Aj)(rie)
i=1 i=1

in the order of ¢!, and so each T'(x 4) is in the closure of the convex hull of {r;e;}3°;.
Thus, it is relatively compact. In fact, any £*-valued continuous operator defined on
an order continuous Banach function space is essentially compact (see [12, Lemma
3.53(v)]). However, since for every i we can find a positive norm one function f;
of L*(p) with support in B;, the set T(Bpijg)) includes all {e;}2,, and so T
is not compact. Consequently, there is € > 0 such that there is no K such that
T(Brijoa)) € KT(Brep,1)) +Be.
(ii) Although operators of compact range with domain in an L!-space allow some-
times good characterizations —due mainly to l-concavity of L'-—, this fact is
not crucial in the example above. Consider p > ¢ > 1 and the class of spaces
E, ;= (&p)2,L9(A;, 1] a,), where the Als are chosen as in (i), with the norm

o0

£l = (D 11f

i=1

» 1/p
A; L’I[O,l]) ) f € Ep,q-
It is a Banach function space of Lebesgue measurable functions on [0, 1] over a mea-
sure ju, given by pq(A) := > aip(A; N A), where a = (a;) is any strictly positive
element of B, . Notice also that it contains L'[0,1]. The same calculations that
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in the above case prove that T" defined as in (i) —i.e. T'(- S ([, () dp)ei—,
is continuous also if defined from E,; to €7, and its essentlal range 1" is relatively
compact, but the operator is not compact. Then, since (Ej 1)[1/p] = Ep2 p, We get
that there is an € > 0 such that T’ BE Q KT(Bg 2 p) + eBy» for all constants
K >0.

More examples of T' having compact essential range and not being compact can
be found in Example 3.49 of [12] (see also the comments after Proposition 3.48 in

[12]).

2.- The extreme case of operators from L°° can be considered also as a particular
instance of our result. In the case of considering the operator Tt as the restriction
of the operator T in 1.(i) to L°°[0,1], Remark 3 applies: T is compact, since its
essential range is compact and Bpe(g 1) = BLOC[OJ]WP].

Let us show a sufficient condition for T to be compact by choosing a particular
element g € Bx,,,, for each f € X and K in the criterion given by Theorem 3.
Our aim is to show the role of the corresponding p-convexifications.

Let 1 < p < co. Let X () be an order continuous Banach function space, E be
a Banach space, and T : X(u) — E be an essentially compact continuous linear
operator. Let ® : Bx — BX (/) be a function. If

A, sup [T Xtz 100l =0

then T is compact.
Proof. Let 1 < p < 0o and € > 0. Choose K. > 1 such that

sup | T(fxqpzx. eIl <&
feBx

Let f € Bx. Then for every h € Bre(,),

T = Keg)| < 70/ - K200

Take now h := e @(f)x{\fKK |o()|}> and notice that h € Bre. Then

geéﬁi/p] |T(f — K.g)|| < ||T(f - qu)(f)Ka(J;(f)X{lf<Ks|¢’(f)|}|)|H

= |T(fxqsze0n)| <&

Theorem 3 gives the result.
O

An example of application of this criterion —by putting ®(f) := xq for all
f € Bx and assuming that ||xq| = 1— is the following well-known sufficient
condition for compactness. If an essentially compact operator T : X — E satisfies

lim sup ||T =0,
A s ([T xqsz0)l

then it is compact. For the particular case of kernel operators, this kind of com-
putation provides more specific sufficient conditions for compactness. Consider
2 = [0,1] and p Lebesgue measure on [0,1]. Let &k : [0,1] x [0,1] — [0,00) be a
kernel function, that is a Borel measurable function such that, for all y € [0, 1] the
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function ky(z) := k(y, x), « € [0, 1], is p-integrable. Let T}, be the associated kernel
operator given by

(Tif)(y) == - f(@)k(y, v) dz,

for any measurable function f : [0,1] — R for which the above integral is defined
for y € [0,1] a.e. Let us give an example. Assume that 1 < p < oo and let Ty
be an essentially compact kernel operator T} : LP[0,1] — Y (v) that admits an
extension to L'[0,1]. Although we know by Corollary 3 that T}, is compact we are
able to prove the compactness of T} as an application of Corollary 3. For a nonzero
function f € Bpr[o,1;) and K > 0, by Holder’s inequality we have

i > xkp < ([ ra) ([ )’ <%

A direct computation shows

1
ITe(1fIxg 71> 1)1y < ||TkHW

that tends to 0 uniformly on f € Bpr»(,) when K — oo. Corollary 3 gives now the
compactness of Tj,. This argument can be extended in the following way.

Let T be an essentially compact (positive) kernel operator T : X (u) — Y (v)
such that the kernel k satisfies that

y H )l H ~0.
n(}x?io IPeak(@, y)llx(v) Y 0
Then T is compact.

Proof. Let € > 0 and take § > 0 such that

Ixak(@ il )], <«

for all measurable sets A with pu(A) < 0. If 0 # f € Bx(u), K > 0 and X’ is the
Kothe dual of X then

1
u({lf] > K) = /{ e /{ BT

< ||f|X\

1 1
x>yl < = Ixellx <6,
Iflllx — K

for K large enough (not depending on f). Then,
|([15xunsr0 ke i) W],

< I hansllx - xass kil @)

< |Ixass k@l @), <
for all f € Bx(,). This proves that
sup H /fx k(z,y)dx ) (y H —0
v ([ Paansmk@yde) )|

when K — oo. Corollary 3 (for ®(-) = xq) gives the result.
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The sufficient condition in Corollary 3 can be relaxed when considering the
optimal extension of the operator T': X (u) — E, but then u-determination of T
is required. Recall that a linear operator T': X (u) — E is p-determined if each
mp-null set is p-null.

Let X (u) be an order continuous Banach function space, F be a Banach space
and T : X — FE be a py-determined operator. If T is essentially compact and satisfies

lim sup ||T =0,
s [T

then T is compact.

Proof. Let us show a proof of this result using the vector measure my. We extend
the operator T to the space L*(mr) by means of the integration map I,,, using the
well known fact that I,,,. o [i] = T, where [i] : X — L!(mr) is the canonical identi-
fication of the elements of X as myp-integrable functions. Since 7' is u-determined,
[] is injective. Since T is essentially compact, so is I,,,.. Note now that for A € 3,

sup (sup || [ fxadmrl) = sup sup [T(fxs)l| = sup [|T(fxa)l-
feBx BCA B feBx BCA fE€EBx

So we get by using the equivalent expression for the norm of L!(mr) given in the

introduction that [i](X) is a uniformly v-absolutely continuous subset of L!(m7)

for a Rybakov measure v for mr, since pu is absolutely continuous with respect to v.

This is a consequence of the fact that my is equivalent to u, and so v is equivalent

to . Counsequently, T(Bx) = I, ([i]](Bx)) is a relatively compact subset of E. O

Now we are in conditions of using the results on factorization of homogeneous
maps of the previous section to analyze compact operators.

For a p-determined operator, each one of the assertions in Theorem 2 implies
that T is compact.

Let us refine now Theorem 3 in order to provide a characterization of compact-
ness of a linear operator 7" in terms of approximation of 7" by means of homogeneous
operators strongly dominated by ¢,. Given a homogeneous subset B C X (1), the
characteristic homogenous operator ¢p is defined by ¢p(f) := f if f € B and
o5(f) = 0if f ¢ B.

Let E be a Banach space, X (u) be an order continuous Banach function space
with the Fatou property and 1 < p < oco. The following statements for a linear
operator T': X (u) — E are equivalent.

(i) T is compact.

(ii) T is essentially compact and there are g, € X[1,,,] and bounded homoge-
neous maps ¢, : X — Xy /p such that ¢, (Bx) is order bounded and the
sequence T o (g, - p,) converges to T in the norm.

(iii) T is essentially compact and there are bounded homogeneous maps ¢, :
X — X such that ¢,(Bx) is order bounded and the sequence T o ¢,
converges to T' in the norm.

(iv) T is essentially compact and there are order bounded homogeneous sets
B,, and bounded homogeneous maps ¢, : X — X such that the sequence
T o ¢p, o pp converges to T in the norm.

(v) T is essentially compact and there are bounded homogeneous maps ¢, :
X — X and homogeneous maps ¢? that are strongly dominated by ¢, such
that the sequence T o ¢? o ¢, converges to T' in the norm.
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Proof. (i)=-(ii). If the operator is compact, then following the ideas in the proof
of Theorem 3, for each n we find finitely many functions g1,...,g91 € X1/, and
hi,...,hi € By such that

I
1
T(Bx) C | T(gihi) + —Bs.
i=1

Define g,, := 22:1 |9:| € X[1/p)- Take k; € Bpoo(y) such that h;g; = k;|hi|gn. By
a disjointification argument, we can find disjoint sets C; C T(h;g;) + %BE such
that U\_, T(g;h:) + 1B = U'_, Ci + 2Bg. Define ¢, : X — X[, given by
(pn(f) = k,|hl|||f|| if ﬁ € T*1(0¢ + %BE) and consider hn = Zé:l |h1‘ € X[l/p]~
For any f € Bx, |pn(f)| < hy and then ¢, (Bx) is order bounded. Moreover, for
[ € Bx,
1
1T(f) = T(en(flegn)ll < —

n

and then the sequence T o (g, - ¢, ) converges to T in norm.

(ii)=-(iii) Take as new ¢,, the map g, - ¢, above.

(iii)=-(iv) is clear by taking for B,, the homogeneous hull of ¢, (Bx).

(iv)=(v) is a consequence of Proposition 2 with 2 = ¢p, .

(v)=-(i) Let € > 0 and take n such that T(f) — T o ¢P o ¢, (f) € eBg for every
f € Bx. Since ¢, (Bx) is bounded and ¢? is strongly dominated by ¢, by Propo-
sition 2 P (¢, (Bx)) is uniformly p-absolutely continuous. The essentially com-
pactness of T yields that T'(¢P (¢, (Bx))) is relatively compact. By Grothendieck
characterization of compactness we conclude that T'(Bx) is relatively compact.

U

Just changing the T' in the approximating homogeneous maps in the above the-
orem by sequences of bounded homogeneous maps R, we get, among others, the
following characterization.

Let E be a Banach space, X (1) be an order continuous Banach function space
with the Fatou property and 1 < p < oo. The following statements for a linear
operator T': X(u) — E are equivalent.

(i) T is compact.

(ii) T is essentially compact and there are order bounded homogeneous sets
B,,, bounded homogeneous maps ¢, : X — X and uniformly p-absolutely
continuous homogeneous maps R,, : X — FE such that the sequence R, o
@B, © pn converges to T' in the norm.

Notice that the characterization of compactness given in the above result can be
written also in terms of inequalities: an operator T' is compact if and only if it is
essentially compact and for each n € N there are homogeneous maps ¢, 2 : X —
X such that for f1,...,f, € X and A4, ..., A, € 3,

H i 62 0 0 (fi) XA,
=1

< Ky
)

Y Lol llon(f)1 XA,
i=1

L (p (Kpypn)’

such that T'o P o,, converges to T' in the norm. This is a consequence of Theorem
2 and Theorem 3(v).
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Let us finish this section by showing some particular factorizations of operators
through the relevant LP-spaces. We will use a variant of the classical Maurey-
Rosenthal Theorem due to Defant [2, Corollary 2] on factorization of homogeneous
operators between Banach function spaces.

Let E be a Banach space, X (1) be an order continuous ¢-concave Banach func-
tion space, for some 1 < ¢ < oo, and T : X — F be a linear operator. Then the
following assertions are equivalent for any p > g:

(i) T is compact.

(ii) T is essentially compact and there are order bounded sets C,, C LP(u),
bounded homogeneous maps ¥, : X — LP(u) satisfying ¢, (Bx) C C,, and
functions h,, € LP(1)X(®) such that the sequence (T o (hy, - 1by))n converges
to T' in norm.

(iii) There are order bounded sets C,, C LP(u), bounded homogeneous maps
¥, : X — LP(p) satisfying ,(Bx) C C,,, functions h,, € LP(u)X®) and
essentially compact linear operators T,, : X — E such that the sequence
(T, o (hy, - ¥n))n converges to T in norm.

Proof. (i)=-(ii). By Theorem 3(ii) there are g, € X1/, order bounded homo-
geneous sets B, and bounded homogeneous maps ¢, : X — X[/, such that
¢n(Bx) C B, and the sequence T o (g, - ¢,) converges to T in the norm. Since the
space X[1/p) is always p-convex and X is p-concave, an application of the abstract
version of the Maurey-Rosenthal Theorem [2, Corollary 2] to the linear operator
Mg, : Xuyp — X, My, (f) == gnf, provides a function h,, € LP ()X such that
the following diagram commutes:

X Man X
(1/p]
R My,
LP(p),

where R, is given by R,, := ]\;L[i" . Now define C,, := R,,(B,) and ¢,, := R, 0 ¢y,.
(if)=(iii) is trivial.
(iii)=-(i) Let € > 0 and take n such that T(f) — T}, o (hy - ¥n)(f) € eBg for every
f € Bx. It follows from the fact that M}, (C,) is order bounded and its image by
an essentially compact operator is relatively compact that the set T,, 0 (hy, -1, )(Bx)
is relatively compact. The well-known Grothendieck’s characterization of compact

sets yields that T'(Bx) is relatively compact.
O

Notice that in the case that the space LP(u)X(®) is order continuous then the
assertions in Corollary 3 are equivalent to the following one:

iv) There are bounded homogeneous maps ¢, : X (u) — LP(u), functions h,, €
LP(u)X (#) and essentially compact linear operators T}, : X — E such that
the sequence (T}, o (hy - ¥p)), converges to T in norm.

This is so because we do not need to ask for order boundedness to the sets v, (Bx),
since then the sets h, - ¥, (Bx) are uniformly p-absolutely continuous and so the
composition of h,, -1, with an essentially compact operator gives a compact homo-
geneous map.



FACTORIZATION THEOREMS FOR HOMOGENEOUS MAPS 21

4. APPLICATIONS: COMPACT OPTIMAL EXTENSIONS FOR ESSENTIALLY COMPACT
OPERATORS

If X (p) is an order continuous Banach function space over a finite measure p then
any continuous p-determined linear operator T from X () into a Banach space E
can be extended continuously to L* (mr), where my is the vector measure associated
to T'. This space is the optimal domain for T, i.e. the biggest order continuous space
to which T can be extended (see [12, Theorem 4.14] and the references therein). In
that case, the optimal extension of T is given by the associated integration operator
I, : LY(mr) — E.

In this section we study the following problem: Let X (u) be an order continuous
Banach function space over a finite measure p and let T': X (u) — E be a Banach
space valued operator with compact essential range. When is the maximal extension
of T' compact?

A closely related question has been studied in [10] recently. In that paper it
is shown that a p-determined compact operator T allows a maximal compact ex-
tension —mnot necessarily to the space L'(mr)— if and only if the associated inte-
gration map I, : L*(m7) — E is compact (see Theorem 1.1 and Lemma 2.2 in
[10] for some arguments that are close to the ones we use in the proof of Theorem
4). Moreover, it is well known that compactness of the integration map of a vector
measure m imply that L'(m) = L'(Jm|) (see [11] or Proposition 3.48 in [12] and
the references therein).

The following reformulation of Theorem 3 for the integration operator I,,, asso-
ciated to a vector measure m provides the main result of this section. Recall that
R(m) is the range of m.

Let 1 < p < oo. The following statements are equivalent.

(i) The integration operator I,,, : L'(m) — (E, || ||g) is compact.
(ii) R(m) is relatively compact and for every ¢ > 0 there exists g. € L¥ (m)
such that I, (Bri(m)) C Im(9eBrr(m)) + €BE.

(iii) R(m) is relatively compact and for every € > 0 there exists K. > 0 such

that Im(BLl(m)) C Im(KEBLp(m)) + eBg.

Let 1 < p < oo, let X(u) be an order continuous Banach function space, E a
Banach space and T : X () — E a p-determined continuous linear operator. The
following statements are equivalent:

(i) The optimal domain of T is L'(|mr|) and the extension I, is compact,
i.e. T factorizes compactly as

X () L

E.

(] Iy

LY(|mz])

(ii) T is essentially compact, and for each & > 0 there is a function h. € X1/,
and a bounded homogeneous map ¢. : X — X[, such that

sup || (/)" x)[IV/? < sup [IT(fxa)]
Aex Aex

and
|T(f = hede ()N < e-sup [[T(fxa)ll, feX.
A€x
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(iii) T is essentially compact and for each n € N there is a constant &, > 0 and
a bounded homogeneous map ¢, : X — X[y, such that for all f € X,

max {k - sup |T(6n (£ 7 - |T(F - %(f))ll}
AeX
< sup [|[T(fxa)ll-
AeX

Proof. Let us start the proof by establishing that, taking apart the essential com-
pactness assumption, (ii) is equivalent to the fact that for each ¢ > 0 there is
he € Xp1/p) such that

(2) sup ( inf | (HT(f - hsg)H)) <e.

fEBLl(mT)ﬂX(/J,) 9EBLP (mp) N X[1/p

To see this, just note that the computation of the infimum in this statement can
be used to define a function ¢. : Bri(m.) N X — Bre(mg) N X[1/p) that carries each
function to one that makes the inequality less than €. In fact, it can be assumed to
be a bounded homogeneous function (X, || - |21 (my)) = (X1/p) || - l2e (my)) just by
taking ¢L(f) = | fllt(mp)Pe(f /I fll L1 (mp))s f € X. This shows that the condition
above is equivalent to the existence for each € > 0 of a function h. € Xj;/, such
that

IT(f = hedL (N <esup [T(fxa)l, feX.
Aex

Recall that the expression supscy [ T(fxa)l is equivalent to || f||z1(m,) for func-
tions belonging to X. The converse argument follows too, and so we have the
equivalence.

Exactly in the same way, it can be proved, taking again apart the essential
compactness assumption, that (iii) is equivalent to the fact that for each ¢ > 0
there is a constant K, > 0 such that

(3) sup ( inf (HT(f—KEg)H)) <e

FEB L1 (N X (1) NIEBLE(mp) N X 1/p)

holds (as in (2) but with a constant K. instead of a function h.), just using the
fact that this relation is satisfied for e = 1/n and K. = 1/k,,.

We start proving (iii)=-(i). Let us see that under the assumption of the property
given by (3), the inclusions appearing in Proposition 4(iii) hold. Indeed, let € > 0
and f € Bri(n,). Since the simple functions are dense in L'(mr), there exists a
simple function s € Bp1(y,,) such that

€
4 S N
( ) Hf SHLl( T) 2(||ImT|| +1)

As 5 € Bri(my) N X (1) we can apply part (iii) —actually we apply its equivalent
formulation (3)— to s: there exist K./ > 0 and g € Bro(my) N X[1/p) such that
|T(s — K./29)|| < €/2. Then, by (4) we get

4)
HImT(f_Ks/Zg)H < ||ImT(f_8)+T(S_KE/2g)H
<

[y — +o<
mrl|l = + = < €.
NI |+ 1) 2
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Then I,,, satisfies the inclusion property in Proposition 4(iii). On the other hand,
the essential compactness of T is trivially equivalent to ms having relatively com-
pact range. Proposition 4 applied to mr yields that I, is compact. By [11,
Theorems 1 and 4] L'(mz) = L'(]mr|) and then, since L'(m7) is the optimal
domain of the map, we obtain the desired factorization diagram for T through
LY (|m)).

The proof of (ii)=-(i) is similar using (2) and Proposition 4(ii) instead of (3) and
Proposition 4(iii) respectively.

We finally prove (i)=-(iii) (the implication (i)=-(iii) is similar). Since I, is
compact, 1" is compact and so essentially compact. Compactness of I, gives
also by Proposition 4 that for each ¢ > 0 we find a constant K. > 0 such that
L (Brimr)) € Iy (KeBrp(myy) +€Bg. Taking into account that X[/, is dense
in LP(mr), (3) and so (iii) follow easily.

O

More results can be obtained on compact optimal extensions by applying the
outcomes of Section 3. For example, the following result is a direct application of
Corollary 3. We need that LP(mqg) = LP (my) for assuring the Fatou property for
LP?(mr), what happens for instance if E is reflexive (see [5] for sufficient conditions
for this to hold).

Let 1 < p < oo and let X (i) be an order continuous Banach function space. Let
T : X(u) — E be an essentially compact operator and v a Rybakov measure for
myp. Suppose that LP(my) = L (mr) and there is an increasing sequence of solid
homogeneous sets {B,,}22, in X satisfying that for each n € N there is a constant
K,, > 0 such that for each finite set f1, ..., fx € Bn,

k
|15
1=1

and T'o ¢, — T in the operator norm. Then I,,, is compact.
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