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Calibration and control of a redundant robotic workcell for milling 

tasks 
 

This paper deals with the tuning of a complex robotic workcell of eight joints 
devoted to milling tasks. It consists of a KUKATM manipulator mounted on a 
linear track and synchronised with a rotary table. Prior to any machining, the 
additional joints require an in situ calibration in an industrial environment. For 
this purpose, a novel planar calibration method is developed to estimate the 
external joint configuration parameters by means of a laser displacement sensor 
and avoiding direct contact with the pattern. Moreover, a redundancy resolution 
scheme on the joint rate level is integrated within a CAM system for the complete 
control of the workcell during the path tracking of a milling task. Finally, the 
whole system is tested in the prototyping of an orographic model. 

 

Keywords: redundant workcell; robot calibration; postprocessing; CNC 
machining; CAD/CAM 

  

1. Introduction 

 

Robotic arms are crucial in many manufacturing processes involving large volumes 
because of their high flexibility and large working areas (Patrick 2005). These 
properties are usually enhanced with the use of additional joints carrying the arm or the 
workpiece and making up what is known as an industrial workcell. 

At the Design and Manufacturing Institute of the Universidad Politécnica de 

Valencia (IDF-UPV), a sculpturing robotic system has been tuned to test milling 
methods for rapid prototyping on soft materials such as expanded polystyrene (EPS). As 
shown in Figure 1, an industrial KUKATM KR15/2 arm with six revolute (6R) joints is 
mounted on a linear track, and works over a synchronized rotary table platform on 
which the initial blank of material is set. This provides a wide effective workspace for 
handling large objects with complex shapes. Because the revolute joints and the linear 
track joints only allow one degree of freedom (DOF) each, the dimension of the joint 

space (ℑ ) is n=8 for this workcell. Other examples of robotic systems for similar 
applications (such as polishing, arc-welding, spray-glazing, etc.) can be found in Feng-
Yun and Tian-Sheng (2005), Huang and Lin (2003), Bidandaa et al. (1993), and Tsai et 

al. (1992). 
Conventional CNC machining techniques can be adapted from high precision 

metal cutting to fast milling in EPS with robots. Sophisticated CAD/CAM/ROB 
integrated manufacturing systems mean that during the machining process less time is 
invested in successive verifications, adjustments, and data translation.  

Leading commercial CAM (computer aided manufacturing) software is 
prepared for the off-line planning of 5-axis CNC operations (López De Lacalle et al. 
2005). For precision and universality, the five parameters captured in a cutting toolpath 
are the three pose coordinates of the tool centre point (TCP) and the two orientation 
coordinates of the milling tool (considering the tool symmetrical along its axis of 
revolution, see Figure 1). Accordingly, at milling works the dimension of the task space 

( )Τ  is t=5. This assumes no-uncertainty in tool orientation and positioning for a 

conventional CNC machine but, in every case, the toolpath must be adapted 

(postprocessed) to the milling system (Lee and She 1997, Nemec and Zlajpah 2008). 
Accuracy is crucial in a robot program generated by a CAM system, but 

accuracy is lessened by a poor adjustment of the workcell, particularly in the kinematic 
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factors related to the additional joints. Offsets and deviations in the assembly of the 
additional external joints of the workcell reduce accuracy (Khalil and Dombre 2002). 

This paper exposes the fine-tuning of the redundant workcell shown in Figure 1 
for milling tasks. After describing the kinematics of the workcell in Section 2, the 
calibration of the external joints is tackled in Section 3. Section 4 explains the 
redundancy resolution scheme (RRS) used to implement the algorithm for continuous 
path tracking in order to integrate a CAM-robotics postprocessor (Section 5). This 
postprocessor generates the robot instructions off-line for milling tasks with the correct 
use of the redundancies. The designed postprocessor is tested in Section 6 with a 
practical application, namely, the prototyping of an orographic model. Finally, the 
conclusions to this work are discussed in Section 7. 
 
 

2. Kinematic modelling of the redundant workcell 

 

A kinematic model is the mathematical description required to control the posture of the 
robot chain and the associated pose of the milling tool. When performing a task on the 
workcell, the table can be regarded as fixed while the other movable end-effector (EE) 
holds the cutter tool in the Cartesian operational workspace (Ω ) whose base frame is 
{B}, see Figure 1. Note that the pose of a rigid body in Ω  is defined by six coordinates 
(three locations and three orientation values) and so dim(Ω )=m=6. 

The direct kinematic problem (DKP) at the displacement level is 
straightforward, mapping from ℑ  to Ω . It consists of determining the pose of the EE 
for a given manipulator posture. The standard Denavit-Hartenberg (DH) model is 
widely utilized in this context due to its simplicity. It represents the pose of the EE as a 
4×4 homogeneous transformation matrix T deduced from four parameters (αi, ai, θi, di) 
describing the relative position between consecutive links (Hartenberg  and Denavit 
1955). 

Moreover, the robotic workcell described in Section 1 is redundant as 
( )n t with> Τ ⊆ Ω (Patel and Shadpey 2005), with a degree of kinematic redundancy 

(rK) of 3
K

r n t= − = . This redundancy appears because of the additional linear track 

(
L

d ) and rotary table (
M

θ ), as well as the cutter tool symmetry while spinning along its 

revolution axis, see Figure 1. In practical use, the redundancy along the milling tool axis 
means that an additional virtual joint can be considered for the kinematic model, 
increasing the dimension of ℑ  (n=9). With these premises, the full DH model is 
summarised in Figure 2 and Table 1. 

 
 

3. External joint calibration 

 
Robot kinematic calibration consists in identifying the differences between the default 
geometrical parameters given by the manufacturer and those of the real workcell to 
achieve the required accuracy see ISO 9283:1998. It is notable that the off-line 
generation of programs for robotic workcells, as opposed to the traditional on-line 
teaching methods based on repeatability, has resulted in the emergence of different 
calibration techniques.  

Existing calibration techniques can be broadly classified into closed-loop (or 
pose-matching) and open-loop (or pose-measuring) approaches (Fassi et al. 2006). The 
closed-loop methods impose some constraints on the EE and only use the joint position 
measurements to calibrate the robot. However, it is difficult to move a physically closed 
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kinematic chain from one position to another while maintaining the physical constraints, 
such as touching a point or a plane with a probe. Hence, it is difficult to gather accurate 
joint readings (Fassi et al. 2006, Khalil et al. 1995). The open-loop methods 
traditionally require expensive and demanding devices to measure the EE pose, such as 
theodolites (Whitney et al. 1986), inclinometers, coordinate measuring machines (Driels 
et al. 1993, Zhong et al. 1994), sonic and visual sensors (Stone et al. 1986, Driels and 
Swayze 1994), and laser tracking systems (Prenninger et al. 1993, Vincze et al. 1994). 
An alternative open-loop method was developed by Sultan and Wager (2001) on the 
basis of independent-axis calibration and using two theodolites as data-acquisition 
media. However, the closed-architecture control system of commercial KR15/2 robots 
has encouraged the authors to develop a different procedure. 

The KR15/2 manipulator has proven to be accurate, but the workcell assembly 
made in situ left some misalignments in the additional joints, namely the linear track 
and the rotary table. Consequently, a simple, fast, and accurate calibration is needed to 
update the robot controller with the correct robot-specific DH parameter values instead 
of the default values.  

The proposed calibration method combines pose-matching and pose-measuring 
methods using a set of positions of the terminal point of the robot but avoiding the 
inconveniences of physical contact with the EE. These points are assumed to be on the 
same plane. A non-linear least squares (NLSQ) identification model has been derived 
from the consistency conditions of the planes and is detailed below. The DH parameters 
associated with the additional external joints will be held in vector β , i.e. 

1 1 1 2[ ]T

M L
a d dβ α θ θ= , in order to be accurately estimated using the calibration 

procedure. These parameters relate the base frame {B} with the additional frames linked 

to the additional external joints P{dL} and R{θM}, see Figure 2. Nevertheless, the 
calibration method proposed below can be applied to the complete chain by magnifying 
the observed parameters. This method is suitable for in-situ calibration in an industrial 

environment and can be run autonomously.  

3.1. Sensor used in the calibration 

A laser displacement sensor (SICKTM OD100-35P840) is rigidly attached to the robot 
flange. Due to its reduced size, the laser can be integrated within the same milling-tool 
holder and, thus, the calibration can be performed for the nominal operating conditions 
of the robot. The laser has a measuring range of 100 mm with 35 µm in resolution and is 
assumed to be aligned with the Z-axis of the EE. A coordinate system {LR} is chosen 
with the origin (TCP) in the laser line and with the X,Y-axis set at a convenient 
orientation, see Figure 3. 

It is cumbersome to use planar methods if the calibration process includes the 
calibration of the laser itself, since the observability of certain parameters is not possible 
if the EE is moved in parallel over a plane. Thus, the availability of a fully calibrated 

laser sensor is assumed prior to the assembly of the new additional joints, i.e. 8

LR
T  is 

assumed to be known. For example, 8

LR
T  can be computed with the approach proposed 

by Zhu et al. (2004). 
In practical terms of industrial calibration, the workspace base frame {B} is set 

at the centre of the rotary table using a squared pattern and several external 
measurements made in situ (theoretically, only three points per plane are required), see 
Figure 4.  
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3.2. Non-contact planar constraint calibration procedure 

It has been reported that partial EE pose information is sufficient for complete 
parameter identification (Zhong and Lewis 1995). However, Zhuang et al. (1999) 
showed that a single-plane constraint does not necessarily guarantee the observability of 
the unknown kinematic parameters of the robot, as the measurement data is biased 
towards a particular direction. These authors demonstrated that no less than three planes 
placed at a number of different orientations could replace a 3D-position measurement 
system. 

We use the laser distance sensor to sweep the three constraint planes (
X

Π ,
Y

Π  

and 
Z

Π ) at an intended constant distance d, see Figure 5. To achieve this, a set of points 

( 1,..., )i

M
p i np=  is commanded to the controller forming three orthogonal meshes in 

their respective orthogonal planes. This is performed by setting the required position 
and orientation of the laser displacement sensor at {B} for each point, with the pattern 
specified by the robot manufacturer (KUKA Corp., 2005):  
 

( , , , , , )i i i i i i i

M M x M y M z M A M B M Cp p p p p p p=     (1) 

 

where the three first values represent the position, and the three last values represent the 
roll-pitch-yaw orientation coordinates, respectively. 

The calibration procedure capitalises on the restriction imposed by the laser line, 
being almost perpendicular to each plane, and which is intended to be at the same 

distance d for all the 
M

p  points commanded to the controller. Moreover, we can 

consider the laser TCP at a distance d from the laser sensor so that each commanded 

point 
M

p  lies on its associated plane. The general equation of a plane Π  containing the 

origin of {B} is 0ax by cz+ + = , where a, b, c correspond to the plane coefficients. 

Since the TCP is lying in its corresponding plane, each commanded point i

M
p  should 

accomplish that + =0i i i

M x M y M zap bp cp+ . Moreover, the equations observed for the three 

pattern planes are, respectively, 0i

M x
p = , 0i

M yp =  and 0i

M z
p = . Therefore, the 

commanded points 
M

p have the form: 
 

(0, , ,0, / 2,0)
X

i i i

M M y M zp p p πΠ = −     (2) 

( ,0, ,0,0, / 2)
Y

i i i

M M x M zp p p πΠ = −     (3) 

( , ,0,0,0,0)
Z

i i i

M M x M yp p pΠ =     (4) 

 

A non-linear least squares (NLSQ) identification model has been derived from 
just the laser readings, without additional external measurements or joint recordings. 
The objective is to adjust the parameters of a kinematic model function that best fits all 
the np  commanded points, see Figure 6. For each point, this model function has the 

form: 
 

( , ); 1,...,i i

M
p f q i npβ= =  (5) 

 

The mp adjustable model parameters are held in the vector β . In the case 

studied, 1 1 1 2[ ]T

M L
a d dβ α θ θ=  (mp=6).   
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The fact that each set is constrained to lie on its corresponding plane leads to the 

construction of the identification model. Let i

S
p  represent the actual coordinates of the 

laser TCP in {B} that correspond to the configuration qi acquired for the commanded 

point i

M
p , see Figure 5. Due to the perpendicular orientation commanded, the distance 

i
DΠ  measured by the laser device approximates to the respective actual coordinate i

S x
p , 

i

S yp  or i

S z
p  at {B} (Figure 5). For each plane, the other five coordinates of the reached 

point i

S
p  are neither known nor approximated by any external measurement. 

Nevertheless, the error committed in all coordinates is reduced as the mp model 
parameters are tuned. 

A residual, ir , can be defined as the difference between the actual observed 

values i

S
p  and the model predicted values, namely  ( , )i i i

Sr p f q β= − . For each plane 

Π  and each commanded i

M
p , we approximate each residual to be minimised with the 

reading , i.e. i i
r DΠ≈ . Thus, the identification model relating the deviation of the EE 

location from the plane Π  with the differential error in the geometric parameters ( β∆ ) 

can be expressed as: 
 

f
D J βΠ Π= ∆    (6) 

 

with 
f

J r βΠ Π= ∂ ∂  being the Jacobian matrix of the residual regarding the identifiable 

parameters. Only the expression corresponding to the residual error rΠ  in the 

perpendicular direction of each plane Π  is taken into account. 

In this non-linear system, the derivatives r βΠ∂ ∂  are functions of both the 

commanded postures and the identifiable parameters, so these gradient equations do not 
have a closed solution. Instead, the default assembly values are chosen as initial guesses 

for the mp parameters, (0) [ 2, 803, , 305, 0, ]T

M L
dβ π θ= − , and the readings are repeated 

for two different configurations of the additional joints, i.e. { } { }, 0, 700M Ldθ =  and 

{ } { }, 4, 300M Ldθ π= , see Figure 7. Thus, while minimising the residuals, the final 

value of β  is refined iteratively by consecutive approximations: 
 

( 1) ( ) ( )β β β+ = + ∆s s s
 (7) 

 

where s is the iteration number. As Equation (6) is applied for a sufficient number 
np>>mp of commanded points arranged on the three orthogonal planes, the resulting 

system to identify ( )β∆ s  is: 
 

( )( ) ( ) ( )β β∆ = ∆s s s
p W  (8) 

 

where W  is the observation matrix (Khalil et al. 1995) of dimension np×mp. The 
observation matrix is an ordered composition of the Jacobians associated with the 

corresponding observation at each plane, ( ) ( ) ( )[ ( ) ( ) ( )]
X Y Z

s s s T

f f fW J J Jβ β βΠ Π Π= . 

Consequently, care must be taken in the configuration of p∆  due to the fact that the 

measurements taken in each plane must correspond with the significance of each row of 
W . The npx1 vector of the observed residuals in the three planes is 
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( ) ( ) ( ) ( )[ ]
X Y Z

s s s s T
p D D DΠ Π Π∆ = . The increment β∆  can then be solved to obtain the least 

squares error solution:  
 

( ) † ( )β∆ = ∆s sW p  (9) 

 

where †
W  is the left pseudo-inverse of W , namely  † 1( )T TW W W W−≡ . 

The geometric parameters β  are iteratively updated from the current pose error 
( )∆ sp  using Equations (9) and (7) until the elements of ( )β∆ s  become smaller than a 

prescribed limit. This best-fit solution is saved in the controller. The common sense 
criterion for convergence is somewhat arbitrary, as for example 
 

( )

( ) (0)
0.001   1,...,

β

β β

∆
< ∀ =

−

s

j

s

j j

j mp  (10) 

 

which is equivalent to specifying that each parameter should be refined to 0.1% 

precision, i.e. ( ) ( ) ( ) (0) ( ) (0)0.001 0.001β β β β β β∞ ∞− < ⋅ − ≈ ⋅ −s s

j j j j j j
, where ( )β ∞

j  is the 

asymptotic value of the parameter.  

3.3. Calibration results 

The calibration procedure described in this work has been run on an Intel® Core Duo PC 
with Matlab® 2007c. A total of 108 points have been measured, i.e., a regular mesh of 
36 grid points (6x6) was commanded for each plane in Figure 7. Figure 8 shows the 
behaviour of the proposed calibration algorithm for the studied workcell. The 
calibration process shows a good convergence. The stop criterion given by Equation 
(10) is met at the 18th iteration and the value achieved for the parameters is 

(18) (0) [0.05 0.01 0.06 0.01 0.07 0.08]β β= + T  (mm, rad). 

To validate the improvement obtained with the calibration procedure, two 
comparisons are considered. For the first, a total of nv=96 points on the table plane were 
measured using the laser sensor and varying external joints randomly from 0 to 1000 

mm for 
L

d  and from 0 to π  rad for 
M

θ . Figure 9 shows the performance for this test 

with and without calibration. After calibration the accuracy of the data clearly 
iºmproves: the average value is reduced from -3.342 to -0.600 mm; the root mean 
square (RMS) error is reduced from 5.429 mm to 0.998 mm; and the standard error 
deviation is reduced from 4.279 to 0.797 mm. 

The second comparison consists of the milling of a small workpiece, see Figure 
10. Although the motion of the additional joints is not required for this milling task, the 
operator manually displaces (by means of the control panel of the robot) the linear track 
500 mm and rotates the table / 4π  rad at a certain time while the lateral walls of the 
workpiece are being milled. Note that, after calibration (Figure 10, bottom right) the 
workpiece is better finished. 

 
 

4. Inverse kinematic control of the redundant workcell  

 

The inverse kinematic problem (IKP) is relevant because CAM systems specify the 
toolpath at the Cartesian workspace Ω , whereas the robot controller works in the joint 
space ℑ . The IKP can be solved for each pose of the path, although at the displacement 

level the IKP is cumbersome because an infinite number of solutions exist for redundant 
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manipulators. Instead, an iterative approach at the joint rate level is usually used 
(Whitney 1969).  

The forward kinematics between the EE velocity t and the joint velocity q&  is 

represented by the linear equation ·t J q= & , where J  is the mxn Jacobian matrix, which 

is a non-linear function of the joint angles that can be computed with the geometric 
procedure outlined by Angeles (2003), among others. For the redundant workcell 
considered in this work, the Jacobian matrix maps the 9-dimensional vector 

1 7[ , , ,..., ]T

M L
q dθ θ θ= && & &&  of joint rates into the EE velocity vector [ ]ω=

T
t v , with 

T

x y z
ω ω ω ω =    and 

T

x y z
v v v v =    denoting the linear and angular velocities 

of the EE reference frame relative to the base frame {B}, respectively. The objective of 
the IKP at the joint rate level is to obtain the required joint velocities &q  to achieve the 

desired EE velocity t for a given Jacobian matrix J. In the case of redundant robots, for 
which the Jacobian matrix J  is non-square (n>m), the right pseudo-inverse 

( ) 1
† T TJ J JJ

−
≡  gives the minimum least-squares solution q&  that fulfils the desired EE 

velocity t, namely †·q J t=& . Moreover, an arbitrary vector from the Null Space of J , 

namely ( )Jℵ , can be added to achieve a secondary goal:  
 

† †· ( )= + −&q J t I J J h  (11) 

 

where I is the identity matrix of dimension n, †( )−I J J  is the projection operator on 

( )Jℵ , and h is the performance vector for the secondary task. At this point it is worth 

mentioning that, as the Jacobian matrix depends on the DH parameters, the workcell 
calibration is crucial for a proper robot control. 

In the redundancy resolution scheme (RRS) given by Equation (11), the 
performance vector h can be considered as a virtual force that attempts to push the 
configuration of the manipulator away from a critical area in ℑ  (Nemec and Zlajpah 
2008) as a secondary task. The most widespread method used to select h is the gradient 

projection method (GPM) (Liégeois, 1977), which minimises a position-dependent 
scalar, the performance index p, by means of its gradient vector: 

 

·h k p= − ∇  ;  with 

1 2

( ) ( ) ( )
, ,...,

T

n

p q p q p q
p

q q q

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

 
(12) 

In this work, two performance criteria are combined into vector h: 
 

( ) ( ) ( )( )ref

 = + = −∇ + = − − + −
jnt cond jnt cond jnt cond Ts

h h h p p H q q H k q q  (13) 

 

where H is the weighting matrix for each criterion, e.g. constant diagonal matrices are 

considered in this work (0.01)= ≡
jnt cond

H H diag . Note that the performance vector 

jnt
h  given by performance index 

jnt
p  tends to maintain the workcell as close as possible 

to a reference posture qref  (e.g. the HOME posture 0q  shown in Figure 2) to avoid joint 

limits (Huo and Baron 2008). The performance vector 
cond

h  given by performance index 

cond
p  tends to maintain the workcell as far as possible from ill-conditioned postures 

(Angeles and López-Cajún 1992), i.e. postures with poor kinematic performances. The 
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second performance vector 
cond

h  is activated when the value of the condition number k  

of the Jacobian matrix (e.g. obtained using the Euclidean norm) passes over a preset 

threshold value, e.g. 0.5. At that instant, the corresponding configuration 
Ts

q  is recorded 

to evaluate at ℑ  the distance to the actual posture.  
 
 

5. Postprocessor implementation for a redundant workcell 

5.1. CAM system for toolpath generation 

The software NX® is a digital development system from SiemensTM that integrates the 
tasks of design (CAD), simulation (CAE), and planning of milling tasks (CAM). 
NX interacts with the program codes in TCL and C++ that manipulate the path data 
(event handler) and gives a convenient format to the generated output (definition file), 
see Siemens Corp. (2009) and Figure 11. The treatment of the data has been 
programmed in Matlab® code with the aid of the Hemero toolbox (Maza and Ollero 
2001), whereas the Robomove® software (Qdesign S.r.l. 2007) has been used to 
visualise the robot postures resulting from the implemented RSS.  

5.2. Continuous path tracking 

Once the CAM system has generated the toolpath as a discrete set of close-enough 
poses at Ω , the EE of the robot must track this path. A tangent, normal, and binormal 
unit Frenet-Serret vectors, i.e. {t, n, b}, is associated with every sample point of the 
trajectory and this indicates the required pose, see Figure 12. This trajectory data is 
stored as TCAM. 

The joint angles of the robot have to be computed along this continuous set of 
poses of the EE. The IKP can be solved at each sampled pose, although the resolution is 
cumbersome because an infinite number of solutions exist for redundant manipulators. 
Instead, an iterative approach can be applied by using J (Angeles 2003): 
 

( )i i iJ q q t∆ = ∆  , with 
 ( ) 

∆ ≡  ∆ 

T

i k k d
Q vect Q Q

t
p

 (14) 

 

where Qk (i.e., the first three rows and columns of the matrix T introduced in Section 2) 
is the current rotation matrix from {B} to {EE} (see Figure 1), and Qd is the desired 
rotation matrix. Both matrices are related by: 
 

· ·T

d k k d
Q Q Q Q Q Q= ∆ → ∆ =  (15) 

 

Function ( )vect Q∆  represents the axial vector of the 3x3 rotation matrix Q∆  

and is computed as: 
 

32 23

13 31

21 12

1
( )

2

Q Q

vect Q Q Q

Q Q

∆ −∆ 
 ∆ ≡ ∆ −∆ 
 ∆ −∆ 

 (16) 

 

Vector p∆  is defined as the difference between the prescribed value pd of the 

TCP position vector and its current value pk. The relations amongst Qd, pd, Qk, pk, Q∆  

and p∆  are shown in Figure 12.  
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Algorithm 1 below is programmed with these premises. It starts from the HOME 
posture (q0, Figure 12) and iteratively uses the kinematic models of the single KR15/2 
manipulator (sub-index 6R) and the complete workcell (sub-index Workcell) to evaluate 
the condition number k  and manage the motion of all the joints. 

 
 

Algorithm 1 
 

{ }

{ }

0

CAM

CAM

Workcell

1)   

 (each -point of the trajectory, T ( ))

2)  , T

 

3)  , DK( ,DH-Workcell) 

4)   ·

5)   

· ( )
6)   

7)   DK( , DH-Workcell)

        8)   

d d

T

d

d

q q

for i i

p Q

while q

p Q q

Q Q Q

p p p

Q vect Q
t

p

J q

ε

←

←

∆ >

⇐

∆ ⇐

∆ ⇐ −

∆ 
∆ ←  ∆ 

⇐

{ }6

6 6

6  6

6

Determination of 

       8.1)   0, (4),..., (8)

       8.2)   ( ) DK( ,DH-KR15/2)

       8.3)          

       8.4)        

9)   RRS

10)   +

F

R

R R

R g R
L

F R

k

q q q

J q q

H J

k H

q

q q q

endwhile

endfor

←

⇐

←

←

∆ ⇐

⇐ ∆
 

 
The RRS in the 9th step of Algorithm 1 is programmed using the Householder 

reflections. Direct calculation of the pseudo-inverse of the Jacobian †
J  is avoided to 

keep the round-off errors as low as possible (Arenson 1998). Algorithm 2 below 
summarises this calculation using Matlab

® code.  
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Algorithm 2 

 

( )

1 1

1) '                   (transpose of  in Matlab)

2) [ ]      (Matlab's orthogonal-triangular - )

    2.1) '

    2.2) (1: 6,:)

3) - ·

4) ( ', )     ( · ,  solve

T

T

T

J J J

Q R qr J QR decomposition

H Q

U R

r t J h

y forward U r U y r

←

=

←

←

← ∆

← =

1

d by forward substitution)

5) [ ;  (3,1)]

6) '·

7) 

y y zeros

k H y

q k h

←

←

∆ = +

 

 
 
 

6. Application 

The production system described above was implemented to mill an 8x13 meter 
orographic model of the tail end of a reservoir on the river Mijares (Spain). The design 
is imported from AUTOCAD® (widely used in topography) to the NX®-CAD module to 
restore the contour lines and interpolate a surface mesh. The quality of the resulting 
CAD file determines the efficiency of the results obtained in the subsequent steps of the 
milling process. As shown in Figure 13, the model is made by assembling 120 blocks of 
1x1x0.5 meters of expanded polystyrene (EPS).  

The toolpath generated in NX® has been simulated with and without the 
implemented postprocessor in the graphical Robomove® simulator and starting from the 
same HOME posture. In Figure 14 it can be seen that the end of the workpiece (red part) 

cannot be reached without moving the additional joints, i.e. 
L

d  and 
M

θ . A better 

performance is achieved when the toolpath is postprocessed with the proposed RRS, 
which moves the additional joints to maintain a well-conditioned posture during the 
machining process. 

Figure 15 (right) shows the final orographic model at the Hydraulic Engineering 
Department (DIHMA) of the Universidad Politécnica de Valencia, and which is used 
for simulating water courses under various climatic conditions.  
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7. Conclusions 

 

After introducing the capabilities of an industrial robotic workcell, two 
necessary requirements for setting up the workcell have been discussed in this paper: 
the in situ calibration of the robot’s external joints; and the management of the 
redundancies (caused by the additional joints and the symmetry of the cutter tool).  

For the calibration task, a novel non-contact planar constraint procedure has 
been developed on the basis of a planar pattern and a laser displacement sensor and has 
been successfully validated with two illustrative examples. The proposed calibration 
method is relatively cheap, can be implemented autonomously in most industrial robots, 
and is fast enough to be used in situ at regular intervals. Further work must be done to 
integrate the laser measuring device within the tool holder, in order to bridge the gap 
between the theoretical and practical applications on the shop-floor. 

Moreover, a functional postprocessor has been programmed inside the CAM 
system for the control of redundancies during milling tasks. A real case-study has been 
considered to validate the effectiveness of these production systems for the milling of 
large prototypes using soft materials. The proposed postprocessor is expected to be 
easily applicable on any industrial robot, and useable for different applications such as 
welding or painting. The implementation details to adapt CAM modules from 
machining tasks to welding and painting tasks is a field for further research. 
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Figure 1. View of the KUKATM workcell at the IDF-UPV supplied with two additional 
joints. The insets show the irrelevant axis of symmetry of the milling tool. 
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Figure 2. Frame assignment for the DH representation of the RP-6R workcell. 
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Figure 3. Laser displacement sensor attached to the robot flange. 
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Figure 4. Squared pattern on the workspace base frame {B}.  
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Figure 5. Three commanded meshes on the three respective planes are shown at the top; 

the coordinate i

S yp  approximated by the distance 
Y

i
DΠ  to 

Y
Π is shown underneath. 
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Figure 6. Open-loop procedure proposed for the workcell calibration. 
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Figure 7. Sweeping the reference planes with two configurations of 
L

d  and 
M
θ . 
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Figure 8. Left, the value ( )β s

j  of each parameter tends to an asymptotic value; right, the 

calibration algorithm meets the stop criterion at the18th iteration. 
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Figure 9. Validation of the calibration: scattergraph and histogram of the distance 

measurements DΠ  to the table surface. 
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Figure 10. Milling of a small workpiece: bottom left, result without calibration; bottom 
right, result with calibration. 
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Figure 11. Integrated postprocessing in NX®: the ‘definition file’ and the ‘event 
handler’ adapt the toolpath to the controller’s Kuka Robot Language (KRL). 
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Figure 12. Highlight of the loop leading from an initial current pose (k) to a desired final 
pose (k+1), both specified by the Frenet-Serret vectors {t, n, b}. 
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Figure 13. The orographic model is produced by assembling 120 blocks of 1x1x0.5 
meters of EPS. 
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. 
 

Figure 14. Toolpath postprocessed without (left) and with (right) the proposed RRS. 
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Figure 15. Left, milling process of an EPS block; right, final 1:75 model used for 
flowing simulation (real dimensions of 8x13 m). 
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Table 1. Workcell parameters for the standard DH-model. 
 

Link αi (rad) ai (mm) θi (rad) di (mm) 

1 π/2 803 θM -305    

2 π/2 0 0 dL 

3 π/2 300 θ1 -675 

4 0 650 θ2 0 

5 π/2 155 θ3 0 

6 π/2 0 θ4 -600 

7 π/2 0 θ5 0 

8 0.3564 0 θ6 -443.4 

TCP 0 0 θ7(VJM) -119.7 
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