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The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes’
spiral diffraction grating is theoretically, numerically and experimentally reported in this work.
These beams are propagation-invariant solutions of the Helmholtz equation and are characterized
by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in
the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to
the formation of the acoustic vortex with zero pressure on-axis and the angular phase dislocations
characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence,
the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating.
The obtained results allow to obtain Bessel beams with controllable vorticity by a passive device,
which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

PACS numbers: 43.20.+g, 43.20.Fn, 43.35.+d

I. INTRODUCTION

Diffraction of waves, the spreading of the wave packet
upon propagation, represents one of the most known
properties of the wave physics. However, there are par-
ticular solutions of the wave equation that are immune to
diffraction. Among them, the Bessel beams1 are diffrac-
tion free solutions with remarkable features. Of spe-
cial interest are the High-Order Bessel Beams (HOBBs),
characterized by high amplitude concentric rings with a
profile given by the nth-order Bessel function in the plane
transverse to the beam axis. Any Bessel beam is charac-
terized by an annular radiation in the far field, therefore
the magnitude of the spatial spectrum of these beams
does not depend qualitatively on the order of the beam.
The difference between zeroth and HOBBs is that the
phase of the HOBBs shows a linear variation along its
annular spectrum in the azimuthal direction. Thus, the
wave field presents a helicoid phase dependence contain-
ing screw-type phase singularities, leading to an inten-
sity minima at the beam axis. Solutions of such kind are
of infinite transverse extent and thus can not be gener-
ated experimentally. However, it is possible to generate
finite size approximations to Bessel beams which prop-
agate over extended distances in a diffraction free man-
ner providing potential applications for the wave physics
community2–8. While zeroth-order Bessel beams present
a bright central maximum and can be useful for applica-
tions that requires focusing of energy9, the vortex beams
generated by the HOBBs can be useful for manipulating
particles in both optics10 and acoustics11.

In the case of electromagnetic (optical) waves, vortex
beams have been experimentally demonstrated by means
of computer generated holograms2,12 or by axicons illu-
minated with a Laguerre-Gaussian mode3. Other meth-

ods include an azimuth-dependent retardation on the op-
tical field using Spiral Phase Plates (SPP)4, or diffrac-
tion gratings with groove bifurcation. In the latter case,
vortex beams with an arbitrary topological charge have
been created13. This kind of beams has been shown very
useful for the optical manipulation of particles. Since
the first observations of manipulation of particles using
optical beams14–16, an unexpected radial force field ap-
peared, called gradient force, that dragged colloidal par-
ticles towards the axis in addition to the axial radiation
pressure that pulls particles towards the beam. In this
way, particles can be trapped into the beam axis under
conditions where the dragging gradient force dominates
over the pulling radiation pressure. This regime can be
achieved using strongly focused light beams and for par-
ticles smaller than the wavelength, leading to possibility
of manipulation of objects as small as 5 nm17. These so
called optical tweezers have been employed in many other
macromolecular, biological and medical applications17.
However, high intensity beams are necessary for exerting
strong forces leading to unwanted effects as heating, so
in practical applications optical tweezers can exert forces
up to 100 pN17.

Compared to optical manipulation, ultrasonic waves
become advantageous to manipulate heavier objects:
the smallness of the sound speed lead to larger drag
forces, from 3 to 4 orders of magnitude11, and because
of the size of the acoustic wavelength bigger objects
can be trapped. In addition, the interaction of Bessel
beams with particles have been also intensively studied
in acoustic6,7. Two main remarkable effects have been
reported: first, the transference of orbital momentum
from the acoustical vortex to the particle18–20, and on
the other hand, the appearance of negative axial acoustic
radiation forces5,7,21,22. This fact has motivated the de-
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velopment of experimental approaches to generate acous-
tical vortex beams. Different methods using either sin-
gle acoustic sources have been developed. Phase dislo-
cations using a single source were first proposed by Nye
and Berry23. The acoustic analog of the optical SPP has
been also proposed24,25, consisting of a transducer with a
surface properly deformed to create the helicoidal beam.
This method is restricted to a single operating frequency.
Other approaches with single sources, include the use of
photoacoustic effect to generate an helical beam26.

On the other hand, the generation of acousti-
cal vortices with arrays of sources is also possible27

and have been widely used in acoustic for multi-
ple applications: particle manipulation28, acoustical
tweezers11,29–31, angular momentum transfer32, acoustic
spanners33, multiple-particle trapping34, precise manip-
ulation and sorting of cells for life sciences research35,36

or micro-bubble capturing37. Recently Baresch and co-
workers developed the first all-acoustical single-beam
trapping11, where a negative gradient pulling force with
acoustic waves was demonstrated using a single vortex
beam. However, although the array of sources provides
active steering and control of the vortex beam, in such
active systems the resolution of the vortex is restricted
by the number of transducers in the array38, leading to
technologically complex systems in the case of vortices of
high topological charge.

In this work we study the diffraction of a plane wave
by a multiple-arm Archimedes’ spiral diffraction grating,
and propose a passive and robust method for the forma-
tion of HOBBs using such gratings. The scattering of
plane acoustic waves by the spiral grating leads to the
formation of the acoustic vortex with zero pressure on-
axis and the angular phase dislocations characterized by
the spiral geometry. The order of the generated Bessel
beam and, as a consequence, the size (width) of the gen-
erated vortex can be fixed by the number of arms of the
spiral diffraction grating. The obtained results allow to
obtain Bessel beams with controllable vorticity by a pas-
sive device, which has potential applications in low-cost
acoustic tweezers and acoustic radiation force devices.
First, in Section II we present a theoretical model for
the diffraction of plane waves by the multiple-arm spiral
grating with infinite radial extent. Then we numerically
analyze the effects of the finite size of the sample, con-
sidering also the effects of the vibration of the scatterers.
The numerical confirmation of the HOBBs is reported in
Section III showing the generation of the vortex in the
axis and its dependence on the topological charge of the
spiral diffraction grating. Finally, in Section IV we exper-
imentally test the main results of this work by measuring
the acoustic field scattered by a steel grating embedded
in water. Particularly, we show the phase dislocation
and the acoustic vortex generation by a first order Bessel
beam.
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Figure 1. Scheme of the first-order Bessel beam formation by
the Archimedes’ spiral grating. The incident plane wave is
scattered into a converging and diverging conical wavefront,
in which the phase of the wave (φ) is a linear function of the
angle (θ). A corkscrew dislocation in wavefront is produced,
leading to an acoustic vortex and a zero pressure on axis,
r = 0. The minimum along the symmetry axis results from
the destructive interference of first order diffraction generated
at opposite sides of the axis.

II. DIFFRACTION BY A SPIRAL GRATING

The proposed structure is a multiple-arm Archimedes’
spiral diffraction grating as shown in Fig. 1 and 2. As the
arms of the Archimedes’ spiral present an uniform sepa-
ration, the incident field is diffracted at an angle, given
by diffraction grating theory. Therefore, the diffracted
field is of conical wavefront as in Ref.8, but here with az-
imuthal rotating phase due to the spiral geometry. When
converging to the axis, the conical wavefront forms a
HOBB. The diffracted pressure field by the grating gen-
erates an acoustic vortex line with a characteristic screw
dislocation.

A. Infinite diffraction gratting

The harmonic pressure field diffracted by a grating,
with source velocity distribution vz(r0), can be calculated
using the Rayleigh-Sommerfeld integral at any point, in
cylindrical coordinates r = (r, θ, z) as

p(r) =
−iωρ0

2π

∫
S0

vz(r0)
exp (ik |r− r0|)
|r− r0|

dS(r0), (1)

where r0 = (r0, θ0, z0) is the radius vector of a surface
element dS, ω the angular frequency, the wavenumber
k = ω/c0 and ρ0 and c0 the density and speed of sound of
the medium. The plane of the source is assumed to be at
the origin of the coordinates for simplicity, z0 = 0, then,
without loss of generality we can write vz(r0, θ0, z0 =
0) = vz(r0, θ0).



3

n   = 1 n = 3

n = 20n = 7

Figure 2. Examples of Archimedes’ spirals with multiple arms
(a) n = 1, (b) n = 3, (c) n = 7 and (d) n = 20.

The Fresnel approximations assumes that the first two
terms of the square root Taylor expansion are sufficient
to correctly represent the phase, provided that z is large
enough (parabolic expansion):

|r− r0| =z
√

1 +
(x− x0)2

z2
+

(y − y0)2

z2
'

z

(
1 +

r2

2z2
+

r20
2z2
− rr0 cos(θ0 − θ)

z2

)
,

(2)

and by neglecting the radial contributions in the denom-
inator of the Rayleigh integral: |r− r0| ' z.

Expressing the surface element in cylindrical coordi-
nates dS = r0dθ0dr0, Eq. (1) transformes to the following
form

p(r, θ, z) =A(r, z)

∫ ∞
0

∫ 2π

0

vz(r0, θ0) exp

[
i
k

2z
r20

]
×

exp

[
−ikr

z
r0 cos(θ0 − θ)

]
r0dr0dθ0,

(3)

where A(r, z) is independent expression on the integra-
tion variables r0 and θ0:

A(r, z) =
−iωρ0

2πz
exp

[
ik

(
z +

r2

2z

)]
. (4)

We suppose that an incoming plane wave uniformly il-
luminates the spiral grating at z = 0. The source velocity
distribution can be characterized by a complex-amplitude
transmission function2,

vz(r0, θ0) = v0 exp[−ikrr0] exp [−iφ(θ0)] , (5)

where v0 is the particle velocity amplitude. The fac-
tor exp[−ikrr0] is the phase of the conical wavefront.
The continuity of the transversal component of the wave
vector kr at the interface between the homogeneous
medium and the diffraction grating with scatterers sep-
arated by a distance a results in k2 =

√
k2r + k2z with

kr = 2πN/a and kz = kr/ tanβ the axial and longitudi-
nal wavenumber, respectively, N is the diffraction order
and β = arcsinNλ/a is the angle of the conical wave-
front with respect to the axis z. Here and below we will
work in the range of frequencies that only excites the first
diffraction order, therefore we assume N = 1. The last
factor exp[−iφ(θ)] is a phase accounting for the azimuthal
dependence of the phase of the conical wavefront.

In the case of a pure axisymmetric grating8 where the
sources are distributed in concentric circles separated at
a distance a,

φ(θ0) = krR(θ0) =
2π

a
R(θ0) = const. ,

exp[−iφ(θ0)] = cte .
(6)

Therefore, due to constant radius of each of concentric
rings, the phase is independent on azimuthal angles and
no vortex can be produced. In this work we consider an
Archimedes’ spiral grating which provides the azimuthal
dependence of the phase in our system. The general
mathematical expression for a curve describing n arms
of Archimedes’ spirals starting from an origin can be ex-
pressed in polar coordinates as

R(θ0) =
na

2π
θ0 + la, (7)

with 0 ≤ l ≤ n − 1 the index of the l-th arm, and a the
raidal separation between arms. Figure 2 shows exam-
ples of spiral with multiple arms. The phase term of the
Eq. (5) can be expressed as:

exp[−iφ(θ0)] = exp[−ikrR(θ0)] = exp [−inθ0] . (8)

The velocity function can be obtained by substituting
Eq. (8) into Eq. (5):

vz(r0, θ0) = v0 exp[−ikrr0] exp[−inθ0]. (9)

Therefore, the particle velocity field at the source plane
corresponds to a conical wavefront with an azimuthal
phase rotation proportional to the number of arms of
the spiral. Explicitly, the phase of the field scattered by
N -arm spiral rotates by 2πN , thus forming the phase
singularity of N -th order.

The pressure field can be obtained by substituting the
source field velocity in the double integral in Eq. (3),

p(r, θ, z) =A(r, z)

∫ ∞
0

r0 exp

[(
k

2z
r20

)]
×∫ 2π

0

v0 exp[−ikrr0] exp[−inθ0]×

exp

[
i

(
kr

z
r0 cos(θ0 − θ)

)]
dr0dθ0.

(10)
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The terms without azimuthal dependence can be factor-
ized out of the azimuthal integral in Eq. (10) is:

p(r, θ, z) = A(r, z)v0

∫ ∞
0

r0 exp

[
i

(
k

2z
r20 − krr0

)]
∫ 2π

0

exp[−inθ0] exp

[
−ikr

z
r0 cos(θ0 − θ)

]
dr0dθ0.

(11)

Using the Jacobi-Anger expansion,

Jn(α) =
in

2π

∫ 2π

0

exp[inβ] exp[−iα cos(β)]dβ, (12)

and simple algebra with a change of variable, the inte-
gration over the azimuthal angle θ0 in Eq. (11) can be
solved and leads to:

p(r, θ, z) = B(r, z)F (r, z), (13)

where

B(r, z) = A(r, z)2πv0 exp
[
in
(
θ − π

2

)]
, (14)

and

F (r, z) =

∫ ∞
0

r0 exp

[
i

(
k

2z
r20 − krr0

)]
Jn

(
kr

z
r0

)
dr0.

(15)
note that n is the number of arms in the spiral is also the
order of the Bessel function.

The radial integral in Eq. (15) can be approximately
solved by using the method of the stationary phase2,3,39.
Rapid oscillations of the exponential term of the integral
in Eq. (15) mean that F (r, z) ' 0 over those regions
and only significant non-zero contributions to the integral
occur in regions of the integration range where phase
term is constant i.e., at points of stationary phase. In
our case, the approximated solution to leading order of
the radial integral at point (r, θ, z) reads as

F (r, z) ' krz

k
exp

[
−i
(
kr2

2z
+
zk2r
2k

)]√
2πz

k
Jn(krr).

(16)

Higher order terms not considered in this solution give
corrections to off-axis areas39.

By substituting Eq. (16) into Eq. (14) and Eq. (12),
as well as using Eq. (4), the pressure field is written as

p(r) '− ip0kr

√
2πz

k
Jn(krr) exp [ikzz] exp [in (θ − π/2)] ,

(17)

where p0 = ρ0c0v0, and the paraxial approximation of the
axial wavenumber kz = k

(
1− k2r/2k2

)
was used. The

radial distribution is given by the nth-order Bessel func-
tion, while the amplitude is proportional to

√
z, which

is in fact the expression for a n-th order Bessel beam.

As an example we evaluate the amplitude of the pressure
field along the first lobe of the first order Bessel beam
(n = 1) generated by an infinite spiral with a/λ = 1.2
embedded in water. Black dashed line in Fig. 3(a) shows
the evaluation of the Eq. (17) for this spiral, showing
the
√
z dependence. Notice that the normalized inten-

sity, p p∗/ρ0c0, grows linearly with the distance z, with
a rate given by 2πk2rJ

2
n(krr)/k. A simple physical inter-

pretation of the
√

(z) dependence in Eq. (17) is that
the radiation at increasing z arrives scattered from the
arms of spirals of increasing radius with proportionally
increasing energy.

B. Finite size effects

Previous Section deals with an infinitely extended
diffraction grating. This is not the real situation in ex-
periments different finite size effects can be present. In
order to analyze these finite size effects we have applied
two different methods. On one hand we have numerically
integrated the Rayleigh-Sommerfeld diffraction integral,
Eq. (1), for structures with finite extent. This allows to
study the effects due to the finite radial size of the spi-
ral. On the other hand, numerical simulations using a
3D pseudo-spectral time-domain method using a k-space
corrector operator40 was also performed. In these simu-
lations, a steel spiral grating embedded in water is con-
sidered, allowing the acoustic waves to penetrate in the
grating’s bulk material, so the effect on the compressibil-
ity of the material was considered.

Figure 3 (b) shows the pressure field from the spi-
ral grating analyzed in the previous Section as obtained
now numerical integration of the Rayleigh-Sommerfeld
diffraction integral, Eq. (1), for a finite structure of
M = 40 loops of spiral (R = 40a). It can be observed the
formation of a first order Bessel beam with the elongated
zero-line at the axis. An axial cross section along the first
lobe of the Bessel beam is shown in Fig. 3 (a) (blue line).
This numerical integration of the Rayleigh-Sommerfeld
integral agrees well with theory (black dashed line). It is
worth noting here that the longitudinal field oscillations,
observed in Bessel beams generated by axicons, are not
present in Eq. (17) as long this result was derived for
a non-truncated spiral, M → ∞. As the number spi-
ral loops increases, the longitudinal oscillations tend to
disappear and the field converges to one given by the
Eq. (17). To prove this we have evaluated a spiral grat-
ing with M ′ = 1000, with the same radius as the previous
spiral (i.e. the distance between the scatterers, a′ scaled
respectively R = M ′a′ = 40a); gray curve in Fig. 3 (a)
clearly shows this convergence.

Furthermore, the beam amplitude follows Eq. (17) in-
crasingly along z from z = 0. However, as shown in Fig.
3(a) for the case of truncated systems (blue line) the am-
plitude grows up to a given distance, z = zF . This dis-
tance can be geometrically estimated through the zero-th
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Figure 3. (a) Longitudinal pressure distribution along the
first lobe of the Bessel beam obtained from Eq. (1) for (blue)
M = 40 and (gray) M = 1000, (red) k-space simulation con-
sidering elastic scatters and (black dashed) analytic Eq. (17).
(b) Pressure map distribution obtained by numerical evalua-
tion of the Rayleigh-Sommerfeld diffraction integral, Eq. (1),
for a spiral of M = 40. (c) Transversal pressure distribution
at z/λ = 25 obtained from Eq. (1) for (blue) M = 40, (red)
k-space simulation considering elastic scatters and (black
dashed) analytic Eq. (17). (d) Far-field showing the char-
acteristic ring of the Bessel beam, where kr = 2π/a.

order Bessel beams as8

zF =
Ra

Nλ

√
1−

(
Nλ

a

)2

, (18)

where N ∈ N is the diffraction order and R = Ma is the
radius of the spiral with M the windings. The zF for the
spiral with M = 40 is shown in Fig. 3(a) while for the
case with M = 1000 is out of the limits of the plotted
frequencies. The estimation of zF is in good agreement
with the numerical integration of the Eq. (1).

In the radial direction, the beam follows a Bessel pro-
file, Eq. (17). A transversal cross section at z/λ = 25,
and y = 0 is presented in Fig. 3 (c), showing a good agree-
ment between the radial field distribution obtained by
the numerical integration and theory. In order to prove
this, Fig. 3 (d) shows the far-field of the truncated grat-

ing, where the characteristic ring of a Bessel beam is
observed, corresponding to the wavevector kr = 2π/a.

Finally, we analyze the effect of the rigidity of the ma-
terial of the spiral grating on the scattered field using
numerical simulations. We analyze the scattering by the
fixed spiral grating with M = 40a radiated by a plane
wave. In these simulations, no losses were included and
the thickness of the grating was λ/4. The simulations
results, red curve in Fig. 3 (a), present axial oscillations
due to the finite aperture of the grating as already pre-
dicted by the direct integral of the Eq. (1). Here, excel-
lent agreement is found between simulations and theory.
The small discrepancies are caused by the fact that the
scatterers are of finite size, i. e. not the perfect punc-
tual sources (as assumed in the Rayleigh-Sommerfeld in-
tegral), and also due to the bulk resonances into the
body of the steel grating. The radial profile, shown in
Fig. 3(c), also shows the Bessel profile in good agree-
ment with the theory and the direct integration of the
Eq. (1). Therefore, the effect of the rigidity of the mate-
rial of the structure is very small.

III. HIGH ORDER BESSEL BEAMS

One of the consequences of the procedure described
above is that it is possible to generate HOBBs by us-
ing multiple-arm spirals (n >1). The parametric Eq. (7)
describes n arms, separated by a fixed distance a. In
the case of n > 1, the rate of growth of each individual
arm is increased by a factor of n, as it is underlined by
the dark arms in Fig. 2. The variation of the phase (φ)
with the angle (θ) is therefore increased, and the conical
wavefront formed by the axisymmetric grating presents a
total phase shift of 2πn over a complete turn, as follows
from Eq. (9). When converging to the axis, the coni-
cal wavefront forms a Bessel beam in the same way as
in the previous Section. However, as the phase rotation
is increased, the vortex presents a topological charge of
n. The conformed Bessel beam is therefore a n-th order
Bessel beam and as a consequence the hollow central area
of the beam is extended.

Figure 4 presents the formation of HOBBs for the cases
n = 3, 7, 20 and 50. In the Figs. 4(a-d), the transversal
pressure distribution at z = zF and y = 0 is presented.
In this case, the solid line presents the analytical solution
for the transverse field of an ideal Bessel beam, Jn(krr),
and symbols the k-space numerical solution assuming a
steel grating embedded in water. The simulations are
in agreement with theory, even in the case of n = 50.
Notice here the discrepancies at high radial values, in
which the approximated theoretical solution fails because
corrections of higher order should be taken into account,
and also the finite size effect of the sample is noticed in
this regions.

The complete transversal map at z = zF is shown in
Figs. 4 (e-h). The areas of strongly reduced sound around
the symmetry axis appear the larger is ”n”, the larger are
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Figure 4. n-th order Bessel beams formed by spiral gratings of n arms. (a-d) Transversal pressure distribution at z = zF and
y = 0, (continuous line) Eq. (17), (markers) k-space numerical solution of the wave equation assuming a steel grating embedded
in water. Pressure magnitude obtained at (e-h) z = F and (i-l) x = 0. Colorbars in normalized units p/pmax. (m-p) Phase of
the field is calculated at z = zF , colorbars in normalized units φ/π.

the zero-field areas.The radius of the reduced sound areas
can be estimated from the position of the first maximum
of the n-th Bessel function as

rn =
j′na

2π
' (n+ 0.8086n1/3)a

2π
, (19)

where j′n is the first zero of the first derivative of the
n-th Bessel function41. For the case of n = 7, j′n '
8.57, therefore r7/λ = 1.64 in agreement with the results
shown in Fig. 4(b). The axial map of the field shown
in Fig. 4 (i-l), also shows the dependence of the hollow
central part of the beam on the increasing order n. Of
special interest is the generation of high order beams,
e.g. n = 50. In this case, j′n ' 57.12, therefore the
zero in the center of the hollow beam covers a cylindrical

volume with a diameter of 2r50/λ = 21.82, in the interior
of which the scattered sound is almost absent.

Finally, the phase of the field is presented in the sub-
panels Fig. 4 (m-p) at z = zF . It can be seen that the
number of times the phase rotates in each turn, i.e. the
topological charge, is proportional to the order of the
Bessel beam, in accordance with Eq. (17). The formed
field are therefore vortex beams of topological charge n,
where the topological charge of the vortex can be con-
trolled directly by the number of arms of the spiral grat-
ing.

These results show that HOBBs can be generated even
by acoustically permeable gratings for the water/steel
impedance contrast ratio, i.e. under realistic conditions
for common ultrasound applications.
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Figure 5. (a) Spiral grating used in experiments. Inset shows a zoom were the spiral can be clearly seen. (b) Transversal
cross-section of the pressure field at a distance z = 10/λ normalized to the maximum for (solid line) the analytic expression of
the first-order Bessel beam and (circles) the experimental results. The vertical dotted line represents the position where the
field is null. (c-d) Numerical predictions and (e-f) experimental results of the magnitude and phase, respectively. Colorbars in
normalized units (p/p0 for the field magnitude and φ/π for the phase).

IV. EXPERIMENTAL VALIDATION: A FIRST
ORDER BESSEL BEAM FORMED BY A SPIRAL

GRATING

A spiral grating in water is experimentally studied in
order to create an acoustic vortex by this kind of pas-
sive elements. A spiral profile in a stainless steel plate
of 0.8 mm thickness was laser cutted. The diameter of
the scattering area was ∆r = 0.75 mm and the grat-
ing period a = 1 mm. The width of the open slits is
a − ∆r = 0.25 mm of the open slits. The spiral winds
M = 20 times and total radius is R = 50 mm. The spi-
ral plate is aligned and placed in front of a flat ultrasonic
transducer of the same diameter as the grating, as can be
seen in Fig. 5 (a). The source was driven by a 50 cycles
sinusoidal pulse burst of frequency f0 = 2.22 MHz using
a function generator (14 bits, 100 MS/s, model PXI5412,
National Instruments) and a linear RF ampliffer (ENI
1040L, 400W, 55dB, ENI, Rochester, NY). The pressure
waveforms were recorded with the help of a HNR 500 µm
needle PVDF hydrophone (Onda Corp, CA), and a dig-
itizer (64 MS/s, model PXI5620, National Instruments)
was used. A three-axis micropositioning system (OWIS
GmbH, Germany) was used to move the hydrophone in
three orthogonal directions with an accuracy of 10 µm
and a National Instruments PXI-Technology controller

NI8176 was used to control all the devices. The distance
between the grating and the source plane was adjusted
to 0.5 mm.

The transversal cross section of the pressure field is
shown in Fig. 5 (b). The transversal cross-section in the
experiments (circles) was chosen for an azimuthal angle
in the (y, x) plane at θ = −3◦. The traversal profile
agrees well with the shape of the first order Bessel beam
(continuous black line). Although minor differences are
visible for the lobe amplitude on the positive axis y, the
main features of the HOBB, i.e. its central zero and rota-
tional vortex, are correctly reproduced by the proposed
experimental setup.

Figures 5 (c-f) show the experimental measurements
and numerical predictions of the acoustic field in a trans-
verse plane to the axis at z = zF . Figure 5 (c) shows
the experimental measurement for the amplitude of the
field formed by the spiral grating. The pattern matches
the characteristic first order Bessel beam with null am-
plitude in axis and a set of rings of pressure maxima
with increasing radii. Figure 5 (e) presents the corre-
sponding numerical predictions. Both results show good
agreement. Some differences appear, mainly due to tech-
nical imperfections: the misalignment between the grat-
ing and the source plane, the nonuniform vibration of the
piezoelectric transducer and the resonances between the
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source and the grating. The phase of the field is pre-
sented in Figs. 5 (d) and 5 (f) for experimental results
and numerical predictions respectively. The characteris-
tic screw phase dislocation at the center was observed: a
complete loop around a point centered on the axis repre-
sents a linear and continuous variation of the phase from
0 to 2π, i.e. the topological charge of the acoustic vortex
is one. Remark that a shift of π in phase is observed be-
tween any point and its image with respect to the central
axis. This a proof that the wave transmitted through the
grating is therefore an acoustic vortex.

V. CONCLUSIONS

The formation of HOBBs by scattering of plane waves
on an Archimedes’ spiral grating is theoretically and ex-
perimentally reported in this work . The effect of the fi-
nite size of the sample is analyzed numerically. The main
result is that, due to finite size of the sample, the HOBBs
are truncated. All the beams analyzed are characterized
by a zero of the pressure field along the z-axis, i. e. the
vortex line. The size of this hollow part of the beam is
dependent on the topological charge of the HOBB, which
is directly controlled by the number of arms of the spi-
ral. Experimental tests in the ultrasound regime have
been performed showing the case of a truncated-first or-
der Bessel beam. Good agreement between theory, ex-
perimental measurements and numerical simulations is
found for the acoustic pressure field amplitude, as well

as for the screw phase dislocations. Therefore, the sys-
tem shown in this work seems to be of special interest for
the generation of arbitrary nth-order Bessel beams using
regular spiral patters with n-arms.

The system shown in this work to synthesize HOBBs
presents a high potential in ultrasound particle manipula-
tion techniques and, in general, in acoustic radiation force
applications in which the HOBBs have attracted great
interest. This method provides the possibility of genera-
tion of Bessel beams of arbitrary order by a passive and
cheap device if compared with acoustical vortices gener-
ated by active arrays of transducers. The generation of
an acoustic vortex by arrays is limited by the amount
of active elements and its size. In contrast, the beam
resolution by the proposed setting is limited only by the
ratio between the wavelength and the spacing between
slits. Nowadays, with the increase in the performance of
3D printing and laser cutting techniques, the conforma-
tion of HOBBs by spiral gratings offer an alternative to
multielement transducers to generate acoustical vortices.
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