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ABSTRACT:  

Background: Pancreatic duct ligation (PDL) has been used as a model of chronic pancreatitis and as a 

model to increase β-cell mass. However, studies in mice have demonstrated acinar regeneration after 

PDL, questioning the long-term validity of the model. We aim to elucidate whether RF-assisted 

transection (RFAT) of the main pancreatic duct is a reliable PDL model, both in short (ST, 1-month) and 

long-term (LT, 6-months) follow-ups.  Methods: Eleven pigs were subjected to RFAT. Biochemical 

(serum/peripancreatic amylase and glucose) and histological changes (including a semiautomatic 

morphometric study of over 1000 images/pancreas and IHC analysis) were evaluated after ST or LT 

follow-up and also in fresh pancreas specimens that were used as controls for 1 (n=4) and 6 months 

(n=6). Results: The distal pancreas in the ST was characterized by areas of acinar-to-ductal metaplasia 

(56%) which were significantly reduced at LT (21%) by fibrotic replacement and adipose tissue. The 

endocrine mass showed a normal increase. Conclusion: RFAT in the pig seems to be an appropriate PDL 

model without restoration of pancreatic drainage or reduction of endocrine mass. 
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INTRODUCTION 

The conversion of exocrine acinar tissue into tubular or ductal complexes, usually known as acinar-to-

ductal metaplasia (ADM), is common in various pancreatic diseases including pancreatitis and cancer [1–

3]. Since ADM is characterized by a switch from acinar to ductal phenotype with active proliferation, and 

since metaplasic ductal lesions are frequently seen in chronic pancreatitis as well as in specimens of 

pancreatic ductal adenocarcinoma (PDAC), ADM is thought to represent a preneoplastic condition 

[1,3,4]. Even though some areas of ADM could revert to normal acinar morphology [5,6] in the absence 

of oncogenic Kras mutations or in the presence of acute pancreatitis, the transition of acinar cells into a 

duct-like state (as in ADM) has been recognized as an important early event in tumor initiation. 

 Pancreatic duct ligation (PDL) in mouse models has been extensively used as a model of 

chronic pancreatitis in order to study the evolution of ADM into PDAC [1,3,7], and also as a model of 

duct-to-islet differentiation [6,8–12] to increase beta-cell mass. However, the validity of PDL as a model 

of endocrine regeneration has now been called into question [5–7,11,13,14]. Recent results from PDL in 

mouse models have shown that some acinar cells can escape death [7] and that acinar compartment can 

regenerate in a long-term evolution after PDL (over 6 months), probably by restoration of pancreatic 

drainage [6]. Ever since the first studies on PDL in mouse models it has been said that this technique is 

difficult because its unique anatomy hampers the results [15,16]. The mouse pancreas is usually poorly 

defined and consists of three lobes (gastric, splenic and duodenal) which drain their juices via individual 

ducts only 150 µm in diameter [16,17] and there are also frequent variations in this drainage. Researchers 

usually ligate the splenic lobe from the rest of the pancreas, however this technique is challenging due to 

the small diameter of the pancreatic duct and usually requires the help of a microscope for the dissection. 

Many of these anatomical difficulties can be overcome with a large pancreas model, such as the pig 

model, in which the pancreas is large and clearly defined [18], especially if the closed proximal part 

(duodenal lobe) is preserved to avoid a difficult-to-treat steatorrhea [19]. However, in the pig model a 

larger amount of tissue must be severed and hence PDL may not be able to avoid a pancreatic fistula or to 

efficiently occlude the main pancreatic duct in the mid pancreas. 

Radiofrequency (RF) energy has been used both experimentally and clinically to manage the 

pancreatic remnant after distal pancreatectomies to seal the main and secondary pancreatic ducts [20–22]. 

In recent years, our group has tested the ability of some RF electrodes to seal vessels in the liver [23,24] 
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and kidney [25]. A recent study conducted on a porcine pancreatic model suggested that distal pancreatic 

transection by RF electrode can seal the main pancreatic duct easily and safely [22]. We have also 

demonstrated in a rat model that RF-assisted transection of the neck of the pancreas may safely seal the 

remnant distal pancreas and activate a rapid and massive exocrine atrophy without leading to necrotizing 

pancreatitis [12]. We therefore hypothesized that this technique could be used to occlude pancreatic ducts 

while severing large amounts of tissue, as in the mid pancreas of large animals. 

With the above considerations in mind, the aim of this study was to elucidate whether RF-

assisted transection (RFAT) of the main pancreatic duct in the mid porcine pancreas would be a reliable 

PDL model over a follow up period of 6 months. This technique could avoid both exocrine insufficiency 

and fistula formation without the risk of restoring pancreatic drainage.  

METHODS 

Study design and Animal model 

A total of 11 Landrace pigs were subjected to RFAT of the neck of the pancreas with different 

survival periods: Groups “Exp-1-month” (n=6) and “Exp-6-months” (n=5) with 1 and 6 months 

postoperative period (PO), respectively. Additionally, fresh pancreatic specimens from animals weighing 

40 kg (“Control-1-month”, n=4) and 120 kg (“Control-6-months”, n=6) were used as controls for 1 and 6 

months, respectively. The study was conducted according to the guidelines approved by the Government 

of Catalonia’s Animal Care Committee and as described in [22]. 

Surgical technique 

Preoperative, anaesthesia and postoperative care was provided by fully trained veterinary staff members 

as described in [22]. In order to achieve complete obstruction of the distal part (body and tail) of the 

pancreatic gland was transected including the main pancreatic duct which was severed over and below the 

portal vein according to the previous study on pancreas anatomy (Figure 1) [18]. The pancreas was 

mobilized and slightly tractioned to ensure a 5-mm minimum safe distance between RFAT site and major 

peripancreatic vessels and surrounding viscera to avoid unexpected injuries. The main pancreatic duct 

was neither identified nor sutured after transection. The transection was performed using a RF-assisted  

device (Coolinside, Apeiron Medical, Valencia, Spain) [12,22] and a silicon drain was positioned 

adjacent to the pancreatic stump.  
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Necropsy 

One and six months after the initial procedure all animals were again anesthetized, intubated and 

ventilated as described in [22]. Exploratory laparotomy was performed and the peritoneal cavity was 

assessed at necropsy. The pancreatic stump was skeletonized, photographed and the proximal and distal 

pancreas were dissected, removed and placed in 10% paraformaldehyde for further histopathologic 

processing. The animals were then sacrificed with a commercial euthanasia solution. 

Laboratory measurements 

Serum amylase and glucose levels were obtained prior to the surgical procedure, 4 hours after 

intervention, on days 3, 7, 15, 21 and 1 or 6 months PO before euthanasia. Peripancreatic fluid amylase 

concentrations were measured during laparotomy, from the drain tube on Day 3 and at necropsy. The 

surgical drain was retired in all the animals on Day 3 PO, because the output was <20 ml per day.  

Histopathologic study 

The histopathologic analysis was performed on three different slices of the pancreas. One slice of the 

proximal pancreas at 4 cm from the area of transection (PP) and two in the distal pancreas (DP): 1 cm 

next to the transection area (D1) and another before the tail (D2) (Figure 2A-1).  

Fixed samples were embedded in paraffin, cut (3 µm) and stained with hematoxylin-eosin to assess 

histological changes and also Masson’s Trichrome to observe collagen fibers. To evaluate apoptotic 

response, endocrine function and ADM immunohistochemical analysis, consecutive slices of the distal 

and proximal pancreas were incubated with primary antibodies: rabbit anti-cleaved caspase-3 (K3, 

1:1600; Cell Signalling Technology), rabbit anti-insulin (I, 1:400, Cell Signalling Technology) and mouse 

anti-cytokeratin-7 (Ck7, 1:120, Santa Cruz Biotechnology), respectively. The secondary antibody was an 

avidin-biotin complex-conjugated solution of Real DAKO (EnVision, Copenhagen, Denmark). The 

proximal pancreas was used as a control of normal pancreatic tissue within subjects. 

Morphometric analysis 

“The morphometric results of the distal part were expressed separately for D1 and D2, but 

hereinafter the mean value is referred as DP.  

Automatic acquisitions of consecutive immunohistochemistry stained slices of Ck7 and I were 

performed with a DMI-6000B Leica microscope (Leica Microsystems, Wetzlar, Germany) and Micro–
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manager software (www.micro-manager.org, San Francisco) to quantify histological changes. A FIJI 

macro was conducted to analyze: the mean area of Ck7 expression (MA-Ck7, expressed in µm2), the 

mean area of insulin expression (MA-I, expressed in µm2) and the average size of islets (µm2) (Figure 

2A-2). To adjust the staining variability, random captures of each acquisition were used to adjust hue, 

saturation and brightness, after which the segmentation algorithm for particle detection was applied. A 

segmentation process was performed on macroscopic images of the slices by 3D-DOCTOR software 

(Able Software Corp, Lexington, MA, USA) to evaluate the cross-sectional area of pancreas, 

differentiating the adipose/connective tissue, the area of pancreatic parenchyma (which excluded the 

connective capsule of the pancreas, ductal dilatation and the adipose tissue) or ADM (Figure 2A-3).  

Statistical analysis 

Kolmogorov–Smirnov Test followed by a Student’s t-Test or U Mann-Whitney Test for 

nonparametric data was performed by SPSS software. The laboratory analyses that included repeated 

measures were evaluated by the Bonferroni Test for post hoc analysis. Data were expressed as means ± 

SEM and we considered a value of p<0.05 to be statistically significant. 

RESULTS 

Intraoperative features and postoperative follow-up 

 All the animals tolerated the surgical procedure well and quickly recovered and ambulated, 

tolerating the intake without signs of relevant pancreatic disease. The animals showed a normal growth 

curve (preoperatively and pre-necropsy at 1 and 6 months, 26±8 kg, 39±12 kg and 125±14 kg, 

respectively).  

Laboratory analysis 

All the animals showed a significant increase of amylase levels (p<0.05) in both serum (4th hour 

PO and 3rd day PO) and peritoneum (3rd day PO), which returned to baseline levels on the following days, 

as previously observed in the literature [12,22] (Table 1). No animals presented any postoperative clinical 

complication or free intraabdominal fluid at necropsy, neither at 1 or 6 months. 

Histopathological and morphometric study 
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The histopathological study of the transection margin of the pancreas stump in the Exp-1-month 

group, showed a common pattern of coagulative necrosis surrounded by an intense fibrotic component 

which was totally replaced by fibrotic tissue in Exp-6-months. The fibrosis reaction also completely 

encircled the main and secondary pancreatic ducts, as previously described in [22].   

 

 No differences were observed between the morphometric results of D1 and D2. MA-Ck7 was 

significantly greater in DP (6.4±0.9 mm2) than PP for group Exp-1-month (4.2±0.7 mm2), which 

correlated histologically with areas of ADM. At 6 months PO, there was an increase of MA-Ck7 in group 

Control-6-months and in the PP of the animals subjected to the RFAT, while there was a significant 

decrease in MA-Ck7 in the DP (3.1±0.5 mm2) of the Exp-6-months (Figures 2-B and 3 g-i) compared to 

Exp-1-month, which was also correlated histologically with an increase in fibrotic tissue and a decrease in 

ADM areas (Figure 3 m-o). There was no evidence of significant caspase-3 activity in any of the 

pancreatic areas (Figure 3 d-f).  

Concerning the endocrine tissue, MA-I was considerably higher at 6 months than at 1 month, 

with no differences between groups, either in PP and DP or between controls and experimental groups 

(Figure 2-C). Mean islet size (Figure 2-D) also showed a progressive increase in controls and in PP of the 

RFAT group with growth of the animal. However, mean islet size of the DP in group Exp-6-months was 

significantly lower (446±108 µm2) than the PP in the same group. Mean islet size of DP in group Exp-6-

months was even lower than in Exp-1-month (780±74 µm2) and also lower than islet size in the DP in 

Control-6-months (729±149 µm2). These results were histologically consistent with a significant increase 

in small isolated clusters of β-cells in DP of the Exp-6-months (Figures 2-D2 and D3). The increase in 

these isolated endocrine cells led to a decrease in mean islet size, though macro islets of equal size were 

also identified in the proximal pancreas. 

 As the animals increased in size, we observed an increase in the cross-sectional area of pancreas 

without significant differences between the distal and the proximal pancreas (Figure 2-E). The area of the 

pancreatic parenchyma increased proportionally to the cross-sectional area of the pancreas in control 

specimens and in the PP of the animals subjected to RFAT. As expected, the DP at Exp-1-month was 

characterized by an increase in ADM (reaching 56% of the cross-sectional area at this time) with no 

evidence of preserved pancreatic parenchyma. However, this area of ADM was reduced from 1.5 ± 0.2 

cm2 at 1 month to 1.2 ± 0.2 cm2 at 6 months, in spite of the growth of the animal, and was only 21% of 
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the distal cross-sectional pancreatic area at Exp-6-months. There were no significant differences between 

the mean area of connective and adipose tissue in DP and PP in the control specimens. In contrast, an 

increase of the adipose and connective tissue was observed over the PO period in proximal and distal 

pancreas of the animals subjected to RFAT. This increase was especially significant in the DP at Exp-6-

months (80% of the cross-sectional area). 

DISCUSSION 

PDL has been extensively used to study the conversion of ADM into PDAC [1,3] as well as a method of 

duct-to-islet differentiation [6,8–12] in order to increase beta-cell mass. However, contradictory results 

have been obtained from the conventional mouse models [6,7,11,26].  

Since complete duct occlusion should prevent duct cells regenerating into acinar cells after PDL [16] and 

some morphometric results could have been biased by including injured pancreas [7,11], the present study 

implemented six key differences from conventional PDL mouse models in order to ensure efficient and 

reliable pancreatic duct occlusion and accurate evaluation: 

To start with, large animal model are used with a well-defined pancreas anatomy, and hence easy-to-

manipulate and identify, as well as being more similar to human specimens, which facilitates clinical 

translation. Secondly, we considered short (1 month PO) and long-term (6 months PO) evolution study of 

both ADM and β-cell mass, which is especially relevant since the vast majority of studies on ADM after 

PDL are restricted to short-term. Additionally, two control groups (non-PDL animals) of similar age and 

size (with survival periods equal to the experimental groups) have been used in order compare the 

histological response with healthy models. To further avoid possible restoration of pancreatic drainage in 

long-term evolution and preservation of enough tissue in the head of the pancreas to avoid cumbersome 

esteatorrea and weight loss [19] we performed complete transection of the pancreas. It is also important to 

highlight that an automatic acquisition of complete pancreatic sections of both Ck7 and insulin 

expression, including the analysis of up to 1,000 histological photographs per animal was considered to 

represent the entire pancreas volume. And this analysis is in clear contrast to other manual volumetry 

calculations which include only selected areas of the preparations [8,16]. Finally, we used a new PDL 

system based on RF-assisted transection (RFAT) which has previously been shown to avoid pancreatic 

fistula formation [22,27]. 
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This model has also demonstrated a complete acinar cell deletion in short and long-term evolution with 

no evidence of acinar compartment regeneration. These results are in contrast to other mouse models [6,7] 

and even pig models with simple ligation of the main pancreatic duct close to the duodenum –likely 

because of possible accessory drainages- [19,28,29] in which some regeneration of acinar tissue occurred. 

Although, the model results in the appearance of ADM in the short term RFAT group, as described after 

PDL [12,16,30], we have demonstrated the reduction of the ADM area in the long-term group compared 

to the short-term group (from 56% to 21% of the cross-sectional area), in spite of the growth of the 

animal. To our knowledge, this issue has not been demonstrated before and may consistently show that 

ADM may disappear after a reliable obstruction of the pancreatic duct in healthy conditions, as 

demonstrated by a 3-fold increase in mean preoperative weight. This is in contrast to other mouse and pig 

models in which the animals usually lost a great deal of weight even in the short term [19]. Also, instead 

of complete and persistent acinar cell disappearance, there is a normal increase of β-cell mass as the 

animal grows, which is unaltered in this PDL model. These findings are similar to those found by Rankin 

et al. [11], who demonstrated that β-cell mass and insulin contents were not altered by PDL after a 

morphometric study of the entire pancreas. Although Xu et al. [26] demonstrated a 2-fold post-PDL β-

cell expansion that plateaued within 7 days, their results were queried by other authors [11], who 

considered that their measurements could be biased by the reduced size of the injured pancreas.  

In view of the results obtained in this study, we believe that RFAT in the pig seems to be an 

appropriate PDL model without restoration of pancreatic drainage or reduction of endocrine mass. 

However, further experimental studies are needed to confirm these results.  
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Figure 1: Original illustration of a normal anatomy of the porcine pancreas and the surgical procedure 

after the first section of the pancreas according to the anatomy described by Ferrer et al. [18]. The 

“splenic” lobe (SL), corresponding to the tail and body in the human pancreas, is attached to the spleen. 

The “duodenal” lobe (DL), corresponding to the head of the pancreas, is adjacent to the duodenum, while 

the “connecting” lobe (CL), corresponding to the uncinated process is an extension of the pancreas which 

is anterior to the portal vein. There is also a “bridge” (B) of pancreatic tissue serving as an anatomical 

connection between the splenic and connecting lobes behind the portal vein. In order to achieve complete 

obstruction of the distal part (body and tail) of the pancreas, two sections were performed with the 

radiofrequency-assisted device.   
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Figure 2. Quantitative methodology and results. (A) Schematic representation of the method applied.  A-

1) Area of analysis: "P" proximal, "D1" 1-2 cm next to the margin of transection, and "D2" next to the 

tail. A-2) Quantification of insulin with Micro-manager software: Appearance of the image after 

acquisition (A-2a), application of automatic contrast (A-2b) segmentation of the region of interest (ROI) 

(yellow, A-2c) and ROI manager (A-2d). A-3) Macroscopic study of the cross-section with 3D-DOCTOR 

for preparations "P" (A-3a), "D1" (A-3-b) and "D2" (A-3d) at 6 months PO (blue: total area, green: area 

of pancreatic parenchyma). (B) Area of Ck7 expression (mm2) for experimental group and pancreatic 

section. (C) Area of I expression (mm2) for experimental group and pancreatic section. (D) Mean islet 

size (µm2) per experimental group and pancreatic section. Insulin IHC at 6 months PO from the proximal 

(D-2) and distal pancreas (D-3) (Arrows: positive isolated of β-cell clusters). (D) Tissue distribution of 

the cross-sectional pancreatic area, which includes the area of pancreatic parenchyma, acinar-to-ductal 

metaplasia, insulin and adipose/connective tissue. Values expressed as mean ± SD. Scale bar: 200 µm. 

*p<0.05. 
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Figure 3. HE, immunohistochemical staining of caspase-3 (K3), citoqueratina-7 (CK7),insulin (I) and 

Masson Trichrome  of the proximal pancreas at 6 months PO (a, d, g, j, m) and of the distal pancreas at 

one (b, e, h, k, n) and 6 months PO  (c, f, i, l, o). No apoptotic activity was observed in the distal pancreas 

one and 6 months after surgery (e-f). CK7 expression in the wall of duct-like structures significantly 

increased in the distal pancreas a month after the surgery and remained high at 6 months (h-i), but seemed 

to be replaced by fibrotic tissue at 6 months (o). Insulin expression was observed in the proximal and 

distal pancreas at one and 6 months PO (j, k, l). 

 

 

Table 1. Preoperative and postoperative amylase (peritoneal and serum) and glucose levels by group and 

throughout the postoperative period. Data expressed as mean±SEM. *p<0.05 throughout the 

postoperative period. **No peritoneal liquid was observed 6 months after the procedure. 

 


