
Universitat Politècnica de València

Departamento de Informática
de Sistemas y Computadores

Improving Energy and Area Scalability

of the Cache Hierarchy in CMPs

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Engineering)

Author

Joan Josep Valls Mompó

Advisors

Prof. Julio Sahuquillo Borrás

Prof. Maria Engracia Gómez Requena

February 2017

http://www.upv.es

Agradecimientos

Esta tesis es el resultado de mucho esfuerzo y dedicación a lo largo de estos años. Quiero

dedicar este espacio para agradecer a todas aquellas personas que han estado a mi lado

todo este tiempo por todo su apoyo y su comprensión.

En primer lugar quiero agradecerles a mis padres y a mi hermano por haber estado ah́ı

siempre, tanto en los buenos como en los malos momentos. Gracias por haber estado

siempre ah́ı para escucharme, por saber que puedo contar con vosotros para todo. Por

vuestros ánimos, por soportarme d́ıa a d́ıa, por todo eso y mucho más, gracias.

Quiero agradecer a mis directores de tesis, Julio y Maŕıa Engracia, por haber confiado

en mı́ y haberme dado la oportunidad de llevar a cabo este trabajo. Por sus consejos e

ideas que han permitido el buen desenlace de este trabajo. También a Alberto, sin cuya

constante ayuda esto no habŕıa podido salir adelante.

También me gustaŕıa destacar la ayuda y el buen ambiente de trabajo creado por todos

los miembros del grupo de investigación. Ha sido un placer trabajar junto a todos

vosotros. Mi estancia por el Grupo de Arquitecturas Paralelas ha sido una experiencia

que no olvidaré jamás.

No puedo olvidar dedicar unas palabras a mis amigos, tanto los que viven aqúı como

los que no. Han sido muchos años, muchas conversaciones. He compartido con todos

vosotros experiencias de todo tipo, momentos que siempre perdurarán en mi memoria.

Habéis sido testigos de todas mis quejas y siempre habéis estado presentes para sacarme

una risa o para ayudar a despejarme. Iron from Ice, brothers!

Finalmente, quiero dedicar unas últimas palabras a Linux, mi perro, quien me ha

acompañado durante prácticamente toda la carrera, a lo largo del máster y durante

este doctorado. Te dejo estas ĺıneas por ser el que más se alegra al verme cuando vuelvo

a casa.

A todos vosotros, gracias.

iii

Contents

List of Figures ix

List of Tables xi

Abbreviations and Acronyms xiii

Abstract xv

Resumen xvii

Resum xx

1 Introduction 1

1.1 Problem Description . 2

1.2 Dealing with Scalability in Future CMPs 4

1.3 Objectives of the Thesis . 5

1.4 Contributions of the Thesis . 6

1.5 Thesis Outline . 7

2 Background and Related Work 9

2.1 Background . 10

2.1.1 Cache Hierarchy . 10

2.1.2 Non Uniform Cache Access (NUCA) 11

2.1.3 Coherence Protocols . 12

2.1.3.1 MOESI Protocol . 12

2.1.3.2 Update and Invalidation Protocols 14

2.1.3.3 Directory-based and Snoopy Protocols 15

2.1.3.4 Type of Misses . 17

2.2 Baseline Architecture . 18

2.3 Related Work . 18

2.3.1 Directory Caches . 19

2.3.1.1 Duplicate-tag and directories 19

2.3.1.2 Sparse directories . 20

2.3.2 Processor Caches . 21

2.3.2.1 Energy-efficient cache designs 22

2.3.2.2 Private-shared optimizations 23

3 Experimental Framework 25

3.1 Simulation tools . 26

v

Contents vi

3.1.1 Simics-GEMS . 26

3.1.2 CACTI . 27

3.2 Benchmarks . 27

3.2.1 Barnes . 28

3.2.2 Cholesky . 29

3.2.3 FFT . 29

3.2.4 FMM . 30

3.2.5 LU . 30

3.2.6 Ocean . 30

3.2.7 Radiosity . 31

3.2.8 Radix . 31

3.2.9 Raytrace . 32

3.2.10 Volrend . 32

3.2.11 Water-Nsq . 32

3.2.12 Blackscholes . 33

3.2.13 Swaptions . 33

3.2.14 FaceRec . 34

3.2.15 MPGdec . 34

3.2.16 MPGenc . 35

3.2.17 SpeechRec . 35

3.2.18 Tomcatv . 36

3.2.19 Unstructured . 36

3.2.20 Apache . 37

3.2.21 SPEC-JBB . 37

3.3 Metrics and Methodology . 37

3.4 Common System Parameters . 39

4 Directory Scalability 41

4.1 PS-Directory . 42

4.1.1 Analyzing the Behavior of Private and Shared Blocks from the
Directory Point of View . 42

4.1.2 PS-Directory Organization and Basic Behavior 45

4.1.3 Experimental Evaluation . 49

4.1.3.1 Impact of PS-Directory on Performance 50

4.1.3.2 Impact of PS-Directory on Area and Energy 54

4.1.3.3 Directory Coverage Ratio Analysis 56

4.2 DWP-Directory . 59

4.2.1 Application Characterization . 60

4.2.2 DWP-Directory Architecture . 63

4.2.3 Basic DWP-Directory Working Behavior 64

4.2.4 Repartitioning Approach . 65

4.2.5 Experimental Evaluation . 67

4.2.5.1 Way Adaptation Analysis 68

4.2.5.2 Impact of DWP-Directory on Performance 70

4.2.5.3 Impact of the DWP-Directory on Energy Consumption . 72

4.2.5.4 Impact on Area Requirements 76

4.3 Summary . 76

Contents vii

5 Filtering Techniques 79

5.1 Analyzing the Cache Hierarchy Access . 80

5.2 PS-Cache . 81

5.2.1 The PS Page Classification Mechanism 82

5.2.2 The PS-Cache Architecture . 84

5.2.3 Experimental Evaluation . 86

5.2.3.1 Private-Shared Blocks Behavior Analysis 87

5.2.3.2 Impact of PS-Cache on Energy Consumption 90

5.3 Tag-Filter Architecture . 92

5.3.1 Last Tag Bits Distribution . 92

5.3.2 TF-Architecture Scheme . 93

5.3.3 Experimental Evaluation . 97

5.3.3.1 Compared Schemes . 97

5.3.3.2 TF Architecture in Processor Caches 98

5.3.3.3 TF Architecture in Directory Caches 101

5.4 Summary . 103

6 Conclusions 105

6.1 Contributions . 106

6.2 Future Work . 108

6.3 Publications . 109

References 113

List of Figures

2.1 Average access time depending on the memory configuration. 12

2.2 State transition diagram for a MOESI protocol. 14

2.3 Update protocol working example. 14

2.4 Invalidation protocol working example. 15

2.5 Organization of the tile assumed in this work and a 4×4 tiled CMP. . . . 19

4.1 Number of hits to private and shared entries per kilo instruction in a
conventional directory. 43

4.2 Number of evictions of private and shared entries per kilo instruction in
a conventional directory and its effect on performance. 43

4.3 Private-Shared directory organization. 46

4.4 Parallel access of the Shared cache and the NUCA cache. Private cache
is only accessed on a miss in the Shared cache. 47

4.5 Directory controller flow-diagram. 48

4.6 Normalized misses with respect to a conventional single-cache directory. . 51

4.7 Normalized execution time with respect to a perfect directory. 53

4.8 Scalability analysis in terms of area of the single cache, MGD and the
proposed PS-Directory. 54

4.9 Normalized energy consumed by the directory with respect to a single-
cache directory. 55

4.10 Normalized performance with respect to the conventional single-cache
directory. 56

4.11 Normalized energy consumed by the directory with respect to a single-
cache directory. 58

4.12 Scalability analysis in terms of area of the PS-Directory. 59

4.13 Average and maximum number of shared ways per set over the execution
time across all the directory banks. 61

4.14 Fraction of time with # shared entries in a set. 62

4.15 The DWP-Directory architecture. 63

4.16 The DWP-Directory working flow chart. 64

4.17 Average active number of shared ways across all tiles for DWP-Directory
(2:6) and (4:4). 69

4.18 Performance of the Single Directory, PS-Directory, DWP-Directory and
Hybrid Representation, normalized with respect to a single-cache direc-
tory with 4 ways and 16 cores. 71

4.19 Performance of the Single Directory, PS-Directory, DWP-Directory and
Hybrid Representation, normalized with respect to a single-cache direc-
tory with 4 ways and 32 cores. 73

ix

List of Figures x

4.20 Normalized energy consumed of the Single Directory, PS-Directory, DWP-
Directory and Hybrid Representation,with respect to a single-cache direc-
tory with 4 ways and 16 cores. 74

4.21 Normalized energy consumed of the Single Directory, PS-Directory, DWP-
Directory and Hybrid Representation, with respect to a single-cache di-
rectory with 4 ways and 32 cores. 75

4.22 Area required for the different directories with an increasing number of
cores. 76

5.1 Fraction of memory instructions across the studied applications. 80

5.2 L1 Coherence lookups across the studied applications in both directory
and snoopy protocols. 81

5.3 The PS Page Classification mechanism workflow. P0 and P1 are proces-
sors, and PT is the page table in main memory. 83

5.4 The PS-Cache architecture for L1 caches. 85

5.5 Average number of ways in a set of each type in the L2 cache for both
studied protocols . 87

5.6 Average number of ways in a set of each type in the L1 cache for both
studied protocols. 88

5.7 Distribution of the number of ways accessed in the L1 cache normalized
with respect to the snoopy protocol. 89

5.8 Average number of ways accessed in the L2 cache for the studied protocols. 89

5.9 Average number of ways accessed in the L1 cache for the studied protocols. 90

5.10 Reduction of the dynamic energy consumption in L2 across the studied
protocols. 91

5.11 Reduction of the dynamic energy consumption in L1 across the studied
protocols. 91

5.12 Average number of ways in a set of each type in the cache hierarchy
varying the least significant bits. 93

5.13 The TF Architecture for L1 caches. 94

5.14 The TF Architecture working flow for L1 caches. 95

5.15 Average number of ways accessed in the cache hierarchy in the studied
schemes. 98

5.16 Dynamic energy consumed in the cache hierarchy. 100

5.17 Average number of ways accessed in the directory per directory access
across the studied schemes. 101

5.18 Normalized dynamic energy consumed by the directory across the studied
schemes. 102

5.19 Normalized total number of accessed ways in the directory. 103

List of Tables

1.1 Comparing Technological Features of SRAM versus eDRAM. 5

3.1 Simulated Applications and input sizes. 28

3.2 System parameters . 38

4.1 Access time in processor cycles for the different directory caches. 50

4.2 Area (in mm2 ∗ 1000) of the different PS configurations for 16 cores com-
pared to the Single cache directory. 54

4.3 Area (in mm2 ∗ 1000) of the different PS configurations for 16 cores com-
pared to the 1× Single cache directory. 57

4.4 Static and dynamic energy consumption of the different PS configurations
for 16 cores compared to the 1× Single cache directory. 57

4.5 DWP-Directory System parameters . 68

xi

Abbreviations and Acronyms

OS Operating System

CPU Core Processing Unit

CMP Chip Multi-Processor

SMP Shared Memory Processor

SRAM Static Random-Access Memory

DRAM Dynamic Random-Access Memory

eDRAM embedded Dynamic Random-Access Memory

NUCA Non Uniform Cache Access

L1 First-level

L2 Second-level

LLC Last-Level Cache

LRU Least Recently Used

IPC Instructions Per Cycle

MPKI Misses Per Kilo-Instruction

MRU Most Recently Used

PS Private-Shared

PDC Private Directory Cache

SDC Shared Directory Cache

WP Way-Prediction

MGD Multi-grain Directory

DWP Dynamic Way Partitioning

TLB Translation Lookaside Buffer

TF Tag Filter

PIPT Physically Indexed Physically Tagged

VIPT Virtually Indexed Physically Tagged

xiii

Abstract

As the core counts increase in each chip multiprocessor generation, CMPs should im-

prove scalability in performance, area, and energy consumption to meet the demands of

larger core counts. Directory-based protocols constitute the most scalable alternative.

A conventional directory, however, suffers from an inefficient use of storage and energy.

First, the large, non-scalable, sharer vectors consume unnecessary area and leakage, es-

pecially considering that most of the blocks tracked in a directory are cached by a single

core. Second, although increasing directory size and associativity could boost system

performance by reducing the coverage misses, it would come at the expense of area and

energy consumption.

This thesis focuses and exploits the important differences of behavior between private

and shared blocks from the directory point of view. These differences claim for a separate

management of both types of blocks at the directory. First, we propose the PS-Directory,

a two-level directory cache that keeps the reduced number of frequently accessed shared

entries in a small and fast first-level cache, namely Shared Directory Cache, and uses

a larger and slower second-level Private Directory Cache to track the large amount of

private blocks. Entries in the Private Directory Cache do not implement the sharer

vector, which allows important silicon area savings. Speed and area reasons suggest

the use of eDRAM technology, much denser but slower than SRAM technology, for the

Private Directory Cache, which in turn brings further energy savings. Experimental

results show that, compared to a conventional directory, the PS-Directory improves

performance while also reducing silicon area and energy consumption.

In this thesis we also show that the shared/private ratio of entries in the directory varies

across applications and across different execution phases within the applications, which

encourages us to propose Dynamic Way Partitioning (DWP) Directory. DWP-Directory

reduces the number of ways with storage for shared blocks and it allows this storage to be

powered off or on at run-time according to the dynamic requirements of the applications

following a repartitioning algorithm. Results show similar performance as a traditional

xv

Abstract xvi

directory with high associativity, and similar area requirements as recent state-of-the-

art schemes. In addition, DWP-Directory achieves notable static and dynamic power

consumption savings.

In addition, this dissertation deals with the scalability issues in terms of power found

in processor caches. A significant fraction of the total power budget is consumed by

on-chip caches which are usually deployed with a high associativity degree (even L1

caches are being implemented with eight ways) to enhance the system performance. On

a cache access, each way in the corresponding set is accessed in parallel, which is costly

in terms of energy. This thesis presents the PS-Cache architecture, an energy-efficient

cache design that reduces the number of accessed ways without hurting the performance.

The PS-Cache takes advantage of the private-shared knowledge of the referenced block

to reduce energy by accessing only those ways holding the kind of block looked up.

Results show significant dynamic power consumption savings.

Finally, we propose an energy-efficient architectural design that can be effectively applied

to any kind of set-associative cache memory, not only to processor caches. The proposed

approach, called the Tag Filter (TF) Architecture, filters the ways accessed in the target

cache set, and just a few ways are searched in the tag and data arrays. This allows the

approach to reduce the dynamic energy consumption of caches without hurting their

access time. For this purpose, the proposed architecture holds the X least significant

bits of each tag in a small auxiliary X-bit-wide array. These bits are used to filter

the ways where the least significant bits of the tag do not match with the bits in the

X-bit array. Experimental results show that this filtering mechanism achieves energy

consumption in set-associative caches similar to direct mapped ones.

We would like to remark that the proposed schemes have been evaluated and compared

against state-of-the-art approaches in terms of performance, energy and area. Exper-

imental results show that the proposals presented in this thesis offer a good tradeoff

among these three major design axes.

Resumen

Conforme se incrementa el número de núcleos en las nuevas generaciones de multiproce-

sadores en chip, los CMPs deben de escalar en prestaciones, área y consumo energético

para cumplir con las demandas de un número núcleos mayor. Los protocolos basados

en directorio constituyen la alternativa más escalable. Un directorio convencional, no

obstante, sufre de una utilización ineficiente de almacenamiento y enerǵıa. En primer

lugar, los grandes y poco escalables vectores de compartidores consumen una cantidad

de enerǵıa de fuga y de área innecesaria, especialmente si se tiene en consideración que

la mayoŕıa de los bloques en un directorio solo se encuentran en la cache de un único

núcleo. En segundo lugar, aunque incrementar el tamaño y la asociatividad del directo-

rio aumentaŕıa las prestaciones del sistema, esto supondŕıa un incremento notable en el

consumo energético.

Esta tesis estudia las diferencias significativas entre el comportamiento de bloques pri-

vados y compartidos en el directorio, lo que nos lleva hacia una gestión separada para

cada uno de los tipos de bloque. Proponemos el PS-Directory, una cache de directo-

rio de dos niveles que mantiene el reducido número de las entradas compartidas, que

son los que se acceden con más frecuencia, en una estructura pequeña de primer nivel

(concretamente, la Shared Directory Cache) y que utiliza una estructura más grande y

lenta en el segundo nivel (Private Directory Cache) para poder mantener la información

de los bloques privados. Las entradas en la Private Directory Cache no implementan el

vector de compartidores, lo que conlleva importantes ahorros de enerǵıa y área. Debido

a temas de área y latencia, se nos sugiere la utilización de tecnoloǵıa eDRAM, mucho

más densa pero más lenta que la tecnoloǵıa SRAM, para la Private Directory Cache,

consiguiendo aśı ahorros de enerǵıa mayores. Los resultados experimentales muestran

que, comparado con un directorio convencional, el PS-Directory consigue mejorar las

prestaciones a la vez que reduce el área de silicio y el consumo energético.

Ya que el ratio compartido/privado de las entradas en el directorio varia entre aplica-

ciones y entre las diferentes fases de ejecución dentro de las aplicaciones, proponemos el

Dynamic Way Partitioning (DWP) Directory. El DWP-Directory reduce el número de

xvii

Resumen xviii

v́ıas que almacenan entradas compartidas y permite que éstas se enciendan o apaguen

en tiempo de ejecución según los requisitos dinámicos de las aplicaciones según un al-

goritmo de reparticionado. Los resultados muestran unas prestaciones similares a un

directorio tradicional de alta asociatividad y un área similar a otros esquemas recientes

del estado del arte. Adicionalmente, el DWP-Directory obtiene importantes reducciones

de consumo estático y dinámico.

Esta disertación también se enfrenta a los problemas de escalabilidad que se pueden

encontrar en las memorias cache. Las caches on-chip consumen una parte significativa

del consumo total del sistema. Estas caches implementan un alto nivel de asociatividad

(las caches L1 ya se implementan con ocho v́ıas para potenciar las prestaciones del

sistema). En un acceso a la cache, se accede a cada v́ıa del conjunto en paralelo, siendo

aśı un acción costosa en enerǵıa. Esta tesis presenta la arquitectura PS-Cache, un

diseño energéticamente eficiente que reduce el número de v́ıas accedidas sin perjudicar

las prestaciones. La PS-Cache utiliza la información del estado privado-compartido del

bloque referenciado para reducir la enerǵıa, ya que tan solo accedemos a un subconjunto

de las v́ıas que mantienen los bloques del tipo solicitado. Los resultados muestran unos

importantes ahorros de enerǵıa dinámica.

Finalmente, proponemos otro diseño de arquitectura energéticamente eficiente que se

puede aplicar a cualquier tipo de memoria cache asociativa por conjuntos y no solo a

caches de procesador. La propuesta, la Tag Filter (TF) Architecture, filtra las v́ıas ac-

cedidas en el conjunto de la cache, de manera que solo se mira un número reducido de

v́ıas tanto en el array de etiquetas como en el de datos. Esto permite que nuestra prop-

uesta reduzca el consumo de enerǵıa dinámico de las caches sin perjudicar su tiempo de

acceso. Para esto, la arquitectura sugerida mantiene los X bits menos significativos de

cada etiqueta en una estructura auxiliar. Estos bits se utilizan para filtrar aquellas v́ıas

en las que estos bits menos significativos de la etiqueta no se correspondan. Los resul-

tados experimentales muestran que este mecanismo de filtrado es capaz de obtener un

consumo energético en caches asociativas por conjunto similar de las caches de mapeado

directo.

Nos gustaŕıa señalar que los esquemas propuestos han sido evaluados y comparados

contra otras propuestas del estado del arte en prestaciones, enerǵıa y área. Los resultados

Resumen xix

experimentales muestran que las propuestas presentadas en esta tesis consiguen un buen

compromiso entre estos tres importantes pilares de diseño.

Resum

Conforme s’incrementen el nombre de nuclis en les noves generacions de multiproces-

sadors en xip, els CMPs han d’escalar en prestacions, àrea i consum energètic per com-

plir en les demandes d’un nombre de nuclis major. El protocols basats en directori són

l’alternativa més escalable. Un directori convencional, no obstant, pateix una utilització

ineficient d’emmagatzematge i energia. En primer lloc, els grans i poc escalables vectors

de compartidors consumeixen una quantitat d’energia estàtica i d’àrea innecessària, es-

pecialment si es considera que la majoria dels blocs en un directori només es troben en la

cache d’un sol nucli. En segon lloc, tot i que incrementar la grandària i l’associativitat del

directori augmentaria les prestacions del sistema, això suposaria un increment notable

en el consum d’energia.

Aquesta tesis estudia les diferències significatives entre el comportament de blocs privats

i compartits dins del directori, la qual cosa ens guia cap a una gestió separada per a cada

un dels tipus de bloc. Proposem el PS-Directory, una cache de directori de dos nivells que

manté el redüıt nombre de les entrades de blocs compartits, que són els que s’accedeixen

amb més freqüència, en una estructura menuda de primer nivell (concretament, la Shared

Directory Cache) i que empra una estructura més gran i lenta en el segon nivell (Private

Directory Cache) per poder mantenir la informació dels blocs privats. Les entrades en

la Private Directory Cache no implementen el vector de compartidors, fet que provoca

importants estalvis d’àrea i energia. Per motius d’àrea i latència, se’ns suggereix la

utilització de tecnologia eDRAM, molt més densa però més lenta que la tecnologia

SRAM, per a la Private Directory Cache; aconseguint aix́ı majors estalvis d’energia.

Els resultats experimentals mostren que, comparat amb un directori convencional, el

PS-Directory aconsegueix millorar les prestacions a la vegada que redueix l’àrea de silici

i el consum energètic.

Ja que la ràtio compartit/privat de les entrades en el directori varia entre aplicacions

i entre les diferents fases d’execució dins de les aplicacions, proposem el Dynamic Way

Partitioning (DWP) Directory. DWP-Directory redueix el nombre de vies que emma-

gatzemen entrades compartides i permeten que aquest s’encengui o apagui en temps

xx

Resum xxi

d’execució segons els requeriments dinàmics de les aplicacions seguint un algoritme de

reparticionat. Els resultats mostren unes prestacions similars a un directori tradicional

d’alta associativitat i una àrea similar a altres esquemes recents de l’estat de l’art. Adi-

cionalment, el DWP-Directory obté importants reduccions de consum estàtic i dinàmic.

Aquesta dissertació també s’enfronta als problemes d’escalabilitat que es poden tro-

bar en les memòries cache. Les caches on-chip consumeixen una part significativa del

consum total del sistema. Aquestes caches implementen un alt nivell d’associativitat

(les caches L1 ja són implementades en huit vies per potenciar les prestacions del sis-

tema). En un accés a la cache, s’accedeix a cada via del conjunt en paral·lel, essent

aix́ı una acció costosa en energia. Aquesta tesis presenta l’arquitectura PS-Cache, un

disseny energèticament eficient que redueix el nombre de vies accedides sense perjudicar

les prestacions. La PS-Cache utilitza la informació de l’estat privat-compartit del bloc

referenciat per a reduir energia, ja que només accedim al subconjunt de vies que man-

tenen blocs del tipus sol·licitat. Els resultats mostren uns importants estalvis d’energia

dinàmica.

Finalment, proposem un altre disseny d’arquitectura energèticament eficient que es pot

aplicar a qualsevol tipus de memòria cache associativa per conjunts i no només a les

caches de processadors. La proposta, la Tag Filter (TF) Architecture, filtra les vies

accedides en el conjunt de la cache, de manera que només un redüıt nombre de vies es

miren tant en el array d’etiquetes com en el de dades. Això permet que la nostra proposta

redueixi el consum dinàmic energètic de les caches sense perjudicar el seu temps d’accés.

Per a aquest propòsit, l’arquitectura sugerida manté els X bits menys significatius de

cada etiqueta en una estructura auxiliar. Aquests bits s’utilitzen per filtrar aquelles

vies en les que aquests bits menys significatius de l’etiqueta no es corresponguin. Els

resultats experimentals mostren que aquest mecanisme de filtre és capaç d’obtenir un

consum energètic en caches associatives per conjunt similar al de les caches de mapejada

directa.

Ens agradaria senyalar que els esquemes proposats han sigut evaluats i comparats contra

altres propostes del estat de l’art en prestaciones, energia i àrea. Els resultats exper-

imentals mostren que les propostes presentades en aquesta tesis conseguixen un bon

compromı́s entre aquestros tres importants pilars de diseny.

Chapter 1

Introduction

This chapter first presents the scalability problems found in the cache hierarchy of cur-

rent CMP architectures and which are the focus of this dissertation. Then, a brief

description of those issues that have been addressed in the literature is introduced. Af-

terwards, the objective of this dissertation and the different contributions of the thesis

are discussed. Finally, a summary about how the rest of this dissertation deals with

scalability is given.

1

Chapter 1. Introduction 2

1.1 Problem Description

As transistor technology miniaturizes, silicon resources become more abundant. Conse-

quently, the core count is continually increasing in current shared-memory chip-multiprocessors

(CMP). CMP systems must be designed to accommodate specific area and power bud-

gets. Both power and area technological constraints represent major design concerns

since they prevent future manycore CMPs from scalability with future increasing core

counts.

Power consumption is mainly distributed among cores and large on-chip cache memories

in current designs. Cache memories occupy a large percentage of the CMP area [1]

to mitigate the huge penalties of accessing the off-chip main memory,and consume an

important percentage of the overall power budget Giving more silicon area and power

to the cache hierarchy and related structures (e.g. directory caches) leaves less space

and power for cores, which could force CMP designs with simpler cores so yielding to

lower performance, especially when running single-threaded applications [2]. In this

regard, directory caches and processor caches are among the critical components in the

on-chip cache hierarchy, therefore their design should be revisited in order to provide

new memory structures that enable scalability.

Directory-based coherence is the commonly preferred approach in current CMPs over

snoop-based coherence, since the former approach keeps track of cached blocks to avoid

the use of broadcast messages. Two main design choices have been used in both research

proposals [3, 4] and commercial processors [5–7] to implement CMP directories: Dupli-

cate Tags and Sparse Directories. Both approaches present different design concerns.

The Duplicate Tags approach does not scale for large systems due to the high energy

consumed by the highly associative lookups, required to build the sharer vector. Sparse

directories use a cache-like structure, the directory cache, which is implemented as a

typical processor cache to keep track of the cached blocks. This approach reduces the

associative lookups but presents two main disadvantages: i) it implements a large sharer

vector that is expected to introduce important on-chip area and leakage overheads in

future CMPs [8], and ii) copies in the processor caches being tracked must be invalidated

when the associated directory entry is evicted. In spite of these disadvantages, due to

power reasons, directory caches are the preferred approach and they are the focus of this

thesis.

Chapter 1. Introduction 3

The key challenge when addressing scalability in sparse directories lies on reducing the

overhead in area and power introduced by the sharer vector. Many research focusing

on compression [9], hierarchical representation [10], multigrain-directories [11] has been

done to address this challenge. This research mainly aims to reduce the average sharer

vector length of a monolithic cache directory. Unlike this research, we effectively address

the sharer vector overhead in terms of area and energy based on the characteristics of

the blocks being tracked.

Most of the cache memories power consumption is due to dynamic power while a small

fraction is due to static power. Dynamic power consumption comes from switching

activity of transistors during cache accesses while static power consumption comes from

current leaking, even when the cache is not being accessed. Cache designers must reach

a compromise among performance, cost, size, and power/energy dissipation.

Dynamic energy consumption depends on the transistor switching activity, thus the more

frequently the cache is accessed (e.g. L1 caches) the higher the dynamic consumption.

This concern is even more important in CMPs than in monolithic processors since in

CMPs, processor caches can be accessed both from the processor side and from the

interconnection network side due to coherence requests, which increases the number

of accesses. Due to performance reasons, processor caches are being deployed with a

high associativity degree. In high-performance microprocessors, all the cache ways in

the target set are accessed concurrently on every cache lookup. Thus, the associativity

degree defines the number of accessed tags on each cache access. In addition, caches

include one comparator per way, and compare as many tags as the number of ways.

As a consequence, the dynamic energy dissipated per access increases with the cache

associativity.

Previous research on the design of energy-efficient caches addressing dynamic power

has focused on minimizing the internal transistor activity during a cache access. That

activity comes from reading, comparing, and writing tags in the tag array, and from

reading and writing data in the data array.

Important cache energy reduction approaches have focused on monolithic processors in

the past such as Cache Decay [12], Drowsy Caches [13], and Way Guard [14]. Some of

them, e.g. [15], were originally developed to reduce cache access time, but subsequent

research has proven that these schemes provide important energy savings. However,

Chapter 1. Introduction 4

since these schemes are not directly applied to CMPs, recent research [16] has dealt

with energy savings on CMPs when running parallel workloads.

In summary, in this work we address the scalability problems in terms of area and energy

of the aforementioned structures (i.e. directory caches and processor caches) in CMPs.

These caches need to accommodate to specific area and power budgets, hence becoming

a main design concern, as represent a large percentage of both the on-chip area and of

the overall energy budget. In this thesis we rely on the analysis of the behavior and

key characteristics of the workloads to propose architectural approaches that face this

problem.

1.2 Dealing with Scalability in Future CMPs

Many efforts have been carried out in both the industry and academy to deal with power

and area focusing on the cache subsystem, including processor caches, off-chip caches

and directory structures. Regarding the latter structures, directory caches have been

proven to provide effectiveness and scalability, both in terms of power and area, for a

small to medium number of cores. However, these design issues must be properly faced

for future systems since the pressure on achieving good cache performance increases

with the core counts. There are two main ways to tackle these issues: i) architectural

solutions to achieve a good trade off among performance, area, and power; and ii)

mingling disparate technologies in a power and/or area aware designs. Both ways can

be applied independently or together, as proposed in this work. Below, we summarizes

the main features of the considered RAM technologies.

On-chip caches have been typically implemented with SRAM technology (6 transistors

per cell) which consumes important amounts of power and area. A few years ago,

technology advances have allowed to embed DRAM (eDRAM) cells in CMOS technology

[17]. An eDRAM cell integrates a trench DRAM storage into a logic circuit technology.

Table 1.1 highlights the main properties of these technologies. Compared to SRAM,

eDRAM cells have both less power consumption and higher density but lower speed.

Because of the reduced speed, eDRAM cells have not been used in manufactured first-

level caches of high-performance processors. In short, both technologies present diverse

features regarding density, speed, and power.

Chapter 1. Introduction 5

Table 1.1: Comparing Technological Features of SRAM versus eDRAM.

Technology Density Speed Power

SRAM low fast high

eDRAM high slow low

These CMOS compatible technologies have been used both in the industry and the

academia to design processor caches. For instance, in some modern microprocessors

[18–20] SRAM technology is employed in L1 processor caches while eDRAM cells are

used to allow huge storage capacity in last level caches. Regarding academia, some

recent works [21, 22] mingle these technologies in several cache levels. In short, both

technologies properly combined at different (or even the same) cache structures can be

used to address speed, area, and power in the cache subsystem.

1.3 Objectives of the Thesis

The main objective of this thesis is to address the aforementioned problems in terms of

energy and area in cache-like structures for future CMPs and offer architectural designs

to reduce them. This general objective can be broken down in two main sub-objectives

according to the type of cache being studied.

Regarding directory caches, we pursue to devise architectural solutions that take advan-

tage of the workload characteristics (e.g. amount of private and shared blocks). For this

purpose we will analyze the behavior of parallel workloads from the directory perspec-

tive. Based on this behavior, we will try to reduce the cache directory area and energy

consumption.

Regarding processor caches, the main objective is to reduce the dynamic energy con-

sumption without hurting the performance. Again, a study of the workload character-

istics (e.g. number of cache accesses or distribution of the less significant bits of the tag

address). Then, based on these characteristics, we will devise mechanisms to filter the

number of accessed ways.

Chapter 1. Introduction 6

1.4 Contributions of the Thesis

This thesis makes four major contributions, two new directory caches and two filter

mechanisms –one of them for processor caches and other that can be applied to any

set-associative cache–. Below, these contributions are listed.

• The PS-Directory. This thesis shows that private and shared blocks have a

different behavior from the directory point of view. Based on this analysis, we

propose the PS-Directory as a new architectural design for directory caches. It

separates the traditional directory in two main structures, one destined to keep

entry of private blocks and the other one to keep track of shared blocks. Each

structure is tailored to better adjust to the requirements of each entry type. The

combination of SRAM and eDRAM for this design is also evaluated. Results show

that energy reductions about 27% are achieved. Additionally, directory area is

reduced by 26.35%, while also increasing performance by 14%.

• The DWP-Directory. We found that the number of entries of each type in the

directory varies both inter and intra applications. Static designs may not be able

to adjust to these fluctuations or may do so at the expense of an overhead in both

area and energy. To deal with this fact, we propose the DWP-Directory, a flexible

architectural design that dynamically adapts the associativity that the structure

destines to each type of entry. Results show that the proposal reduces the static

and dynamic energy consumed by 31.5% and 59.9%, respectively.

• The PS-Cache. Data caches are designed with a high-associativity degree due

to performance reasons. We propose a filter mechanism based on the private-

shared state of entries in order to reduce the number of ways accessed during each

lookup in order to reduce the dynamic energy consumed. Results show energy

reductions by 22% and 40% for a L1 and L2 cache, respectively, for both a snoopy

and directory coherence protocols.

• The TF-Architecture. We also devise a mechanism to filter the accessed number

of ways in any set-associative cache, as are typical processor and directory caches.

For that the tag array will be divided in two structures and the least significant

bits of the tag will be employed to perform the corresponding filtering. Hence,

energy consumption can be saved. Results show that the proposal can reduce up

Chapter 1. Introduction 7

to 87.75% and 89.13% the average number of ways that are looked up on every

access to the L1 and L2 caches, respectively; which translates in energy savings by

74.9% and 85.9%.

1.5 Thesis Outline

This dissertation is composed of six chapters. Chapter 2 includes the background and re-

lated work. Chapter 3 describes the experimental framework and the evaluation method-

ology. Chapter 4 presents the PS-Directory and the DWP-Directory architectures pro-

posed in this work. Chapter 5 discusses the PS-Cache and the TF-Architecture filtering

mechanisms proposed. Finally, Chapter 6 summarizes this thesis, discusses future work,

and enumerates the related publications.

Chapter 2

Background and Related Work

This thesis focuses on two main cache memory structures of the cache hierarchy: direc-

tory caches and processor caches. This chapter introduces some basic concepts. First,

the current standard for cache memories is presented. Then, different concepts related

to coherence protocols are discussed. Afterwards, the 16-core CMP baseline system used

throughout this work is discussed. Finally, this chapter summarizes research with sim-

ilar focus to the one of this thesis, that is scalability of directory and processor cache.

This summary is broken down according to the memory structure being studied.

9

Chapter 2. Background and Related Work 10

2.1 Background

This section presents some background about the cache hierarchy, NUCA caches, and

coherence protocols to help understanding the remaining of this work.

2.1.1 Cache Hierarchy

Since late 1960s, computer architects have implemented cache memories to mitigate

the huge gap between processor and main memory speed [23]. Cache memories are a

relatively smaller, faster memory which stores copies of the data from frequently used

main memory locations. Although originally only one level of cache was available to

CPUs, current microprocessors implement two or three cache levels and have a split L1

cache for data and instructions, respectively. High level caches are fast and are designed

for performance while lower level caches (e.g. LLCs) are designed for capacity. Hence,

LLCs are designed as large memory structures, which significantly increases leakage

consumption, in order to keep as much information as possible so reducing capacity

misses. Therefore, their sizes range from several hundreds of KB up to several tens of

MB [20].

Caches have been typically built with Static Random-Access Memory (SRAM) technol-

ogy since it is the fastest electronic memory technology. However, SRAM incurs in high

leakage or static energy consumption, which is a major design concern given that this

consumption aggravates as the transistor size shrinks. Because of this reason, SRAM has

been left in recent processors for high-level caches and other technologies (e.g. eDRAM)

are being recently used in the much larger LLC.

A placement policy is employed to decide in which cache set and cache way a main

memory block should be stored. If the placement policy permits choosing any entry in

the cache to hold the block, the cache is called fully associative. Unfortunately, this

is only practical for a small number of entries. On the other hand, if given block can

be allocated in just one place in the cache, the cache is direct-mapped. This solution

offers the best-case time and energy consumption, but the severe strictness on the block

location option allows multiple blocks to share the same entry, so increasing the conflict

misses. Thus, performance is being penalized when using a direct-mapped organization.

Because of these reasons, current caches implement a compromise in which each main

Chapter 2. Background and Related Work 11

memory block can go to any one of N ways in a cache set and are described as N -way

set associative. The associativity is a trade-off between performance and consumption,

and serves as a middle ground between the fully associative and direct mapped caches.

In order to keep low the number of conflict misses, current L2 and LLCs implement a

high number of ways (e.g., 16 or more ways).

2.1.2 Non Uniform Cache Access (NUCA)

The improvements in the integration scale have brought an increase in memory cache’s

capacity and deeper cache hierarchy (L1, L2, L3, ...), that, in general, occupies a large

percentage of the chip area. The problem lies in that the bigger the cache size, the higher

the access latency. In a conventional memory design consisting of multiple banks, the

worst case scenario is taken into account, which in this case is defined as the time

required to access the furthest away cache bank. When cache sizes were not as big, this

was not a serious problem, but nowadays it introduces a considerable penalization in

the access time.

Non-Uniform Cache Access (NUCA) caches [24] were proposed to solve the on-chip wire

delay for future large integrated caches. These schemes embed a network into the cache

itself, which allows data to migrate within the cache in some NUCA schemes. Migration

policies cluster the working set in the cache region nearest to the processor, which in

turn reduces the access time as accessing the nearest banks is less costly in terms of

latency.

In Figure 2.1 we can observe several cache configurations and their respective average

access times. In the upper row, a traditional UCA along an inclusive multilevel UCA

are presented. With this additional level in the memory hierarchy we can reduce the

high latencies of the UCA. Then, several design variants of a NUCA, according to how

data are mapped into banks, are presented. In the S-NUCA-1 (Static-NUCA-1), the

less significant bits are used to select in which bank the block can be found or should be

stored into. All banks are connected through data and address buses, which imposes a

wire overhead of 20.9%, which is a serious performance problem. In the S-NUCA-2, the

overhead is reduced up to 5.9% through the use of a 2D interconnection network. Finally,

the D-NUCA (Dynamic-NUCA) organization shares a design similar to the S-NUCA-2.

Chapter 2. Background and Related Work 12

41 10 41
L2

L3

17 41

4117

9 32 4 47

UCA

1 bank

255 cycles

ML-UCA

1 bank

11/41 cycles

S-NUCA-2

32 banks

24 cycles

D-NUCA

256 banks

18 cycles

S-NUCA-1

32 banks

34 cycles

Figure 2.1: Average access time depending on the memory configuration.

In this configuration, a block does not have a fixed bank assigned, but regardless of

its utilization rate it will be found on nearest or furthest banks. That is, the dynamic

migration of data between the banks of the cache is allowed. In this way, NUCA caches

can improve the average memory access latency.

2.1.3 Coherence Protocols

In order to maintain the coherence among all processors of a CMP the use of cache

coherence protocols is required. In this section, a brief summary about the design

options of these protocols will be made.

2.1.3.1 MOESI Protocol

There are many alternatives in the design of coherence protocols depending on the

possible states of the blocks stored in their private caches (e.g. L1). These alternatives

are often named with acronims that include the first letter of the states they make use of:

MOESI, MOSI, MESI, MSI, etc. Each state represents some read and write permissions

for the block stored in the private cache. In this thesis, a MOESI protocol has been

Chapter 2. Background and Related Work 13

used, which has a high number of states (other protocol employ a subgroup of them).

The used states are the following:

• M (Modified): A block in modified state has the only valid copy of the data. The

core maintains this copy in its cache and has write and read permission over the

block. The other private caches cannot have a copy. The copy in the shared L2

(if present) is obsolete. When another core requests this block, the cache with the

block in modified state must provide it.

• O (Owner): A block in owner state has a valid copy of the data, but in this

case, other copies in a shared state may coexist. There can be only one block in

owner state. The core maintaining a copy of this block has read permission, but

cannot modify it. When a core tries to modify it, coherence actions are needed to

invalidate the other copies. In this way, the owner state is similar to the shared

one. The difference resides in the fact that the owner is responsible for providing

a copy of the block after a cache miss in other private caches, since the copy in the

shared L2 (if present) is obsolete. Furthermore, the evictions of blocks in owner

state always need writeback operations.

• E (Exclusive): A block in exclusive state has a valid copy of the data. The other

private caches cannot have a copy of this block. The core with this copy has read

and write permissions. The shared L2 may also have a valid copy of the data

block.

• S (Shared): A block in shared state has a valid copy of the data. Other cores may

also have a copy in shared state and one of them in owner state. If no private

cache has the block in owner state, the shared L2 also has a valid copy of the block

and is responsible for providing it, if requested.

• I (Invalid): A block in invalid state has no valid copy of the data. The valid copies

may be found either in the shared L2 cache or in some other private cache.

Figure 2.2 depicts the state transition diagram for a MOESI cache coherence protocol.

Often, when a new block is stored in the cache, another block must be evicted from the

cache. Since evictions of blocks always result in the cache transitioning to the I state

we choose not to show these transitions in the diagram. When a processing core needs

Chapter 2. Background and Related Work 14

M O E S I
Rd/-

Wr/- Rd/- Rd/- Rd/- GetS
GetS

GetX

Rd/GetS

Wr/GetX

Wr/GetX

Wr/-

Wr/GetX

GetS

GetS

GetS GetX

GetX

GetX
GetX

Figure 2.2: State transition diagram for a MOESI protocol.

M

P1 P2 P3

Interconnection Network

Upd

Figure 2.3: Update protocol working example.

read permission for a particular cache block (Rd) it issues a GetS request if it has not

read permission for that block (Rd/GetS). Otherwise, if the processing core has read

permission for that block any request is generated (Rd/-). On the other hand, when

the processing core requires write permission (Wr) it sends a GetX request. In the

diagram, solid arrows correspond to transitions caused by local requests while dashed

arrows represent transitions due to requests generated by remote processing cores.

2.1.3.2 Update and Invalidation Protocols

When a block that is already stored in the cache of multiple cores is locally written, it is

necessary to take specific actions in order to keep the coherence of the memory system.

There exist two main approaches: update protocols and invalidation protocols.

In an update protocol, when a core writes to a block, all other copies in the rest of

the CMP caches are updated. Subsequent accesses to that block will have an updated

Chapter 2. Background and Related Work 15

M

P1 P2 P3

Interconnection Network

Inv

M

P1 P2 P3

Interconnection Network

Miss

Figure 2.4: Invalidation protocol working example.

value of it. In order to do this, it is necessary that this update is notified to the rest

of the caches, indicating the implicated block and the updated value. Once the block is

updated, the read operations of other cores do not suffer a cache miss. This is specially

good when there are writings made by a processor followed by a sequence of readings

of other cores. Figure 2.3 depicts an example of such a protocol. Cores P1, P2 and

P3 share a block in their respective private caches. Then P1 modifies the block which

makes the coherence protocol to trigger an update message to both the other cores and

to main memory. After this process, all cores share a coherent copy of the block.

On the other hand, the invalidation protocols, when a core writes to a block, all other

copies in the other caches are invalidated. In this case, subsequent accesses will suffer

a cache miss. After solving the miss, the cache obtains an updated copy. With this

method, once a block is invalidated, new modifications by the same core will not trigger

new invalidations. Therefore, the best case scenario for an invalidation protocol is when

there are multiple consecutive write operations by the same core. Figure 2.4 shows

an example of an invalidation protocol in progress. After P1 modifies the block, an

invalidation message is sent to the other cores. A subsequent request of the invalidated

block by P2 and P3 triggers a cache miss.

2.1.3.3 Directory-based and Snoopy Protocols

When implementing the coherence mechanisms in the cache system, for example the

invalidation or update protocols explained in the previous section, there are two main

Chapter 2. Background and Related Work 16

approaches: snoopy and directory-based protocols.

In snoopy protocols, the coherence requests must be sent to the caches of all cores, even

if they do not have a copy of the block, and they are responsible of finding whether the

request affects them in any way or not. For implementation purposes, these protocols

require from an interconnection network that simplifies broadcasting (MPs with shared

centralized memory, a common bus). Furthermore, the system needs to implement a

monitoring mechanism of the bus in order to intercept the invalidation/update requests

and adds specific lines to the bus in order to support the target protocol. The main

disadvantage of this kind of protocols is that the higher the number of cores of the CMP,

the bigger the traffic introduced in the network, thus limiting the system scalability.

Directory protocols aim to solve the scalability shortcomings of snoopy protocols. For

this purpose, one of the main objectives of directory-based protocols is the avoidance of

broadcasting. Instead, communication only takes place among those processors which

are likely to have a copy in their caches. To this end, a structure that stores if a

memory line is in a private cache, which processors have a copy (the sharer vector), plus

another bit to indicate if the line is clean or dirty is used. In a full directory scheme, all

information of all memory lines is kept. For example, for a system with n cores, each

one with its private cache, a boolean array of size n + 1 bits is typically used. If a bit

of the sharer vector (i = 1, ..., n) is set to true, that means that processor i has a valid

copy of the line. The first bit (i.e. i = 0) indicates if the line is clean or dirty in that

core. An array in which all elements are zero means that the line is found exclusively in

main memory. If the first bit (i = 0) is active, the line is dirty and only one of the other

bits can be active as well.

In order to store the information of all memory lines in a full directory, an important

amount of area is needed, which brings scalability concerns. Notice that each directory

entry grows linearly with the number of cores, which means a quadratical growth for the

directory as a whole. A solution to this problem is reducing the size of a full directory

by using a cache-like structure, also referred to as directory cache, to keep track of the

cached blocks. As any other cache, the capacity of the directory cache is limited, hence,

unlike a full directory, the coherence of all processor caches cannot be kept at the same

time. In this approach, when a directory entry is evicted due to space constraints (i.e.

Chapter 2. Background and Related Work 17

a new directory entry is required but no space is available), the blocks in the private

caches must be invalidated in order to keep the coherence. This eviction is performed

even if the block is still in use in the processor cache.

2.1.3.4 Type of Misses

When accessing a given cache due to a memory reference instruction, it may happen

that the requested block is not allocated. This miss compels to look for the block in

the lower level of the cache hierarchy or, in case that the miss occurs in the LLC, to

access the main memory. There are different types of misses, some inherent to the cache

behavior itself, and some to shared memory systems.

The so called 3C misses (cold, capacity and conflict) are inherent to private caches. A

cold miss rises on the first access to a block, and the block must be brought first into

the cache. They are also called compulsory or first reference misses. These misses are

mostly unavoidable, unless there is some kind of prefetching in the system that warms

up the cache. Capacity misses occur because blocks are being evicted from the cache due

to space constraints. They happen when the program working set is much larger than

cache capacity and can be solved by employing bigger caches. Lastly, conflict misses

appear in case of set-associative or direct-mapped caches. They occur when several

blocks are mapped to the same set and such a set is occupied while other sets are not,

hence a block of the target set needs to be evicted. They are also called collision misses.

A fully associative cache removes this type of misses.

Coherence misses appear in shared memory systems. Coherence must be kept across

all private caches. When a core modifies a block, the copies of the block in the other

private caches must be invalidated under an invalidation protocol. A subsequent access

by another core can trigger this type of miss. Update protocols do not suffer from these

misses.

Directory caches have limited space and there is a high probability that they cannot keep

track of all the entries in the private caches. As mentioned before, when a directory entry

is evicted, the blocks in the processor caches must be invalidated. The result of a block

access that has been evicted because there was no free space in the directory cache are

Chapter 2. Background and Related Work 18

the so called coverage misses. Directory protocols which can keep track of all blocks

allocated do not have any coverage misses.

2.2 Baseline Architecture

As the previous section shows, there are a lot of design choices regarding the composition

of a system. In this section present the baseline architecture that will be employed in

the remainder of the thesis.

A tiled CMP architecture consists of a number of replicated tiles connected by a switched

on-chip direct network. Different tile organizations are possible so, to focus the research,

this thesis assumes that each tile contains a processing core with primary caches (both

instruction and data caches), a slice of the L2 cache, and a connecting switch to the on-

chip network. Cache coherence is maintained at the L1 caches. In particular, a directory-

based MOESI coherence protocol with invalidation requests is employed with a directory

cache storing coherence information. Both the L2 cache and the directory cache are

shared among the different processing cores but they are physically distributed among

them, that is, the L2 cache is implemented as a NUCA architecture [24]. Therefore, a

fraction of accesses to the L2 NUCA cache is sent to the local slice and the rest to the

remote L2 slices. In addition, L1 and L2 caches are non-inclusive, that is, some blocks

stored in the L1 caches may not have an entry in the L2 cache (but in the directory).

Figure 2.5 shows the organization of a tile (left side) and a 16-tile CMP (right side),

which is used as baseline for experimental purposes throughout the work done in this

dissertation. The detailed configuration parameters can be found in Section 3.4.

2.3 Related Work

As mentioned above, this thesis addresses scalability issues, in terms of area and energy,

of cache-like structures in CMPs. More concretely, this work focuses on directory caches

and processor caches. There have been many research works regarding these topics and

this section summarizes some of the most recent and relevant proposals of the state-of-

the-art.

Chapter 2. Background and Related Work 19

Figure 2.5: Organization of the tile assumed in this work and a 4×4 tiled CMP.

2.3.1 Directory Caches

Cache coherence is needed in shared memory systems where multiple cores have copies of

the same memory block. Part of this thesis focuses on directory-based protocols, which

are the commonly adopted solution for a medium to large core count. These protocols

use a coherence directory to track which private (e.g. L1) processor caches share each

block. The directory structure is accessed to carry out coherence actions such as sending

invalidation requests to serialize write operations, or asking a copy of the block to the

owner (e.g. the last processor that wrote it).

Traditional directory schemes do not scale with the core count, which is the current trend

in the microprocessor industry. Thus, implementing directories that scale up to hundreds

of cores in terms of power and area is a major design concern. Directory implementations,

both in academia and industry, follow two main approaches: duplicate-tag directories

and sparse directories.

2.3.1.1 Duplicate-tag and directories

Duplicate-tag directories maintain a copy of the tags of all tracked blocks in the lower

cache level (e.g. the L1 core cache). Therefore, this approach does not raise directory

induced invalidations. The sharer vector is obtained by accessing the highly associative

directory structure. This approach has been implemented in modern small CMP systems

[6, 7] and is the focus of recent research works [8, 25]. The main drawback of this

Chapter 2. Background and Related Work 20

approach is the required associativity of the directory structure, which must be equal

to the product of the number core caches by the associativity of such caches. This

means that a directory access requires a 512 associative search for 64 8-way L1 caches.

Duplicate-tag directories are area–efficient, however, the highly associative structures

yield to a non-scalable quadratic growth of the aggregated energy consumption [26], so

this approach becomes prohibitive for a medium to large core count.

The high power consumption incurred by duplicate-tag directories has led some re-

search to focus on providing high associativity with a small number of ways. Cuckoo

Directory [26] uses a different hash function to index each directory way, like skew–

associative caches. Hits require a single lookup but replacements require from multiple

hash functions to provide multiple candidates, so giving the illusion of a cache with

higher associativity but at the expense of higher consumption and latency.

2.3.1.2 Sparse directories

Sparse cache directories [27] are organized as a set-associative cache like structure in-

dexed by the block address. Reducing the directory associativity makes this approach

more power–efficient than duplicate–tag directories. Each cache directory entry encodes

the set of sharers of the associated tracked block. Conventional approaches use a bit

vector, that is, a bit per-core cache, to encode the sharers. In this scheme, the per-

core area grows linearly with the core count and the aggregated directory area grows

quadratically, since the number of directory structures increases with the number of

cores. Previous research works have focused on reducing directory area by focusing on

the entry size.

To shorten the entry size some approaches use compression [28–31]. In [9, 28] a two-

level cache directory is proposed. The first-level stores the typical sharer vector while

the second-level uses a compressed code. When using compression, area is saved at

expenses of using an inexact representation of the sharer vector, thus yielding to per-

formance losses. Hierarchical [10] representation of the sharer vector has been also used

for entry size reduction purposes. However, hierarchical organizations impose additional

lookups on the critical path so hurting latency. Sparse directories may reduce area by re-

ducing the number of directory entries but at the expense of performance since directory

evictions force invalidations at the core caches of the blocks being tracked.

Chapter 2. Background and Related Work 21

Unlike typical sparse directories, a recent scheme [32] uses different entry formats of

the same length. Lines with one or a few sharers use a single directory entry while

widely shared lines employ several cache lines (multi-tag format) using hierarchical bit

vectors. This scheme requires extra complexity and accesses for managing dynamic

changes (expanding/contracting) in the format.

Multi-grain directories (MGD) [11] also uses different entry formats of same length and

tracks coherence at multiple different granularities in order to achieve scalability. Each

MGD entry tracks either a temporarily private memory region or a single cache block

with any number of sharers. This proposal is limited to a range of directory interleaving

(those higher or equal to the size of a memory region) in order to achieve maximum

benefits.

Finally, other proposals [4] focus on reducing the number of entries implemented in the

cache directory instead of focusing on the sharer vector. While this approach does not

affect the performance, it requires modifying the OS, the Page Table, the processor

TLBs and the coherence protocol.

The Hybrid Representation directory [16, 33] considers a different representation for

private and shared entries. It proposes a single-cache directory and both types of entries

are mingled in the same cache structure. Contents of a private entry are permitted to

move to a shared one and vice versa, according to the state of the block.

2.3.2 Processor Caches

CMPs usually accelerate their memory access by using one or more levels of processor

caches, being them responsible of a significant percentage of the overall CMP die area [1],

and of an important consumption of the overall power budget. This thesis proposes some

energy-efficient cache designs that takes advantage of a private-shared detection of the

blocks referenced by applications. Hence, this section first reviews some related work

about energy-efficient cache designs, and then, it discusses some other optimizations

based on a private-shared detection.

Chapter 2. Background and Related Work 22

2.3.2.1 Energy-efficient cache designs

Caches consumption comes from both leakage (or static) and dynamic consumption.

Regarding leakage reductions, Powell et al. [34] proposed a Gated-Vdd technique that

aims to reduce leakage for instruction caches by reconfiguring them and turning off

unused lines. Kaxiras et al. [12] proposed the Cache Decay, an approach that reduces

the leakage power of processor caches by turning off those cache lines that are predicted

to be dead, i.e., not referenced by the processor before they are evicted. Alternatively,

Flautner et al. [13] exploited the fact that in a particular period of time only a subset of

the cache lines are accessed to propose the Drowsy Caches. Different from the previous

proposals, the voltage is reduced, but not cut off, for those cache lines that are not being

accessed. In this way, the content of the cache line is not erased.

While techniques that aim to save leakage focus on reducing (or cutting off) voltage,

dynamic energy saving techniques try to minimize the number of data read and written

on every cache access. For example, Albonesi [35] proposed Selective Cache Ways, a

cache design able to enable only a subset of the cache ways when the cache activity

is not high. The prediction of ways was previously proposed by Calder et al. [15] to

reduce the access time of set-associative caches. Ghosh et al. [14] proposed Way Guard, a

mechanism for large set-associative caches that employs bloom filters to reduce dynamic

energy by skipping the lookup of cache lines that do not contain the requested data

according to the bloom filter.

Other techniques focus on reducing both leakage and dynamic consumption, for example,

by reducing the area of the cache tags, like in the TLB Index-Based Tagging [36], or by

performing run-time partitioning, like in the Cooperative Caching scheme [37] or in the

ReCaC scheme [38].

The idea of splitting a processor cache in different structures to better exploit application

characteristics has been thoroughly addressed in the literature [39]. This optimization

may help performance, reduce energy consumption or improve area scalability depending

on the data specification and later classification. This thesis will study the benefits of

splitting caches in a directory cache instead of in processor caches.

Chapter 2. Background and Related Work 23

2.3.2.2 Private-shared optimizations

The detection of private and shared data can be employed to optimize performance and

power. Kim et al. [40] detect the sharing degree of memory pages to reduce the fraction

of snoops in a token-based protocol. In this way, they can replace broadcast messages

with multicast ones, thus reducing the energy consumption of the interconnection. The

R-NUCA approach by Hardavellas et al. [41] detects private and read-only pages and

maps them efficiently in a distributed NUCA cache. By mapping private pages to the

closest NUCA bank to the core accessing them, the access latency is reduced, but also the

amount of traffic generated, which will impact in the energy consumed by the network.

Cuesta et al. [4] deactivate coherence for private pages, thus avoiding their tracking

by directory caches. This enables to reduce the directory size up to eight times while

still maintaining performance. Reductions in directory area also leads to reduce both

dynamic and leakage consumptions.

Some previous works rely on the compiler and/or memory allocator to classify memory

pages in order to either remove coherence for private pages [42] or improve data place-

ment [43, 44]. In [43], a data ownership analysis of memory regions is performed at

compilation time. This information is transferred to the page table by modifying the

behavior of the memory allocator by means of hooks. This proposal is further improved

in [44] by considering a new class of data, named as practically-private, which is mapped

to the NUCA cache according to a first-touch policy. In [42], private data is not stored

at the LLC with the aim of avoiding cache thrashing for private blocks. These works

mark statically data as private either by the memory allocator or at compile time, when

privacy of some data cannot be guaranteed.

SWEL [45] is a novel hardware-based coherence protocol that uses a private-shared block

classification at the directory to allocate shared read-write blocks only at the shared LLC,

so removing the need of coherence maintenance for them. The main drawback of that

proposal is the latency penalization of accessing shared read-write blocks, which must be

served by the LLC cache. POPS [46] decouples data and coherence information in the

shared LLC to reduce access latency to this information and to improve the aggregate

NUCA capacity. It also employs a directory private-shared classification (this time with

the help of a predictor table). Spatio-temporal Coherence Tracking [47] also classifies

private and shared data at the directory, accounting for temporal private data. It tries

Chapter 2. Background and Related Work 24

to find large private regions to merge them in the directory to save directory space.

Finally, Ros and Kaxiras [48] proposed VIPS, a complexity-efficient coherence protocol

that employs write-back caches for private data for efficiency reasons and write-through

caches for shared data for protocol simplicity.

Chapter 3

Experimental Framework

This chapter describes the experimental framework used to carry out the experiments

presented in this thesis. This framework includes the simulation packages, the followed

methodology and the used workloads.

The remainder of this chapter is organized as follows: Section 3.1 details the various sim-

ulation tools employed in the development of this dissertation. Section 3.2 presents the

different benchmarks used to evaluate the different proposals. Section 3.3 explains the

methodology and the metrics used in the evaluations. Finally, Section 3.4 summarizes

the common system parameters utilized in the simulations.

25

Chapter 3. Experimental Framework 26

3.1 Simulation tools

In this section we describe the simulation tools employed through this thesis. The pro-

posed schemes have been evaluated with full-system simulation using Virtutech Simics

[49] along with the Wisconsin GEMS tool set [50], which enables detailed simulation of

multiprocessor systems. The interconnection network has been modeled using GARNET

[51], a detailed network simulator included in the GEMS tool set. The area requirements

of the proposals, and the cache access times used in the experiments, have been calcu-

lated using the CACTI 5.3 tool.

3.1.1 Simics-GEMS

Simics [49] is a functional full-system simulator capable of simulating several types of

hardware including multiprocessor systems. Full-system simulation enables us to evalu-

ate our ideas running realistic workloads on top of actual operating systems. In this way,

we also consider the operating system behavior. Differently from trace-driven simula-

tors, Simics allows dynamic change of instructions to be executed depending on different

input data.

GEMS (General Execution-driven Multiprocessor Simulator) [50] is a simulation en-

vironment which extends Virtutech Simics. GEMS is comprised of a set of modules

implemented in C++ that plug into Simics and add timing capabilities to the simula-

tor. GEMS provides several modules for modeling different aspects of the architecture.

For example, Ruby models memory hierarchies, Opal models the timing of an out-of-

order SPARC processor, and Tourmaline is a functional transactional memory simulator.

Since we assume simple in-order processing cores we only use Ruby for the evaluations

carried out in this dissertation.

Ruby provides an event-driven framework to simulate a memory hierarchy that is able

to measure the effects of changes to the coherence protocols. Particularly, Ruby includes

a domain-specific language to specify cache coherence protocols called SLICC (Specifi-

cation Language for Implementing Cache Coherence). SLICC allows us to easily model

different cache coherence protocols and it has been used to implement the protocols

evaluated in this thesis.

Chapter 3. Experimental Framework 27

The memory model provided by Ruby is made of a number of components that model the

L1 caches, L2 caches, memory controllers, and directory controllers. These components

model the timing by calculating the delay since a request is received until a response

is generated and injected into the network. All the components are connected using a

simple network model that calculates the delay required to deliver a message from one

component to another.

Garnet [51] is a detailed interconnection network model inside GEMS. It consists of

a detailed fixed pipeline model and an approximate flexible pipeline model. The fixed

pipeline model is intended for low-level interconnection network evaluations and models

the detailed features of a state-of-the-art network. The flexible pipeline model is intended

to provide a reasonable abstraction of all interconnection network models, while allowing

the router pipeline depth to be flexible adjusted.

3.1.2 CACTI

CACTI (Cache Access and Cycle Time Information) [52] provides an integrated cache

and memory access time, cycle time, area, leakage, and dynamic power model. By

integrating all these models together, users can have confidence that trade-offs among

time, power, and area are all based on the same assumptions and, hence, are mutually

consistent.

CACTI is continually being upgraded due to the incessant improvements in semiconduc-

tor technologies. Particularly, we employ the version 5.3 for the results presented in this

work. We are mainly interested in getting the access latencies and area requirements of

both cache and directory structures that are necessary for implementing our proposals,

assuming a 32nm process technology.

3.2 Benchmarks

The proposed schemes have been evaluated with a wide range of scientific applications

from the SPLASH-2 benchmark suite [53], the ALPBench suite [54], the PARSEC suite

[55], scientific applications, and commercial workloads. Table 3.1 shows the list of ap-

plications considered in the different studies.

Chapter 3. Experimental Framework 28

Table 3.1: Simulated Applications and input sizes.

SPLASH-2 benchmark suite

Name Input Size

Barnes 16K particles
Cholesky tk15
FFT 64K complex doubles
FMM 16K particles
LU 512x512 matrix
Ocean 514×514 ocean
Radiosity room, -ae 5000.0 -en 0.050 -bf 0.10
Radix 512K keys, 1024 radix
Raytrace teapot –optimized by removing locks for unused ray ids–
Volrend head
Water-Nsq 512 molecules

PARSEC suite

Name Input Size

Blackscholes simmedium
Swaptions simmedium

ALPBench suite

Name Input Size

FaceRec script
MPGdec 525 tens 040.m2v
MPGenc output of MPGdec
SpeechRec script

Scientific benchmarks

Name Input Size

Tomcatv 256 points
Unstructured Mesh.2K

Commercial workloads

Name Input Size

Apache 4000 transactions
SPEC-JBB 4000 transactions

3.2.1 Barnes

The Barnes application simulates the interaction of a system of bodies (e.g. galaxies

or particles) in three dimensions over a number of time steps, using the Barnes-Hut

hierarchical N-body method. Each body is modeled as a point mass and exerts forces

on all other bodies in the system. To speed up the inter body force calculations, groups

of bodies that are sufficiently far away are abstracted as point masses. In order to

facilitate this clustering, physical space is divided recursively, forming an octree. The

Chapter 3. Experimental Framework 29

tree representation of space has to be traversed once for each body and rebuilt after

each time step to account for the movement of bodies.

The main data structure in Barnes is the tree itself, which is implemented as an array

of bodies and an array of space cells that are linked together. Bodies are assigned to

processors at the beginning of each time step in a partitioning phase. Each processor

calculates the forces exerted on its own subset of bodies. The bodies are then moved

under the influence of those forces. Finally, the tree is regenerated for the next time

step. There are several barriers for separating different phases of the computation and

successive time steps. Some phases require exclusive access to tree cells and a set of

distributed locks is used for this purpose. The communication patterns are dependent

on the particle distribution and are quite irregular. No attempt is made at intelligent

distribution of body data in main memory since this is difficult at page granularity and

not very important for performance.

3.2.2 Cholesky

The blocked sparse Cholesky factorization kernel factors a sparse matrix into the product

of a lower triangular matrix and its transpose. It is similar in structure and partitioning

to the LU factorization kernel, but has two major differences: i) it operates on sparse ma-

trices, which have a larger communication to computation ratio for comparable problem

sizes, and ii) it is not globally synchronized between steps.

3.2.3 FFT

The FFT kernel is a complex one-dimensional version of the radix-
√
n six-step FFT

algorithm, which is optimized to minimize inter-processor communication. The data set

consists of the n complex data points to be transformed, and another n complex data

points referred to as the roots of unity. Both sets of data are organized in
√
n x
√
n

matrices partitioned so that every processor is assigned a contiguous set of rows which

are allocated in its local memory. Synchronization in this application is accomplished

by using barriers.

Chapter 3. Experimental Framework 30

3.2.4 FMM

Like Barnes, the FMM application also simulates a system of bodies over a number

of time steps. However, it simulates interactions in two dimensions using a different

hierarchical N-body method called the adaptive Fast Multipole Method. As in Barnes,

the major data structures are body and tree cells, with multiple particles per leaf cell.

FMM differs from Barnes in two main respects: i) the tree is not traversed once per

body, but only in a single upward and downward pass (per time step) that computes

interactions among cells and propagates their effects down to the bodies and, ii) the

accuracy is not controlled by how many cells a body or cell interacts with, but by

how accurately each interaction is modeled. The communication patterns are quite

unstructured, and no attempt is made at intelligent distribution of particle data in main

memory.

3.2.5 LU

The LU kernel factors a dense matrix into the product of a lower triangular and an

upper triangular matrix. The dense n × n matrix A is divided into an N ×N array of

B × B blocks (N = NB) to exploit temporal locality in each sub matrix elements. To

reduce communication, block ownership is assigned using a 2-D scatter decomposition,

with blocks being updated by the processors that own them. The block size B should

be large enough to keep the cache miss rate low, and small enough to maintain good

load balance. Fairly small block sizes (B = 8 or B = 16) strike a good balance in

practice. Elements within a block are allocated contiguously to improve spatial locality,

and blocks are allocated locally to processors that own them.

3.2.6 Ocean

The Ocean application studies large-scale ocean movements based on eddy and bound-

ary currents. The algorithm simulates a cuboidal basin using a discretized circulation

model that takes into account wind stress from atmospheric effects and the friction

with ocean floor and walls. The algorithm performs the simulation for many time steps

until the eddies and mean ocean flow attain a mutual balance. The work performed

Chapter 3. Experimental Framework 31

every time step essentially involves setting up and solving a set of spatial partial dif-

ferential equations. For this purpose, the algorithm discretizes the continuous functions

by second-order finite-differencing, sets up the resulting difference equations on two-

dimensional fixed-size grids representing horizontal cross-sections of the ocean basin,

and solves these equations using a red-back Gauss-Seidel multi grid equation solver.

Each task performs the computational steps on the section of the grids that it owns,

regularly communicating with other processes. Synchronization is performed by using

both locks and barriers.

3.2.7 Radiosity

Radiosity is an application of the finite element method to solving the rendering equation

for scenes with surfaces that reflect light diffusely. Unlike rendering methods that use

Monte Carlo algorithms (such as path tracing), which handle all types of light paths,

typical radiosity methods only account for paths which leave a light source and are

reflected diffusely some number of times (possibly zero) before hitting the eye; such paths

are represented by the code ”LD*E”. Radiosity is a global illumination algorithm in the

sense that the illumination arriving at the eye comes not just from the light sources,

but all the scene surfaces interacting with each other as well. Radiosity calculations

are viewpoint independent which increases the computations involved, but makes them

useful for all viewpoints.

3.2.8 Radix

The Radix program sorts a series of integers, called keys, using the popular radix sorting

method. The algorithm is iterative, performing one iteration for each radix r digit of

the keys. In each iteration, a processor passes over its assigned keys and generates a

local histogram. The local histograms are then accumulated into a global histogram.

Finally, each processor uses the global histogram to permute its keys into a new array

for the next iteration. This permutation step requires all-to-all communication. The

permutation is inherently a sender determined one, so keys are communicated through

writes rather than reads. Synchronization in this application is accomplished by using

barriers.

Chapter 3. Experimental Framework 32

3.2.9 Raytrace

This application renders a three-dimensional scene using ray tracing. A hierarchical

uniform grid is used to represent the scene, and early ray termination is implemented.

A ray is traced through each pixel in the image plane and it produces other rays as

it strikes the objects of the scene, resulting in a tree of rays per pixel. The image is

partitioned among processors in contiguous blocks of pixel groups, and distributed task

queues are used with task stealing. The data accesses are highly unpredictable in this

application. Synchronization in Raytrace is done by using locks. This benchmark is

characterized for having very short critical sections and very high contention. Barriers

are not used for the Raytrace application.

3.2.10 Volrend

The Volrend application renders a three-dimensional volume using a ray casting tech-

nique. The volume is represented as a cube of voxels (volume elements), and an octree

data structure is used to traverse the volume quickly. The program renders several

frames from changing viewpoints, and early ray termination is implemented. A ray

is shot through each pixel in every frame, but rays do not reflect. Instead, rays are

sampled along their linear paths using interpolation to compute a color for the corre-

sponding pixel. The partitioning and task queues are similar to those in Raytrace. Data

accesses are input-dependent and irregular, and no attempt is made at intelligent data

distribution. Synchronization in this application is mainly accomplished by using locks,

but some barriers are also included.

3.2.11 Water-Nsq

The Water-Nsq application performs an N-body molecular dynamics simulation of the

forces and potentials in a system of water molecules. It is used to predict some of the

physical properties of water in the liquid state.

Molecules are statically split among the processors and the main data structure in Water-

Nsq is a large array of records that is used to store the state of each molecule. At each

time step, the processors calculate the interaction of the atoms within each molecule

Chapter 3. Experimental Framework 33

and the interaction of the molecules with one another. For each molecule, the owning

processor calculates the interactions with only half of the molecules ahead of it in the

array. Since the forces between the molecules are symmetric, each pair-wise interaction

between molecules is thus considered only once. The state associated with the molecules

is then updated.

Although some portions of the molecule state are modified at each interaction, others are

only changed between time steps. Most synchronization is done using barriers, although

there are also several variables holding global properties that are updated continuously

and are protected using locks.

3.2.12 Blackscholes

The Blackscholes application is an Intel RMS benchmark. It calculates the prices for

a portfolio of European options analytically with the Black-Scholes partial differential

equation (PDE).

Blackscholes stores the portfolio with numOptions derivatives in array OptionData. The

program divides the portfolio into a number of work units equal to the number of threads

and processes them concurrently. Each thread iterates through all derivatives in its

contingent and calls function BlkSchlsEqEuroNoDiv for each of them to compute its

price.

3.2.13 Swaptions

The Swaptions application is an Intel RMS workload which uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions. The HJM framework de-

scribes how interest rates evolve for risk management and assets liability management

for a class of models. Its central insight is that there is an explicit relationship between

the drift and volatility parameters of the forward-rate dynamics in a non arbitrage mar-

ket. Because HJM models are non-Markovian the analytic approach of solving the PDE

to price a derivative cannot be used. Swaptions therefore employs Monte Carlo (MC)

simulation to compute the prices.

Chapter 3. Experimental Framework 34

The program stores the portfolio in the swaptions array. Each entry corresponds to

one derivative. Swaptions partitions the array into a number of blocks equal to the

number of threads and assigns one block to every thread. Each thread iterates through

all swaptions in the work unit it was assigned and calls the function HJM Swaption

Blocking for every entry in order to compute the price. This function invokes HJM

SimPath Forward Blocking to generate a random HJM path for each MC run. Based

on the generated path the value of the swaption is computed.

3.2.14 FaceRec

FaceRec uses the CSU face recognizer to recognize images of faces by matching a given

input image with images in a given database. The application has been modified so that

a separate input image is compared with each image in the subspace to emulate a typical

face recognition scenario. The application is first trained with a collection of images.

Then, the training data is written to a file so that it can be used in the recognition

phase. This is done off line, so only the recognition phase will be used for reporting

results.

At the start of the recognition phase, the training data and the image database are

loaded. The subspace matrix is created from the image database. The rest of the

recognition phase is divided in two sub-phases: projection and distance computation.

During the projection phase, the input image given is normalized and projected in the

large subspace matrix. Each thread is given a set of columns from the subspace to

multiply. During the distance computation phase, the difference between each image in

the subspace and the given one is computed by finding the similarity (distance). Each

thread is responsible for computing distances for a subset of images in the database.

3.2.15 MPGdec

The MPGdec benchmark is based on the MSSG MPEG-2 decoder. It decompresses a

compressed MPEG-2 bit-stream. The original image is divided in frames. Each frame

is subdivided into 16x16 pixel macro blocks. Contiguous rows of these macro blocks are

called a slice. These macro blocks are then encoded independently. The main thread

identifies a slice (contiguous rows of blocks) in the input stream and assigns it to another

Chapter 3. Experimental Framework 35

thread for decoding. The problem here is that the input stream is also variable length

encoded. Thus, the main thread has to at least partly decode the input stream, in order

to identify slices. This operation results in a staggered assignment of slices to threads

and limits the scalability of extracting parallelism.

We have divided this benchmark in transactions, where each transaction is the decoding

of one video frame. In particular, the execution of a transaction comprises four phases.

First, it performs variable-length Huffman decoding. Second, it inversely quantizes the

resulting data. Third, the frequency-domain data is transformed with IDCT (inverse

discrete cosine transform) to obtain spatial-domain data. Finally, the resulting blocks

are motion-compensated to produce the original pictures.

3.2.16 MPGenc

The MPGenc benchmark is based on the MSG MPEG-2 encoder. It converts video

frames into a compressed bit-stream. The encoder uses, in principle, the same data

structures as the decoder. The encoding process is parallelized by assigning different

slices to each thread. However, since these slices can be determined very easily in

uncompressed data, the encoding process can be parallelized without much effort by

assigning different slices to different threads. The ALPBench version has been modified

to use an intelligent three-step motion search algorithm instead of the original exhaustive

search algorithm and to use a fast integer discrete cosine transform (DCT) butterfly

algorithm instead of the original floating point matrix based DCT. Also, the rate control

logic has been removed to avoid a serial bottleneck.

We have divided this benchmark in transactions, where each transaction comprises sev-

eral phases: motion estimation, form prediction, quantization, discrete cosine transform

(DCT), variable length coding (VLC), inverse quantization, and inverse discrete cosine

transform (IDCT).

3.2.17 SpeechRec

SpeechRec uses the CMU SPHINX3.3 speech recognizer to convert speech into text. The

application has the major phases: feature extraction, Gaussian scoring, and searching

the language model or dictionary. First, the feature extraction phase creates 39-element

Chapter 3. Experimental Framework 36

feature vectors from the speech sample. The Gaussian scoring phase then matches these

feature vectors against the phonemes in a database. It evaluates each feature vector

based on the Gaussian distribution in the acoustic model (Gaussian model) given by the

user. In a regular workload, there are usually 6000+ Gaussian models. The goal of the

evaluation is to find the best score among all the Gaussian models and to normalize other

scores with the best one found. As this scoring is based on a probability distribution

model, multiple candidates of phonemes are kept so that multiple words can be matched.

The final phase is the search phase, which matches the candidate phonemes against the

most probable sequence of words from the language model and the given dictionary.

Similar to the scoring phase, multiple candidates of words (hypotheses) are kept so that

the most probable sequence of words can be chosen.

Both the Gaussian scoring and searching phases, which take most of the execution time,

have been parallelized. A thread barrier is used for synchronization after each phase.

Gaussian models and the number of active nodes are divided equally among the threads

in each respective phase for the needed calculations.

3.2.18 Tomcatv

Tomcatv is a highly vectorizable program for the generation of two-dimensional boundary-

fitted coordinate systems around general geometric domains such as airfoils, cars, etc. It

is based on a method which uses two Poisson equations to produce a mesh which adapts

to the physical region of interest. The transformed non-linear equations are replaced

by a finite difference approximation, and the resulting system is solved using successive

line over relaxation. This benchmark is one of the most sensitive to the speed of the

memory system.

3.2.19 Unstructured

Unstructured is a computational fluid dynamics application that uses an unstructured

mesh to model a physical structure, such as an airplane wing or body. The mesh is

represented by nodes, edges that connect two nodes, and faces that connect three or four

nodes. The mesh is static, so its connectivity does not change. The mesh is partitioned

spatially among different processors using a recursive coordinate bisection partitioner.

Chapter 3. Experimental Framework 37

The computation contains a series of loops that iterate over nodes, edges and faces.

Most communications occurs along the edges and faces of the mesh. Synchronization in

this application is accomplished by using barriers and an array of locks.

3.2.20 Apache

The Apache benchmark is a simple command-line tool that allows one to fire requests

to an URL, and see how fast the web-application could process them. It is designed to

measure the performance of Apache HTTP server, but the tool can also be used to look

at the server response time for any particular URL.

3.2.21 SPEC-JBB

The SPEC-JBB benchmark is used for evaluating the performance of server side Java. It

evaluates the performance of server side Java by emulating a three-tier client/server sys-

tem (with emphasis on the middle tier). The benchmark exercises the implementations

of the JVM (Java Virtual Machine), JIT (Just-In-Time) compiler, garbage collection,

threads and some aspects of the operating system. It also measures the performance

of CPUs, caches, memory hierarchy, and the scalability of shared memory processors

(SMPs).

3.3 Metrics and Methodology

All cache coherence protocols evaluated in this dissertation have been implemented using

the SLICC language included in GEMS. Other protocols, like Token, are already pro-

vided by the simulator. All the implemented protocols have been exhaustively checked

using a tester program provided by GEMS. The tester program stresses corner cases

of cache coherence protocols to raise any incoherence by issuing requests that simulate

very contended accesses to a few memory blocks.

The proposals presented in this work have been evaluated not only in terms of perfor-

mance, but also on-chip area required, and energy consumption have been considered

since these design issues, as mentioned above, are major design concerns in actual CMPs.

Chapter 3. Experimental Framework 38

Table 3.2: System parameters

Common Memory Parameters

Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 64KB, 4-way (256 sets)
L1 cache hit time 2 cycles
Shared single L2 cache 512KB/tile, 8-way (1024 sets)
L2 cache hit time 2 (tag) and 6 (tag+data) cycles
Memory access time 160 cycles

Directory Parameters

Single directory cache 256 sets, 4 ways (same as L1)
Single directory cache hit time 2 cycles
Coverage ratio 1×

Common Network Parameters

Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

All the experimental results reported in this thesis correspond to the parallel phase of

each program. We have created benchmark checkpoints in which each application has

been previously executed to ensure that memory is warmed up and, hence, avoiding the

effects of page faults. Then, we run each application again up to the parallel phase,

where each thread is allocated to a particular core. The application is then run with full

detail during the initialization of each thread before starting the actual measurements.

In this way, we warm up caches to avoid having a huge amount of cold misses.

For evaluating the performance, we measure the total number of cycles employed for

each application. Although the IPC (instructions per cycle) constitutes a common met-

ric for evaluating performance improvements, it is not appropriate for multi threaded

applications running on multiprocessor systems [56]. This is due to the spinning per-

formed during the synchronization phase of the different threads. For example, a thread

can be repeatedly checking the value of a lock until it becomes available, which increases

the number of completed instructions (and thus the IPC) but actually the program is

not making any progress.

On the other hand, area and energy consumption of the studied approaches have been

evaluated using the CACTI tool described in Section 3.1.2.

Chapter 3. Experimental Framework 39

3.4 Common System Parameters

In this dissertation, the proposed approaches are modeled and evaluated considering

tiled CMP architectures like the described in Section 2.2. The baseline system employs

a directory-based coherence protocol in order to maintain coherence among the private

caches. Our base directory scheme is an on-chip distributed sparse directory with a bit-

vector sharing code in each entry. The protocol stores the blocks in the private caches

considering MOESI states, and implements a non-inclusive LLC (L2 in our study) cache.

Invalidation acknowledgements are directly sent to the requester.

Table 3.2 summarizes the values of the main system parameters used to carry out the

experiments.

Chapter 4

Directory Scalability

This chapter describes two proposals that address the scalability problems of directory

caches in CMP systems, namely the Private-Shared Directory (PS-Directory) and Direc-

tory Way Partitioning Directory (DWP-Directory). Both proposals rely on the different

behavior of shared and private entries in the directory in order to achieve energy and

area savings and in this way improve the directory scalability.

The implemented schemes have been evaluated and compared to other state-of-the-art

approaches (i.e. Multi-Grain Directories and Hybrid Representation). Results show

significant energy and area savings, while maintaining, or even improving, performance.

The remainder of this chapter is organized as follows. Section 4.1 first analyzes the be-

havior of blocks from the directory point of view. Afterwards the PS-Directory scheme

is detailed and evaluated. Section 4.2 discusses the variation of associativity require-

ments of different types of blocks along the execution time of applications. Then, the

DWP-Directory and its repartitioning algorithm are explained. Finally, the most repre-

sentative results obtained in the experiments are shown and discussed.

41

Chapter 4. Directory Scalability 42

4.1 PS-Directory

This section first analyzes the distinct type of behavior exhibited by blocks from the

directory perspective. Based on this behavior, this section then proposes the Private-

Shared Directory (PS-Directory), a two-level directory architecture, discusses its basic

working behavior, and evaluates this approach in terms of performance, area, and energy.

4.1.1 Analyzing the Behavior of Private and Shared Blocks from the

Directory Point of View

As a previous step to design the directory, we analyzed the behavior of private and

shared blocks from the directory point of view. The results of this analysis can be

outlined in four key observations and one finding. As explained below, these five key

points advocate to organize directory caches in two independent structures, one for

tracking private blocks and the other for shared blocks. We will refer to the directory

structure keeping track of private entries as Private Directory Cache (PDC) and to the

one keeping track of the shared entries as Shared Directory Cache (SDC).

• Observation 1: Directory entries keeping track of private blocks do not require

the sharer vector field.

• Observation 2: Most data blocks in parallel workloads are private.

According to these two observations, the PDC should be designed narrower and taller

than the SDC, that is, with shorter entries but with a higher number of them. Due to

the smaller entry size in the PDC, important area savings can be achieved, especially for

systems with a large number of cores, thus offering scalability. Notice that the larger the

PDC is (in comparison with the SDC), the more area savings can be obtained, thanks

to the missing sharer vector field.

• Observation 3: Most directory hits concentrate on shared entries.

• Observation 4: Almost all directory entries for private blocks are accessed only

once.

Chapter 4. Directory Scalability 43

4 6 8 10 12 14 16

Number of ways

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

#
H

it
s

/I
n

s
tr

*1
0

0
0

Private

Shared

(a) Barnes

4 6 8 10 12 14 16

Number of ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

#
H

it
s

/I
n

s
tr

*1
0

0
0

Private

Shared

(b) Blackscholes

Figure 4.1: Number of hits to private and shared entries per kilo instruction in a
conventional directory.

4 6 8 10 12 14 16

Number of ways

0.00

0.50

1.00

1.50

2.00

2.50

3.00

#
E

v
ic

ti
o

n
s

/I
n

s
tr

*1
0

0
0

Performance

Private

Shared

(a) Barnes

4 6 8 10 12 14 16

Number of ways

0.00

0.50

1.00

1.50

2.00

2.50

3.00

#
E

v
ic

ti
o

n
s

/I
n

s
tr

*1
0

0
0

Performance

Private

Shared

(b) Blackscholes

Figure 4.2: Number of evictions of private and shared entries per kilo instruction in
a conventional directory and its effect on performance.

These observations emphasize that private blocks access the directory either when they

are not stored in the processor cache (e.g., the first access to a block or invalidations

rising due to directory evictions) or when a write-back is performed (e.g., due to space

constraints in the processor cache). The first case will cause a directory miss, while the

second case will hit in the PDC and will invalidate the corresponding entry. On the

other hand, shared entries are accessed more times due to several cores access the same

block. Thus, most directory hits are due to shared blocks. According to this rationale,

the SDC should be accessed first so preventing likely useless accesses to the PDC, which

will result in energy savings.

Figure 4.1 depicts the number of directory hits (differentiating between shared and

private entries) per kilo instructions committed, varying the number of ways in the

directory cache and keeping constant the number of sets1. Two benchmarks, Barnes

1Experimental conditions are defined in Section 3.4.

Chapter 4. Directory Scalability 44

from the SPLASH-2 benchmark suite [53] and Blackscholes from PARSEC [55], have

been used to illustrate these observations.

As can be seen, the number of hits in entries tracking shared blocks is about 5× larger

than that in entries tracking private blocks in Barnes. Entries of private blocks are

only looked up again in case a block is replaced either from the directory or from the

processor cache, and then asked again by the processor. In both cases, the directory

entry is removed, thus when the corresponding private block is looked up in the directory,

a miss will occur. Private entries are scarcely accessed in spite of being the number of

them much larger than that of shared entries. Results for Blackscholes show minor

differences for a higher number of ways because the number of directory evictions is

noticeably reduced in this benchmark as the directory capacity increases. With a lower

number of evictions, the number of L1 coverage misses will also decrease. Hence the

directory will be accessed less frequently. These results suggest that while shared blocks

should have a reduced directory access time for performance, this time is not so critical

for private blocks. Keeping this observation in mind, we study the potential benefits of

using a power and area aware technology to implement the private cache.

• Finding 1: Shared directory entries have much less associativity requirements

than private directory entries.

To quantify the proper associativity degree, we ran experiments with a conventional (or

single–cache) directory varying the number of ways. We identified and quantified the

number of evicted directory entries that cause subsequent misses in the processor caches,

and classified them into private and shared according to the type of the block that was

being tracked. Then, the effect of both types of blocks on performance was measured.

Misses in the processor caches that occur due to an eviction of a directory entry will be

referred to as coverage misses as also done is some recent works [4, 57].

We found that private and shared entries have different associativity requirements. Fig-

ure 4.2 illustrates the results for two different workloads. Results reveal that the number

of evicted shared blocks provoking coverage misses slightly varies with the number of

ways, while the number of private blocks drops dramatically. The number of evicted pri-

vate blocks is really high for a low associativity degree, which translates into significant

performance degradation.

Chapter 4. Directory Scalability 45

Assuming a typical LRU replacement policy and taking into account that entries in

the directory tracking private blocks are not accessed again, the time an entry is busy

tracking a given block works out like a FIFO policy; that is, in absence of locality, the

impact of private blocks on performance mainly depends on the number of ways available

to them. If it is too low, it is likely that the block will be forced to leave the processor

cache, even though it is still being used, thus increasing the number of coverage misses.

On the other hand, with a higher number of ways, we give them more chances before

eviction. It can be observed that around 8 ways is enough to stabilize the number of

evictions of private blocks as well as the system performance.

4.1.2 PS-Directory Organization and Basic Behavior

The main goal of this approach is to take advantage of the different behaviors exhibited

by shared and private directory entries to design scalable directory caches while, at

the same time, improving their performance. Figure 4.3 depicts the proposed two-level

organization consisting of the Private Directory Cache (PDC) and the Shared Directory

Cache (SDC). The PDC is designed with narrower entries since they do not require the

sharer vector, and with a larger number of entries because of the expected high number

of private blocks. On the other hand, the SDC has a reduced number of entries, due to

the smaller number of blocks expected to be shared. This second structure implements

the sharer vector in each of its entries and, therefore, this field is only implemented in a

small fraction of directory entries.

When an access to a memory block misses in the processor cache, the corresponding

block is looked up on the directory for coherence maintenance. Then, if the access

results in a directory miss, no other private cache holds it and the block is provided

by the corresponding NUCA slice (or by the main memory) to the requesting processor

cache, and an entry is allocated in the directory cache to track that block. In the case of

using the PS-Directory, this entry is allocated in the PDC since the block is held at this

point of time by a single cache. Then, the core identifier is stored in the owner entry

field.

On subsequent accesses to that memory block by the same processor, it will find the

block in its L1 cache, so no additional accesses to the directory cache are required. On

the other hand, when that block is evicted from the processor cache, two main actions are

Chapter 4. Directory Scalability 46

Figure 4.3: Private-Shared directory organization.

carried out: i) the data block is written back in the NUCA cache, and ii) the directory

cache is notified in order to invalidate the entry of that block (stored in the PDC). Thus,

a subsequent access to that block will result in a directory cache miss. This means that

the PDC access time does not affect the performance of private blocks since these blocks

are provided directly to cores by the NUCA cache or main memory.

If a block being tracked by the PDC is accessed by a core other than the owner, the block

becomes shared, since two different private caches will hold a copy of the block. This

means that its entry is moved to the SDC and the sharer vector updated accordingly.

From then until eviction, coherence of this block is tracked in the SDC. That is, the

proposal allows only unidirectional movements from the PDC to the SDC. Bidirectional

transfers of entries among both caches have been also explored but the extra hardware

cost does not justify the scarce performance benefits.

Regarding timing, directory caches are typically accessed in parallel with the NUCA

cache. On a directory hit, the data block can be provided either by the NUCA cache

or by a remote processor cache (i.e. the owner). In case the data block is provided

by a remote processor cache, the NUCA access is canceled. Analogously, in the PS-

Directory both directory cache structures could be accessed simultaneously; however,

since most directory accesses concentrate on shared blocks, the PS scheme only accesses

the SDC in parallel with the NUCA slice. This way provides major energy savings

with minimal performance penalty. Figure 4.4 depicts the timing of this design choice.

Chapter 4. Directory Scalability 47

time

L2 NUCA access time

Shared cache

 acc. time

Private cache

 acc. time

hit: - start indirection to the owner

 - proceed to invalidate

Figure 4.4: Parallel access of the Shared cache and the NUCA cache. Private cache
is only accessed on a miss in the Shared cache.

Depending on the coherence protocol, specific coherence actions can start as soon as a

hit rises in the SDC; for instance, read requests can be forwarded to the owner of the

block, or invalidation requests can be issued to the caches sharing the block in case of

write requests. On a miss in the SDC, the PDC is accessed. As mentioned above, this

access could be also performed in parallel with the Shared cache but at the expense

of power while bringing minimal benefits on performance. On a miss in this cache,

which is the most frequent case, there will be neither energy or performance gains nor

losses by accessing both directory structures in parallel instead of sequentially since

both structures have to be accessed, and the sum of their access times is still lower

than the NUCA access time that is accessed in parallel. The main difference appears

on a Private cache hit. By accessing both directory structures in parallel, the directory

access time would be slightly reduced on a private directory hit, but at the expense of

higher and unnecessary energy consumption on a shared directory hit. Since hits on

the shared directory are more frequent, making this access sequential was the preferred

design choice.

Figure 4.5 summarizes the actions carried out by the directory controller on a coherence

access, which works as follows:

• When a coherence request reaches the directory, the directory controller looks

up first the SDC since it is more likely that the access results in a hit in this

cache due to the higher fraction of accesses to shared entries. On a hit, the

controller updates (if needed) the sharer vector, performs the associated coherence

actions, and cancels the NUCA access (depending on the block state). On a

Chapter 4. Directory Scalability 48

Access to Shared Cache

Hit? Access to Private Cache
N

Hit?

Y

Y N

Update the Private Cache Entry

Update coherence information

 (owner and/or sharers)

Begin

Fetch block from the NUCAMove the entry contents to

the Shared Cache

End

Figure 4.5: Directory controller flow-diagram.

miss in the SDC, the controller looks up the PDC. This sequential timing has,

on average, negligible impact on performance since most directory accesses are to

shared blocks, and most accesses to private blocks fetch the block from the NUCA

cache.

• A hit in the PDC means that the block is shared because another core already

has a copy of it in its cache. The processor that accessed it the first time will not

access the directory again because its cache already holds the block, unless a data

cache or directory eviction occurs and then the entry will miss in the directory

again. Hence, the directory entry is moved to the SDC. This way ensures that

entries for private blocks are retained in the PDC while shared entries are filtered

and moved to the SDC.

• On a directory miss, the corresponding block entry is allocated in the PDC to

keep track of the missing block. As there is no coherence information stored for

that block in any of the two directory caches, then the block is not actually being

cached by any processor. Thus, the block is assumed to be private to the core

accessing it and the owner information (requesting processor) is updated with the

core identifier.

• In the proposed implementation, when a block entry is replaced from any of both

directory caches it leaves the directory after performing the corresponding invali-

dations in the processor caches, and no movement to the other cache directory is

allowed.

Chapter 4. Directory Scalability 49

The PS-Directory proposal reduces area by design with respect to conventional caches

implemented with the same number of entries since directory entries in the PDC (most

of the total directory entries) are much narrower. In addition, power is also reduced by

accessing smaller cache structures sequentially. Nevertheless, the use of two independent

organizations with different design goals, speed for the SDC and capacity for the PDC,

suggests that using specific technologies addressing these design issues could provide the

proposal further energy and area savings.

Low-leakage technologies or transistors with low leakage currents could be used in the

PDC, whose number of entries is much higher and its access time is not critical for

performance. This chapter explores the use of eDRAM technology in the PDC which

provides, as experimental results will show, important area and leakage savings.

4.1.3 Experimental Evaluation

Different configurations for the PS-Directory have been evaluated with a 1× coverage

ratio, if not stated a different ratio. This ratio indicates the number of directory entries

per processor cache line. For instance, in the 1× ratio, each directory cache slice has

the same amount of entries as an L1 cache. Two PS-Directory configurations have been

evaluated varying its shared-to-private ratio (1:3 and 1:7), that is, the number of entries

in the PDC is three and seven times greater, respectively, than that of the SDC. These

two directory configurations have been chosen for comparison purposes, because they

have the same number of entries (computed as the sum of entries in both directory

caches). Additionally, we perform a sensitivity study with lower coverage ratios for our

PS-Directory in order to show the significant reduction in directory area and power that

it can achieve without degrading the system performance.

Table 4.1 shows the access time and characteristics of the studied directory structures.

The first row, labeled as single cache, refers to the conventional single-cache approach

(sparse directory) used as baseline. Then, two different PS architectures are presented.

Values for the PDC were calculated both for SRAM and eDRAM technologies, and for

different coverage ratios. Since CACTI provides latencies in ns, we rounded these values

to obtain an integer number of processor cycles. The L2 cache access time was assumed

to be 6 cycles, and the remaining access times were scaled accordingly. Notice that

eDRAM speed is much slower than SRAM speed.

Chapter 4. Directory Scalability 50

Table 4.1: Access time in processor cycles for the different directory caches.

1× Access Time (cc)
Directory cache # Ways # Sets 1× 0.5× 0.25× 0.125×
Single cache 4 256 2 2 2 -

SDC 1:3 2 128 2 2 2 2
PDC 1:3 SRAM / eDRAM 6 128 2 / 4 2 / 4 2 / 3 2 / 3

SDC 1:7 2 64 2 2 2 2
PDC 1:7 SRAM / eDRAM 7 128 2 / 4 2 / 4 2 / 3 2 / 3

Apart from comparing the PS-Directory against a conventional directory cache with

as many entries as the sum of the PDC and the SDC, the PS-Directory has been also

compared against the recently proposed state-of-the-art Multi-Grain Directory (MGD)

scheme [11]. As presented in Section 2.3 MGD uses different entry formats of same

length and tracks coherence at multiple different granularities (either region or single

cache entries) in order to provide scalability. By using a single entry instead of using one

entry per block in the private region, the coherence directory size can be reduced. Region

entries rely on a presence vector to indicate which blocks of the region are allocated in

the private L1 cache. On a directory miss, a region entry is allocated in the directory.

When a second private cache tries to access a block in a private region, the appropriate

bit in the region’s presence vector is reset and a block entry is allocated in the directory.

Block entries work the same way as they do in conventional sparse directories. In the

presented results, the associativity of the MGD is 4 ways as in our baseline, the memory

interleaving is 1KB, and the number of entries is 0.5× that of the conventional and

PS-Directories. This coverage ratio has been chosen for the MGD, as suggested by their

authors, with the aim of providing scalability in terms of area and power by grouping

blocks in regions.

4.1.3.1 Impact of PS-Directory on Performance

This section analyzes the performance of the proposed PS-Directory compared to the

conventional sparse directory and to a multi-grain directory (MGD). The performance

of the directory cache must be addressed because it may significantly affect the system

performance. Effectively, every time a directory entry is evicted, invalidation messages

Chapter 4. Directory Scalability 51

Barnes
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Blackscholes

Swaptio
ns

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 L

1
 M

P
K

I

3C
Coherence
Coverage

1. Single Dir 1x
2. MGD

3. PS 1x Ratio 1:3
4. PS 1x Ratio 1:7

(a) Normalized L1 MKPI.

Barnes
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Blackscholes

Swaptio
ns

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

rm
a

liz
e

d
 d

ir
e

c
to

ry
 a

c
c
e

s
s
e

s

Shared Hits
Private or Single Cache Hits
Directory Misses

1. Single Dir 1x
2. MGD

3. PS 1x Ratio 1:3
4. PS 1x Ratio 1:7

(b) Normalized directory accesses.

Figure 4.6: Normalized misses with respect to a conventional single-cache directory.

are sent to the corresponding processor caches for coherence purposes. These invali-

dations will cause coverage misses upon a subsequent memory request to those blocks,

therefore impacting on the final performance.

Figure 4.6(a) shows the L1 MPKI (Misses per Kilo Instructions) classified in 3C (i.e.,

cold or compulsory, capacity, and conflict), Coherence, and Coverage. As observed, the

PS-Directory cache is able to remove most coverage misses caused by a single cache or

sparse directory approach with the same number of entries (by 84.2% and 68.2% for 1:7

and 1:3 private-to-shared ratios, respectively). Essentially, this reduction in coverage

misses comes from removing conflict misses in the directory cache, which are mainly

caused by private directory entries as shown in Section 4.1.1. Therefore, by adding

two additional ways to the PDC (at the cost of reducing the number of sets, so the

Chapter 4. Directory Scalability 52

number of entries remains the same) most directory conflict misses can be avoided. To

illustrate where benefits come from, lets study the 1:3 ratio. This ratio provides the

same number of sets to the SDC and to the PDC, with 2-way and 6-way associativity,

respectively. In other words, this PS organization has exactly the same number of sets

as the 4-way single cache and, on average, the same number of ways per set. Thus, this

scenario clearly shows that critical private sets are efficiently handled by the PS scheme.

To sum up, performance benefits mainly come from identifying that the private entries

suffer from conflict misses and selectively adding or removing associativity to specific

structures depending on the requirements of the type of the entries.

The MGD directory reduces the L1 coverage misses by 3.2% with respect to the single

conventional directory. Notice that the MGD is able to reduce the number of coverage

misses with half the number of entries than the sparse directory. Nevertheless, this

reduction is much lower than the one achieved by the PS-Directory.

Performance of a multilevel directory cache can be quantified as the number of coherence

requests that find the required coherence information in the directory, that is, as the

overall directory hit ratio regardless of the directory structure that provides such an

information. Figure 4.6(b) presents the accesses to each PS-Directory cache classified

in misses and hits. In case of a hit, it is also classified in the directory structure that

currently has the entry (Private Directory or Shared Directory caches).

Notice that, as expected by design, the PDC shows on average a poor hit ratio despite

of the much higher number of entries (3× and 7× times the entries of the SDC), and

most directory hits concentrate on the SDC, which corresponds to the smaller and faster

directory structure. Remember that each hit in the PDC refers to a private block that

becomes shared. Although the 1:7 ratio could seem to have a too small SDC, it provides

on average better results than the 1:3 ratio, since it reduces the number of accesses to

the directory. Ratio 1:3 and ratio 1:7 reduce the number of accesses to the directory by

37.9% and by 45.1%, respectively, while the MGD directory only reduces this number

by 1%.

Reducing both the number of coverage misses in the processor caches and the access

latency to the directory cache translate into improvements in execution time as shown

in Figure 4.7. This figure compares the performance of the studied directory schemes

with that of a perfect directory cache. A directory cache is said to be perfect when it does

Chapter 4. Directory Scalability 53

Barnes
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Blackscholes

Swaptio
ns

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

o
rm

a
liz

e
d

 e
x
e

c
u

ti
o

n
 t

im
e

Single Dir 1x
MGD

PS 1x Ratio 1:3
PS 1x Ratio 1:7

Perfect Dir

Figure 4.7: Normalized execution time with respect to a perfect directory.

not incur in performance degradation, that is, there are no coverage misses. Therefore,

a perfect directory cache provides the same performance as a duplicate tags approach

but it offers more scalability. Nevertheless, unlike the proposed scheme, there is no

reasonable implementation of a duplicate tag approach. Benchmarks with high coverage

miss values (i.e. Radix or Blackscholes) are the ones that benefit the most from our

proposal or similar ones like MGD. The higher the reduction of coverage misses, the

shorter the execution time. Compared to the single directory cache, the PS-Directory

reduces execution time on average by 13.6% and 11.1% for the 1:7 and 1:3 shared-to-

private ratios, respectively. Compared to the perfect cache, the single cache increases the

execution time on average by 22.3%, yielding in some case to unacceptable performance

(e.g. an increase by 60% in Radix). However, performance drops of our proposal with

respect to the perfect cache are only by 6.4% and 2.9% for the ratios 1:3 and 1:7,

respectively.

The small reduction of coverage misses achieved by MGD also brings, on average, small

performance gains (by 3.9%) over the conventional single-cache directory. Compared

to the PS-Directory, the MGD presents a slow-down of 11.6% and 16.7% considering

the 1:3 and 1:7 ratios, respectively. This is due to the fact that entries tracking shared

blocks are more frequently accessed at the directory, thus, a shared cache with shorter

access time can positively impact on the cache miss latency. In short, results show the

PS-Directory as a simple and effective design, which is able to reach performance close

to a perfect directory with reduced hardware complexity.

Chapter 4. Directory Scalability 54

4.1.3.2 Impact of PS-Directory on Area and Energy

This section analyzes how the PS-Directory is able to reduce area and energy consump-

tion compared to a conventional single directory cache and the state-of-the-art MGD;

while, as studied above, increasing performance.

Table 4.2 shows the area required for different PS schemes and the single directory cache.

Both SRAM and eDRAM technologies, as stated in the Private (Technology) column,

have been considered for the PDC design, while the smaller SDC is always implemented

with fast SRAM technology. As expected, all the PS configurations are able to reduce

area, even those entirely implemented with SRAM technology. In particular, compared

to the single cache, the PS configurations with SRAM Private caches save by 18.51% and

25.48% of area for 1:3 and 1:7 shared-to-private ratios, respectively. These savings come

because the PDC does not include the sharer vector field. In addition, when eDRAM

technology is considered, these reductions grow up to 25.02% and 33.12% for 1:3 and

1:7 shared-to-private ratios, respectively.

Table 4.2: Area (in mm2 ∗ 1000) of the different PS configurations for 16 cores com-
pared to the Single cache directory.

Directory Shared Private (Technology) Total Area (%)

Single 19.51 – 19.51 100.00%

PS 1:3 6.40 9.50 (SRAM) 15.90 81.49%
6.40 8.22 (eDRAM) 14.63 74.98%

PS 1:7 3.45 11.08 (SRAM) 14.54 74.52%
3.45 9.60 (eDRAM) 13.05 66.88%

8 16 32 64 128 256 512 1024

Number of cores

0.00

0.05

0.10

0.15

0.20

0.25

A
re

a
 (

m
m

^
2

) Single Dir 1x
MGD
PS 1x Ratio 1:7
PS 1x Ratio 1:3

Figure 4.8: Scalability analysis in terms of area of the single cache, MGD and the
proposed PS-Directory.

Chapter 4. Directory Scalability 55

Barnes
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Blackscholes

Swaptio
ns

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

Single Dir 1x
MGD

PS 1x Ratio 1:3
PS 1x Ratio 1:7

Figure 4.9: Normalized energy consumed by the directory with respect to a single-
cache directory.

Figure 4.8 depicts the required per-core silicon area for the studied directory configura-

tions. As observed, the single cache directory and the MGD require more area than any

of the PS configurations. Additionally, their area requirements grow faster with the num-

ber of cores. Notice that in spite of using half the number of entries of a PS-Directory,

the MGD scales poorer than the PS-Directory. The PS-Directory is able to reduce by

84.3% (ratio 1:7) and 73.3% (ratio 1:3) the area required by the conventional directory

for a 1024–core system, even though all of them have the same number of entries. Thus,

the PS-Directory overcomes one of the biggest problems that sparse directories present,

namely, their scalability.

On the other hand, the PS-Directory attacks energy consumption by design, especially

leakage, since it uses two structures with less complexity and less storage capacity than

a single conventional directory cache.

Figure 4.9 shows the total energy consumed during the benchmarks execution, normal-

ized with respect to the single cache directory. SRAM technology has been assumed

in the PDC of the PS-Directory. We can observe that a PS-Directory with the same

number of entries as a single cache directory can save around 27% and 20.5% of the

energy consumption of the single cache directory for the 1:7 and the 1:3 ratios, respec-

tively, while MGD only reduces by 8.9%. This means that a PS-Directory, with either

1:3 or 1:7 ratio, is able to improve the multi-grain scheme in terms of energy. In short,

the PS-Directory reduces energy consumption by 18.7% with respect to the state-of-

the-art MGD approach. Moreover, when taking eDRAM technology in the PDC into

Chapter 4. Directory Scalability 56

Barnes
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Blackscholes

Swaptio
ns

Average

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

N
o
rm

a
liz

e
d
 L

1
 M

P
K

I

3C
Coherence
Coverage

1. Single Dir 1x
2. PS 1x Ratio 1:3
3. PS 1x Ratio 1:7

4. PS 0.5x Ratio 1:3
5. PS 0.5x Ratio 1:7
6. PS 0.25x Ratio 1:3

7. PS 0.25x Ratio 1:7
8. PS 0.125x Ratio 1:3
9. PS 0.125x Ratio 1:7

(a) Normalized L1 MPKI.

Barnes
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Blackscholes

Swaptio
ns

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n

 t
im

e

Single Dir 1x
PS 1x Ratio 1:7

PS 1x Ratio 1:3
PS 0.5x Ratio 1:7

PS 0.5x Ratio 1:3
PS 0.25x Ratio 1:7

PS 0.25x Ratio 1:3
PS 0.125x Ratio 1:7

PS 0.125x Ratio 1:3

(b) Normalized execution time.

Figure 4.10: Normalized performance with respect to the conventional single-cache
directory.

consideration, the savings are as high as 87.3% and 81.3% for the 1:7 and the 1:3 ratios,

respectively, with respect to the single cache directory.

4.1.3.3 Directory Coverage Ratio Analysis

This section evaluates the impact on performance of reducing the directory coverage

ratio, that is, the number of entries in the PS-Directory cache. As the number of

implemented entries is reduced in the directory cache, a degradation in performance is

expected, but at the same time, area and energy consumption will improve. The ideal

directory cache size is the one that entails negligible impact on performance while at the

same time allows area and energy savings.

Chapter 4. Directory Scalability 57

Table 4.3: Area (in mm2 ∗ 1000) of the different PS configurations for 16 cores com-
pared to the 1× Single cache directory.

Coverage Directory Shared Private (Technology) Area Relative Area (%)
1× Single 19,51 – 19,51 100,00%

PS 1:3 6,33 9,50 (SRAM) 15,83 81,15%
PS 1:7 3,28 11,08 (SRAM) 14,37 73,65%
PS 1:3 6,33 8,22 (eDRAM) 14,56 74,61%
PS 1:7 3,28 9,60 (eDRAM) 12,88 66,02%

0.5× PS 1:3 3,28 4,80 (eDRAM) 8,09 41,47%
PS 1:7 1,74 4,80 (eDRAM) 6,55 33,60%

0.25× PS 1:3 1,74 3,01 (eDRAM) 4,76 24,39%
PS 1:7 0,84 3,01 (eDRAM) 3,85 19,76%

Table 4.4: Static and dynamic energy consumption of the different PS configurations
for 16 cores compared to the 1× Single cache directory.

Configurations P leakage (mW) E read (pJ)
Coverage Directory Shared Private (Technology) Total Shared Private (Technology) Total
1× Single 4,2346 – 4,2346 0,0048 – 0,0048

PS 1:3 1,1877 2,2572 (SRAM) 3,4450 0,0027 0,0028 (SRAM) 0,0055
PS 1:7 0,6404 2,6334 (SRAM) 3,2739 0,0016 0,0032 (SRAM) 0,0049
PS 1:3 1,1877 0,5123 (eDRAM) 1,7001 0,0027 0,0067 (eDRAM) 0,0094
PS 1:7 0,6404 0,5977 (eDRAM) 1,2382 0,0016 0,0078 (eDRAM) 0,0094

0.5× PS 1:3 0,6404 0,4114 (eDRAM) 1,0518 0,0016 0,0035 (eDRAM) 0,0052
PS 1:7 0,3650 0,4799 (eDRAM) 0,8450 0,0010 0,0041 (eDRAM) 0,0052

0.25× PS 1:3 0,3650 0,3276 (eDRAM) 0,6927 0,0010 0,0027 (eDRAM) 0,0037
PS 1:7 0,2181 0,3822 (eDRAM) 0,6003 0,0007 0,0032 (eDRAM) 0,0039

Figure 4.10(a) shows the L1 MPKI classified in 3C, Coherence, and Coverage (as Fig-

ure 4.6(a)) for different coverage ratios. As shown, with the only exception of a 0.125×

coverage ratio, the proposal still incurs, on average, in less L1 cache misses than a single

conventional directory cache allowing a significant reduction in directory cache area.

For a 0.125× coverage ratio, the increase in the number of cache misses is roughly 20%,

on average. This increase in coverage misses translates into a degradation in execution

time with respect to the 1× coverage ratio PS-Directory. However, with respect to a

single directory, the execution time is still shortened, even for a 0.125× coverage ratio,

as shown in Figure 4.10(b). Therefore, if reducing silicon area is a target design goal,

which would be the main reason for a lower coverage ratio, one can opt for reducing the

area overhead of the directory without losing performance with respect to a conventional

directory. The PS-Directory is able to improve the performance of a conventional single

directory cache while using 8 times less entries.

Chapter 4. Directory Scalability 58

Barnes
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Blackscholes

Swaptio
ns

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a
liz

e
d
 e

n
e
rg

y
 c

o
n

s
u

m
p
ti
o

n

Single Dir 1x
PS 1x Ratio 1:7

PS 1x Ratio 1:3
PS 0.5x Ratio 1:7

PS 0.5x Ratio 1:3
PS 0.25x Ratio 1:7

PS 0.25x Ratio 1:3

Figure 4.11: Normalized energy consumed by the directory with respect to a single-
cache directory.

Table 4.3 shows the area required for different PS schemes with different coverage ratios2

and the single directory cache. As expected, all the PS configurations are able to reduce

area, even those with the same number of entries (1×) as the conventional directory

cache. This is due to the fact that the PDC does not implement the sharer vector field.

When the directory coverage ratio is reduced (i.e., 0.5× and 0.25× coverage ratios),

area savings significantly increase up to 80, 24% for the 0.25× 1:7 configuration, while

still improving the system performance (as shown previously). Comparing the results

for both shared-to-private ratios, we can see that configurations with 1:7 ratio are more

area efficient since they are able to reduce area from 12% up to 26% (depending on

the directory coverage ratio) over configurations with 1:3 ratio, while providing similar

performance results.

Table 4.4 shows the energy (dynamic and static) consumed by the PS-Directory cache

with different coverage ratios and the 1× single directory cache. As observed, the 1×

and 0.5× PS configurations consume more dynamic energy per access than the con-

ventional cache, but this is highly offset by the much lower leakage consumed by the

PS configurations, which is highly reduced even using SRAM technology in the Private

cache. Leakage over the conventional cache is reduced from 19% (i.e. 3.4450/4.2346)

for the SRAM 1× 1:3 configuration up to 86% in the eDRAM 0.25× 1:7 configuration.

Comparing 1:3 and 1:7 shared-to-private ratios, the 1:7 configurations are able to reduce

leakage consumption from 5% up to 15% with respect to the 1:3 configurations. Taking

into account these values, Figure 4.11 shows the energy consumed during the execution

2Results for 0.125× are not shown because CACTI is not able to provide results for so small caches.

Chapter 4. Directory Scalability 59

8 16 32 64 128 256 512 1024

Number of cores

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
re

a
 (

m
m

^
2

)

Single Dir 1x
PS 1x Ratio 1:7
PS 1x Ratio 1:3
PS 0.5x Ratio 1:7
PS 0.5x Ratio 1:3
PS 0.25x Ratio 1:7
PS 0.25x Ratio 1:3

Figure 4.12: Scalability analysis in terms of area of the PS-Directory.

of the benchmarks by the PS-Directory normalized with respect to the energy consump-

tion by the single-cache directory. Lower coverage ratios lead to less energy consumed

at the cost of performance degradation.

Figure 4.12 depicts the area per core scalability for the studied directory configurations.

As observed, the conventional directory cache exhibits the worst area behavior with

significant area differences across the PS-Directory configurations. These differences

increase with the number of cores. It requires even more area for 128 cores than all the

PS configurations with up to 1024 cores, with the only exception of PS 1× 1:3.

As stated in the previous section for a 1× coverage configuration, the PS-Directory

is able to reduce by 26, 71% (ratio 1:7) and 15, 71% (ratio 1:3) the area required by

the conventional directory cache for a 1024–core system using both the same number of

entries. Of course, the area is further reduced with smaller coverage ratios. In particular,

for the 0.5× PS configurations, the PS-Directory requires only by 14, 47% (ratio 1:3) and

8, 13% (ratio 1:7) the area required by the single cache directory, and for the 0.25× PS

configurations only 7, 52% (ratio 1:3) and 4, 77% (ratio 1:7) the area required by the

single cache directory.

4.2 DWP-Directory

This section presents the second major contribution of this thesis. First, we present a

characterization of the dynamic associativity requirements of the applications. Then,

we introduce the proposed Directory Way Partitioning (DWP) architecture, and discuss

Chapter 4. Directory Scalability 60

its basic behavior and the devised repartitioning approach. Finally, the proposal is

evaluated against two state-of-the-art approaches.

4.2.1 Application Characterization

This section characterizes the applications used in our evaluation (Section 3.2) by study-

ing the dynamic requirements of shared entries in the cache directory at run-time. The

characterization study shows that while at some point in time some applications may

require a single shared entry in a set, some others may require almost all the entries in

a set to track shared blocks.

As a first design step, we analyze the dynamic requirements of shared directory entries

across a representative subset of parallel workloads in order to find out how many shared

entries should be supported to achieve the same performance as a conventional directory.

As we support less shared entries, we can obtain more energy reductions. For this

purpose, we ran parallel workloads and, for each of them, we measured the number of

entries actually tracking shared blocks along the execution time. According to dynamic

variability in the run-time demands of shared entries, there are some differences among

applications, yet some general observations can be concluded. Figure 4.13 plots the

dynamic evolution of the number of shared ways averaged across all the cache sets

and directory banks, and the maximum number of shared entries in any set for each

application assuming a 8-way directory cache.

It can be observed that, a static approach with S = 2 and P = 6 (S being the associa-

tivity given to shared entries and P the associativity given to private entries), which has

been shown to be the best performing one in recent proposals [16, 33, 58, 59], fails to

adequate to specific sets at a given point in time, since typically there is always one (i.e.

labeled as Max in the plots) or some sets that require more than two ways for shared

blocks. Yet, most of the applications have scarce set requirements, on average, to track

shared blocks. Only Radiosity and LU require on average more associativity to track

shared blocks than the deployed in the aforementioned proposals, but only during a small

fraction of its execution time. This will inevitably lead to performance losses. Therefore,

the solution to improve performance lies in adding extra shared entries. However, this

way also would be at the cost of area and energy expenses, thus the key challenge lies

in investigating the number of entries an efficient directory should deploy in order to

Chapter 4. Directory Scalability 61

0 1 2 3 4 5 6 7 8 9

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (

a
v
g
.)

Average Shared Ways
Max Shared Ways

(a) FFT

0 13 26 39 52 65 78 91 104 117

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (

a
v
g

.)

Average Shared Ways
Max Shared Ways

(b) FMM

0 4 8 12 16 20 24 28 32 36 40 44

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (

a
v
g
.)

Average Shared Ways
Max Shared Ways

(c) LU

0 37 74 111 148 185 222 259 296 333 370

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (

a
v
g
.)

Average Shared Ways
Max Shared Ways

(d) Ocean

0 9 18 27 36 45 54 63 72 81 90

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (

a
v
g
.)

Average Shared Ways
Max Shared Ways

(e) Radiosity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (

a
v
g
.)

Average Shared Ways
Max Shared Ways

(f) Radix

0 3 6 9 12 15 18 21 24 27 30 33

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (

a
v
g

.)

Average Shared Ways
Max Shared Ways

(g) Tomcatv

0 56 112 168 224 280 336 392 448 504 560

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (

a
v
g
.)

Average Shared Ways
Max Shared Ways

(h) Unstructured

0 1 2 3 4 5

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (

a
v
g
.)

Average Shared Ways
Max Shared Ways

(i) Volrend

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time in MCycles

0

1

2

3

4

5

6

7

8

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (

a
v
g
.)

Average Shared Ways
Max Shared Ways

(j) WaterNsq

Figure 4.13: Average and maximum number of shared ways per set over the execution
time across all the directory banks.

Chapter 4. Directory Scalability 62

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
ra

c
ti
o
n
 o

f
ti
m

e
 w

it
h
 #

 s
h
a
re

d
 w

a
y
s 0

1
2

3
4
5

6
7
8

1. Avg. Shared Ways
2. Max Shared Ways

Figure 4.14: Fraction of time with # shared entries in a set.

achieve the best area and energy savings while sustaining the performance of a conven-

tional all shared-entry directory (i.e. directories using sharer vector in all their entries).

On the other hand, notice that there are also many other applications which do not

need more than one shared way for most of its execution time (i.e. FFT, Ocean, Radix,

Tomcatv and Waternsq). The additional shared associativity in the directory is not

required in these cases, which in turn brings additional energy consumption and area

that could be otherwise avoided.

To provide deeper insights in the most adequate number of shared ways, we quantified

the fraction of time the directory is keeping track of any given number of shared blocks.

Figure 4.14 shows the results across the studied benchmarks.

It can be seen that, on average, two or less directory cache ways able to keep track of

shared blocks are required during 93.8% of the execution time, while only during a 3%

of it more than four shared entries are in demand. Regarding maximum requirements

in individual sets, it can be appreciated that, on average, during 76.8% of the execution

time, there are no individual sets requiring more than four shared entries. This value

makes sense since by definition, a shared block must be stored in at least two L1 caches,

but since workloads are not ideally balanced, sometimes the accesses can concentrate

on specific directory banks or sets. We experimentally found that this happens in some

workloads like Radiosity.

The previous analysis, as well as experimental results, will confirm a directory with

quarter or half its ways providing storage to track shared blocks is the most interesting

Chapter 4. Directory Scalability 63

Figure 4.15: The DWP-Directory architecture.

design choices, that can provide the best trade off among performance, area, and energy.

4.2.2 DWP-Directory Architecture

The design of the DWP-Directory is mainly motivated by two observations discussed

in Section 4.2.1. On the one hand, there are applications that need more than 3 or 4

shared ways during some phases of their execution, while there are some others that

require nearly all the ways to track private blocks.

Keeping these observations into account, neither of them being supported for state-of-

the-art approaches, the main goal of DWP-Directory is to provide support for both of

them. Figure 4.15 depicts the structure of a generic DWP-Directory. Two types of

entries are deployed: those having storage space to contain the sharer vector and those

lacking the sharer vector. The directory deploys N shared entries and M − N private

entries per set, where M is the total associativity. Three areas can be appreciated: the

most-left way is always shared, the M −N most-right ways are always private, and the

rest of ways in the middle can contain shared or private entries (i.e. repartitionable area,

highlighted in dark). An entry in the repartitionable area include the On/Off bit that

is set when the associated way is tracking shared blocks and reset when it tracks private

blocks. When the bit is reset, the voltage supply to the sharer vector is removed since

private blocks do not need it. Notice that this way allows energy savings, mainly leakage,

with no performance penalty. In other words, with this design i) the private blocks do

not consume the energy dissipated to hold the sharer vector, and ii) the directory size

becomes smaller due to the removal of the sharer vector in part of its ways. An entry

in a traditional directory under a MOESI protocol, apart from the tags, is comprised of

the owner and a sharer vector field that requires (log2(C)+C) bits, being C the number

of cores in the CMP. The higher the number of cores the larger the number bits that

Chapter 4. Directory Scalability 64

Access to Shared Ways

Hit? Access to Private Ways
No

Hit?

Yes

Yes No

Check Private Ways availability

Update metadata if required

(owner or sharer vector)

L1 Miss

Fetch block from the NUCAEvict entry from Private Ways

End

No Yes

Allocate entry in

Private Ways

Allocate entry in

Shared Ways

Available?
Yes No

Check Shared Ways

availability

Available?

Figure 4.16: The DWP-Directory working flow chart.

can be saved with our proposal, i.e. (M − N) × C bits per set. To this amount, we

should subtract a few N bits per set required for On/Off bits. The higher the number

of cores the wider the sharer vector field since it requires one bit per core. Hence, in

many-core systems the proposal would scale much better in both energy and area than

traditional directory caches.

In summary, unlike existing approaches, which hardly limit the number of shared ways

to 2 and private ways to 6, DWP-Directory implements a flexible sparse directory that

can use all the ways to track private blocks, and it is able to track as many shared blocks

as deployed sharer vectors.

4.2.3 Basic DWP-Directory Working Behavior

The DWP-Directory includes two types of entries: private and shared. Private entries

are short, do not include the sharer vector, and are only able to keep track of private

blocks. Shared entries are wider, implement the sharer vector, and can keep track of

either shared and private blocks. Figure 4.16 depicts a flow chart that summarizes how

DWP-Directory handles private and shared entries. On a miss in the L1 cache of a given

core, the directory is accessed in order to maintain coherence. In a traditional directory,

all the cache ways in the directory are accessed in parallel which translates into highly

consuming searches.

Chapter 4. Directory Scalability 65

To reduce dynamic energy consumption, the first lookup in the DWP-Directory only

accesses the subset of ways tracking shared blocks. The reason to look up first these

ways is that most of the accesses to the directory are to shared blocks [59]; thus, it is

more likely to find the required block in the shared entries. Moreover, as discussed in

Section 4.2.1, the number of active shared entries in the directory is, on average, lower

or much lower than the number of private ways, so important energy savings can be

achieved.

Upon a miss in the first lookup, the DWP-Directory searches the target block in the

remaining entries, i.e. private entries. A hit in any of these ways means that the

requesting core differs from the owner of the block, thus the block should become shared

and the entry moves to a shared way. In case no shared entry is available, an entry should

be evicted and all the copies of the block in the processor caches should be invalidated.

Even though the DWP-Directory has potentially no limitation in the minimum number

of shared ways, this dissertation does not evaluate the option of supporting no shared

ways since the complexity of the coherence protocol increases. Notice that if there is

no active shared way (i.e. all sharer vectors are deactivated), the previous owner of

the block is invalidated and the new owner updated accordingly. New transitions are

required in the protocol to take this case into account, while the DWP-Directory ensuring

at least one shared way can work directly with the conventional coherence protocol. This

case would be accounted as a shared entry eviction for the repartitioning algorithm as

explained below.

If both directory lookups miss, a new entry is allocated. This entry is set as private

since it only tracks a single copy. If there are free entries in the directory, an entry is

selected, prioritizing private entries over shared entries. If all the entries are busy, the

directory controller has to evict one of them. In such a case, the least recently used way,

independently of being private or shared, is selected for eviction.

4.2.4 Repartitioning Approach

The DWP-Directory dynamically repartitions the number of shared entries enabled to

keep track of shared and private blocks considering the run-time application needs. In

other words, some of the shared entries are considered by design as private and their

sharer vector field powered off for leakage savings. After a given number of accesses to

Chapter 4. Directory Scalability 66

the directory, the DWP-Directory analyzes the eviction ratio between shared and private

blocks and the number of private ways is readjusted taking into account the physical

constraints.

The repartitioning mechanism is implemented with negligible hardware with only three

main parameters. These parameters help the algorithm in decision taking about when

a repartitioning should be triggered as a consequence of an increase or decrease of the

demand of shared ways: an interval length (IL), a shared threshold (ST), and a private

threshold (PT). The selection of IL is quantified in number of accesses to the directory.

//For every acces s to the d i r e c t o r y

d i r e c t o r y a c c e s s e s ++;

i f (c t r != PT && c t r != ST) { //Ctr not sa tu ra t ed

i f (p r i v a t e e v i c t i o n r e q u i r e d) {

c t r++;

} else i f (s h a r e d e v i c t i o n r e q u i r e d) {

ctr−−;

}

}

i f (d i r e c t o r y a c c e s s e s == IL) {

i f (c t r == PT && shared ways > 1) {

pr ivate ways++;

shared ways−−;

} else i f (c t r == ST && shared ways < N) {

pr ivate ways−−;

shared ways++;

}

r e s e t () ; // Resets a l l counters

}

Algorithm 4.1: DWP repartitioning algorithm.

Algorithm 4.1 summarizes the pseudocode of the reconfiguration mechanism. This hard-

ware algorithm acts on every directory access. Two global counters are used: direc-

tory accesses and ctr. The former accounts for the number of accesses to the directory.

The latter is an up/down counter that saturates at an upper threshold PT and at a

lower threshold ST. Small top/down counters have a low implementation complexity

and have been widely applied in the past, hence this design choice has been selected.

Chapter 4. Directory Scalability 67

The algorithm works as follows. At the end of each interval of length IL, the reparti-

tioning logic checks the value of the ctr counter to decide if the number of shared ways

should be increased, decreased or remain in its actual value.

• The ctr counter is increased each time a private entry is evicted from the directory,

and is decreased each time a shared entry is evicted.

• When the directory accesses counter reaches IL:

– If the counter saturates at its lower threshold ST, then additional shared

entries are required. Thus, the most-left shared entry tracking a private

block (Figure 4.15) is set as shared and its shared vector activated.

– If the counter saturates at PT, then directory needs additional private ways

in detriment of shared ones. In such a case, the most-right shared way in the

repartitionable area (Figure 4.15) is set to private. Thus, its sharer vector is

powered down and all sharers but the owner are sent an invalidation message.

– If the counter is not saturated, then the system remains in its actual state

for further IL accesses.

– The counters ctr and directory accesses are reset to 0.

This algorithm allows the proposal to dynamically adapt to the application phases,

providing leakage savings without affecting performance. The reconfiguration of a way

is done in all sets of the directory simultaneously in order to minimize complexity and

to guarantee a very simple first lookup in the directory cache. Notice that the cost of

evicting shared entries is higher than the cost of evicting private entries, but that will

be taken into consideration when choosing the PT and ST thresholds values.

4.2.5 Experimental Evaluation

This section evaluates the DWP-Directory against a 4-way conventional or single-cache

directory (which acts as the baseline), a 8-way conventional directory, and two state-of-

the-art architectures: PS-Directory and Hybrid Representation [16].

Unlike the DWP-Directory proposal, the directory space assigned to each type of block

in the aforementioned approaches is fixed and cannot be changed at run-time according

to the needs of each particular workload during its execution.

Chapter 4. Directory Scalability 68

Table 4.5: DWP-Directory System parameters

DWP-Directory Parameters

Interval Length (IL) 500
Shared Threshold (ST) 10
Private Threshold (PT) 100

We evaluate both 16- and a 32-core CMPs configurations. Table 4.5 shows the specific

DWP-Directory parameters used in the experiments.

All evaluated schemes, with the only exception of the baseline, implement a 8-way

directory associativity. Both state-of-the-art architectures dedicate two ways to track

shared blocks and the remaining ones to track private blocks (2:6 configuration). Since

some workloads require a single shared way most of its execution time, as shown in the

next section, a 1:7 configuration is also implemented for comparison purposes.

The DWP-Directory is sensitive to both directory and threshold parameters. Many

configurations have been tested, however, as discussed in Section 4.2.1, only results for

two of them are presented since experiments corroborate they as the most effective ones.

One configuration implements half of its 8 ways without the sharer vector field, hereby

referred to as DWP-Directory (4:4), while the other implements the sharer vector in

two of them, hereby referred to as DWP-Directory (2:6). Both configurations share an

interval length (IL) of 500 directory accesses, a shared threshold (ST) of 10 and a private

threshold (PT) of 100. These thresholds were tuned to the studied workloads, showing

minor differences for thresholds relatively high, thus no sensitivity analysis study is

presented in this chapter.

4.2.5.1 Way Adaptation Analysis

The results of the dynamic adaptation of the proposal are shown in Figure 4.17. It de-

picts the average number of active shared ways for the studied DWP-Directory (2:6) and

DWP-Directory (4:4) configurations. Each directory cache bank applies the repartition-

ing algorithm independently, hence the results are averaged across all the 16 banks of

the CMP. For a significant number of applications both configurations present a similar

behavior. This was expected, since most of the workloads have a higher demand for

private entries. Thus, even though DWP-Directory 4:4 can have up to 4 active shared

Chapter 4. Directory Scalability 69

0 1 2 3 4 5 6 7 8 9 10

Time in MCycles

0

1

2

3

4

A
c
ti
v
e
 S

h
a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(a) FFT

0 13 26 39 52 65 78 91 104 117 130

Time in MCycles

0

1

2

3

4

A
c
ti
v
e

 S
h

a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(b) FMM

0 5 10 15 20 25 30 35 40 45 50

Time in MCycles

0

1

2

3

4

A
c
ti
v
e

 S
h

a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(c) LU

0 37 74 111 148 185 222 259 296 333 370

Time in MCycles

0

1

2

3

4

A
c
ti
v
e

 S
h

a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(d) Ocean

0 10 20 30 40 50 60 70 80 90 100

Time in MCycles

0

1

2

3

4

A
c
ti
v
e

 S
h

a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(e) Radiosity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time in MCycles

0

1

2

3

4

A
c
ti
v
e
 S

h
a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(f) Radix

0 3 6 9 12 15 18 21 24 27 30 33

Time in MCycles

0

1

2

3

4

A
c
ti
v
e

 S
h

a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(g) Tomcatv

0 56 112 168 224 280 336 392 448 504 560

Time in MCycles

0

1

2

3

4

A
c
ti
v
e
 S

h
a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(h) Unstructured

0 1 2 3 4 5

Time in MCycles

0

1

2

3

4

A
c
ti
v
e
 S

h
a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(i) Volrend

0 3 6 9 12 15 18 21 24 27 30 33

Time in MCycles

0

1

2

3

4

A
c
ti
v
e
 S

h
a
re

d
 W

a
y
s

DWP-Directory 2:6
DWP-Directory 4:4

(j) WaterNsq

Figure 4.17: Average active number of shared ways across all tiles for DWP-Directory
(2:6) and (4:4).

Chapter 4. Directory Scalability 70

ways, it mostly varies between 1 and 2, just like the 2:6 configuration in 7 of 10 applica-

tions. An interesting observation is that most of the time just one shared way is enough,

which means that static approaches with two shared ways are wasting non required en-

ergy budget. On the other hand, there are some exceptions where more shared ways

are demanded, mainly in Unstructured, Volrend, and WaterNsq. In these workloads, the

repartitioning algorithm would detect that 2 shared ways might be insufficient, however,

static approaches would not be able to adequately meet these workloads’ requirements.

4.2.5.2 Impact of DWP-Directory on Performance

The impact of the DWP-Directory proposal on performance has been evaluated by

analyzing the L1 Misses per kilocycles (MPKC) and the execution time and compared

to the state-of-the-art schemes PS-Directory and Hybrid Representation. Every time

a directory entry is evicted, invalidation messages are sent to those processor caches

keeping a copy of the block and being tracked in order to be able to maintain cache

coherence. These invalidations will cause coverage misses upon a subsequent memory

request to those blocks, thus impacting on the final performance. Figure 4.18(a) shows

the L1 MPKC across the compared schemes, which matches the number of directory

accesses per kilocycles with respect to a 4-way single-cache directory in the studied 16-

core CMP. The misses have been categorized in three types: 3C (capacity, compulsory

and conflict), coherence and coverage as discussed in Section 2.1.3.4.

The evaluated schemes have negligible impact on 3C and coherence misses over the

baseline. On the other hand, the aggregated associativity degree of the directory, as

expected, has a big impact on the number of coverage misses. An increase from 4 to 8

ways in a single cache greatly decreases the number of coverage misses, approaching to

the optimum performance that an ideal directory can achieve. The additional associa-

tivity allows more flexibility when keeping track of both shared and private entries in

a set. Notice that even though most of the blocks are private and hence they whould

require a higher number of entries, they are scarcely accessed in comparison to shared

ones, so they can be prematurely evicted under an LRU replacement policy, when space

constraints problems arise. Thus, additional associativity mitigates this problem.

Chapter 4. Directory Scalability 71

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0

2

4

6

8

10

12

14
L
1
 M

P
K

C

3C_Miss
Coherence_Miss
Coverage_Miss

1. Single Dir 1x 4w
2. Single Dir 1x 8w

3. PS-Directory (2:6)
4. PS-Directory (1:7)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

(a) L1 Misses per kilocycles and per core.

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
x
e
c
u
ti
o
n
 T

im
e

Single Dir 1x 4w
Single Dir 1x 8w

PS-Directory (2:6)
PS-Directory (1:7)

Hybrid Representation (2:6)
Hybrid Representation (1:7)

DWP-Directory (2:6)
DWP-Directory (4:4)

(b) Execution Time.

Figure 4.18: Performance of the Single Directory, PS-Directory, DWP-Directory and
Hybrid Representation, normalized with respect to a single-cache directory with 4 ways

and 16 cores.

Regarding the state-of-the-art schemes, the PS-Directory reduces the number of misses

by 34.5% and 40.6% for the 2:6 and 1:7 configurations, respectively. Hybrid Represen-

tation reduces this number by 34.3% and 38.2%. These reductions are achieved due to

the different treatment of private and shared blocks. Since the associativity degree is

partitioned, entries do not have the same allocation flexibility as a single-cache directory

with the same associativity. Notice that the 1:7 configuration obtains the best results

since, as discussed above, most of the applications present a low associativity require-

ment for shared entries. Yet, there are some exceptions in which the 2:6 configuration

works best, e.g. in LU and Unstructured for the Hybrid Representation. Hence it can

be seen that there is no optimal static configuration that satisfies every workload.

The DWP-Directory, which unlike the aforementioned schemes has the ability to adapt

the private-shared partition size dynamically at run-time, obtains better results, re-

ducing the number of misses by 49.8% and 50.4% in the 2:6 and 4:4 configurations,

Chapter 4. Directory Scalability 72

respectively. It performs similar as an 8-way single cache, with only a 1% degradation.

Notice that following the characterization presented in Section 4.2.1, those applications

with a higher maximum number of shared ways benefit the most our proposal, com-

pared to the studied state-of-the-art schemes. On the other hand, applications with low

shared requirements do not benefit as much. The dynamic adaptability of the proposal

allows the directory a similar flexibility as the single-cache directory, while also keeping

or improving most of the benefits of the studied state-of-the-art proposals in terms of

area and energy reduction.

Reducing the number of L1 misses translates into a lower execution time of the appli-

cations, as shown in Figure 4.18(b). The reduction of misses achieved by the 8-way

single-cache directory improves the execution time by 12.3%. The PS-Directory and

Hybrid Representation both reduce the average application execution time by 8.9%.

Meanwhile, the DWP-Directory reduces the execution time by 12.1% and 12.7% in the

2:6 and 4:4 configurations, respectively. As expected, applications with low MPKC val-

ues are the ones that have a lesser improvement in their execution time. Power-up and

power-down delays of the proposal are taken into account in these results.

To explore how the proposal behaves on a higher number of cores, we launched experi-

ments for a CMP with 32 cores. Figure 4.19(a) and Figure 4.19(b) show the L1 MPKC

and the execution time, respectively. Results are similar as those presented for 16 cores.

While the 8-way single cache reduces misses by 51%, the DWP-Directory 2:6 and 4:4

reduce them by 50.4% and 50.1%, respectively. The differences between our proposal

and the 8-way single cache are smaller. In terms of execution time it translates into a re-

duction of 7.9%, 7.7%, and 7.7%, respectively. The state-of-the-art architectures achieve

lower reductions but, as with 16 cores, a 1:7 shared-to-private way ratio performs on

average slightly better than a 2:6 one.

4.2.5.3 Impact of the DWP-Directory on Energy Consumption

As mentioned above, static or leakage energy dominates the total energy consumption of

the directory structure. Figure 4.20(a) shows the normalized leakage energy consumed

by the directory structure with respect to the 4-way single cache.

Chapter 4. Directory Scalability 73

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0

2

4

6

8

10

12

14
L
1
 M

P
K

C

3C_Miss
Coherence_Miss
Coverage_Miss

1. Single Dir 1x 4w
2. Single Dir 1x 8w

3. PS-Directory (2:6)
4. PS-Directory (1:7)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

(a) L1 Misses per kilocycles and per core

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
x
e
c
u
ti
o
n
 T

im
e

Single Dir 1x 4w
Single Dir 1x 8w

PS-Directory (2:6)
PS-Directory (1:7)

Hybrid Representation (2:6)
Hybrid Representation (1:7)

DWP-Directory (2:6)
DWP-Directory (4:4)

(b) Execution Time

Figure 4.19: Performance of the Single Directory, PS-Directory, DWP-Directory and
Hybrid Representation, normalized with respect to a single-cache directory with 4 ways

and 32 cores.

As can be seen, the 8-way single-cache directory reduces leakage by 7.1%, mainly due

to the smaller execution time of the applications. The PS-Directory and the Hybrid

Representation (2:6) achieve better energy savings by 20.3% and 27.2%, respectively,

even though their execution time is slightly worse than the 8-way single-cache directory.

These energy savings are the result of both schemes lacking the sharer vector field in

some ways, namely those designated to keep track of private blocks, regardless of they

are in a separate structure, like in the PS-Directory, or in the same set, as in Hybrid

Representation. This allows the directories to consume less static energy, while the

execution time of the application is not severely harmed as shown in the previous section.

For this reason, configuration 1:7 consumes even less energy, since the sharer vector is

present in one way less. The DWP-Directory reduces the static energy consumed by

31.5% and 28.9% for 2:6 and 4:4 configurations, respectively, which are the highest

Chapter 4. Directory Scalability 74

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

F
ra

c
ti
o
n
 o

f
s
ta

ti
c
 e

n
e
rg

y
 c

o
n
s
u
m

e
d

Owner
Sharers
Tag

1. Single Dir 1x 4w
2. Single Dir 1x 8w

3. PS-Directory (2:6)
4. PS-Directory (1:7)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

(a) Static Energy

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ra

c
ti
o
n
 o

f
d
y
n
a
m

ic
 e

n
e
rg

y
 c

o
n
s
u
m

e
d

Owner
Sharers
Tag

1. Single Dir 1x 4w
2. Single Dir 1x 8w

3. PS-Directory (2:6)
4. PS-Directory (1:7)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

(b) Dynamic Energy

Figure 4.20: Normalized energy consumed of the Single Directory, PS-Directory,
DWP-Directory and Hybrid Representation,with respect to a single-cache directory

with 4 ways and 16 cores.

reductions of the evaluated directories. Notice that these leakage savings over state-

of-the-art approaches come thanks to its repartitioning mechanism that allows DWP-

Directory provisioning more shared ways when needed or even actually using none of

them.

Results for dynamic energy are shown in Figure 4.20(b), also normalized with respect

to the 4-way single cache. All the studied schemes, apart from DWP-Directory, achieve

on average similar energy savings falling in between 44% and 50% over the baseline.

The best scheme regarding this parameter greatly fluctuates across the applications, so

there is no definitive best approach. Meanwhile, with the only exception of FFT, the

DWP-Directory always achieves the best results. The consumption is reduced by 59.9%

and 59.5% for the 2:6 and 4:4 configurations, respectively.

With 32 cores, in addition to maintain a performance gain similar as the one achieved

Chapter 4. Directory Scalability 75

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

F
ra

c
ti
o
n
 o

f
s
ta

ti
c
 e

n
e
rg

y
 c

o
n
s
u
m

e
d

Owner
Sharers
Tag

1. Single Dir 1x 4w
2. Single Dir 1x 8w

3. PS-Directory (2:6)
4. PS-Directory (1:7)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

(a) Static Energy

FFT
FMM LU

Ocean

Radiosity
Radix

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ra

c
ti
o
n
 o

f
d
y
n
a
m

ic
 e

n
e
rg

y
 c

o
n
s
u
m

e
d

Owner
Sharers
Tag

1. Single Dir 1x 4w
2. Single Dir 1x 8w

3. PS-Directory (2:6)
4. PS-Directory (1:7)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

(b) Dynamic Energy

Figure 4.21: Normalized energy consumed of the Single Directory, PS-Directory,
DWP-Directory and Hybrid Representation, with respect to a single-cache directory

with 4 ways and 32 cores.

in 16 cores, the proposal is able to achieve even better energy savings, offering a more

scalable solution. Figure 4.21(a) and Figure 4.21(b) show the static and dynamic energy

consumed in the 32 core CMP and normalized with respect to the 4-way single-cache.

The leakage energy consumed by the 8-way single cache is only 1.1% better, despite the

lower execution time. Meanwhile, the PS-Directory and Hybrid Representation 2:6 are

able to reduce up to 29.3% and 31.3%, respectively, of this consumption. The energy

savings are higher than those of the 16 core CMP mainly due to the larger amount of

deployed sharer vectors. Since the mentioned schemes rely on the removal of the shared

entry field, and this field increases its size with the number of cores, the overall number

of bits that are eliminated is also higher. Lastly, the DWP-Directory is able to reduce

up to 38% and 34.6% of the leakage energy consumed by the directory structure for the

2:6 and 4:4 configurations, respectively.

Regarding dynamic energy, the DWP-Directory is able to reduce up to 67.4% and 66.2%

Chapter 4. Directory Scalability 76

Cores-16

Cores-32

Cores-64

Average

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

A
re

a
 i
n

 m
m

^2
Single Dir 1x 8w
PS-Directory (2:6)

PS-Directory (1:7)
Hybrid Representation (2:6)

Hybrid Representation (1:7)
DWP-Directory (2:6)

DWP-Directory (4:4)

Figure 4.22: Area required for the different directories with an increasing number of
cores.

for the 2:6 and 4:4 configurations, respectively, of the dissipated power, which is the

highest across all the evaluated schemes.

4.2.5.4 Impact on Area Requirements

The on-chip area required to implement these directory structures is analyzed in this

section. Results, obtained with CACTI, are shown in Figure 4.22 for the studied ap-

proaches. With a higher number of cores, the area requirement difference between the

single cache and the proposal grows more and more. The DWP-Directory 4:4 requires

only the 82.9%, 74.4%, and 66.8% area that a conventional single cache needs. The

PS-Directory, Hybrid Representation and the DWP-Directory 2:6 scale similar to each

other, and better than the 4:4 configuration, especially with 64 cores. This is mainly

because the DWP-Directory 4:4 evaluated has a maximum of 4 shared ways, while the

others only have 2. As results have shown, for a lower number of cores (i.e. 16 cores) 4

shared ways offer the best performance albeit with a small energy and area penalty with

respect to a DWP-Directory with just 2 shared ways. Overall, DWP-Directory with a

2:6 configuration offers the best trade off among performance, energy, and area.

4.3 Summary

This Chapter has identified several key characteristics that clearly differentiate the be-

havior of private and shared blocks from the directory point of view. Based on these

Chapter 4. Directory Scalability 77

observations, we have proposed the Private-Shared (PS) Directory, a directory cache

that uses two different cache structures, each one tailored to one type of block (i.e., pri-

vate or shared). The Shared Directory Cache, which tracks shared blocks is small, with

low associativity and fast. The Private Directory Cache is aimed at tracking private

blocks, which are highly dominant in current workloads. This structure does not store

the sharer vector, is larger than the shared cache, and it is implemented with higher

associativity.

This Chapter has also identified that the current needs of multithreaded applications,

regarding shared and private data access from the directory point of view, varies dynam-

ically along the execution time. Static private-shared structures are not able to properly

adapt to this dynamic variation and, instead, on-demand based dynamic strategies are

required. Based on these observations, we have introduced the Dynamic Way Parti-

tioning (DWP) Directory, a sparse directory that sacrifices the sharer vector field from

part of its ways in order to gain in both area and energy scalability. Furthermore, the

implemented sharer vectors can be powered off or on according to whether the need of

more shared ways dynamically rises or drops at run time, respectively.

Chapter 5

Filtering Techniques

In this chapter we propose two filtering techniques that can be applied to set-associative

caches in the cache hierarchy system, namely the PS-Cache and the Tag Filter Archi-

tecture. These techniques reduce the number of tags and data entries checked when

accessing a cache structure, which leads to reducing the dynamic power consumption.

The main goal of the proposed approaches is to save dynamic energy in caches. For this

purpose, our idea aims to discern which ways of a cache may contain the searched block,

and save energy by only accessing those ways that may potentially contain the block.

The remainder of this chapter is organized as follows. Section 5.1 analyzes the memory

access and motivates the necessity of designs that help reducing the consumption of

highly accessed caches. Section 5.2 presents the proposed PS-Cache scheme and shows

the experimental results obtained. Finally, Section 5.3 discusses a second proposed

approach, the Tag Filter Architecture, and evaluates this proposal against other well-

known schemes.

79

Chapter 5. Filtering Techniques 80

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

0.05

0.1

0.15

0.2

0.25

0.3

F
ra

c
ti
o
n
 o

f
M

e
m

.
In

s
tr

u
c
ti
o
n
s

Figure 5.1: Fraction of memory instructions across the studied applications.

5.1 Analyzing the Cache Hierarchy Access

Memory reference instructions represent a significant percentage of the executed instruc-

tions, hence cache memories, specially L1 caches, are frequently accessed. We launched

experiments to quantify the percentage of memory reference instructions in the studied

workloads. Figure 5.1 shows the percentage of memory reference instructions in each

individual benchmark executed on a 16-core CMP system. This value is roughly the

same, around 20%, across the different benchmarks.

Therefore, a significant fraction of the total power budget is often consumed by on-

chip caches. For example, in the Niagara2 processor [7], the 44% of the chip power

is consumed by the L2 cache [60]. Reducing dynamic power consumption in caches of

CMPs is an actual problem that is being under research [36, 37].

Also, when running multithreaded workloads, in addition to access the local cache, other

caches (e.g., remote caches) can be accessed for coherence purposes. Due to this fact, the

number of accesses to the cache increases with respect to monolithic processors because

of coherence requests issued by other cores. In other words, the cache is not only accessed

from the processor side, but also from the interconnection network (NoC) side, therefore

increasing the dynamic power consumption. In this context, the number of accesses

coming from the NoC strongly depends on the type (snoop-based or directory-based) of

the underlying coherence protocol.

As mentioned before, snoop-based protocols are based on broadcasting coherence re-

quests to all the cores, which requires high bandwidth and energy consumption at the

network but also at the caches, since all caches in the system are accessed on a co-

herence request. Thus, they are only appropriate for small system scales [40, 61, 62].

Chapter 5. Filtering Techniques 81

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
ra

c
ti
o
n
 o

f
L
1
 A

c
c
e
s
s

Directory Protocol Snoopy Protocol

Figure 5.2: L1 Coherence lookups across the studied applications in both directory
and snoopy protocols.

Directory-based protocols keep track of the various copies of cached blocks in a directory

structure between the private and the shared cache levels [4, 8, 26]. This allows the pro-

cessor to easily identify replicas of a block, so minimizing the coherence communication.

Coherence requests are only sent to cores storing a replica, so only a subset of caches

are looked up. This makes them more suitable for large-scale CMPs, since they reduce

energy and bandwidth with respect to snoop-based protocols.

Figure 5.2 shows the fraction of cache accesses coming from the bus side in both types

of protocols, snoopy and directory, in the studied 16-core system. As observed, this

value is noticeable in snoopy protocols and it represents around one fifth of the total

accesses; moreover, in some workloads this value is as high as 45%. In contrast, this

value presents a scarce interest in directory-based protocols.

The previous discussion illustrates the importance of reducing dynamic power consump-

tion in caches of CMP systems, and in snoop based protocols as well, where more

coherence requests are issued by the cache controllers. To deal with this problem, this

thesis proposes an architectural approach with the aim of taking advantage of different

filtering mechanisms to reduce the number of ways accessed during each cache lookup.

5.2 PS-Cache

This section introduces and evaluates the proposed PS-Cache approach. The main goal

of this approach is to take advantage of the classification of private (P) and shared (S)

blocks to design a power-efficient cache architecture that is able to reduce the number of

Chapter 5. Filtering Techniques 82

ways looked up on each cache access. Instead of accessing all the ways in the correspond-

ing set, as usually done, the PS-Cache only looks up a subset of them, in particular,

those blocks whose type (private or shared) matches the requested block type.

The PS-Cache needs i) to keep blocks tagged as private or shared in the cache, and ii) a

private-shared classification mechanism to indicate the type of the block to be looked-

up. Blocks are tagged in the cache using a bit (the PS bit) attached to each cache line.

This bit indicates the type of the block allocated to that line. In addition, although

the PS-Cache can work with any private-shared classification mechanism to find out

the type of the looked up block before accessing the data and tag arrays, this proposal

assumes an OS-based private-shared mechanism similar to the one proposed by Cuesta

et al. [4], which keeps the page information in a PS bit stored along with the TLB

entry. Using such a coarse granularity presents its advantages and shortcomings. An

interesting analysis about this fact can be found in [4]. In this way, the PS-Cache only

accesses those ways whose PS bit value in the entry matches with the PS bit value given

by the TLB for the looked up block.

5.2.1 The PS Page Classification Mechanism

The classification mechanism is based on OS support; therefore, the classification is

performed at the page granularity. This means that all the blocks of the same page

are classified with the same type. The sharing information is stored both in the page

table and in the TLB that holds the translation for the most recently referenced pages.

The sharing information comprises the PS bit and the keeper id, which is the first core

that requested the page translation. This information is stored in the page table, and

the TLB only stores the PS bit. On a memory reference, the core obtains the block

type of the reference from the TLB when it is accessed with the purpose of getting the

address translation. On a TLB miss, the page table is accessed (as usually done), but

the devised classification mechanism also updates the sharing information in the page

table and in the core TLB.

Figure 5.3 depicts an overview of how the classification mechanism works. The first miss

(suffered by P0 in the example) sets the page status as private and the keeper field is

set to P1. The page is set to private in the P0 TLB. On subsequent misses, if the page

is found as private (which occurs in the second access from P1 in the example), it is

Chapter 5. Filtering Techniques 83

memory reference to

block A (first time the

page is accessed)

TLB miss
PT accessed and

updated (PSbit=P

and keeper=P0)

TLB updated

PS bit=P

Keeper Initiator

memory reference

to block A

TLB miss

updates cached blocks

sets TLB entry to

shared

PT accessed

and updated

PS bit=S

trigger the coherence

recovery mechanism

TLB updated

PS bit=S

Page Table

P0 P1 PT

Figure 5.3: The PS Page Classification mechanism workflow. P0 and P1 are proces-
sors, and PT is the page table in main memory.

necessary to compare the keeper field (P0) with the core identifier requesting the access

(P1). If the core identifier differs, then the page becomes shared. In order to update

the page state, the page table (labeled as PT) entry is updated and a private-shared

coherence recovery mechanism is triggered to maintain coherence between the page table

and the keeper TLB and the PS bits in the caches.

The private-shared coherence recovery mechanism has to ensure that all the PS bits

of the cached blocks of the page, as well as in the TLBs, keep the same type as their

associated entry in the page table. For this purpose, the requesting core issues a recovery

request to the page keeper (obtained from the page table entry). On the arrival of such a

request, the keeper updates both the PS bit in the corresponding TLB entry and the PS

bits of the cached blocks belonging to the given page. Notice that this recovery procedure

is only required upon a Private-to-Shared transition. In this way the mechanism keeps

the PS bit of every block in the cache coherent with the state of the page in the TLBs

and in the page table. More details about the mechanism can be found in [4].

After solving the TLB miss, the sharing information is in the PS bit stored along with

Chapter 5. Filtering Techniques 84

the page translation in the TLB of the requesting core, and this PS bit is used by the

core to check the type of the requested block (private or shared). As discussed above,

the PS bit allows the mechanism to discern the group of ways in which the requested

block can be found and, consequently, only these ways are accessed.

Although the private-shared classification employed in this chapter is performed by

accessing the page table on every TLB miss [4, 41], the PS-Cache can also work along

with a classification mechanism that employs TLB-to-TLB transfers [63], which can

improve the overall performance of the system.

5.2.2 The PS-Cache Architecture

On the execution of a memory reference instruction, the cache controller first searches

in the TLB to get the physical address1. As mentioned above, the TLB includes one bit

per entry, the PS (Private-Shared) bit, that indicates how the page is classified. The

value of this bit is read from the TLB entry jointly with the physical address. With

this information, the cache controller proceeds searching the block in the cache. The

TLB translation information is used to check the tags in the corresponding set, but as

a novelty, the proposal also uses the PS-bit to avoid some of the ways to be accessed.

The mechanism can be applied to any cache level, for illustrative purposes Figure 5.4

depicts an overview of the proposed cache architecture for the L1 cache.

The key difference is that in the PS-Cache only those ways matching the type indicated

by the TLB are accessed, thus eliminating the energy consumption caused by looking

up the other ways. As observed, each cache line has attached a PS (Private-Shared)

bit which indicates the type of each block (according to the page table and the other

TLBs). The PS bit provided by the TLB is compared with the PS bits of all the ways

in the set. A simple logic is included to select the wordline (WL) of those ways whose

PS bit matches the value of the ones obtained from the TLB for the page of the current

memory reference. This means that, in the tag array, only a subset of the tags are

read and then compared with the tag of the physical address and, in the data array,

only a subset of data blocks are read. On a hit, the mux of the data array would

select the proper data block from the ones accessed. This allows the proposal to reduce

significant dynamic energy consumption across the memory accesses since in general, as

1If a TLB miss occurs, after solving the miss, the corresponding entry is in the TLB.

Chapter 5. Filtering Techniques 85

virtual address

...

physical address ...
tag

array

data

array

= = =

PS bit

TLB

w
a

y
 1

w
a

y
 0

w
a

y
 7

hit

data

MUX

Row

Dec.
index

WL

PSPSPS

...

w
a

y
 1

w
a

y
 0

w
a

y
 7

Row

Dec.

WL

PSPS PS

...

Figure 5.4: The PS-Cache architecture for L1 caches.

experimental results will show, only a small fraction of ways is required to be accessed

in many memory operations.

The proposal also reduces dynamic energy consumption when accessing the cache from

the NoC side (i.e., coherence requests). In this case, only shared ways are looked up,

since the classification mechanism ensures that before arriving the coherence request,

the block is shared or it has been reclassified as shared by the private-shared updating

mechanism.

In addition, to reduce the static power consumption, the proposed mechanism takes also

advantage of the invalid bit. The power of all ways in invalid state is turned off and are

also excluded from the process of looking the block up. This allows not only reducing

the number of possible ways for the block (the lower the number, the less dynamic

consumption), but also reducing the static energy consumption since power supply to

these ways is cut off while they are in invalid state.

In case of accessing to L2 or L3 caches, the PS bit of the target block (already taken from

the TLB) is carried in the miss request. On the other hand, PS bits in the cache entries

are updated accordingly by the cache coherence protocol, so the PS bit of a request and

the PS bit of the requested block are always coherent.

Regarding hardware complexity, the proposal requires minimal complexity. On the one

hand, no extra information must be added to the TLB except a single bit (the PS bit) per

Chapter 5. Filtering Techniques 86

entry. Note that this bit can also be employed to optimize the cache coherence protocol

as done in [4]. On the other hand, the proposal can be easily adapted to current caches.

In fact, using a single wordline for all the ways in the set presents several problems

due to, among others, many transistors are connected to the row wordlines and the

column bitlines increasing the total capacitance, and thus, delay and power dissipation.

As a consequence, to deal with this problem, current SRAM cache designs employ the

divided wordline approach (DWL), which divides the wordline into a fixed number of

blocks, for instance, one WL per cache way [64]. Notice, that our proposal takes benefit

of this wordline scheme already working in current caches. Due to the low overhead

of our scheme, the PS-Cache access time is not affected. In L2, the PS bit is known

before accessing the cache and therefore does not affect the access time. Even regarding

the first-level cache, the proposal could be integrated in most current deep pipelined

processors because the access to first-level caches usually takes several stages; e.g., the

L1 hit time takes 3 cycles in the AMD Opteron X4 2356 (Barcelona) [65].

The previous discussion focused on typical physically tagged and physically indexed

(PIPT) caches. However, the proposal could be also applied to other types of caches; for

instance, virtually indexed but physically tagged (VIPT), like those of Intel processors.

In these caches, the tag array is accessed in parallel with the TLB, and then the physical

address is used to compare only those tags whose type matches the target one.

5.2.3 Experimental Evaluation

Two cache coherence protocols, a directory-based protocol and a snoop-based protocol,

have been implemented and evaluated. Both protocols store the blocks in the private

caches considering MOESI states, and implement a non-inclusive LLC (L2 in our study)

cache. The directory protocol implements an on-chip directory cache, which increases

its area overhead, while the snoopy protocol performs a broadcast on every write, and on

every load in case the data is not found in the LLC. As analyzed in Section 5.1, snoopy

protocols induce a higher number of coherence requests to the L1 caches, therefore a

reduction in the average number of accessed ways results in higher energy savings than in

directory based protocols. Energy results account for any access to the cache, including

those that come as a consequence of the private-shared classification mechanism of page

tables.

Chapter 5. Filtering Techniques 87

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0
P

S
 S

ta
te

 o
f
W

a
y
s
 i
n
 a

 S
e
t

Invalid
Private
Shared1. Directory Protocol 2. Snoopy Protocol

Figure 5.5: Average number of ways in a set of each type in the L2 cache for both
studied protocols

Energy benefits of the proposal depend on the average number of ways that are looked

up by the cache accesses. This chapter uses practically the same baseline system as in

the previous chapter. However, since experimental results will strongly depend on the

number of cache ways, we have used relatively highly set-associative caches (i.e. 8-way

L1 caches, and a 16-way L2 caches) as also implemented in current processors (e.g. the

IBM Power8 [66]).

5.2.3.1 Private-Shared Blocks Behavior Analysis

The number of accessed ways by our proposal changes mainly depending on which cache

we are accessing to (L1 or L2), and on the type of block we are looking for.

The study starts with the L2 cache since it implements a higher number of ways, thus

the proposal can potentially achieve higher energy savings in this cache.

Figure 5.5 depicts the average number of blocks of each type in the 16-way set associative

L2 cache. Results are shown for the snoopy and directory MOESI-based protocols

considered in the evaluation of this proposal. As observed, on average, there are around

five private blocks in a set, whose access would result in important energy savings.

Nevertheless, this number strongly depends on the application. There are some few

applications with more than twelve private blocks per set on average (e.g. tomcatv), but

as can be seen, most of the applications store shared blocks in most of the ways.

Figure 5.6 shows the average number of blocks of each type in the 8-way set associative

L1 cache. Unlike L2 caches, the difference in the amount between private and shared

Chapter 5. Filtering Techniques 88

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

P
S

 S
ta

te
 o

f
W

a
y
s
 i
n
 a

 S
e
t

Invalid
Private
Shared1. Directory Protocol 2. Snoopy Protocol

Figure 5.6: Average number of ways in a set of each type in the L1 cache for both
studied protocols.

ways is higher, around two ways storing private blocks and five ways storing shared

blocks.

Results confirm that the final number of accessed ways vary according to the type of

block we are looking for and the application behavior. That is, the average number of

blocks of each type seen on the arrival of a request to a private block can widely differ

from that seen on the arrival of a request to a shared block.

To provide further insights on how much energy savings the proposal is able to bring,

Figure 5.7(a) and Figure 5.7(b) show the distribution of the number of accessed ways

on each access on the arrival of a private or shared request respectively in the L1 cache.

The data in the first figure is normalized to the number of memory accesses when

employing a directory protocol with PS-Cache, whereas the second figure is normalized

to the number of memory accesses when employing a snoopy protocol with PS-Cache.

As expected from Figure 5.6, most applications look up more ways when accessing

shared blocks than when accessing private blocks, with only few exceptions such as

Tomcatv and Blackscholes. An interesting observation is that when looking for a private

block, most of the times (over 60% of the accesses) just one or two ways are looked up.

Benefits, are lower when looking for a shared block, but even in this case, around 60%

of times five or less ways are looked up, which will also bring important energy savings.

Regarding the impact of the protocol, two main observations can be drawn. First, it

can be appreciated that the rate of shared to private blocks accessed is quite similar

in both protocols regardless of whether a shared or private block is requested. Second,

major differences among protocols mostly appear when looking for a shared block, with

Chapter 5. Filtering Techniques 89

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2
R

a
ti
o
s
 o

f
S

e
a
rc

h
e
d
 W

a
y
s
 (

P
ri
v
a
te

 B
lo

c
k
) 0w

1w
2w

3w
4w
5w

>5w

1. Directory Protocol 2. Snoopy Protocol

(a) Number of ways accessed when looking for a private block

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
a
ti
o
s
 o

f
S

e
a
rc

h
e
d
 W

a
y
s
 (

S
h
a
re

d
 B

lo
c
k
)

0w
1w
2w

3w
4w
5w

>5w

1. Directory Protocol 2. Snoopy Protocol

(b) Number of ways accessed when looking for a shared block

Figure 5.7: Distribution of the number of ways accessed in the L1 cache normalized
with respect to the snoopy protocol.

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

A
v
g
.
n
u
m

b
e
r

o
f
s
e
a
rc

h
e
d
 w

a
y
s
 i
n
 L

2

Directory Protocol Snoopy Protocol

Figure 5.8: Average number of ways accessed in the L2 cache for the studied protocols.

the exception of SpeechRec when looking for a private block. In this case, a directory

based protocol reduces the number of lookups on average around 20% with respect to

the snoopy protocol. Moreover, this reduction can be as high as 70% in Water-Nsq when

looking for a shared block.

Chapter 5. Filtering Techniques 90

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

A
v
g
.
n
u
m

b
e
r

o
f
s
e
a
rc

h
e
d
 w

a
y
s
 i
n
 L

1

Directory Protocol Snoopy Protocol

Figure 5.9: Average number of ways accessed in the L1 cache for the studied protocols.

Figure 5.8 shows the average number of accessed ways in the L2 per access. On average,

a second-level cache implementing the PS-Cache architecture needs only to look 10 of

its 16 ways up, although there are some cases (i.e. BlackScholes) in which this number

can be as low as 2 ways per access.

As mentioned above, the proposal can be applied to any level of the cache hierarchy,

thus this section also explores the benefits on the L1 cache in the studied system.

Figure 5.9 shows how many ways are looked up on average across all the benchmarks in

the proposed 8-way first-level cache. Results show scarce differences between both types

of coherence protocols, both of them accessing 5 ways on average. In some applications

the PS-Cache greatly reduces the number of ways to be looked up (e.g., only 2 in

Blackscholes), while in others like MPGenc that presents a large number of shared

ways, the impact is not so high.

5.2.3.2 Impact of PS-Cache on Energy Consumption

This section analyzes the impact of the proposal on the energy consumption of the

caches.

Figure 5.10 shows the dynamic energy consumed by the L2 cache for the directory and

a snoopy protocols considered in this dissertation. Conventional protocols and caches

(labeled as baseline) have been included for comparison purposes. Results of the PS

approach have been labeled with the name of the type of the protocol implemented

(directory or snoopy) in the system. In this cache, there is not much difference between

both coherence protocols. As observed, energy savings widely differ across benchmarks.

Chapter 5. Filtering Techniques 91

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
2
 D

y
n
a
m

ic
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Directory Baseline
Dir. PS-Cache

Snoopy Baseline
Snoopy PS-Cache

Figure 5.10: Reduction of the dynamic energy consumption in L2 across the studied
protocols.

Barnes

Cholesky
FFT

Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
1
 D

y
n
a
m

ic
 C

o
n
s
u
m

p
ti
o
n

Directory Baseline
Dir. PS-Cache

Snoopy Baseline
Snoopy PS-Cache

Figure 5.11: Reduction of the dynamic energy consumption in L1 across the studied
protocols.

On average, the PS-Cache achieves by 40% of energy reduction in both coherence pro-

tocols. However, notice that in some cases, the overall energy consumption of the PS

Cache is only by 12% that of the conventional system (BlackScholes), and even in the

worst case, the benefits always exceed 8%.

Figure 5.11 shows the results for the L1 cache. On average, similar energy savings (i.e.

by 22%) in percentage are brought by both snoopy and directory protocols in the L1

cache. An interesting remark is that a snoopy protocol with the PS-Cache architecture

can consume less than a conventional directory. This is simply achieved through the

selective look-up within the different ways of a set provided by the PS bit.

As suggested in the previous section, applications with a large number of private-block

lookups, obtain higher energy reductions. For example, Barnes reduces dynamic power

consumption by 44% and 51% for snoopy and directory protocols, respectively, and

Radiosity by 47% and 53%, respectively. On the other hand, applications with a low

number of private-block lookups offer no such benefits. Best example of this scenario is

the SpeechRec benchmark, which only reduces the power consumption by 3%.

Chapter 5. Filtering Techniques 92

Results show that the dynamic energy consumption reduction is higher in L2 caches than

in L1 caches, even more if we consider virtually-indexed physically-tagged L1 caches

instead of physically-indexed physically-tagged ones. Hence, it can be concluded that

the lower the cache level the higher the benefits provided by this technique.

5.3 Tag-Filter Architecture

This section presents an analysis of the last tag bits distribution in caches and the

Tag Filter (TF) Architecture, and introduces the the second approach proposed in this

dissertation to reduce energy consumption in the processor caches. This scheme can be

applied to any set-associative cache in a CMP, such as processor or directory caches.

5.3.1 Last Tag Bits Distribution

As mentioned in Section 5.1, a significant fraction of the total power budget is often

consumed by on-chip caches. To deal with this problem, this work proposes an archi-

tectural approach based on the hypothesis of the homogeneous distribution of the least

significant bits of the address tag across the ways of a set-associative cache [67].

We launched experiments to verify this hypothesis in the considered experimental sce-

nario (see Chapter 3 for further details). Figure 5.12 shows the average distribution of

the blocks across an 8-way L1 cache and a 16-way L2 cache on a 16-core CMP system.

In Figures 5.12(a) and 5.12(b) on average there are 1 and 2 ways in invalid state, under

the implemented MOESI protocol, in the L1 and L2 cache, respectively. Meanwhile, the

remaining ways share a quite homogeneous distribution considering the lowest order tag

bits of the allocated blocks. Therefore, there would be no need to access all the ways in

a set if there were some mechanism able to filter accesses for a subset of ways that might

potentially allocate the requested block. The homogeneous distribution of the lowest

order tag bits makes our approach a perfect method for filtering accesses.

Directory caches are typically built as set-associative caches and, as experimental results

will show, the least significant bits in the address tag follow a similar homogeneous

distribution. A low associativity of the directory caches causes frequent evictions of

directory entries that lead to extra coverage misses in the processor caches, thus as in

Chapter 5. Filtering Techniques 93

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
A

v
e
ra

g
e
 s

ta
te

 o
f
w

a
y
s
 i
n
 L

1

000
001
010

011
100
101

110
111
Invalid

1. One Tag Bit
2. Two Tag Bits

3. Three Tag Bits

(a) Average number in the L1 cache.

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

A
v
e
ra

g
e
 s

ta
te

 o
f
w

a
y
s
 i
n
 L

2

000
001
010

011
100
101

110
111
Invalid

1. One Tag Bit
2. Two Tag Bits

3. Three Tag Bits

(b) Average number in the L2 cache.

Figure 5.12: Average number of ways in a set of each type in the cache hierarchy
varying the least significant bits.

any kind of cache, a higher associativity would improve the performance. However, their

associativity is also limited due to power constraints.

5.3.2 TF-Architecture Scheme

The aim of our proposal is to achieve dynamic energy savings by filtering the number

of accessed ways in the target set on each cache access. The terms Tag Filter Cache

(TF-Cache) and Tag Filter Directory (TF-Directory) are used to refer to the Tag Filter

Architecture when it is applied to a processor cache and to a directory cache, respectively.

The TF-Cache approach reduces the number of tags that are compared on each cache

access and also the number of ways that are accessed in parallel in the data array. The

final aim is to reduce dynamic power consumption in these cache components, which

represents a large percentage of the total system power consumption. In a typical cache

Chapter 5. Filtering Techniques 94

Virtual

Address
Virtual Page Set Block

Offset

Xa Page Offset

Physical Page
Physical

Address

Data Array
TLB

Xa

Dec

MUX=

Tag Hit

N-X

Filter Hit

...

...

...

Xs

Tag Array

WL

WL

WL

WL

WL

WL

N-X

Taga

n ways

Figure 5.13: The TF Architecture for L1 caches.

access, to check if the searched block is in the cache, the entire tag in all the ways of the

target set are compared with the one of the searched block. Although the comparison

is done in all the ways, only one of them can potentially result in a hit. In first level

caches, where performance is a key objective, the data array is looked up in parallel with

the tag array, before knowing whether or not the target block is stored in the set.

For energy saving purposes, the proposed approach applies first, a small and fast filter

to discard some of the accessed ways (both in the tag array and in the data array).

Those cache ways that mismatch the small tag comparison are not accessed. The cache

memory is upgraded with minimal hardware complexity as follows. The tag array is

decoupled in two main structures: one X-bit-wide and the other one N −X bits wide.

The TF-Cache employs the least significant bits of the tags stored in a X-bit-wide table

to reduce the number of accessed ways; that is, the entries in this table act as a filter

to access the tag and the data arrays as explained below. Figure 5.13 depicts a block

diagram of the TF-Cache for a first-level VIPT cache.

To allow the mechanism to work in current VIPT caches, the first comparison must start

before the TLB output is known. For this purpose, we assume that the operating system

(OS) is responsible to ensure that the X least significant bits of the virtual address are

the same as those of the physical address. This assumption is reasonable since i) a

uniform page address distribution is expected and ii) main memory capacities are by

four orders of magnitude bigger than page sizes (e.g. a 32GB main memory [68] and a

Chapter 5. Filtering Techniques 95

Virtual Page

Hit?
No

Cache Access

End

Virtual

Address

Xa = Xs?
TLB Miss

Exception

Yes
No

Way �ltered

(neither tag compared

nor data array accesed)

Cache Hit?

(for any way

N-X =Taga)

Yes

No
Cache Miss

-Select the target way

-Deliver data to the processor

Yes

Figure 5.14: The TF Architecture working flow for L1 caches.

4KB page size), which allows the OS to have some allocation flexibility, and so, being

able to tolerate this small restriction.

Unlike a typical cache that performs a single N -bit tag comparison for each way, the

proposed mechanism performs two tag comparisons, one of X bits for each way in the

set and the other of N −X bits only for the ways that match the first comparison, as

illustrated in the flowchart in Figure 5.14 and shown in the block diagram of Figure

5.13. Under the aforementioned assumption, the first comparison can be done once the

output of the set decoder is provided, while the address translation in the TLB is being

performed. In this step, only the X least significant bits of the virtual page (namely

Xa in Figure 5.13) are looked up in all the ways of the target set (namely Xs). The

few number of bits (we evaluated from 1 to 4) used in this comparison, allows it to be

fast and effective (as experimental results will show), thus introducing negligible time

penalty and important energy savings.

In case the first comparison fails in all the cache ways, the L2 cache is accessed. Oth-

erwise, two main actions are performed in parallel. On the one hand, once the TLB

provides the N −X bits of the physical address (i.e. Taga), the remaining N −X bits

of the tag array are compared to those provided by the TLB. Notice, that this com-

parison involves a much larger number of bits, however, it is only performed in those

Chapter 5. Filtering Techniques 96

cache ways that succeed the first comparison. Similarly, those entries of the data array

corresponding to those ways that matched the first tag comparison are accessed.

From a complexity perspective, the proposal requires minimal hardware complexity to

be applied to current caches: an additional AND gate per set and way, plus an additional

X-bit small comparator per way (the one shown in the box representing the tag array

in Figure 5.13). For instance, in the evaluated caches, a simple circuitry consisting of

1K AND gates and 8 X-bit comparators, where X varies from 1 to 4 depending on

the evaluated configuration. As mentioned above, the tag array is decoupled in two

independent structures. Simple logic is required to drive the wordline (WL) signal to

both the N − X tag structure and the data array. As observed in Figure 5.13, the

wordline is allowed to drive both the wide tag structure and the data array for a given

way, but only in case the first comparison in that way succeeds. Notice that the AND

gates do not remove the power supply since this would not preserve the data contents.

Regarding the TF-Directory, on a directory access the scheme works very close to the

TF-Cache. The tag array is decoupled in two, a X-bit and a N − X bits wide, tables

and the access is split in two sequential steps. In this manner, the tags whose least

significant bits do not match with the ones of the searched block are filtered in a similar

way as explained in the L1 data cache. This design allows the mechanism to significantly

reduce dynamic energy consumption across the cache accesses since, in general, only a

small fraction of ways is compared in most of the accesses.

Finally, we would like to remark that the benefits of our proposal mainly vary with the

cache associativity. The higher the associativity the larger the energy savings achieved

by the TF Architecture. However, since our focus is on dynamic energy, varying the

number of sets or the cache size would have a minimal impact on performance other

than changing the capacity misses so incurring in less or more cache accesses. Anyway,

it is expected that varying the number of accesses would maintain approximately the

same percentage of filtered ways hence achieving comparable energy savings. A similar

rationale could be applied for an increasing core count.

Chapter 5. Filtering Techniques 97

5.3.3 Experimental Evaluation

This section briefly describes the schemes that are considered for comparison purposes

against the TF Architecture. Then, experimental results are presented and analyzed for

both processor caches and directory caches.

As in the previous proposal, the evaluation will consider highly associative processor

caches (i.e. 8-way L1 caches, and 16-way L2 caches), as well as directory caches with a

higher number of ways (i.e. 8 ways).

5.3.3.1 Compared Schemes

First, the TF-Cache is evaluated and compared to other state-of-the-art proposals that

also reduce dynamic energy consumption by accessing a subset of the cache ways instead

of all of them. These schemes are Way Prediction [15, 35] and two recent approaches:

Way Guard [14] and PS-Cache, which was presented in Section 5.2.

Way Prediction techniques [15, 35] predict the way that is likely to keep the target data

in advance, typically the way containing the MRU block, and only that way is accessed

first. The problem rises when the prediction fails; in such a case, after performing the

comparison of the MRU tag, all the remaining ways are accessed at a second phase to

look up the target block. This means that on mis-prediction, energy wasting rises and

latency increases, since additional cycles are required to solve the memory request.

Way Guard [14] has been proven to work efficiently in highly-associative caches. The

mechanism implements a counting bloom filter associated to each cache way. Way Guard

works as follows. First, a hash function is applied to a subset of bits of the address of

the target block. The output of the hash is a m-bit index that is decoded to access the

2m − 1 entry bloom filter vector. If the bit is set to 1 then the associated cache way is

accessed (both tags and data arrays), otherwise that way is not searched. Each entry of

the bloom filter has associated an up/down counter (e.g. a 3-bit counter in the original

work), that is decremented each time a cache line whose address maps to that position

is evicted from the cache, and increased when the block is written to the cache. In the

original paper, results are shown for m equal to 4× the number of blocks in a cache. We

will refer to this configuration as WayGuard − 4×. This approach requires a decoder

Chapter 5. Filtering Techniques 98

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
a
c
c
e
s
s
e
d
 w

a
y
s
 i
n
 L

1

PS-Cache
Way-Prediction

WayGuard
One Tag Bit

Two Tag Bits
Three Tag Bits

Four Tag Bits

(a) Average number of ways accessed in the 8-way L1 cache.

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
a
c
c
e
s
s
e
d
 w

a
y
s
 i
n
 L

2

PS-Cache
Way-Prediction

WayGuard
One Tag Bit

Two Tag Bits
Three Tag Bits

Four Tag Bits

(b) Average number of ways accessed in the 16-way L2 cache.

Figure 5.15: Average number of ways accessed in the cache hierarchy in the studied
schemes.

with 4× more outputs than the already implemented in the cache to index the target

set.

To evaluate the TF-Directory we implemented the Tag Filter Architecture in two direc-

tory schemes: in a conventional single-level directory cache [27] and in the PS-Directory

described in Section 4.1.

5.3.3.2 TF Architecture in Processor Caches

Figure 5.15(a) shows the average number of searched ways in the 8-way L1 cache across

the studied techniques. The more bits (from 1 to 4) are used in the bit-array for filtering

the ways, the less ways are accessed. On average, the number of accessed ways in a 8-

way cache for 1-, 2-, 3-, and 4-bit tag filter is 3.53, 1.82, 1.06, and 0.98, respectively.

This means that the accesses follow a uniform distribution when considering the least

significant bits. Consequently, using three bits suffices to limit the number of ways that

Chapter 5. Filtering Techniques 99

are looked up to just a single one, since our first-level cache has 8 ways, therefore allowing

the consumption of a set-associative cache that uses this mechanism to be similar as that

of a direct-mapped cache. There is no significant difference in the obtained results across

the different applications for a given number of tag bits. Notice that it is possible to

have an average number of ways accessed lower than 1, since it might happen that the

least significant bits of the tag address have no match in the tag array. In this case,

no way has to be accessed and the cache miss is triggered earlier than in a non-filtering

approach. This rationale explains the results obtained for four bits.

Compared to the PS-Cache, the proposal always achieves better results even with just a

single tag bit (i.e. X equal to 1 bit). The PS-Cache accesses on average to 4.6 ways and

the results widely vary from one application to another. In some applications, like Ocean,

there is almost no access reduction, whereas in others (e.g. Tomcatv) it can reduce it

by about 50%. This variability in the results is due to the high variation in the private-

shared access pattern across the applications. WayGuard and Way-Prediction access

on average 2.41 and 1.43 ways, which remains mostly constant along all the studied

applications. Thus, they perform better than the proposal with a single bit. Two bits

are enough to surpass WayGuard and a third one is needed to surpass Way-Prediction.

Using the MRU way as a prediction does prove to be good enough for first-level caches

providing a good hit ratio.

Figure 5.15(b) shows the average number of searched ways in the 16-way L2 cache. The

number of ways accessed on average is 7.68, 4.04, 2.43, and 1.74 for an X number of

bits in the first comparison equal to one, two, three, and four bits, respectively. As in

the L1 cache, the reduction balances evenly across all the studied applications. The

trend shows that there is still room for improvement, but at the cost of increasing X. In

comparison, the PS-Cache, Way-Prediction, and WayGuard access 9.85, 12.7, and 4.34

ways, respectively. Way-Prediction, which works really well for the L1 cache, performs

poorly in lower levels of the cache hierarchy. The reason is that L1 caches filter many

of the processor accesses, and thus, application locality is much poorer in lower levels.

When the prediction hits, only a way is accessed, but when it misses the remaining ways

have to be accessed. Therefore, the figure shows a poor hit ratio in the LLC. Also it

is worth to note that a failed prediction also means a penalty in the access time since

additional cycles are required in order to get the target data. That is, Way-Prediction is

Chapter 5. Filtering Techniques 100

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
y
n
a
m

ic
 e

n
e
rg

y
 c

o
n
s
u
m

e
d
 i
n
 L

1

PS-Cache
Way-Prediction

WayGuard
One Tag Bit

Two Tag Bits
Three Tag Bits

Four Tag Bits

(a) Dynamic energy consumed in the 8-way L1 cache normalized to a conventional cache.

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
y
n
a
m

ic
 e

n
e
rg

y
 r

e
d
u
c
ti
o
n
 i
n
 L

2

PS-Cache
Way-Prediction

WayGuard
One Tag Bit

Two Tag Bits
Three Tag Bits

Four Tag Bits

(b) Dynamic energy consumed in the 16-way L2 cache normalized to a conventional cache.

Figure 5.16: Dynamic energy consumed in the cache hierarchy.

a hindrance for performance when applied in this level. Both Way-Prediction and PS-

Cache perform worse than the TF Architecture even with one bit, whereas WayGuard

performs almost as well as the proposal when employing a two-bit tag array.

As a consequence of reducing the number of accessed ways in caches, the dynamic energy

consumption is also reduced. Figure 5.16(a) shows the dynamic energy consumed by

the first-level cache. Results have been normalized to those of a set-associative cache in

which all the cache ways are accessed, which also include the power overhead incurred

by the extra comparators. The Tag Filter Cache is able to reduce the dynamic energy

consumed by 48.1%, 65.8%, 73.2%, and 74.9% for a tag filter with one, two, three, and

four bits, respectively. The marginal benefits of adding additional bits to the filter are

fewer with each additional step, thus, the results for a five-bit filter do not differ much

from those shown for a four-bit scheme. As expected, Way-Prediction shows the best

results, being able to reduce dynamic energy consumption up to 82.1% in the Ocean

application. The PS-Cache scheme obtains the worst results, since it is the scheme

Chapter 5. Filtering Techniques 101

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
A

v
g
.
N

u
m

b
e
r

o
f
W

a
y
s
 A

c
c
e
s
s
e
d

PS Dir
PS Dir 1 Bits

PS Dir 2 Bits
PS Dir 3 Bits

PS Dir 4 Bits
Single Dir

Single Dir 1 Bits
Single Dir 2 Bits

Single Dir 3 Bits
Single Dir 4 Bits

Figure 5.17: Average number of ways accessed in the directory per directory access
across the studied schemes.

that accesses more ways. Figure 5.16(b) depicts the results for the L2 cache. The Tag

Filter Cache is able to reduce consumption by 51.8%, 72.2%, 81.1%, and 85.9% for

the different tag filter sizes, respectively. Again, one can see the diminishing benefits

of further increasing the tag filter size. WayGuard achieves reductions similar as a 2-

bit TF-Cache, whereas PS-Cache and Way-Prediction display no such improvements in

comparison to the proposed architecture, reducing energy consumed only by 38.4% and

20.4%, respectively.

Since the proposed mechanism introducing no access time penalty, no performance eval-

uation results are shown.

5.3.3.3 TF Architecture in Directory Caches

This section evaluates the TF Architecture implemented both in a conventional single-

level directory cache and in the recently proposed PS-Directory approach. Experimental

results assume an 8-way conventional directory cache and a PS-Directory with a 2-way

Shared cache and a 6-way Private cache. For each of them, we evaluated the effects of

the proposal ranging the filter size from 1 bit to 4 bits in 1-bit steps.

Figure 5.17 shows the average number of accessed ways on a cache access in the studied

schemes. As can be seen, when no filter is applied, a memory reference instruction

accesses an average of 5.5 and 5.1 ways on each memory access for the directory cache

and the PS-Directory, respectively. Unless some few exceptions, PS-Directory always

accesses fewer ways than the conventional directory cache. The TF Architecture further

improves these numbers. As happened in the TF-Cache, the more bits are used in the

Chapter 5. Filtering Techniques 102

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

F
ra

c
ti
o
n
 o

f
D

y
n
a
m

ic
 E

n
e
rg

y
 C

o
n
s
u
m

e
d PS Dir

PS Dir 1 Bits
PS Dir 2 Bits
PS Dir 3 Bits

PS Dir 4 Bits
Single Dir

Single Dir 1 Bits
Single Dir 2 Bits

Single Dir 3 Bits
Single Dir 4 Bits

Figure 5.18: Normalized dynamic energy consumed by the directory across the stud-
ied schemes.

filtering, the less ways are accessed. Just one bit is enough to reduce to 3.1 and 3.6 the

average number of accessed ways. The TF-Directory is able to reduce as much as 0.8 and

0.7 the accessed ways for directory cache and PS-Directory respectively, when employing

4 bits. The tag filtering behaves almost identically in both directory protocols which

means that it is applicable to any other cache directory scheme. Also, as happened in

the TF-Cache, directory misses could be detected earlier with this architecture if no tag

comparison matches in the least significant bits.

Figure 5.18 shows the normalized dynamic energy consumed in the studied directory

configurations. The proposal is able to achieve energy reductions by 30.2%, 43.6%,

71.4%, and 84.5% for an increasing tag filter size, respectively, in the PS-Directory.

Analogously, reductions by 43.5%, 62.5%, 77.7%, and 84.2% are achieved in the single

directory cache. Single-level directories take more advantage of tag filtering than many-

level ones when few bits are selected in the filtering process. Nonetheless, results in

energy consumed seem to converge as we increase the number of filtering bits. Comparing

this figure with Figure 5.17, it can be appreciated that there is no direct correlation

between energy consumption and average number of accessed ways. For this purpose we

should account for the total number of accesses, which varies among the studied schemes

since they produce a different number of invalidations due to evictions of entries in the

directory cache. Below we present these results.

Figure 5.19 shows the normalized total number of ways accessed in the directory cache

along the complete execution of the applications. These results effectively confirm that

there is a direct correlation between the total number of accessed ways and dynamic

energy consumed by the directory. As such, the lower this number, the more energy can

Chapter 5. Filtering Techniques 103

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptio
ns

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
o
rm

a
liz

e
d
 N

u
m

b
e
r

o
f
W

a
y
s
 A

c
c
e
s
s
e
d PS Dir

PS Dir 1 Bits
PS Dir 2 Bits
PS Dir 3 Bits

PS Dir 4 Bits
Single Dir

Single Dir 1 Bits
Single Dir 2 Bits

Single Dir 3 Bits
Single Dir 4 Bits

Figure 5.19: Normalized total number of accessed ways in the directory.

be saved. Remember that an access to the directory is triggered on a miss in the L1

processor cache for coherence maintenance. Even though the PS-Directory looks up a

lower average number of ways per access than the single directory cache, it looks up on

overall a higher number of ways because it performs more accesses to the directory. This

is due to a higher number of the coverage misses. The tag filter is able to decrease the

number of accessed ways from 69.4% with one single bit down to 15.7% with 4 bits in the

PS-Directory and from 56.5% to 15.8% in the conventional directory cache. Although

it seems to be a convergence in the total number of accessed ways as the tag filter size

increases, slightly better results are achieved when the TF Architecture is applied to

the conventional directory cache in comparison to the PS-Directory. The reason is the

higher number of ways assumed in the conventional directory.

5.4 Summary

This chapter has proposed two approaches to save energy in processor caches and direc-

tory caches.

First, the PS-Cache is proposed. It is an energy-efficient cache design that only accesses

a subset of the set ways, without hurting the performance. The PS-Cache assumes that

blocks are classified at page level as shared or private, according to the TLB information.

It also adds a single bit attached to each cache entry, which only activates the word line

of the way if the block type matches the one provided by the TLB. In this way, dynamic

energy consumption is largely saved. On the other hand, coherence requests to remote

private caches only access the subset of ways that has blocks with the shared type.

Chapter 5. Filtering Techniques 104

Second, the TF Architecture (TF-Cache and TF-Directory) is proposed. As the previous

approach, it aims to reduce dynamic power consumption in set-associative caches by

accessing a subset of the set ways. The proposed mechanism saves a significant amount

of energy by effectively reducing the number of searched ways by using a simple filtering

mechanism based on the least significant bits of the address tag of the searched block.

The proposal divides the tag array stored in the ways in two different segments. One of

them, with few of the least significant bits and the other with the rest of bits of the tag.

In order to filter the set ways, two sequential comparisons are performed. In the first

comparison the least significant bits in the tag of the searched block are compared to the

least significant bits stored in all the ways of the set. This comparison is performed very

fast without waiting for the TLB output. Once we have the result of this comparison,

the second is performed, comparing the rest of bits in the tag, but only for those ways

that succeed the first comparison. If the data array is accessed in parallel with the

tag array, then only those ways matching the first comparison are accessed in the data

array. This filter choice is appropriate since, as results show, there is rather homogeneous

distribution of the bit array field contents across the various ways of a set. This cache

design can be implemented in any set-associative cache structure like private data or

directory caches and in any cache level of the cache hierarchy.

Chapter 6

Conclusions

This dissertation has focused on the scalability issues found in two main types of CMP

caches: directory caches and processor caches. Regarding directory scalability we have

proposed two designs that achieve energy and area reductions by attacking the sharer

vector present in these structures. By removing this field from a subset of the ways, and

adapting the coherence protocol accordingly, notable savings can be obtained. Regarding

processor caches, this work proposes several filtering mechanisms that reduce the number

of ways looked up during each cache access. As a consequence the dynamic energy

consumed by these heavily accessed structures is reduced.

In this chapter, the main contributions of these proposals are summarized, followed by

a discussion about future work and an enumeration of the scientific publications related

with this dissertation.

105

Chapter 6. Conclusions 106

6.1 Contributions

Power consumption is a major design concern in current high-performance chip mul-

tiprocessors, which increases with the core count. On-chip caches often consume a

significant fraction of the total power budget, and important research has focused on

reducing energy consumption in these memory structures although typically at the cost

of performance. Also, the increasing core counts in future manycore CMPs claim for

scalable coherence structures in terms of power and area.

This work presents four main contributions that attack the scalability problem in terms

of area and energy of the structures found in the cache hierarchy, i.e. processor and

directory caches. Below we summarize the conclusions for each of them.

This work identifies five key characteristics that clearly differentiate the behavior of

private and shared blocks from the directory point of view. Based on these observations,

Section 4.1 has introduced the PS-Directory, a directory cache that uses two different

cache structures, each one tailored to one type of block (i.e., private or shared). The

Shared Directory Cache, which tracks shared blocks is small, with low associativity and

fast. The Private Directory Cache is aimed at tracking private blocks, which are highly

dominant in current workloads. This structure does not store the sharer vector, is larger

than the shared cache, and it is implemented with higher associativity. Both, eDRAM

and SRAM technologies, have been taken into consideration for the implementation of

the Private Directory Cache.

Experimental results for a 16-core CMP show that, compared to a single directory cache

with the same number of entries, the PS-Directory improves performance by 14% due

to the separate treatment of private and shared blocks. Additionally, directory area is

reduced by 26.35% mainly due to not storing the sharer vector for the private blocks,

and by 33.98% when eDRAM technology is considered for the Private cache. Regarding

energy consumption, reductions about 27% are achieved. Compared to the state-of-the-

art MGD scheme, the PS-Directory increases the performance by 16.7% and reduces

energy by 18.7%, being also much more scalable in terms of area. Finally, we would like

to remark that the mentioned benefits are obtained with almost the same performance as

the duplicate tags approach (i.e., perfect directory) but with a feasible implementation

that scales with the number of cores.

Chapter 6. Conclusions 107

This thesis shows that the current needs of multithreaded applications, regarding shared

and private data access from the directory point of view, varies dynamically with ex-

ecution time. Static private-shared structures are not able to properly adapt to this

dynamic variation and, instead, dynamic strategies are in demand. Section 4.2 has pre-

sented the DWP-Directory, a sparse directory that sacrifices the sharer vector field from

part of its ways in order to gain in both area and energy scalability. Furthermore, the

implemented sharer vectors can be powered off or on as required according to whether

the need of more shared ways rises or drops at run time, respectively. That is achieved

by employing the repartitioning algorithm also proposed in this thesis.

Experimental results for a 16-core CMP show that, compared to a conventional directory

cache with the same number of entries, DWP-Directory reduces the static and dynamic

energy consumed by 31.5% and 59.9%, respectively, while having an almost negligible

performance penalty when compared to a more energy and area demanding 8-way con-

ventional cache, and having a lower execution time than a more power-efficient 4-way

directory.

Section 5.2 has proposed the PS-Cache, an energy-efficient cache design that only ac-

cesses a subset of the set ways, without hurting the performance. The PS-Cache assumes

that blocks are classified at page level as shared or private, according to the TLB infor-

mation. It also adds a single bit attached to each cache entry, which only activates the

word line if the block type matches the one provided by the TLB. In this way, dynamic

energy consumption is largely saved. On the other hand, coherence requests to remote

private caches only access the subset of ways that has blocks with the shared type.

Results have shown that in CMPs, implementing either directory-based or snoopy-based

protocols, the PS-Cache can bring important energy savings. The proposal has been

evaluated in both L1 and L2 caches showing energy reductions by 22% and 40% for

both of them, respectively, indistinctly of the coherence protocol employed.

Finally, Section 5.3 has proposed the TF-Architecture to reduce dynamic power con-

sumption in set-associative caches. The proposal divides the tag array in two different

segments. One of them, with few of the least significant bits and the other with the rest

of bits of the tag. In order to filter the set ways, two comparisons are performed. In the

first comparison the least significant bits in the tag of the searched block are compared

to the least significant bits of the tags stored in all the ways of the set. This comparison

Chapter 6. Conclusions 108

is performed very fast without waiting for the TLB translation. Once we have the result

of this comparison, the second is performed (if there is at least a hit), comparing the

rest of bits in the tag, but only for those ways that succeed the first comparison. If the

data array is accessed in parallel with the tag array, then only those ways matching the

first comparison are accessed in the data array. This filter choice is appropriate since,

as results show, there is rather homogeneous distribution of the bit array field contents

across the various ways of a set. In this work we have applied the TF-Architecture to

data caches (TF-Cache) and directory caches (TF-Directory).

Results show that TF-Cache can reduce up to 87.75% and 89.13% the average number

of ways that are looked up on every access to the L1 and L2 caches, respectively; which

translates in energy savings by 74.9% and 85.9%. Compared to other state-of-the-art

schemes, TF-Cache achieves better results than the compared architectures, with the

only exception of Way-Prediction in first-level caches by a small margin. Way-Prediction

has been proven to be ineffective when applied to other levels of the cache hierarchy,

whereas our TF Architecture works better at any level. Meanwhile, results for the TF-

Directory show that up to 84% of the ways accessed by the conventional directory cache

can be filtered, which translates in roughly the same percentage of energy savings.

6.2 Future Work

As for future work, other architectural solutions to the scalability problems focused on

this work are planned to be researched.

Even though duplicated tags schemes offer better performance than their sparse schemes

counterparts, due to the lack of coverage misses, the highly-associative lookups needed

to build the sharer vector difficult the scalability, specially in terms of energy. Both

directory types have advantages and disadvantages. The potential of combining both

of them to overcome their natural inconveniences is worth researching. For instance, a

two-level directory comprised of a small sparse directory that serves as a cache for the

coherence information found in the second level: a duplicated tag directory. Directory

misses will be avoided thanks to the second level, which will keep track of all blocks

being stored in the private caches, while access latency and energy consumption will be

minimized by the first level sparse directory.

Chapter 6. Conclusions 109

Furthermore, most of the mechanisms detailed in this thesis are orthogonal to each other

and can, hence, be applied simultaneously. To the best of our knowledge, no approach

has been proposed dealing with such a kind of research. Additionally, the base system

mentioned above can be further improved by also employing these ideas, more concretely

way filtering for the duplicated tag directory and the dynamic adaptation to shared and

private block requirements for the sparse directory.

Finally, other repartitioning algorithms could be deployed and evaluated to check if they

adapt better than the currently proposed one.

6.3 Publications

The following papers related with this dissertation were accepted for publication in

different international journals and conferences.

Journals:

• Joan J. Valls, Alberto Ros, Julio Sahuquillo, and Maŕıa E. Gómez. PS directory:

a scalable multilevel cache for CMPs. Journal of Supercomputing, volume 71, issue

8, pages 2847-2876, 2015.

• Joan J. Valls, Alberto Ros, Julio Sahuquillo, and Maŕıa E. Gómez. PS-Cache: an

energy-efficient cache design for chip multiprocessors Journal of Supercomputing,

volume 71, issue 1, pages 67-86, 2015.

• Joan J. Valls, Alberto Ros, Maŕıa E. Gómez, and Julio Sahuquillo. The Tag Filter

Architecture: An energy-efficient cache and directory design. Journal of Parallel

and Distributed Computing, volume 100, pages 193-202, 2017.

Conferences:

• Joan J. Valls, Alberto Ros, Julio Sahuquillo, Maŕıa E. Gómez and José F. Du-

ato. PS-Dir: A Scalable Two-Level Directory Cache. In Proceedings of the 21st

International Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 451-452, Minneapolis, Minnesota, USA, 2012.

Chapter 6. Conclusions 110

• Joan J. Valls, Alberto Ros, Julio Sahuquillo and Maŕıa E. Gómez. PS-cache: An

energy-efficient cache design for chip multiprocessors. In Proceedings of the 22nd

International Conference on Parallel Architectures and Compilation Techniques

(PACT), page 407, Edinburgh, Scotland, UK, 2013.

• Joan J. Valls, Julio Sahuquillo, Alberto Ros and Maŕıa E. Gómez. The Tag Fil-

ter Cache: An Energy-Efficient Approach. In Proceedings of the 23rd Euromicro

International Conference on Parallel, Distributed, and Network-Based Processing

(PDP), pages 182-189, Turku, Finland, 2015.

• Joan J. Valls, Maŕıa E. Gómez, Alberto Ros and Julio Sahuquillo. A Directory

Cache with Dynamic Private-Shared Partitioning. In Proceedings of the 23rd an-

nual IEEE International Conference on High Performance Computing (HiPC),

pages 382-391, Hyderabad, India, 2016. This publication received a HiPC Best

Paper Award.

In addition, other related papers have been published in domestic conferences:

• Joan J. Valls, Alberto Ros, Julio Sahuquillo and Maŕıa E. Gómez. El directorio

PS: Una caché de directorio multinivel escalable para CMPs. In XXIII edición

Jornadas de Paralelismo SARTECO, pages 455-460, Elx, Spain, 2012.

• Joan J. Valls, Alberto Ros, Julio Sahuquillo and Maŕıa E. Gómez. PS-Cache: Un

diseño energéticamente eficiente para caches en CMPs. In XXVI edición Jornadas

de Paralelismo SARTECO, pages 73-81, Córdoba, Spain, 2015.

• Joan J. Valls, Julio Sahuquillo, Alberto Ros and Maŕıa E. Gómez. Reduciendo el

consumo dinámico de enerǵıa con Tag Filter Cache In XXVII edición Jornadas de

Paralelismo SARTECO, pages 525-532, Salamanca, Spain, 2016.

All works listed above are exclusively related with this thesis. The specific contributions

of the Ph.D. candidate reside mostly in the implementation of the proposed techniques,

the setup and execution of most simulation experiments, the writing of the paper drafts

Chapter 6. Conclusions 111

describing the work as well as the presentation in the conferences. Along these processes,

the co-authors have repeatedly provided useful hints and advices, which the Ph.D. can-

didate has then applied to make the work evolve into its final version.

References

[1] Rajeev Balasubramonian, Norman Paul Jouppi, and Naveen Muralimanohar. Multi-

Core Cache Hierarchies. Synthesis Lectures on Computer Architecture. Morgan &

Claypool Publishers, 2011.

[2] Michael R. Marty and Mark D. Hill. Virtual hierarchies. IEEE Micro, 28(1):99–109,

January 2008.

[3] Michael R. Marty and Mark D. Hill. Virtual hierarchies to support server consol-

idation. In 34th Int’l Symp. on Computer Architecture (ISCA), pages 46–56, June

2007.

[4] Blas Cuesta, Alberto Ros, Maŕıa E. Gómez, Antonio Robles, and José Duato. In-

creasing the effectiveness of directory caches by deactivating coherence for private

memory blocks. In 38th Int’l Symp. on Computer Architecture (ISCA), pages 93–

103, June 2011.

[5] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill

Hughes. Cache hierarchy and memory subsystem of the AMD opteron processor.

IEEE Micro, 30(2):16–29, April 2010.

[6] Luiz A. Barroso, Kourosh Gharachorloo, and Robert McNamara, et al. Piranha: A

scalable architecture based on single-chip multiprocessing. In 27th Int’l Symp. on

Computer Architecture (ISCA), pages 12–14, June 2000.

[7] Manish Shah, Jama Barreh, and Jeff Brooks, et al. UltraSPARC T2: A highly-

threaded, power-efficient, SPARC SoC. In IEEE Asian Solid-State Circuits Con-

ference, pages 22–25, November 2007.

113

References 114

[8] Jason Zebchuk, Vijayalakshmi Srinivasan, Moinuddin K. Qureshi, and Andreas

Moshovos. A tagless coherence directory. In 42nd IEEE/ACM Int’l Symp. on

Microarchitecture (MICRO), pages 423–434, December 2009.

[9] Manuel E. Acacio, José González, José M. Garćıa, and José Duato. A two-level

directory architecture for highly scalable cc-NUMA multiprocessors. IEEE Trans-

actions on Parallel and Distributed Systems (TPDS), 16(1):67–79, January 2005.

[10] Song-Liu Guo, Hai-Xia Wang, Yi-Bo Xue, Chong-Min Li, and Dong-Sheng Wang.

Hierarchical cache directory for cmp. Journal of Computer Science and Technology,

25(2):246–256, March 2010.

[11] Jason Zebchuk, Babak Falsafi, and Andreas Moshovos. Multi-grain coherence di-

rectories. In 46th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages

359–370, December 2013.

[12] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay: Exploit-

ing generational behavior to reduce cache leakage power. In 28th Int’l Symp. on

Computer Architecture (ISCA), pages 240–251, June 2001.

[13] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, Trevor Mudge,

Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Drowsy caches: Simple

techniques for reducing leakage power. In 29th Int’l Symp. on Computer Architec-

ture (ISCA), pages 148–157, May 2002.

[14] Mrinmoy Ghosh, Emre Özer, Simon Ford, Stuart Biles, and Hsien-Hsin S. Lee.

Way guard: A segmented counting bloom filter approach to reducing energy for set-

associative caches. In Int’l Symp. on Low Power Electronics and Design (ISLPED),

pages 165–170, August 2009.

[15] Brad Calder and Dirk Grunwald. Predictive sequential associative cache. In 2nd

Int’l Symp. on High-Performance Computer Architecture (HPCA), pages 244–253,

February 1996.

[16] Peng Liu, Lei Fang Michael C. Huang, , Qi Hu, and Guofan Jiang. Building expres-

sive and area-efficient directories with hybrid representation and adaptive multi-

granular tracking. IEEE Transactions on Computers (TC), May 2015.

References 115

[17] Richard E. Matick and Stanley E. Schuster. Logic-based eDRAM: Origins and ra-

tionale for use. IBM Journal of Research and Development, 49(1):145–165, January

2005.

[18] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4 system

microarchitecture. IBM Journal of Research and Development, 46(1):5–25, January

2002.

[19] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. Power5

system microarchitecture. IBM Journal of Research and Development, 49(4/5):505–

521, July 2005.

[20] Ron Kalla, Balaram Sinharoy, William J. Starke, and Michael Floyd. POWER7:

IBMs next-generation server processor. IEEE Micro, 30(2):7–15, April 2010.

[21] Alejandro Valero, Julio Sahuquillo, Salvador Petit, Vicente Lorente, Ramon Canal,

Pedro López, and José Duato. An hybrid eDRAM/SRAM macrocell to implement

first-level data caches. In 42nd IEEE/ACM Int’l Symp. on Microarchitecture (MI-

CRO), pages 213–221, December 2009.

[22] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie.

Hybrid cache architecture with disparate memory technologies. In 36th Int’l Symp.

on Computer Architecture (ISCA), pages 34–45, June 2009.

[23] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, September

1982. ISSN 0360-0300. doi: 10.1145/356887.356892. URL http://doi.acm.org/

10.1145/356887.356892.

[24] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform

cache structure for wire-delay dominated on-chip caches. In 10th Int’l Conf. on Ar-

chitectural Support for Programming Language and Operating Systems (ASPLOS),

pages 211–222, October 2002.

[25] Alberto Ros, Manuel E. Acacio, and José M. Garćıa. A scalable organization for dis-

tributed directories. Journal of Systems Architecture (JSA), 56(2-3):77–87, Febru-

ary 2010.

http://doi.acm.org/10.1145/356887.356892
http://doi.acm.org/10.1145/356887.356892

References 116

[26] Michael Ferdman, Pejman Lotfi-Kamran, Ken Balet, and Babak Falsafi. Cuckoo

directory: A scalable directory for many-core systems. In 17th Int’l Symp. on

High-Performance Computer Architecture (HPCA), pages 169–180, February 2011.

[27] Anoop Gupta, Wolf-Dietrich Weber, and Todd C. Mowry. Reducing memory traffic

requirements for scalable directory-based cache coherence schemes. In Int’l Conf.

on Parallel Processing (ICPP), pages 312–321, August 1990.

[28] Manuel E. Acacio, José González, José M. Garćıa, and José Duato. A new scalable

directory architecture for large-scale multiprocessors. In 7th Int’l Symp. on High-

Performance Computer Architecture (HPCA), pages 97–106, January 2001.

[29] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directories: A

scalable cache coherence scheme. In 4th Int’l Conf. on Architectural Support for

Programming Language and Operating Systems (ASPLOS), pages 224–234, April

1991.

[30] Guoying Chen. Slid - a cost-effective and scalable limited-directory scheme for

cache coherence. In 5th Int’l Conf. on Parallel Architectures and Languages Europe

(PARLE), pages 341–352, June 1993.

[31] Brian W. O’Krafka and A. Richard Newton. An empirical evaluation of two

memory-efficient directory methods. In 17th Int’l Symp. on Computer Architec-

ture (ISCA), pages 138–147, June 1990.

[32] Daniel Sanchez and Christos Kozyrakis. SCD: A scalable coherence directory with

flexible sharer set encoding. In 18th Int’l Symp. on High-Performance Computer

Architecture (HPCA), pages 129–140, February 2012.

[33] Lei Fang, Peng Liu, Qi Hu, Michael C. Huang, and Guofan Jiang. Building expres-

sive, area-efficient coherence directories. In 22nd Int’l Conf. on Parallel Architec-

tures and Compilation Techniques (PACT), pages 299–308, September 2013.

[34] Michael Powell, Se hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar.

Gated-Vdd: A circuit technique to reduce leakage in deep-submicron cache memo-

ries. In Int’l Symp. on Low Power Electronics and Design (ISLPED), pages 90–95,

July 2000.

References 117

[35] David H. Albonesi. Selective cache ways: On-demand cache resource allocation.

In 32nd IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages 248–259,

December 1999.

[36] Jongmin Lee, Seokin Hong, and Soontae Kim. Tlb index-based tagging for cache

energy reduction. In 17th Int’l Symp. on Low Power Electronics and Design

(ISLPED), pages 85–90, August 2011.

[37] Karthik T. Sundararajan, Vasileios Porpodas, Timothy M. Jones, Nigel P. Topham,

and Björn Franke. Cooperative partitioning: Energy-efficient cache partitioning

for high-performance cmps. In 18th Int’l Symp. on High-Performance Computer

Architecture (HPCA), pages 311–322, February 2012.

[38] Kamil Kedzierski, Francisco J. Cazorla, Roberto Gioiosa, Alper Buyuktosunoglu,

and Mateo Valero. Power and performance aware reconfigurable cache for cmps. In

2nd Int’l Forum on Next-Generation Multicore/Manycore Technologies, pages 1–12,

June 2010.

[39] Julio Sahuquillo and Ana Pont. Splitting the data cache: A survey. IEEE Con-

currency, 8(3):30–35, July 2000. ISSN 1092-3063. doi: 10.1109/4434.865890. URL

http://dx.doi.org/10.1109/4434.865890.

[40] Daehoon Kim, Jeongseob Ahn Jaehong Kim, and Jaehyuk Huh. Subspace snooping:

Filtering snoops with operating system support. In 19th Int’l Conf. on Parallel Ar-

chitectures and Compilation Techniques (PACT), pages 111–122, September 2010.

[41] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Re-

active NUCA: Near-optimal block placement and replication in distributed caches.

In 36th Int’l Symp. on Computer Architecture (ISCA), pages 184–195, June 2009.

[42] Jiayuan Meng and Kevin Skadron. Avoiding cache thrashing due to private data

placement in last-level cache for manycore scaling. In Int’l Conf. on Computer

Design (ICCD), pages 282–288, October 2009.

[43] Yong Li, Ahmed Abousamra, Rami Melhem, and Alex K. Jones. Compiler-assisted

data distribution for chip multiprocessors. In 19th Int’l Conf. on Parallel Architec-

tures and Compilation Techniques (PACT), pages 501–512, September 2010.

http://dx.doi.org/10.1109/4434.865890

References 118

[44] Yong Li, Rami G. Melhem, and Alex K. Jones. Practically private: Enabling

high performance cmps through compiler-assisted data classification. In 21st Int’l

Conf. on Parallel Architectures and Compilation Techniques (PACT), pages 231–

240, September 2012.

[45] Seth H. Pugsley, Josef B. Spjut, David W. Nellans, and Rejeev Balasubramonian.

SWEL: Hardware cache coherence protocols to map shared data onto shared caches.

In 19th Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT),

pages 465–476, September 2010.

[46] Hemayet Hossain, Sandhya Dwarkadas, and Michael C. Huang. POPS: Coherence

protocol optimization for both private and shared data. In 20th Int’l Conf. on

Parallel Architectures and Compilation Techniques (PACT), pages 45–55, October

2011.

[47] Mohammad Alisafaee. Spatiotemporal coherence tracking. In 45th IEEE/ACM

Int’l Symp. on Microarchitecture (MICRO), pages 341–350, December 2012.

[48] Alberto Ros and Stefanos Kaxiras. Complexity-effective multicore coherence. In

21st Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT),

pages 241–252, September 2012.

[49] Peter S. Magnusson, Magnus Christensson, and Jesper Eskilson, et al. Simics: A

full system simulation platform. IEEE Computer, 35(2):50–58, February 2002.

[50] Milo M.K. Martin, Daniel J. Sorin, and Bradford M. Beckmann, et al. Multifacet’s

general execution-driven multiprocessor simulator (GEMS) toolset. Computer Ar-

chitecture News, 33(4):92–99, September 2005.

[51] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. GARNET: A

detailed on-chip network model inside a full-system simulator. In IEEE Int’l Symp.

on Performance Analysis of Systems and Software (ISPASS), pages 33–42, April

2009.

[52] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. Cacti

6.0. Technical Report HPL-2009-85, HP Labs, April 2009.

[53] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 programs: Characterization and methodological

References 119

considerations. In 22nd Int’l Symp. on Computer Architecture (ISCA), pages 24–

36, June 1995.

[54] Man-Lap Li, Ruchira Sasanka, Sarita V. Adve, Yen-Kuang Chen, and Eric Debes.

The ALPBench benchmark suite for complex multimedia applications. In Int’l

Symp. on Workload Characterization, pages 34–45, October 2005.

[55] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC

benchmark suite: Characterization and architectural implications. In 17th Int’l

Conf. on Parallel Architectures and Compilation Techniques (PACT), pages 72–81,

October 2008.

[56] Alaa R. Alameldeen and David A. Wood. IPC considered harmful for multiprocessor

workloads. IEEE Micro, 26(4):8–17, July 2006.

[57] Alberto Ros, Blas Cuesta, Ricardo Fernández-Pascual, Maria E. Gómez, Manuel E.

Acacio, Antonio Robles, José M. Garćıa, and José Duato. Extending magny-cours

cache coherence. IEEE Transactions on Computers (TC), 61(5):593–606, May 2012.

[58] Joan J. Valls, Alberto Ros, Julio Sahuquillo, Maŕıa Engracia Gómez, and José

Duato. PS-Dir: A scalable two-level directory cache. In 21st Int’l Conf. on Paral-

lel Architectures and Compilation Techniques (PACT), pages 451–452, September

2012.

[59] Joan J. Valls, Alberto Ros, Julio Sahuquillo, and Maŕıa Engracia Gómez. PS direc-

tory: a scalable multilevel directory cache for cmps. The Journal of Supercomputing,

71(8):2847–2876, 2015.

[60] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,

and Norman P. Jouppi. Mcpat: An integrated power, area, and timing modeling

framework for multicore and manycore architectures. In 42nd IEEE/ACM Int’l

Symp. on Microarchitecture (MICRO), pages 469–480, December 2009.

[61] Niket Agarwal, Li-Shiuan Peh, and Niraj K. Jha. In-Network Snoop Ordering

(INSO): Snoopy coherence on unordered interconnects. In 15th Int’l Symp. on

High-Performance Computer Architecture (HPCA), pages 67–78, February 2009.

References 120

[62] Jason F. Cantin, James E. Smith, Mikko H. Lipasti, Andreas Moshovos, and Babak

Falsafi. Coarse-grain coherence tracking: RegionScout and region coherence arrays.

IEEE Micro, 26(1):70–79, January 2006.

[63] Alberto Ros, Blas Cuesta, Maŕıa E. Gómez, Antonio Robles, and José Duato.

Temporal-aware mechanism to detect private data in chip multiprocessors. In 42nd

Int’l Conf. on Parallel Processing (ICPP), pages 562–571, October 2013.

[64] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM,

Disk. Morgan Kaufmann Publishers, Inc., 4th edition, 2007.

[65] David A. Patterson and John L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Ar-

chitecture and Design). Morgan Kaufmann Publishers Inc., 4th edition, 2008.

[66] W. J. Starke, J. Stuecheli, D. M. Daly, J. S. Dodson, F. Auernhammer, P. M.

Sagmeister, G. L. Guthrie, C. F. Marino, M. Siegel, and B. Blaner. The cache and

memory subsystems of the ibm power8 processor. IBM Journal of Research and

Development, 59(1):3:1–3:13, Jan 2015.

[67] Alberto Ros, Polychronis Xekalakis, Marcelo Cintra, Manuel E. Acacio, and José M.

Garćıa. Ascib: Adaptive selection of cache indexing bits for reducing conflict misses.

In Int’l Symp. on Low Power Electronics and Design (ISLPED), pages 51–56, July

2012.

[68] 27-inch imac, technical specifications, available online (nov, 2014) at

http://www.apple.com/imac/specs/.

	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Abstract
	Resumen
	Resum
	1 Introduction
	1.1 Problem Description
	1.2 Dealing with Scalability in Future CMPs
	1.3 Objectives of the Thesis
	1.4 Contributions of the Thesis
	1.5 Thesis Outline

	2 Background and Related Work
	2.1 Background
	2.1.1 Cache Hierarchy
	2.1.2 Non Uniform Cache Access (NUCA)
	2.1.3 Coherence Protocols
	2.1.3.1 MOESI Protocol
	2.1.3.2 Update and Invalidation Protocols
	2.1.3.3 Directory-based and Snoopy Protocols
	2.1.3.4 Type of Misses

	2.2 Baseline Architecture
	2.3 Related Work
	2.3.1 Directory Caches
	2.3.1.1 Duplicate-tag and directories
	2.3.1.2 Sparse directories

	2.3.2 Processor Caches
	2.3.2.1 Energy-efficient cache designs
	2.3.2.2 Private-shared optimizations

	3 Experimental Framework
	3.1 Simulation tools
	3.1.1 Simics-GEMS
	3.1.2 CACTI

	3.2 Benchmarks
	3.2.1 Barnes
	3.2.2 Cholesky
	3.2.3 FFT
	3.2.4 FMM
	3.2.5 LU
	3.2.6 Ocean
	3.2.7 Radiosity
	3.2.8 Radix
	3.2.9 Raytrace
	3.2.10 Volrend
	3.2.11 Water-Nsq
	3.2.12 Blackscholes
	3.2.13 Swaptions
	3.2.14 FaceRec
	3.2.15 MPGdec
	3.2.16 MPGenc
	3.2.17 SpeechRec
	3.2.18 Tomcatv
	3.2.19 Unstructured
	3.2.20 Apache
	3.2.21 SPEC-JBB

	3.3 Metrics and Methodology
	3.4 Common System Parameters

	4 Directory Scalability
	4.1 PS-Directory
	4.1.1 Analyzing the Behavior of Private and Shared Blocks from the Directory Point of View
	4.1.2 PS-Directory Organization and Basic Behavior
	4.1.3 Experimental Evaluation
	4.1.3.1 Impact of PS-Directory on Performance
	4.1.3.2 Impact of PS-Directory on Area and Energy
	4.1.3.3 Directory Coverage Ratio Analysis

	4.2 DWP-Directory
	4.2.1 Application Characterization
	4.2.2 DWP-Directory Architecture
	4.2.3 Basic DWP-Directory Working Behavior
	4.2.4 Repartitioning Approach
	4.2.5 Experimental Evaluation
	4.2.5.1 Way Adaptation Analysis
	4.2.5.2 Impact of DWP-Directory on Performance
	4.2.5.3 Impact of the DWP-Directory on Energy Consumption
	4.2.5.4 Impact on Area Requirements

	4.3 Summary

	5 Filtering Techniques
	5.1 Analyzing the Cache Hierarchy Access
	5.2 PS-Cache
	5.2.1 The PS Page Classification Mechanism
	5.2.2 The PS-Cache Architecture
	5.2.3 Experimental Evaluation
	5.2.3.1 Private-Shared Blocks Behavior Analysis
	5.2.3.2 Impact of PS-Cache on Energy Consumption

	5.3 Tag-Filter Architecture
	5.3.1 Last Tag Bits Distribution
	5.3.2 TF-Architecture Scheme
	5.3.3 Experimental Evaluation
	5.3.3.1 Compared Schemes
	5.3.3.2 TF Architecture in Processor Caches
	5.3.3.3 TF Architecture in Directory Caches

	5.4 Summary

	6 Conclusions
	6.1 Contributions
	6.2 Future Work
	6.3 Publications

	References

