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a b s t r a c t

The development of new and more precise temperature-based models for solar radiation estimation is
decisive, given the immediacy and simplicity associated in their input measurements and the ubiquitous
problems derived from equipment failures, maintenance and calibration, and physical and biological con-
straints. Further, the performance quality of empirical equations is to be questioned in a large variety of
climatic contexts. As an alternative to traditional techniques, artificial neural networks (ANNs) are highly
appropriate for the modelling of non-linear processes. Nevertheless, temperature-based ANN models do
not always provide accurate enough solar radiation estimations as their performance depends consider-
ably on the specific temperature/solar radiation relationships of the studied context. This paper describes
a new procedure to improve the performance accuracy of temperature-based ANN models for estimation
of total solar radiation on a horizontal surface (Rs) taking advantage of ancillary data records from sec-
ondary similar stations, which work as exogenous inputs. The influence on the model performance of
the number of considered ancillary stations and the corresponding number of training patterns is also
analyzed. Finally, these models are compared with those relying exclusively on local temperature record-
ings. The proposed models provide performances with lower associated errors than those which do not
consider exogenous inputs. The ancillary supply is translated into a decrease around 0.1 of RMSE in the
local performance. The consideration of non-measured inputs in the simple local temperature-based
models, namely extraterrestrial radiation or day of the year, entails a performance accuracy improvement
around 0.1 of RMSE.

� 2010 Published by Elsevier Ltd.
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1. Introduction

The design and development of energy efficient buildings and
solar energy conversion (photovoltaic or solar thermal) systems
for a particular studied location and application requires accurate
estimations of long-term global solar radiation data to simulate
the operating conditions of the system [1,2]. Solar radiation also
plays an important role in many physical, biological and chemical
processes, such as plant photosynthesis, evaporation or crop
growth and productivity [3,4]. It is also necessary in biophysical
models for risk assessment of forest fires, hydrological simulation
models of natural processes [5], environmental and agrometeoro-
logical research, or atmospheric physics [6].

Total (global) solar radiation is the sum of the beam and diffuse
solar radiation on a surface. The most common solar radiation
measurements registered in meteorological stations correspond
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to total radiation on a horizontal surface, Rs [2], normally given
on an hourly or daily basis.

Solar based applications are highly interesting in places where
no connection to an electrical supply grid is available, like rural,
mountainous or remote areas and natural parks, as well as in many
developing countries [7–10]. Unfortunately, despite its signifi-
cance, global solar radiation measurements are generally not avail-
able at the places of interest due to the high-cost installation,
maintenance and calibration associated to radiometric stations
[7,9,11]. Nevertheless, in some cases, there are meteorological sta-
tions without solar radiation sensors, where other variables can be
registered [5]. Even in automatic meteorological stations where so-
lar radiation is measured, data records are often missing due to
equipment failure, erroneous because of sensor calibration prob-
lems, or lie outside the expected range [1,12,13].

Therefore, different empirical and numerical models for global
terrestrial solar radiation estimation, based on different meteoro-
logical input combinations, have been proposed for those cases
where radiation data are not available [2,6,7,14]. The different so-
lar radiation models differ in sophistication from simple empirical
formulations based on common climate data to more complex
ture-based ANN models for solar radiation estimation through exogenous
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Nomenclature

bk bias
CI continentality index
CIC Conrad continentality index
CICU Currey continentality index
CIG Gorezynski continentality index
CIS Supan continentality index
ek vector of network errors
ETo reference evapotranspiration
I unit matrix
J Jacobian matrix
l number of layers
Mi maximum monthly average temperature
mi minimum monthly average temperature
Mx maximum value of the original sample
mx minimum value of the original sample
MBE mean bias error
MSE mean squared error
n number of hidden neurons
r2 determination coefficient
Ra extraterrestrial radiation
RH air relative humidity
RMSE root mean squared error
Rs solar radiation

s number of repetitions
Tmax daily maximum air temperature
Tmean daily mean air temperature
Tmin daily minimum air temperature
u2 wind speed at 2 m height
Ux maximum value assigned in the scaled sample
ux minimum value assigned in the scaled sample
vk summing junction
wkj synaptic weight of neuron k
x original variable
xk input signal
xs scaled variable
ye expected vector
yk output variable
ym predicted vector
Greek symbolsDT

daily temperature range
U latitude
l constant that governs the step size
u hyperbolic tangent sigmoid function
re expected standard deviation
rm predicted standard deviation
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numerical models which usually involve high computational costs
and also require numerous input parameters.

Another alternative is the application of mathematical models
like artificial neural networks (ANNs). ANNs are simplified models
of the central nervous system which may be used as effective tools
to model non-linear problems. They can be defined as massively
parallel distributed processors consisting of simple processing
units, which have a natural propensity for storing experimental
knowledge and making it available for use [15]. An ANN is config-
ured for a specific application through a learning process. Learning
in biological systems as well as in ANNs involves adjustments to
the synaptic connections that exist between the neurons. During
the last decades, it has taken place an important increase in their
application in different scientific areas due to the development of
computer technologies.

Among the most common ANN applications are: constraint sat-
isfaction, control, data compression, diagnostics, forecasting, gen-
eral mapping, multisensory data fusion, optimization, pattern
recognition and risk assessment [16]. ANNs can detect more com-
plex properties of the studied data than traditional statistical tech-
niques because of their non-linear structure [17]. Further, they do
not require detailed information regarding the physical processes
of the system.

ANNs have been successfully applied by many researchers for
solar radiation estimation considering different ANN types and in-
put combinations in different parts of the world [4–8,10,14,18–25],
including Spain [3,9,26,27].

Nevertheless, only a small part of the aforementioned papers
consider a low number of inputs. And among these, only few of
them do not consider sunshine duration as input data. Kalogirou
et al. [22] proposed a neural network for Rs estimation demanding
only measured air temperature and relative humidity records. Reh-
man and Mohandes [8] analyzed the performance of three ANNs
for Rs estimation considering maximum temperature, mean tem-
perature and mean temperature/relative humidity, respectively,
as measured inputs. Finally, Benghanem et al. [25] tackled the
ANN performance reached with the consideration of air tempera-
Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
data assistance. Energy Convers Manage (2010), doi:10.1016/j.enconman.2010
ture and relative humidity as measured inputs, individually and to-
gether, and stated the performance improvement derived from
adding in the mentioned ANNs measured sunshine duration as in-
put, too.

Among the simplest methods for estimating historical solar
radiation data, Hargreaves and Samani [28], Bristow and Campbell
[29], and Allen [30] suggested that solar radiation could be esti-
mated as a function of maximum and minimum temperatures
and extraterrestrial radiation (Ra). These empirical methods, mod-
ified by other authors [11], consider, implicitly, the particular loca-
tion of the area and the period of study, as they account for
latitude, day of the year, sunset hour angle, or relative distance
earth–sun by including Ra inputs.

The development and improvement of temperature-based
models can play a decisive role in solar radiation estimation, given
the immediacy and simplicity associated in their input measure-
ments and the aforementioned ubiquitous problems derived from
equipment failures, maintenance and calibration, and physical and
biological constraints. Nevertheless, as could be foreshadowed,
temperature-based Rs models present a serious drawback: their
accuracy depends considerably on the temperature range (DT) of
the application area and on the specific local temperature/solar
radiation relationships. Larger DT generally results in better pre-
dictive accuracy [11]. Bearing this in mind, the current study pre-
sents a new procedure to improve the performance accuracy of
temperature-based ANN models for Rs estimation taking advantage
of ancillary data records from secondary similar stations, which
work as exogenous inputs. This methodology has been successfully
applied in water resources for improving the performance of tem-
perature-based ANNs for reference evapotranspiration (ETo) esti-
mation [31]. So, first, the most suitable ancillary stations are
selected through a continental characterization of the study area.
Next, different input combinations are defined, trained and tested.
The influence on the model performance of the number of consid-
ered ancillary stations and the corresponding number of training
patterns is also analyzed. Finally, these ANNs are compared with
those models based exclusively on local temperature records.
ture-based ANN models for solar radiation estimation through exogenous
.08.027
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Fig. 1. Situation of the studied stations.
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2. Materials and methods

2.1. Climatic data management

The historical series of the climatic variables for this study were
obtained from 30 weather stations of the Irrigation Technology
Service belonging to the Valencian Institute for Agricultural Re-
search (IVIA), Fig. 1. The daily values of maximum, minimum and
average temperature, average and maximum wind speed, relative
air humidity, solar radiation and sunshine duration were collected
by these automatic meteorological stations between January 2000
and December 2007. These years correspond to a climatologically
normal period, without sharp or noticeable changes during all of
them. Table 1 sums up the geographical information of the studied
Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
data assistance. Energy Convers Manage (2010), doi:10.1016/j.enconman.2010
stations. A climatic characterization of the considered stations is
given in Table 2 through the mean and standard deviation of daily
average temperature (Tmean), daily thermal oscillation (DT), daily
wind speed at 2 m height (u2), daily relative humidity (RH), daily
solar radiation (Rs), and daily evapotranspiration (ETo) for the per-
iod 2000–2007.

All source data were scaled in the interval [�0.9; 0.9], avoiding
the possibility of imposing higher-order precedence by magnitude.
So, a higher numerical efficiency is achieved in the application of
the training algorithm. This interval was established to avoid the
saturation of the neuron output range and the subsequent limita-
tion of the extrapolation ability which involve the intervals
[�1; 1] and [0; 1] for tansig and logsig activation functions, respec-
tively. With these latter intervals, the neural network cannot pro-
ture-based ANN models for solar radiation estimation through exogenous
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Table 1
Geographic characterization of the studied locations.

Station name Code Latitude (� 0
0 0)

Longitude (� 0
0 0)

Altitude
(m)

Pilar de la Horadada 1 37 52 12N 00 48 37W 77
Altea 2 38 36 20N 00 04 39W 210
Vila Joiosa 3 38 31 46N 00 15 19W 138
Tavernes de

Valldigna
4 39 05 47N 00 14 12W 15

Sagunt 5 39 38 57N 00 17 33W 33
Benavites 6 39 44 00N 00 12 54W 8
Ondara 7 38 49 11N 00 00 27E 49
Denia-Gata 8 38 47 38N 00 05 01E 102
Vall d’Uixó 9 39 47 51N 00 13 38W 100
Vila Real 10 39 56 00N 00 06 00W 42
Almoradí 11 38 05 27N 00 46 17W 74
Moncada 12 39 37 11N 00 20 56W 35
Elx 13 38 16 00N 00 42 00W 86
Sant Rafel del Riu 14 40 35 44N 00 22 13E 205
Catral 15 38 09 16N 00 48 15W 27
Agost 16 38 25 40N 00 38 36W 345
Vilanova de Castelló 17 39 04 00N 00 31 22W 58
Carcaixent 18 39 07 00N 00 30 17W 35
Monforte del Cid 19 38 23 59N 00 43 44W 244
Carlet 20 39 30 00N 00 26 00W 35
Castalla 21 38 36 19N 00 40 22W 708
Orihuela 22 38 10 58N 00 57 13W 99
Turís 23 39 24 02N 00 41 01W 299
Pedralba 24 39 34 04N 00 42 59W 200
Lliria 25 39 41 31N 00 37 31W 250
Cheste 26 39 31 18N 00 44 30W 323
El Pinós 27 38 25 43N 01 03 34W 606
Camp de Mirra 28 38 40 49N 00 46 18W 627
Villena 29 38 35 48N 00 52 24W 495
Campo Arcís 30 39 26 04N 01 09 39W 584
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duce output values beyond the maximum considered in the data
set. After the simulation, outputs were returned to original values.
For this purpose,
Table 2
Climatic characterization of stations considered. Daily mean values corresponding to the p

Station code Tmean (�C) DT (�C) u2 (m/s)

Mean r Mean r Mean r

1 18.09 5.51 9.19 2.84 1.78 0.9
2 18.00 5.64 8.98 2.18 1.17 0.3
3 18.12 5.62 8.75 2.03 1.32 0.3
4 17.73 5.76 9.38 3.24 1.69 0.7
5 17.44 5.92 9.52 3.21 1.36 0.5
6 16.61 5.75 11.58 3.41 1.08 0.4
7 17.49 6.15 11.81 3.89 1.11 0.5
8 16.98 6.09 12.11 3.67 0.86 0.3
9 17.11 5.88 10.12 2.59 1.36 0.3

10 16.55 6.02 10.73 2.62 1.18 0.4
11 18.04 5.72 9.50 2.62 1.42 0.5
12 17.07 6.09 12.15 3.28 1.12 0.6
13 17.01 5.89 10.80 3.01 1.12 0.4
14 15.61 6.20 9.60 2.75 1.63 0.9
15 17.79 6.25 13.55 3.73 1.18 0.6
16 16.28 6.07 10.72 2.96 1.83 0.8
17 17.25 6.69 13.76 4.47 0.90 0.5
18 16.68 6.58 13.58 4.11 0.90 0.4
19 16.66 6.15 11.93 3.40 1.69 0.8
20 16.83 6.34 12.37 4.12 1.34 0.7
21 14.39 6.50 11.19 3.70 2.14 1.0
22 17.91 6.10 11.92 3.31 1.50 0.5
23 16.14 6.09 12.57 4.16 1.50 0.8
24 16.82 6.17 10.92 3.38 1.38 0.7
25 16.12 6.34 13.11 3.78 1.04 0.5
26 16.17 6.15 13.26 4.31 1.09 0.7
27 15.19 6.58 11.21 3.48 2.29 1.0
28 14.62 6.95 12.69 4.16 1.98 0.8
29 14.73 6.89 14.01 4.70 1.92 0.9
30 13.92 7.19 14.51 5.02 1.76 0.8

Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
data assistance. Energy Convers Manage (2010), doi:10.1016/j.enconman.2010
xs ¼
ðUx � uxÞ � xþ ðMx � ux �mx � UxÞ

Mx �mx

where xs is the scaled variable; x is the original variable; Mx is the max-
imum value of the original sample; mx is the minimum value of the ori-
ginal sample; Ux is the maximum value assigned in the scaled sample;
ux is the minimum value assigned in the scaled sample.

In each station, the daily data series from 2006 to 2007 were
used for cross-validating and testing, respectively, the rest were
used for training. Despite the random and fluctuating character
of climatic variables, the series assignment for training, cross-vali-
dating and testing was established chronologically, which is a com-
mon practice in the ANN community.

2.2. Continental characterization of studied locations

The proposed models consider two types of variables: local vari-
ables, corresponding to the training station, and exogenous vari-
ables, corresponding to ancillary stations, climatologically similar
to the training station. The criterion used to identify the most
appropriate ancillary data-supplier stations was based on a conti-
nental characterization of the study region. Therefore, different
continentality indexes were calculated for the studied stations.
More specifically, the selected indexes were Gorezynski, Conrad,
Supan and Currey indexes. These indicators were selected for their
simplicity, as they only demand temperature and latitude records.
Thus, these were calculated as follows [32]:

CIG ¼ 1:7
Mi �mi

sinðUÞ � 20:4

CIC ¼ 1:7
Mi �mi

sinðUþ 10Þ � 14

CIS ¼ Mi �mi

CICU ¼ Mi �mi

1þ U
3

eriod 2000–2007.

RH (%) Rs (W/m2) ETo (mm)

Mean r Mean r Mean r

5 65.58 12.65 201.37 89.62 3.48 1.69
0 61.68 11.91 194.97 92.32 3.19 1.73
9 60.18 12.45 188.25 84.82 3.23 1.60
8 69.31 14.00 184.64 91.50 3.21 1.71
2 62.27 13.41 190.34 90.72 3.14 1.66
5 70.36 11.95 182.79 87.93 2.85 1.50
1 66.73 13.37 179.43 89.01 2.98 1.70
3 69.73 12.57 183.99 90.41 2.80 1.63
2 63.04 13.21 184.81 90.97 3.14 1.62
0 66.17 12.81 178.06 90.38 2.96 1.66
5 65.88 12.46 195.88 87.51 3.33 1.67
5 69.54 12.64 182.81 88.26 3.01 1.68
8 63.38 12.14 190.79 80.36 3.08 1.64
1 65.47 14.75 182.98 93.84 3.05 1.76
5 67.00 11.70 193.47 88.15 3.25 1.74
0 60.47 13.85 195.91 90.07 3.48 1.79
1 68.46 12.35 186.01 95.80 3.01 1.86
1 71.31 12.61 181.52 88.72 2.90 1.79
0 62.37 13.45 185.58 87.08 3.41 1.74
7 69.44 13.29 181.77 88.82 3.10 1.72
5 62.62 14.73 211.96 99.74 3.55 2.05
5 64.10 13.45 204.20 90.44 3.56 1.87
9 65.83 13.34 192.90 95.12 3.23 1.72
7 60.41 14.21 188.79 93.88 3.27 1.79
2 65.00 13.34 190.43 95.15 3.00 1.75
2 63.07 14.19 185.55 91.81 3.00 1.66
2 61.44 14.73 205.84 94.97 3.69 1.96
8 64.49 14.73 194.51 104.21 3.42 2.09
3 65.81 13.13 198.45 92.34 3.46 1.98
4 63.64 14.37 188.31 94.22 3.36 2.02

ture-based ANN models for solar radiation estimation through exogenous
.08.027
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Table 3
Model alternatives and corresponding considered inputs.

Model name Considered inputs

Training station Ancillary station

a1 Tmax,Tmin –
a2 Tmax, Tmin Rs

b1 Tmax, Tmin (J) –
b2 Tmax, Tmin (J) Rs

c1 Tmax, Tmin Ra –
c2 Tmax, Tmin Ra Rs

Fig. 3. Architecture scheme of model c2. Note: exogenous inputs in italics. ts means
training station.
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where CIG is the Gorezynski continentality index (–); CIC is the Con-
rad continentality index (–); CIS is the Supan continentality index (–
); CICU is the Currey continentality index (–); Mi is the maximum
monthly average temperature (�C); mi is the minimum monthly
average temperature (�C); U is the latitude (degrees).

The values of the aforementioned continentality indexes for
each considered station can be found in a recent study in the field
of water resources [31]. The four indexes show a very similar trend
in the studied region, although they present different ranges. In
consequence, the four indexes will lead to the selection of practi-
cally the same ancillary stations, as the CI relative differences be-
tween stations are quite similar in the four cases [31]. According
to the conclusions of this study, only the CIG was used to select
the ancillary data-supplier stations in the present work.

It is important to take into account that these indexes are re-
ferred to annual data sets. Thus, the same station presents different
CI values each year. Moreover, these fluctuations can be consider-
able. This raises a question in the selection of the period to which
the CI must be referred to. Analytically, two continentality indexes
can be considered for each station: one referred to the test year or
one mean CI value of the 8 years considered. The first option ac-
counts for the selection of the most similar ancillary stations in
the specific climatic context of the test year. So, the ancillary sta-
tion selection is especially appropriate in the test stage of the mod-
Fig. 2. Diagram of input/output

Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
data assistance. Energy Convers Manage (2010), doi:10.1016/j.enconman.2010
el. On the other hand, similarly, following the second criterion, the
station selection is especially appropriate in the training stage of
the model.

The considered climatic series contained data gaps. Thus, if
complete monthly data series of any year were missing, the corre-
sponding CI of that year could not be calculated properly attending
to their definition. The CI values would not have been reliable,
especially if those gaps corresponded to winter or summer, where
the extreme temperature records are usually registered. Conse-
quently, stations with monthly gaps could not be considered as
ancillary stations for that year, due to the absence of CI values.
Moreover, these years were neglected in the calculation of the CI
mean value. According to the conclusions of Martí and Gasque
[31], only the mean CI was used in the present study. The consid-
management in model c2.

ture-based ANN models for solar radiation estimation through exogenous
.08.027
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Table 4
Assignment order of ancillary stations according to mean CI.

Training station code Ancillary station arrangement order

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ancillary station code

1 3 2 6 4 11 9 10 5 13 14 12 23 24 19 16
2 6 3 1 4 11 9 10 5 13 14 12 23 24 19 16
3 2 1 6 4 11 9 10 5 13 14 12 23 24 19 16
4 11 9 6 2 3 10 5 1 13 14 12 23 24 19 16
5 10 9 11 13 4 14 12 23 6 2 24 19 16 3 26
6 2 3 4 11 1 9 10 5 13 14 12 23 24 19 16
7 22 25 20 8 15 26 16 19 24 23 12 14 21 13 18
8 26 25 16 19 24 7 23 22 12 14 13 20 15 5 10
9 11 4 10 5 6 2 3 1 13 14 12 23 24 19 16

10 5 9 11 4 13 14 6 12 23 2 24 3 19 16 1
11 9 4 6 10 5 2 3 1 13 14 12 23 24 19 16
12 23 14 24 19 16 13 26 8 5 25 10 7 22 9 11
13 14 12 23 24 19 16 5 10 26 8 9 11 25 4 7
14 12 23 13 24 19 16 26 8 5 10 25 7 22 9 11
15 20 22 7 21 25 8 18 17 26 27 16 19 24 23 12
16 19 24 26 23 12 14 8 13 25 7 22 5 10 20 15
17 18 27 21 29 15 20 22 7 25 8 28 26 16 19 24
18 17 27 21 29 15 20 22 7 25 8 28 26 16 19 24
19 16 24 26 23 12 14 8 13 25 7 22 5 10 20 15
20 15 22 7 25 21 8 26 18 17 16 19 24 23 27 12
21 18 17 27 15 20 22 29 7 25 8 26 16 19 24 23
22 7 25 20 15 8 26 16 19 24 23 12 14 21 13 18
23 12 14 24 19 16 13 26 8 25 5 10 7 22 9 11
24 19 16 23 12 26 14 8 13 25 7 22 5 10 20 15
25 7 22 8 26 20 16 19 24 15 23 12 14 13 21 5
26 16 8 19 24 23 12 14 25 7 13 22 20 15 5 10
27 17 18 21 29 15 20 22 7 28 25 8 26 16 19 24
28 30 29 27 17 18 21 15 20 22 7 25 8 26 16 19
29 27 17 18 21 28 15 20 30 22 7 25 8 26 16 19
30 28 29 27 17 18 21 15 20 22 7 25 8 26 16 19
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eration of mean continentality values in the selection of ancillary
stations seems to be more appropriate than the consideration of
the test year CI, as it might involve a proper selection of the ancil-
lary inputs used in the training stage, which considers a higher
amount of data than the test stage. In other words, the selection
of ancillary stations will be more realistic and representative of
the complete data set. Furthermore, if the CI is referred to the test
year, there is higher probability to exclude some stations from the
process, because there might exist not enough data for its calcula-
tion and, consequently, for the subsequent selection of the corre-
sponding ancillary stations.
Fig. 4. Configuration o

Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
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2.3. Model alternatives and input management

As pointed out above, the considered models introduce the nov-
elty of taking into account exogenous variables. Accordingly, Rs re-
cords can work as targets or as ancillary inputs. In the training
station, local Rs values are used as targets whereas Rs values from
other stations are used as inputs. Three model types, namely a, b,
and c, each one with two alternatives (1 or 2), have been defined
attending to the inputs considered. The differences between the
three models lie in the consideration or not, respectively, of the
day of the year (J) values, and the local extraterrestrial radiation
f applied neurons.

ture-based ANN models for solar radiation estimation through exogenous
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Table 5
Parameters used in the training process.

Performance function MSE
Maximum number of epochs to train 100
Performance goal 0
Maximum validation failures 5
Minimum performance gradient 1E-10
Initial , l 0.001
l Decrease factor 0.1
l Increase factor 10
Maximum, l 1E + 10
Maximum time to train Infinite
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(Ra), which is calculated as a function of the latitude and the day of
the year. Model a considers only temperature inputs. The difference
inside a model pair (1 and 2) lies in the consideration of exogenous
Rs records as inputs or not. These model alternatives are summa-
rized in Table 3. J is in brackets because this variable is considered
as local although it allows no geographical origin assignment.

Each type of model 2 was defined for a number of ancillary sta-
tions from 1 up to 15. So, 48 models were performed (15 per model
alternative 2 and 3 per model alternative 1) in each station. In
model type a2, the number of ANN inputs ranged between 3 (1
ancillary station) and 17 (15 ancillary stations). In model type b2

and c2, the number of inputs ranged between 4 (1 ancillary station)
and 18 (15 ancillary stations). Figs. 2 and 3 show the input–output
management of model type c2 and the corresponding translation in
a neural network scheme, respectively, where ts means training
station.

There is a higher probability to incorporate less continentally
similar data series to the training set when more ancillary stations
are considered. The differences between the training station and
the ancillary stations depend on the relationships between the
individual CI values of the selected stations, and the CI distribution
is not linear [31]. Table 4 sums up the specific ancillary station
assignment order that was considered for each training station
according to an increasing CI difference.

Every model was tested in the training station (local perfor-
mance) and in the rest of stations (external performance). Thus,
the performance indicators were divided into two groups. First,
the local performance was assessed for each model with the local
test set. Next, the average external performance in each station
Fig. 5. Reduction of training pattern number per sta

Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
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was assessed through the mean performance of the remaining 29
models (one per station) in that station [31]. In both cases, these
mean results were referred to the number of ancillary stations used.

2.4. ANN configuration and properties

All ANN neurons used were configured, based on the model pro-
posed by Haykin [15]. The neuron of Fig. 4 can be mathematically
characterized with the following equations [15]:

vk ¼
Xm

j¼1

wkjxj þ bk

yk ¼ uðvkÞ
where xj is the input signal; wkj is the synaptic weight of neuron k; vk

is the linear combiner or summing junction; bk is the bias; yk is the
output of the neuron and u (�) is the transfer function. The hyperbolic
tangent sigmoid function u was adopted as activation function. If the
output layer of the network has sigmoid neurons, then the output
values are limited to a small range. This is why linear output neurons
were used, and the network outputs can take on any value.

The ANNs used correspond to multilayer feed-forward net-
works with back-propagation and supervised training. Thus, they
are feed-forward fully-connected hierarchical networks that use
differentiable activation functions and supervised training that in-
volves an iterative procedure to minimize the error function (per-
formance function). The errors are used as inputs to feedback
connections from which adjustments are made to the synaptic
weights layer by layer in a backward direction.

Neural network minimization problems are often very ill-condi-
tioned. This makes the minimization problem harder to solve, and
for such problems, the Levenberg–Marquardt algorithm is a good
choice. The Levenberg–Marquardt algorithm uses an approxima-
tion to the Hessian matrix in the following Newton-like update:

xkþ1 ¼ xk � ½JT J þ lI��1JT ek

where l governs the step size and I is the unit matrix; J is the Jaco-
bian matrix that contains first derivatives of the network errors
with respect to the weights and biases, and ek is a vector of network
errors [33,34]. The selected training parameters are summed up in
Table 5. These are standard values for the adopted ANN configura-
tion [35].
tion associated to the homogenization process.
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The early stopping procedure was considered to finalize the
training. Therefore, training data series were divided into two
groups: the first for learning/parameter estimation and the second
for cross-validation. The error measured with respect to indepen-
dent data, the cross-validation set, often shows a decline at first,
followed by an increase as the network starts to over-fit [36].
Accordingly, when the chosen error (the MSE) of the cross-valida-
tion set was lower than its value in the previous iteration, the
training of the network proceeded; otherwise, the training ended.
Additional stopping criteria were taken into account, so that train-
ing stopped if any of the following conditions were fulfilled:

i. The maximum number of epochs was reached.
ii. The maximum amount of time was exceeded.

iii. Performance was minimized to the goal.
iv. The performance gradient fell below the minimum perfor-

mance gradient.
v. l exceeded maximum l.

2.5. Model implementation

Instead of following a common methodology among the ANN
community, where only several architectures with a fixed number
of neurons per layer are defined and tested, a general procedure
was developed which allows for the selection of the optimum
architecture each time from a set that considers up to l hidden lay-
ers with 1 up to n neurons each, where the different hidden layers
always present the same number of neurons. Moreover, each archi-
tecture is calculated s times and the corresponding ANN parame-
ters are stored, in order to take into account the effects derived
from the random assignment of the weights when the training
algorithm is initialized. Here, only one hidden layer was consid-
ered, due to high number of cases and stations studied. Accord-
ingly, the maximum number of neurons per layer and the
number of repetitions were fixed in 20 each. For each architecture
the developed program selects the repetition that provides the best
performance (in our case the minimum mean squared error) for
the cross-validation set of the training station, afterwards selects
the architecture with the best cross-validation set performance
and, finally, simulates the test data series.

The program allows for the adjustment of the number of sta-
tions that provide ancillary data to the training and testing station.
Table 6
Average local performance indicators in the 30 training stations.

Number of ancillary stations considered RMSE (–) MBE (–) r2 (–)

Model

a1

0.3004 0.0182 0.6489

a2

1 0.1686 0.0030 0.8860
2 0.1546 0.0038 0.9072
3 0.1389 0.0068 0.9255
4 0.1297 0.0082 0.9361
5 0.1245 0.0037 0.9395
6 0.1165 0.0033 0.9464
7 0.1156 0.0048 0.9467
8 0.1088 0.0086 0.9529
9 0.1034 0.0101 0.9549

10 0.1033 0.0097 0.9539
11 0.1017 0.0099 0.9551
12 0.0992 0.0071 0.9569
13 0.1013 0.0069 0.9546
14 0.1023 0.0075 0.9533
15 0.1033 0.0077 0.9512

Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
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Each data point is referred to a day of the year. Thus, the day of the
year is used to assemble automatically the input matrices. The
time data series differed between stations, due to the presence of
data gaps. For every training station, when the number of ancillary
stations was fixed, the involved data series had to be homogenized
according to the specific days of the year that were simultaneously
present in the selected stations. If a data point (a day of the year) of
any station considered was missing, that point had to be removed
from the other stations involved in the same model training/test-
ing. Fig. 5 presents the pattern number per training station when
0, 1 and 15 ancillary stations are selected according to the mean
CI. So, the final pattern reduction can be quantified in each training
station. The homogenization process involves an average decrease
in the number of training patterns of 1111 data points when 15
ancillary stations are considered.

The program for the ANN application was implemented with
Matlab� [35].

2.6. ANN performance indicators

The selected performance function was the measure given by
the mean squared error (MSE), defined as

MSE ¼

Pn
i¼1
ðymi
� yei

Þ2

n

where ym is the model output and ye the target output. This function
was chosen because of its statistical properties and because it is
better understood than other measures. It is a non-negative, differ-
entiable function that penalizes large errors more than small ones.
Furthermore, the root mean squared error (RMSE, expressed as a
fraction), and the mean bias error (MBE, expressed as a fraction)
were determined according to

RMSE ¼ 1
�ye

Pn
i¼1
ðymi

� yei
Þ2

n

0
BB@

1
CCA

0:5

MBE ¼

Pn
i¼1
ðymi
� yei

Þ

n�ye
RMSE (–) MBE (–) r2 (–) RMSE (–) MBE (–) r2 (–)

b1 c1

0.1987 0.0164 0.8516 0.1991 0.0089 0.8478

b2 c2

0.1557 0.0064 0.9070 0.1559 0.0054 0.9060
0.1480 0.0040 0.9153 0.1457 0.0027 0.9188
0.1361 0.0087 0.9278 0.1353 0.0033 0.9283
0.1317 0.0072 0.9330 0.1289 0.0100 0.9371
0.1235 0.0048 0.9402 0.1231 0.0062 0.9413
0.1184 0.0071 0.9442 0.1158 0.0046 0.9477
0.1157 0.0043 0.9467 0.1144 0.0050 0.9476
0.1088 0.0106 0.9531 0.1078 0.0098 0.9542
0.1059 0.0108 0.9527 0.1033 0.0138 0.9552
0.1031 0.0089 0.9551 0.1002 0.0084 0.9563
0.1020 0.0085 0.9540 0.1059 0.0084 0.9499
0.0998 0.0068 0.9572 0.1009 0.0059 0.9551
0.1015 0.0057 0.9557 0.1015 0.0073 0.9557
0.1022 0.0085 0.9537 0.1034 0.0058 0.9524
0.1036 0.0089 0.9521 0.1019 0.0077 0.9538
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Table 7
Average external performance indicators in the 30 training stations.

Number of ancillary stations considered RMSE (–) MBE (–) r2 (–) RMSE (–) MBE (–) r2 (–) RMSE (–) MBE (–) r2 (–)

Model

a1 b1 c1

0.3422 0.0278 0.6029 0.2420 0.0277 0.8229 0.2418 0.0213 0.8192

a2 b2 c2

1 0.2088 �0.0006 0.8675 0.2024 0.0063 0.8785 0.2003 0.0045 0.8805
2 0.2016 �0.0029 0.8727 0.2015 0.0011 0.8759 0.1964 �0.0014 0.8812
3 0.1905 �0.0023 0.8803 0.1918 0.0042 0.8802 0.1899 �0.0013 0.8821
4 0.1866 �0.0036 0.8808 0.1914 �0.0040 0.8760 0.1965 0.0087 0.8712
5 0.1859 �0.0030 0.8817 0.1855 �0.0020 0.8813 0.1845 �0.0003 0.8825
6 0.1911 �0.0020 0.8709 0.1864 0.0009 0.8747 0.1829 �0.0005 0.8812
7 0.1831 �0.0017 0.8816 0.1831 �0.0010 0.8798 0.1833 0.0007 0.8795
8 0.1768 0.0005 0.8850 0.1773 0.0051 0.8840 0.1766 0.0054 0.8853
9 0.1733 0.0004 0.8829 0.1740 0.0029 0.8809 0.1742 0.0074 0.8808

10 0.1759 0.0039 0.8782 0.1750 �0.0004 0.8798 0.1714 0.0013 0.8826
11 0.1734 0.0039 0.8810 0.1721 0.0013 0.8815 0.1820 0.0018 0.8688
12 0.1724 0.0017 0.8804 0.1751 0.0024 0.8782 0.1746 0.0036 0.8771
13 0.1755 0.0028 0.8762 0.1736 0.0038 0.8806 0.1762 0.0046 0.8759
14 0.1768 0.0048 0.8724 0.1760 0.0034 0.8744 0.1756 0.0049 0.8729
15 0.1753 0.0047 0.8737 0.1727 0.0051 0.8767 0.1752 0.0021 0.8739
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Apart from the mentioned errors, the determination coefficient
r2 was calculated as follows:

r2 ¼ covðye; ymÞ
rerm

� �2

where ym and ye are the predicted and the expected outputs, respec-
tively; re, rm are the standard deviations corresponding to ym and
ye; �y is the average of the corresponding y values.
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3. Results and discussion

The performance quality of the proposed models, when they are
tested in the training station is gathered in Table 6. Each element of
the table corresponds to the mean value of the 30 stations studied.
The model a2, b2, and c2 average indicators are arranged according
to the number of ancillary stations considered. Comparing the per-
formance of the models without ancillary supply, it can be seen
that the consideration of extraterrestrial radiation and day of the
Fig. 6. Optimum architecture selection of mode

Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
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year, respectively, allows a marked improvement in the models
b1 and c1 (RMSE of 0.3004 in model a1 vs 0.1987 in b1 and
0.1991 in c1). Thus, it is possible to improve a temperature-based
ANN by considering an extra input which does not demand exper-
imental measurements.

The accuracy of models a2, b2 and c2 depends on the number of
ancillary stations considered, presenting a RMSE range between
0.16 and 0.1. In general, the accuracy of these models improves
when the number of ancillary stations increases. Nevertheless,
the performance quality decreases with more than 12 (models a2,
b2) and 10 (model c2) secondary stations. There might be two rea-
sons for this trend. Firstly, the more ancillary stations are consid-
ered, the more different might be these stations to the training
station from a continental point of view. As highlighted in Section
2, the secondary stations were arranged for a specific training sta-
tion according to an increasing CI difference. Secondly, due to the
homogenization process established to face the data gap problem
in the input and output matrix assembly, the number of training
patterns is lower the more ancillary stations are considered. So,
l a2 with 12 ancillary inputs in station 30.

ture-based ANN models for solar radiation estimation through exogenous
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Table 8
Selected network configurations of optimum models.

Training station code Optimum number of hidden neurons

Model

a1 b1 c1 a2 b2 c2

1 8 9 20 8 13 6
2 16 13 11 8 9 16
3 9 12 18 3 11 10
4 10 10 16 3 5 10
5 16 8 13 10 6 12
6 10 20 19 4 3 6
7 14 16 16 20 7 11
8 13 8 13 14 12 6
9 20 17 20 4 9 6
10 18 12 14 17 17 11
11 20 15 20 12 18 5
12 4 12 16 12 6 10
13 6 20 18 11 5 11
14 10 19 11 9 8 3
15 19 7 9 8 11 14
16 16 9 18 7 6 5
17 12 19 20 15 19 7
18 5 12 12 8 19 20
19 11 18 8 8 10 5
20 8 18 10 5 7 20
21 14 16 11 9 12 4
22 19 9 20 13 2 11
23 7 13 19 16 4 20
24 17 16 11 8 8 11
25 10 18 16 19 19 6
26 12 19 9 8 17 11
27 12 7 14 14 19 11
28 17 13 15 17 16 7
29 15 14 20 12 3 6
30 13 6 14 15 12 11

Mean 12.7 13.5 15.0 10.6 10.4 9.7
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with more than 10–12 ancillary stations, the number of patterns
might begin to be insufficient to carry out a proper training.

As observed, models a2, b2 and c2 show a very similar trend in
their performance and the indicator differences between them
are quite small. This might be due to a higher correlation between
local Rs and external Rs than between local Rs and the considered
local inputs (Tmax, Tmin, Ra and J). Further, the differences between
them decrease the more ancillary stations are considered, because
the ancillary inputs are the same in the three cases. Hence, accord-
ing to these results (relative RMSE), the consideration of ancillary
Rs data can be translated into an improvement of the model accu-
racy of 20% when only temperature local records are considered
and of 10% when extraterrestrial radiation or day of the year are
also considered as inputs. The MBE values show that all these mod-
els tend to overestimate Rs. The RMSE reduction achieved with the
consideration of the first ancillary station is around 4% in models b
and c and 14% in model a. This fact justifies the consideration of a
low number of ancillary stations even if only scant secondary sta-
tions are available. Similar conclusions can be drawn on the basis
of r2 results, where optimum average values around 0.95 are
reached. Due to the aforementioned similarity in the performance
indicators of models a2, b2 and c2, only model a is analyzed later in
detail due to its higher simplicity (translated into a lower number
of inputs).

The average quality parameters of the model external perfor-
mance is presented in Table 7. Each model was tested outside
the training stations, in the remaining 29 stations, and the perfor-
mance indicators were rearranged as follows. A mean value was
calculated for each test station corresponding to the performance
of the remaining 29 station models there. As observed, the perfor-
mance trend is in general quite similar to the local performance.
When no ancillary data supply is considered, the model accuracy
can be improved through the introduction of Ra or J as local inputs,
with a decrease around 0.1 in the RMSE (0.3422 in model a1 vs
0.2420 in b1 and 0.2418 in c1, respectively). Further, the consider-
ation of ancillary exogenous inputs also involves an improvement
in the model performance, with a decrease in the RMSE ranging be-
tween 0.14 and 0.17 in model a and between 0.4 and 0.7 in models
b and c, depending on the number of ancillary stations considered.
Thus, the accuracy also improves with an increasing number of
ancillary stations, but this improvement is not so marked as in
the local performance case. So, the performance quality of the
models is considerably worse. As in the local case, models a2, b2

and c2 show very similar results, probably for the same reason sug-
gested above. In contrast to the r2 values of the local performance,
an increasing trend is missing in the external performance. Here,
the determination coefficients more or less remain constant
around 0.87–0.88, clearly lower than in the local performance case.
Further, there is not a clear trend in terms of over-/underestima-
tion, attending to the MBE values. Despite the worsening of the
performance trends, it must be pointed out that the individual val-
ues used to calculate these means correspond to 29 external mod-
els. So, these results can be distorted by the not considering only
the most suitable models for each test station. Consequently, it
seems more appropriate to assess in each test station only those
models trained in the most suitable corresponding training sta-
tions [31]. According to the RMSE, the a2, b2 and c2 models provid-
ing the optimum local performance do not always fit with those
providing the optimum external performance (e.g. optimum model
b2 corresponds to 11 ancillary stations). Nevertheless, the differ-
ences are very slight. So, no distinction will be considered between
optimum local and external performance and only the local and
external performance of the best a2 model (with 12 ancillary sta-
tions) will be analyzed later in detail.

The selection procedure of the optimum network architecture is
represented in Fig. 6, corresponding to the training station 30 and
Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
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model a2 with 12 ancillary inputs. Here, the relationship MSE-
number of neurons of the hidden layer is analyzed. Moreover,
these relationships are depicted for the three defined data sets:
the training, the cross-validation and the test sets. The horizontal
line represents the lowest value of the MSE referring to the
cross-validation, in this case 475.83 (W/m2)2. Thus, the configura-
tion 1 hidden layer with 15 neurons was selected. These results
correspond to the optimum repetition for each architecture: the
repetition with the lowest MSE in the cross-validation set. A sub-
jective criterion would have lead to the selection of other architec-
tures, seeking for simpler configurations presenting only slightly
higher cross-validation and test errors than the current ones. Nev-
ertheless, given the high number of model cases studied, the selec-
tion process of the optimum configuration demanded automation.

Accordingly, Table 8 sums up the selected architectures of the
models a1, b1 and c1 as well as the optimum a2, b2, c2 (with 12,
12 and 10 ancillary stations, respectively) models in every training
station. It seems logical to question the convenience of detecting
trends or relationships within the obtained configurations, given
the absence of a clear and definitive methodology to deal with
the optimum architecture selection in the ANN community. None-
theless, the average configurations of the models which do not
consider ancillary data supply are slightly more complex than their
corresponding pairs with ancillary supply, with 3–5 mean neurons
more on average, respectively. Likewise, configurations with less
than 10 hidden neurons are more frequent in the models which
consider exogenous Rs as inputs. The higher network complexity
can be due to more complex input–output relationships, when
only local records are considered for Rs estimation.

The RMSE values presented in Table 9 allow a detailed analysis
of the external performance corresponding to the optimum a2

model (12 ancillary stations). As aforementioned, a mean external
ture-based ANN models for solar radiation estimation through exogenous
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Table 9
External performance analysis of model a2.

Test station code RMSE (–) Corresponding training station code

Mean Minimum Maximum 5th best Standard deviation Optimum Worst

1 0.1794 0.0970 0.3173 0.1437 0.0438 24 15
2 0.1758 0.1215 0.2961 0.1542 0.0337 15 5
3 0.1546 0.1085 0.2589 0.1210 0.0383 16 15
4 0.1847 0.1466 0.3383 0.1559 0.0357 9 15
5 0.1376 0.0918 0.2099 0.0982 0.0363 15 16
6 0.1527 0.0988 0.2840 0.1209 0.0395 8 10
7 0.1912 0.1081 0.3085 0.1615 0.0375 22 25
8 0.1916 0.1350 0.3338 0.1642 0.0382 18 15
9 0.1579 0.0801 0.2520 0.0998 0.0452 7 22
10 0.1708 0.0984 0.2536 0.1245 0.0425 6 19
11 0.1591 0.0882 0.2843 0.1302 0.0392 5 23
12 0.1805 0.1171 0.3171 0.1478 0.0392 6 11
13 0.1804 0.1191 0.3126 0.1447 0.0400 26 29
14 0.2434 0.2178 0.2886 0.2270 0.0154 25 17
15 0.1798 0.1246 0.2307 0.1503 0.0276 30 13
16 0.1602 0.1120 0.2294 0.1285 0.0306 17 3
17 0.1535 0.0900 0.2479 0.1210 0.0358 16 4
18 0.1870 0.0924 0.2767 0.1240 0.0551 19 29
19 0.1519 0.0804 0.2408 0.1058 0.0385 16 6
20 0.1689 0.0870 0.3666 0.1324 0.0501 11 13
21 0.1757 0.1237 0.2516 0.1368 0.0333 27 5
22 0.1784 0.0989 0.3148 0.1517 0.0396 27 29
23 0.1831 0.1172 0.3629 0.1431 0.0447 5 11
24 0.1684 0.0996 0.3615 0.1179 0.0511 9 4
25 0.1761 0.1189 0.3045 0.1450 0.0372 20 22
26 0.1568 0.1025 0.3533 0.1259 0.0452 22 11
27 0.1667 0.1085 0.2862 0.1294 0.0375 5 21
28 0.1723 0.1224 0.2275 0.1369 0.0319 2 23
29 0.1538 0.1203 0.2501 0.1327 0.0248 26 19
30 0.1806 0.1516 0.2349 0.1586 0.0221 19 1

Mean 0.1724 0.1126 0.2865 0.1378 0.0377 – –

Fig. 7. RMSE values corresponding to the local performance of models a1, a2 and b1 in the studied stations.
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performance per station might not be justified, given the heteroge-
neity associated within the 29 stations considered to provide the
mean external performance. So, this table brings together for each
station (when considered as test station) the performance
achieved: (a) averaging the rest of training station performances
(column 2), (b) with the optimum training station for that test sta-
tion, (c) with the worst training station for that test station and (d)
with the fifth best training station for that test station. Comparing
Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
data assistance. Energy Convers Manage (2010), doi:10.1016/j.enconman.2010
the values in columns 2 and 3, remarkable differences can be found
between the performances corresponding to the optimum and the
worst training stations, as it was foreshadowed. Nevertheless, it
might be difficult to select a priori the most appropriate training
station because of a probable lack of suitable information. Thus,
this table presents a more conservative case, the fifth optimum
training station. These results demonstrate that it is not convenient
to take into account the complete set of remaining training stations
ture-based ANN models for solar radiation estimation through exogenous
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Fig. 8. RMSE values corresponding to the external performance of models a1, a2 and b1 in the studied stations.

Fig. 9. Scatter plots of models a1, a2 and b1 in the studied stations.
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when evaluating the external performance in each test station. The
mentioned RMSE fluctuations could derive from the consideration
of stations under markedly different solar conditions. A similar
study carried out in a smaller area within a homogeneous set of
similar stations might not have justified this procedure. Finally, it
Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
data assistance. Energy Convers Manage (2010), doi:10.1016/j.enconman.2010
is difficult to find a clear trend from the analysis of the optimum
and worst training stations, although some of them are repeated
several times. Hence, when dealing with the external performance
of a model, a proper analysis of the test and training station rela-
tionships is mandatory to select the most suitable training station.
ture-based ANN models for solar radiation estimation through exogenous
.08.027
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Therefore, the oscillation ranges of the involved climatic variables
of both stations must be considered.

It is important to highlight that 15 of the 29 test stations where
each model is performed might correspond to stations previously
used as ancillary data suppliers in the training process of that mod-
el. Nevertheless, the process can still be considered as external per-
formance in these test stations because the ancillary stations and
the corresponding assignment order do not coincide in the training
and test stages. Further, the weights established during the train-
ing process for a specific exogenous Rs input are assigned in the
test stage of this model to the exogenous Rs input of another sta-
tion, according to the assignment order of Table 4. A detailed anal-
ysis of Table 4 and columns 7 and 8 of Table 9 shows that for the
model a2 with 12 secondary stations the test station (column 7
of Table 9) was considered as Rs input supplier for that optimum
training station only in 10 models (test stations 4, 7, 10, 11, 13,
14, 19, 21, 23 and 26), whereas the test stations were considered
as ancillary suppliers of the worst training stations (column 8 of
Table 9) in 7 models (test stations 2, 6, 7, 11, 18, 25 and 27). De-
spite the satisfactory results, further research should focus on the
refinement of the index used in the ancillary station selection.
Moreover, the relationships between this index and the weights
of the corresponding associated selected ancillary variables with
the targets should be analyzed.

Next, Fig. 7 presents the individual RMSE values corresponding
to the local estimations obtained in each station with models a1, b1

and a2 with 12 ancillary stations. As observed, model b1 is always
considerably more accurate than model a1 and model a2 is always
markedly more accurate than the latter two. So, the local perfor-
mance of temperature-based ANN models for solar radiation esti-
mation can be improved through the consideration of exogenous
Rs inputs obtained in similar stations or, if these are not available,
through the consideration of Ra or J as inputs, which do not require
experimental measurement. With the exception of stations 14 and
28 (with RMSE values near 0.2), the proposed model presents aver-
age RMSE values around 0.093, reaching minimum values of
0.0555 (station 11). Hence, the proposed ancillary data supply pro-
cedure is decisive to improve the performance of temperature-
based ANN models when they are tested in the training station. Gi-
ven that local Rs records are used as targets to carry out the train-
ing process, the usefulness of the developed models in the training
stations is limited to emergency or infilling models to be consid-
ered when breakdowns take place in the data acquisition system
or when alternative more precise models cannot be applied, be-
cause there are not enough climatic measurements for their
application.

Likewise, Fig. 8 shows a comparison of the individual RMSE val-
ues corresponding to the estimations obtained in each test station
with the aforementioned models, when they are trained outside.
Instead of selecting the optimum model (training station) for each
test station, a more conservative criterion was adopted for this
comparison and so, these results correspond to the fifth best train-
ing station per test station. Here, very similar trends to those of the
local performance can be noticed, with a clear worsening in the
model accuracy. Neglecting station 14, the proposed model allows
Rs estimations with average RMSE around 0.125 in stations where
only temperature records are available, reaching minimum error
values of 0.1. Nevertheless, the estimations might be more accu-
rate with a more appropriate selection of the training station.

Finally, Fig. 9 shows the scatter plots corresponding to the local
and fifth best external performances of the models a1, a2 and b1 in
the 30 stations. In comparison to the models a1 and b1, the graphics
of model a2 present around 1500–2000 points less due to the ma-
trix homogenization process associated to the consideration of
ancillary exogenous inputs. The improvement associated to the
proposed model is remarkable. As can be seen, model b1 is consid-
Please cite this article in press as: Martí P, Gasque M. Improvement of tempera
data assistance. Energy Convers Manage (2010), doi:10.1016/j.enconman.2010
erably more accurate than a1 and model a2 is markedly more accu-
rate than the latter two. Here, a2 estimations present clearly lower
dispersion.

As pointed out in the introduction, the accuracy of the temper-
ature-based models for Rs estimation depends highly on the tem-
perature range of the test location. So, further research should
focus on the improvement rates that are to be achieved according
to the proposed methodology in areas with different DT ranges.
4. Conclusions

This paper describes a new procedure to improve the perfor-
mance accuracy of temperature-based ANN models for solar radi-
ation estimation through the consideration of exogenous inputs
from secondary similar stations, which work as ancillary data sup-
pliers. Thus, this model only demands maximum and minimum
temperature records from the studied station. The Gorezynski con-
tinentality index is used to select the most appropriate secondary
stations.

The accuracy of the model performance improves with an
increasing number of ancillary stations. Nonetheless, if the number
of ancillary stations considered is too high, the number of training
patterns decreases considerably due to the homogenization pro-
cess established to remove data gaps and it might not be enough
to fulfill a proper training. Further, the increase in the number of
ancillary stations considered cannot infringe the similarity condi-
tion between stations.

Given that local solar radiation records are used as targets to
carry out the training process, the usefulness of the developed
models in the training stations is limited to emergency or infilling
models to be considered when breakdowns take place in the data
acquisition system or when alternative more precise models can-
not be applied, because there are not enough climatic measure-
ments for their application. On the other hand, when dealing
with the external performance of the model, where its application
might be of more interest, a careful selection of the most suitable
training station is mandatory.
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