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Abstract 

Organic contaminants can be detected at low concentrations in drinking water, raising 

concerns for human health, particularly in reproduction. In this respect, we attempted to use 

the zebrafish as a bioindicator to detect the possible presence of these substances in drinking 

water, aiming to define the most relevant parameters to detect these substances, which 

particularly affect the development and reproduction of zebrafish. To this end, batches of 30 

embryos with the chorion intact were cultured in drinking waters from different sources, 

throughout their full life-cycle up to 5 months, in 20 L tanks. Six replicates were performed in 

all water groups, with a total of 24 aquariums. Two generations (F0 and F1) were studied and 

the following parameters were tested: in the F0 generation, survival and abnormality rates 

evaluated at 5 dpf (days post fertilization) and at 5 mpf (months post fertilization), the onset 

of spawning and the fertility rate from 3 mpf to 5 mpf, and the sex ratio and underdeveloped 

specimens at 5 mpf. Furthermore, in the F0 offspring (F1), survival and abnormality rates 

were evaluated at 5 dpf and the hatching rate at 72 hpf. These results revealed that the 

hatching rate is the most sensitive parameter to distinguish different levels of effects between 

waters during the early life stages, whereas the rate of underdeveloped specimens is more 

suitable at later life stages. Regarding adult reproduction, fertility rate was the most sensitive 

parameter. The possible reversibility or accumulative nature of such effects will be studied in 

future work. 
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Introduction 

The detection and monitoring of organic pollutants present in drinking water such as medical 

substances (Heberer, 2002), some active pharmaceutical ingredients (Kallenborn et al., 2008; 

Galus et al., 2013) and some persistent organic pollutants (POPs) (Ericson et al., 2008; 

Wilhelm et al., 2010; Ullah et al., 2011; Eschauzier et al., 2012) is relevant due to their 

possible effects on human reproductive function in metropolitan areas (Braw-Tal, 2010; 

Vested et al., 2014). 

 Animals and humans are exposed in nature to combinations of environmental 

pollutants. So, different environmental chemicals may interact with each other and thereby 

induce weaker (antagonistic), additive or stronger (synergistic) combined effects than would 

be expected from single compounds (Monosson, 2005; Kortenkamp, 2007). In this sense, it 

must be highlighted that the knowledge of the impact of these chemical interactions is still 

insufficient (Monosson, 2005; Schwarzenbach et al., 2006; Kortenkamp, 2007; Holmstrup et 

al., 2010). Moreover, the problem is exacerbated in drinking water from metropolitan areas, 

as the concentrations of emerging contaminants are low but numerous and variable over time 

(Westerhoff et al., 2005; Khetan and Collins, 2007; Kim et al., 2007), with municipal 

wastewater being the main source of most of these compounds (Metcalfe et al., 2003, 2014). 

So, due to the complexity of their control and detection, bioindicators can be used as an 

alternative to monitor their presence. 

 In this context, zebrafish is currently being used as a model to monitor toxic heavy 

metals, endocrine disruptors and organic pollutants for toxicology studies (Dai et al., 2014), 

as well as to assess certain contaminants in water quality studies (Ansari and Sharma, 2009; 

Molinari et al., 2009). Zebrafish biology has been extensively studied and well described 

(Westerfield, 2007; Nüslein-Volhard et al., 2002), and many morphological endpoints have 

been established from embryos to adult in environmental toxicity studies (Zhang et al., 2003). 

Consequently, as our purpose in the long term is to determine if zebrafish (Danio rerio) can 

be used to detect environmental pollutants in drinking waters with effects on reproduction, an 

essential and preliminary aspect consists of defining and narrowing down those 

parameters/endpoints that may be useful to detect the effects of these environmental factors, 
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especially on the development and reproduction of zebrafish when they are cultured in 

drinking waters from different sources throughout their life cycle. 

 The parameters evaluated in this study were selected in an attempt to cover the most 

relevant effects from environmental pollutants possibly present in drinking water on 

development, and especially on reproduction. So, these parameters were studied from survival 

and development to reproduction, contemplating the full life-cycle, as environmental 

exposures during critical periods of development may result in permanent alterations in the 

biological system of adults (Lyche et al., 2013), or even in subsequent generations. In this 

context, as pointed out by Skinner (2011), a number of environmental factors and toxicants 

(bisphenol A, dioxins, etc.) have been shown to promote epigenetic transgenerational 

inheritance of disease states or phenotypic variation. 

 

1 Materials and methods 

1.1 Zebrafish maintenance  

A wild zebrafish colony was reared in the laboratory following the protocol described in 

Westerfield (1995). Briefly, adult zebrafish were kept in 20 L tanks at 28.5℃, in a 3:2 ratio 

(females: males) (Westerfield, 2007) and fed on granular food supplemented with recently 

defrosted hen egg yolk and shrimp meat (Francisco-Simão et al., 2010). The light cycle was 

regulated at 14 hr light/10 hr dark (Matthews et al., 2002; Brand et al., 2002). 

 

1.2 Experimental design  

Embryos were obtained by siphoning from the original colony. Batches of 30 embryos at the 

mid blastula transition (MBT) stage with the chorion intact were selected under a stereo 

microscope and separated from those that degenerated and those that initiated aberrant 

parthenogenetic development. Embryos were not dechorionated because they were used to 

detect substances in different drinking waters that cannot be suitable for dechorionated 

embryos (Martinez-Sales et al., 2014). In the present study, four different drinking waters 

were evaluated and classified, depending on their source, into: three waters from different tap 

water distribution networks (A, B and C) and one bottled spring water that was established as 

a control group due to the quality of the water. Type A was tap water from a city located in a 

region with intensive farming activity, from the hydrological basin of the Túria River. Type B 

was from the tap water distribution network of a medium-sized city, supplied from the Túria 

and Xúquer Rivers. Finally, type C was tap water from a city also located in a region with 
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intensive agricultural activity, but from the hydrological basin of the Xúquer River. Type A 

and C came from groundwater prospecting.  

 Previous to the water addition to the aquariums, receptacles (where the water was 

stored) were maintained during at least a week open, with a large exchange surface to favor 

chlorine evaporation (Westerfield, 1995). Batches of embryos were left in Petri dishes and 

cultured until 5 dpf (days post fertilization) at 28.5℃ in the different waters. Abnormality 

rates at 5 dpf (pericardial edema, curled tails and skeletal deformities: lordosis, scoliosis and 

abnormal skeletal development) and survival rates at 5 dpf were evaluated. Six replicates 

were performed in all water groups. Next, from 5 dpf to complete adulthood (5 months post 

fertilization) 30 larvae were left in aquariums (20 L), with a total of 24 aquariums, in these 

four different waters. The aquariums had water recirculation systems but without active 

carbon filters. According to the Westerfield (2007) recommendations, a quarter of the total 

water of the aquarium was removed weekly to be replaced by clean water, in order to avoid 

ammonium concentration. After three months, marbles were placed in each aquarium with the 

aim of siphoning all aquariums 2 or 3 times a week for two months, to evaluate the onset of 

spawning and the fertility rate. Sex ratio of the surviving adults and survival and abnormality 

rates at 5 mpf were also evaluated. Moreover, in the F0 offspring (F1 larvae) the survival and 

abnormality rates at 5 dpf and the hatching rate at 72 hpf were evaluated. Sterilized media and 

materials in aseptic conditions were used. All chemicals were from Sigma-Aldrich (Madrid, 

Spain). 

 It should be stated that all environmental conditions were identical in all aquariums 

and that the spatial distribution of the 24 aquariums was randomized. The chemical 

parameters established for tap water for human consumption in the Royal Decree 140/2003 of 

7 February, by which health criteria for the quality of water intended for human consumption 

are established, are suitable for the breeding and maintenance of zebrafish (Westerfield, 

2007). Results were analyzed using the Chi-square test (Statgraphics Plus 5.1). The Yates 

correction for continuity was used when a single degree of freedom was involved. To analyze 

the onset of spawning, a simple ANOVA test was used. Finally, once all the information was 

collected and adults' sex was identified, specimens were euthanized with clove oil. The 

experimental procedures and the animal care in the present work fully agree with the 

standards for use of animals established by the Ethical Committee of the Polytechnic 

University of Valencia, which has specifically approved this study. 
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2 Results 

2.1 Survival and abnormality rates at five days 

 Survival rate at 5 dpf was evaluated to rule out the presence of acute or long-term 

toxicants (macropollutants), as the aim was to detect micropollutants (especially organic 

pollutants with effects on reproduction). Embryo survival rates, evaluated at 5 dpf, in the F0 

generation were high in all groups, with no significant differences between waters (Table 1). 

The abnormality rates in the F0 generation, also evaluated at 5 dpf, were low in all groups 

(varying from 0% to 0.56%), without significant differences between waters (data not 

presented in tables). The survival rates at 5 dpf in F0 offspring (F1 larvae) were also high in 

all groups, only reaching significant differences between the control group and all other 

groups (A, B and C), where the control group achieved the highest survival rate. Significant 

differences (p<0.05) were observed in survival rates at 5 dpf for each water, between the F0 

generation and F0 offspring (F1 larvae), except in the control group, which maintained the 

same survival rate. Survival rates in F0 offspring (F1 larvae) slightly, but significantly, 

decreased compared to the F0 generation in the rest of the waters (A, B and C). Regarding 

survival rate from 5 dpf to 5 mpf in F0, differences between water groups did not reach 

significant levels, although they came close to doing so (p=0.0617) (Table 1). 

 In the case of abnormalities at 5 dpf in F0 offspring (F1 larvae), pericardial edema, 

curled tails and skeletal deformities (lordosis, scoliosis, and abnormal skeletal development) 

were the main malformations observed, although other types of malformation were also 

detected. A slight non-significant increase in abnormality rates in F0 offspring (F1 larvae) (A: 

1.54%; B: 1.20%; C: 1.35%; control group: 0.66%) compared to F0 generation (A: 0.56%; B: 

0%; C: 0.55%; control group: 0%) was observed in all groups, whatever the water type, the 

lowest rate being found in the control group. At 5 mpf, the only abnormalities detected were 

skeletal deformities in water B (two specimens developed lordosis) and water C (one 

specimen developed scoliosis), with no significant differences between waters. 

 

2.2 Hatching rate 

 In zebrafish, hatching occurs between 48 and 72 hr post fertilization (hpf), when 

organogenesis is almost complete (Kimmel et al., 1995), so the hatching rate was evaluated at 

72 hpf in our experiment. Thus, in the analysis of the hatching rate at 72 hpf in F0 offspring 

(F1 larvae), significant differences were observed between waters, where the lowest rate was 

reached in group B (86.47%: 761/880) and the highest rate in the control group (99.50%: 
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1215/1221), while in groups A (96.53%: 473/490) and C (97.41%: 828/850) there were no 

significant differences. 

 

2.3 Onset of spawning 

Adult zebrafish reach sexual maturity within three months after hatching (Ma et al., 2000), so 

the onset of spawning was evaluated from 3 months on in the F0 generation. No statistically 

significant differences were detected with one-way ANOVA (p=0.9757), the mean number of 

days from 3 mpf being (16.5 ± 4.82) days in water A, (19.5 ± 4.82) days in water B, (17.3 ± 

4.82) days in water C and (18 ± 4.82) days in the control group. Similar observations were 

made with the onset of presence of fertilized eggs (p=0.9183). This indicates that the 

beginning of reproductive activity is similar in females and males, the mean number of days 

being (18.5 ± 4.65) days in water A, (22.1 ± 4.65) days in water B, (18.1 ± 4.65) days in water 

C and (18.5 ± 4.65) days in the control group. 

 

2.4 Fertility rate 

Regarding the fertility rate in F0, significant differences (p<0.05) were observed between 

waters evaluated during the 4th and 5th mpf. The statistically worst result was obtained in 

water B (34.31%: 895/2608) and the best result in the control group (74.37%: 1274/1713). 

Groups A (42.60%: 490/1150) and C (57.36% 857/1494) reached intermediate values. 

 

2.5 Sex ratio and underdeveloped specimens (runts)  

 Regarding sex ratio, there were no significant differences (p=0.4125) between waters 

at 5 mpf in F0, the male percentage being high (varying from 64% to 73%) in all waters 

compared to the female percentage (varying from 27% to 36%). 

 On the other hand, some runt fishes were observed (clearly smaller than the other 

fishes and without a morphologically identifiable sex) at 5 mpf in F0, showing differences 

between waters (p=0.0456) when analyzed. The worst results were in groups B (7%: 9/128) 

and C (8.5%: 11/129), and the best result in the control group (0%: 0/89). Group A (5%: 

7/140) reached an intermediate value. 

 

3 Discussion 

In zebrafish, most full life-cycle studies have been carried out in toxicology, where the 

substance concentration effects to be evaluated have been previously established (Soares et al., 
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2009; Galus et al., 2013; Dai et al., 2014). In this study, in contrast, there is no intention to 

detect specific contaminants, but rather the effect of the mixture of a variety of different 

substances present in drinking water, on development and reproduction in zebrafish. In fact, 

the substances that could be present in the different waters are completely unknown, as are 

their number and concentrations. For this reason, we attempted to evaluate the most relevant 

parameters/endpoints of zebrafish throughout their life-cycle to detect the possible presence of 

emerging contaminants at trace levels in drinking water that could affect survival, 

development and especially reproduction. 

 Survival rates at 5 dpf and at 5 mpf have been established as endpoints to assess the 

acute toxicity in many works (Voelker et al., 2007; Zhu et al., 2008; Shi et al., 2008; He et al., 

2011; Keiter et al., 2012). In our study, survival and abnormality rates at 5 dpf in the F0 

generation and in F0 offspring (F1 larvae) were high (>92%) and low (<7%) respectively, 

whatever the water source. At 5 mpf, survival rates (from 66.29% to 79.09%) were within 

normal values for this species (Santos et al., 2006). These results suggest no relevant presence 

of lethal substances to zebrafish embryos in the waters studied. 

 Although our final objective is to detect organic environmental pollutants with effects 

on reproduction, the mortality evaluation at 5 dpf and at 5 mpf allows us to rule out the 

presence of lethal toxicants in the studied waters, which, if present, could alter the assessment 

of the effects on reproduction. According to the hatching rate at 72 hpf, there were differences 

between waters. The control group (99.50%) reached the best result, agreeing with control 

data from other studies (Bourrachot et al., 2008; He et al., 2011; Liu et al., 2014).  

 The period around hatching is a critical stage during embryogenesis (Henn, 2011). 

This process is a combination of biochemical (action of the enzyme chorionase) and physical 

(movements of the embryo) mechanisms, which may be differently affected by chemicals 

(Bourrachot et al., 2008). Indeed, some pharmaceutical substances (David and Pacharatna, 

2009), endocrine disruptors (Han et al., 2011) and insecticides (Mandrell et al., 2012), among 

others (Duan et al., 2008), have decreased or inhibited the hatching rate in zebrafish, and most 

of these substances have been detected in wastewaters (Brossa et al., 2005) or even in 

drinking waters (Stackelberg et al., 2004). Hence, according to the results obtained in the 

present study, the hatching rate at 72 hpf would be a suitable endpoint to assess the presence 

of organic pollutants that may affect reproduction in drinking waters. 

 It is well known that spawning in domesticated zebrafish is influenced by photoperiod 

(Breder and Rosen, 1966). In our case, the light cycle was regulated, as stated in the materials 
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and methods section. No differences were observed between waters in the onset of spawning 

or in the onset of appearance of fertilized eggs. So, these two parameters do not appear to be 

relevant endpoints to detect the possible presence of organic pollutants in drinking waters at 

trace levels, or perhaps the substances that could have an effect are not present in the studied 

waters or, at least, are not present at harmful concentrations. In fact, studies have shown that 

chronic estrogen exposure of zebrafish to 17α-ethinylestradiol, which may be present in 

wastewaters and surface waters (Canonica et al., 2008), induced delayed onset of spawning 

and reduced fecundity and fertilization success at ng/L concentrations (Schäfers et al., 2007; 

Segner, 2009). 

 The fertility rate is used in many toxicological studies as endpoint/parameter (Ankley 

and Johnson, 2004; Liu et al., 2014). Significant differences between waters were observed in 

our study. The control group (74.37%) obtained the best result, which agrees with control data 

from other studies (He et al., 2011; Keiter et al., 2012). These results suggest that fertility rate 

is a rather sensitive parameter to detect the presence of organic pollutants at trace levels. 

Obviously, the results obtained in the present study do not allow us to elucidate which of 

these substances are present in water, but do enable us to detect their joint presence or their 

absence. 

 It has been demonstrated that many pollutants detected in wastewater effluents and 

surface waters (Botella et al., 2004; Brossa et al., 2005; Canonica et al., 2008; Galus et al., 

2013) have reduced the fertility rate, as for example persistent organic pollutants (Njiwa et al., 

2004), endocrine disruptors (Larsen et al., 2009), and pharmaceutical substances (Nash et al., 

2004), among others. The effects on fertility rate could be of female origin, male origin or 

both. Another possible source could be the watery environment where the external 

fecundation took place. The breakdown of these three possibilities will be studied in the next 

study undertaken. 

 Regarding sex ratio, this did not show significant differences between waters, being 

within normal values (from 64% to 73% males), which is in accordance with the sex ratios 

reported as normal in other studies on zebrafish (60 males: 40 females) (Fenske et al., 1999), 

(68 males:32 females) (Örn et al., 2003), (56 males:44 females) (Vaughan et al., 2001; Hsioa 

and Tsai, 2003), while also being within the normal range in zebrafish raised in captivity (Hill 

and Janz, 2003). 

 Sex ratio is a relevant endpoint used in numerous toxicological studies (Hill and Janz, 

2003; Baumann et al., 2013; Liu et al., 2014), for example in the evaluation of endocrine 
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disruptors (Örn et al., 2006). However, the complexity of sex determination in zebrafish may 

prevent the sex ratio from being used as a sensitive indicator of chemical effects without 

rigorous control of both environmental and genetic factors (Lawrence et al., 2007), as it is 

well known that environmental factors, including pH, stocking density and temperature affect 

sex differentiation in fish (Baroiller et al., 1999). However, it must be emphasized that in our 

case environmental parameters were tightly controlled during the experiment. 

 Concerning underdeveloped specimens, significant differences between waters were 

observed. The control group showed the best result (0%) and waters B and C obtained the 

worst results (7% and 8.5% respectively). It has been reported that some endocrine disruptors 

(Van der Ven et al., 2003) detected in wastewater effluent and surface waters (Brion et al., 

2004), as well as some pharmaceutical and personal care products (Galus et al., 2013) 

detected in the aquatic environment at ng/L and μg/L concentrations (Metcalfe et al., 2003; 

Kuster et al., 2008; Benotti et al., 2009) have been shown to affect zebrafish development. 

Thus, according to the results obtained in the present work, the underdevelopment rate would 

be a proper endpoint to assess the presence of organic pollutants in drinking water. 

 In a broader perspective, there are substances that could affect one or several of the 

parameters studied. Thus, some endocrine disruptors (He et al., 2011) affected both hatching 

and fertility rate but did not alter growth in zebrafish. However, other endocrine disruptors 

only affected hatching rate (Carreño et al., 2007). Other substances like pharmaceutical and 

personal care products affected both fertility rate and growth, but did not alter hatching rate. 

Nevertheless, other pharmaceutical and personal care products affected hatching rate and 

growth but did not affect fertility rate (Galus et al., 2013, 2014). Furthermore, some persistent 

organic pollutants have been shown to affect the fertility rate, hatching rate and growth in 

zebrafish (Njiwa et al., 2004). 

 On the other hand, with respect to the waters studied, according to their source and 

based upon results obtained, our control group presented the best results. The worst results 

were obtained in water B in those parameters/endpoints that reached significant differences 

between waters (hatching rate, fertility rate and underdeveloped specimens). A possible 

reason to justify this would be that the source of water B, as stated in the materials and 

methods section, is surface water, while waters A and C were from groundwater prospecting. 

The discharge of industrial and municipal wastewaters, whether treated or not, can be 

considered a constant polluting source that modifies surface water hydrochemistry, whereas 

groundwater contamination is not usually direct, as it must pass through various geological 
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strata, where many physical-chemical processes may intervene to at least partially purify fluid 

wastes. 

 In conclusion, according to the results obtained in all studied parameters, it must be 

considered that high survival rates allow toxicities to be ruled out. From all the reproductive 

parameters studied, the hatching, fertility and underdevelopment rates seem to be the most 

sensitive parameters to detect environmental pollutants in drinking water that affect 

reproduction during the full life-cycle of zebrafish. The possible cumulative effects through 

time or those transmissible to the next generation via epigenetic mechanisms, with effects on 

reproduction, will be studied in future work. 
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Table 1 Survival rate of zebrafish (Danio rerio) specimens cultured in different waters according to their 

source at 5 dpf and 5 mpf in F0 and F0 offspring (F1). 

 

Water A Water B Water C Control group 

Survival rate (5 dpf) 

F0 
177/180 

(98.33%) 

179/180 

(99.44%) 

180/180 

(100%) 

178/180 

(98.88%) 

F0 offspring 

(F1) 

454/490 

(92.65%)
b 

829/880 

(94.20%)
b 

814/857 

(94.98%)
b 

1200/1221 

(98.28%)
a 

Survival rate (from 5 

dpf to 5 mpf) 
F0 

140/177 

(79.09%) 

128/179 

(71.50%) 

129/180 

(71.66%) 

118/178 

(66.29%) 

Columns with different superscripts are statistically different (p<0.05). 

 

 

 

 

 

 

 


