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Abstract 9 

 10 

Two scientific schools have been coexistence from the beginning of genetics, one of 11 

them searching for factors of inheritance and the other one applying biometrical models 12 

to study the relationships between relatives. With the development of molecular 13 

genetics, the possibilities of detecting genes having a noticeable effect in traits 14 

augmented. Some genes with large or medium effects were localized in animals, 15 

although the most common result was to detect markers linked to these genes, allowing 16 

the possibility of assisting selection programs with markers. When a large amount of 17 

simple and inexpensive markers were available, the SNPs, new possibilities were 18 

opened since it was not needed the presence of genes of large or medium effect 19 

controlling a trait, because the whole genome was scanned. Using a large amount of 20 

SNPs permits having a prediction of the breeding value at birth accurate enough to be 21 

used in some cases, like dairy cattle, to halve its generation interval. In other animal 22 

breeding programs, the implementation of genomic selection is less clear and it should 23 

be carefully studied the way in which it can be useful. The need of large populations for 24 

associating phenotypic data and markers, plus the need of repeating the process 25 

continuously, complicates its application in some cases.  The implementation of the 26 

information provided by the SNPs in current genetic programs has lead to the 27 

development of complex statistical tools, jointing the efforts of the two schools, 28 

factorial and biometrical, that nowadays work closely related. The inclusion of new 29 

sources of variation line transcriptomics, metabolomics or epigenetics will represent a 30 

challenge in the near future.  31 

 32 
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1. The long and windy road to genomic selection 34 

1.1. Genetics and animal breeding 35 

From the beginning, there were two scientific traditions in genetics and in its 36 

applications to Animal breeding. The first, that we can call molecular tradition, starts 37 

with Mendel and its aim is to locate and characterized from a biochemical point of view 38 

those factors that form the genetic program hoping to someday manipulate it for our 39 

benefit. The second, whose origin can be traced to Galton, and that we can call 40 

statistical tradition, study the manifestation of the genetic program in the quantitative 41 

traits through the correlations among relatives with the objective of inducing a genetic-42 

economic change in the productive traits. These two traditions have not been kept as a 43 

two separate scientific schools but they intermix or separate depending on their 44 

respective achievements. Moreover, some prominent animal breeder like Alan 45 

Robertson could represent both traditions. 46 

 47 

 The study of enzymatic polymorphisms through electrophoresis open new ways, 48 

in the 60’s, to investigate the genetic variation of animal populations, that in the case of 49 

livestock disposal, until then, of blood groups and mutants of color as the unique genes 50 

of known inheritance (Neimann-Sorensen and Robertson, 1961). The electrophoresis 51 

allowed studying genes independently on whether  they show phenotypic variability or 52 

not, and revelaed an increasing  genetic variability. However, only a handful of genetic 53 

variants were detected due to the limitations of the technique.      54 

 55 

1.2 The QTL explosion and deception 56 

The advent of the new techniques of DNA analysis marks the beginning of the 57 

new field of genomics: the scientific discipline of mapping, sequencing and analysing 58 
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genomic level of DNA information. Taking advantage of polymorphic markers called 59 

microsatellites, spread throughout the genome, researchers were able to build genetic 60 

maps of domestic species and to search for regions of the genome harbouring genes 61 

affecting the performance for economically important traits.  62 

 63 

In the 90’s the QTL detection experiment started. Methods to detect these loci 64 

were reviewed by Andersson (2001). Initially, two basic designs were used. In the first 65 

we utilize the linkage disequilibrium between markers and QTL generated by crosses. 66 

Typically, animals are generated by crossing breeds that are highly divergent for the 67 

traits of interest (for example European wild boar and domestic Large White or 68 

junglefowl and domestic White Leghorn chicken). The second design is to utilize 69 

mainly the within-family linkage disequilibrium. This design is especially well suited 70 

for commercial populations as dairy cattle where large half-sib families are available. 71 

This activity has been very successful. In the data base 72 

http://www.animalgenome.org/QTLdb/ the number of reported QTLs are 9862 affecting 73 

653 traits (pigs), 8305 affecting 467 traits (cattle), 3919 for 297 traits (chicken) and 789 74 

for 219 traits (sheep). 75 

 76 

After detecting a QTL, the next task is to locate the gene responsible (causal 77 

mutation). In QTL detection studies, we can locate one QTL in a chromosome as a 78 

region of about 20-40 cM (probably harbouring 200-400 genes) which made it difficult 79 

to identify the underlying gene responsible. To refine the position several actions can be 80 

taken: to increase the number of individuals, to do fine mapping or to try the ‘candidate 81 

gene approach’. All these approaches are difficult, expensive in terms of time and 82 

money and not always the success is guaranteed making the location of the responsible 83 

http://www.animalgenome.org/QTLdb/
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gene a formidable task. Georges (2007) describe three successful stories: DGAT1 and 84 

ABCG2 that affect milk composition in cattle and IGF2 and MSTN influencing muscle 85 

mass in pigs and sheep respectively. Notwithstanding, the difficulties for finding the 86 

causal mutations can be illustrated for example by more than 9000 QTLs reported 87 

in pigs, of which less than a dozen of causative mutations have been firmly established. 88 

Interestingly, the first QTL reported in livestock was FAT1 QTL located in swine 89 

chromosome 4 (Andersson et al., 1994), however its causal mutation is still unknown. 90 

 91 

1.3. Marker-assisted selection 92 

One of the main motivations for QTL detection in domestic animals is Marker 93 

Assisted Selection (MAS). The usual way of thinking of MAS is a three step process. 94 

First, detect one or several QTLs. Second, find the gene responsible (causal mutation). 95 

Third, increase the frequency of the favourable allele either by selection or by 96 

introgression. There are some examples as the halothane gene in pigs or the Booroola 97 

gene in sheep. This strategy should better be called Gene Assisted Selection. Another 98 

approach is to use markers that are in linkage disequilibrium or linkage equilibrium with 99 

QTLs. All these applications, from a commercial point of view, were reviewed by by 100 

Dekkers (2004). 101 

 102 

The theory underlying MAS was greatly clarified by Lande and Thompson 103 

(1990). If the phenotype and the true QTLs for a trait were known the advantage of 104 

QTL-selection response with respect to phenotypic selection would be 1/h, where h is 105 

the square root of the heritability. Thus for heritabilities of 0.10, 0.25 y 0.50 the 106 

advantage would be huge: 316%, 200% and 140 % respectively. If markers explain just 107 

p percent of the additive variance the advantage would simply be 
hp

.They also 108 



 6 

developed selection indices that combine individual and family phenotypic information 109 

and molecular scores. In the paper the authors assume that linkage disequilibrium 110 

among markers and QTLs is the key factor for the success of MAS and therefore they 111 

consider a cross population as the more appropriate one.  112 

 113 

The impact of MAS in livestock breeding programmes has been modest because 114 

the QTL that exceed the chosen significance thresholds usually account only for a minor 115 

fraction of the trait variance. However, Smith and Smith (1993) stressed that the number 116 

of markers was the only limitation for the success of MAS, even in panmictic 117 

populations. They realized that it would be a question of time that enough number of 118 

markers where available and urge labs to accomplish the task.  119 

 120 

2. Genomic selection 121 

2.1. Many available markers at an affordable cost 122 

Meuwissen et al. (2001) proposed what nowadays is called genomic selection. It 123 

is rooted it two assumptions that now have been accomplished. The first is that panels 124 

with tens of thousands of markers will be available together with cost-effective 125 

genotyping procedures, and the second is that marker-density will be sufficient for all 126 

responsible genes of a trait to be in linkage disequilibrium with flanking markers. The 127 

consecution of genomic projects in several domestic species has allowed that a large 128 

numbers of SNPs were discovered as a by-product of sequencing or in subsequent re-129 

sequencing. Although we are still far from latest human SNP chips with over 3,000,000 130 

SNPs, commercial ‘SNP chips’ exist for cattle (750,000), dogs (250,000 SNPs), sheep 131 

(56,000 SNPs), pigs (60,000 SNPs), horses (55,000 SNPs) and chickens (600,000 132 
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SNPs) that can be easily genotyped using the same well established technology that in 133 

human and as with a reasonable cost. 134 

 135 

In the simplest terms, genomic selection is a two-step process. First, estimate the 136 

effects of markers (>50000 SNPs) in a reference (training) population that has been 137 

phenotyped and genotyped. Second, use this information to predict the breeding value 138 

of candidates to selection in a testing (evaluation) population that has been only 139 

genotyped for the previous markers. Conceptually, the main difference between 140 

genomic selection and MAS is that genomic selection uses a panel of dense markers so 141 

that all QTLs are in linkage disequilibrium with at least one marker.  For this reason 142 

some authors called Genome Assisted Selection. However, although the Smith and 143 

Smith (1993) prediction that MAS would be a fact when the number of markers were 144 

huge was prophetical, other prediction, such that not new sophisticated statistical 145 

methods would be needed, has clearly failed. Genomic selection has advent together 146 

with a galaxy of new statistical and computational methods basically dealing with what 147 

is usually called the “large p and small n problem”; i.e., how to analyse problems where 148 

the number of variable are far more large than the number of observations.   149 

 150 

2.2. How many SNPs? 151 

The continuous decreasing of genotyping costs permits to predict that in a near 152 

future higher density chips and finally the whole genome will be available. However it 153 

seems that the predictive capacity of having the whole genome sequenced will not be 154 

much higher than the one obtained by using the current 50,000 SNPs markers. In a 155 

recent research with Drosophila, Ober et al. (2012) showed that the predictive ability 156 

using the whole genome (2,5 million SNPs)  was the same as using 150,000 SNPs. In 157 
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dairy cattle Van Raden (2011) obtained a gain in reliability of only 1.6% when using 158 

500,000 markers instead of 50,000, and using imputation techniques even low density 159 

marker panels (3,000 SNPs) can give a similar predictive ability in dairy cattle (Berry 160 

and Kearney, 2011) and pigs (Wellmann et al., 2013; Cleveland and Hickley, 2013). 161 

However, it has been claimed a twofold advantages for the use of the whole sequence 162 

because all causal loci would be included; the first is that we will be sure that all QTL 163 

will be included and therefore deterioration of linkage disequilibrium along generations 164 

could be alleviated (Meuwissen and Goddard, 2010), and the second is that multibreed 165 

evaluations could be probably more precise. Both topics need to be investigated more 166 

deeply; for example, causal mutations are expected to be originated in a breed or a line, 167 

but not in other breed, thus predictions from one population will not apply to other 168 

population; in any case the sequence depth will be critical (Pérez-Enciso, 2014). 169 

Another advantage of using the whole sequence is avoiding the ascertainment bias 170 

originated by marker preselection. Markers are preselected with the aim to be 171 

segregating, which produces an overestimation of variability, affecting the estimated 172 

relationship between individuals.  173 

 174 

2.3. The promises of genomic selection 175 

Genomic selection has been met with a lot of enthusiasm and some breeding 176 

companies are re-designing their breeding programs. The idea is that using genomic 177 

selection we can potentially predict the breeding values for selection candidates at birth 178 

with a higher accuracy that the classical pedigree index. Consequently we can select 179 

animals at an early age and it is expected in some cases to double the rate of genetic 180 

improvement per year. For example, in dairy cattle an optimal breeding design with 181 

genomic selection will be more or less as follows: 182 



 9 

a) Genotype a large number of bull calves from the population.  183 

b) Calculate GEBVs for these calves (accuracy = 0.8). 184 

c) Select team based on GEBV and sell semen from these bulls as soon as they 185 

can produce it. The generation interval will be reduced from ~4 yrs to ~ 2 yrs 186 

and the rate of genetic gain will be doubled. 187 

 188 

 In prolific species the advantages of using genomic selection are much less clear. 189 

The schemes of animal breeding are based in selecting in nucleuses of selection to 190 

provide animals to the multipliers that will provide crossbred females and sometimes 191 

crossbred males to the commercial farms. In these schemes genomic selection will not 192 

have its main effect by reducing the generation interval, since no progeny test is 193 

performed. Moreover, the sires and dams have a much lower value than in dairy cattle, 194 

preventing the use of genomic selection due to its cost. However, some simulation 195 

studies have shown that genomic selection can be cost-effective in pigs using 196 

imputation techniques (Cleveland and Hickey, 2013), and Lillehammer et al. (2013) 197 

estimates an increase in genetic progress about a 10% higher when using genomic 198 

selection in the pigs national Norwegian program. 199 

   200 

3. Difficulties in implementing GS 201 

3.1. The need of large training populations 202 

The first problem encountered when working with GS is the need of having 203 

accurate enough equations to relate SNPs with phenotypic information. Large training 204 

populations are required to obtain acceptable accuracies for breeding values (Goddard 205 

and Hayes, 2009). Training populations can be composed of several thousand animals 206 

in dairy cattle (Wensch-Dorendorf et al., 2011), but selection nucleus in rabbits and pigs 207 
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are often composed of 12 to 20 males and 120 to 250 females, thus the effective 208 

population number for reproductive traits may be very small, and even for growth traits 209 

it will not be easy to collect a large number of animals for the training population high 210 

enough, a problem that can also take place in birds, even for larger nucleus sizes. 211 

Although there are some national programs in pigs, the difficulty of needing a large 212 

training population remains, even when phenotyping is easy as in litter size, because 213 

low heritability traits require larger training populations. Haberland et al. (2013) suggest 214 

a minimum number of 1,000 animals in a training population in pigs. Several strategies 215 

have been proposed for national programs (Lillehamer et al., 2013), and some strategies 216 

can be examined implying larger training populations by using several generations 217 

(Chen et al., 2012), or animals from multipliers, closely related to the nucleus animals. 218 

Effectiveness of GS is higher when the training population and the animals to be 219 

selected are closely related; the use of GS for unrelated animals would require fantastic 220 

figures for training populations (Meuwissen, 2009).  221 

 222 

3.2. The need of continuous phenotyping 223 

One of the expectations generated by GS was the use of it in traits that are 224 

expensive or difficult to measure, for example meat quality traits. Selection produces 225 

LD between the markers and the QTLs affecting the traits and GS is based in using 226 

these associations to avoid measuring the expensive traits. However, some meat quality 227 

traits are scarcely related to traits that are selected, and in any case the LD is being lost 228 

generation by generation. Some simulation experiments have shown that accuracy using 229 

the same markers is rapidly lost generation by generation and new training populations 230 

are required (Soneson et al., 2009; Ibáñez and Blasco, 2011). When continuous 231 
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phenotyping is required and large training populations are needed, GS becomes less 232 

attractive for  traits that are expensive to be measured. 233 

 234 

3.3. New problems for genetic evaluation 235 

The use of genomic information presents new problems in predicting breeding 236 

values.  Genetic evaluation in commercial programs is nowadays widely based in 237 

BLUP, ensuring unbiased estimates if the full relationship matrix and all data used in 238 

selection are included in the evaluation. Preselecting bulls in dairy cattle using genomic 239 

information can lead to biased predictions with lower accuracy, as it has been noted by 240 

Patry and Ducrocq (2011), leading to a decrease in genetic progress and distorting 241 

international dairy bulls comparisons (Patry et al., 2013). Integrating genomic and 242 

phenotypic information for predicting breeding values in a single step has been 243 

proposed by Legarra et al. (2009), but the computing cost is much higher and requires 244 

specific strategies for solving the equations (Legarra and Ducroq, 2012). Including non 245 

additive effects in the model or nonlinear traits as longevity produces further 246 

complications. An intensive research is now being developed in this area, and the 247 

progress of computing speed and capacity will help in solving computing problems that 248 

prevent the current implementation of the proposed solutions to one step evaluation. 249 

 250 

3.4. The lack of robustness of simulation studies 251 

The interest of using genomic selection has been mainly examined by simulation 252 

experiments, as formerly happened when examining the interest of marker assisted 253 

selection or the use of QTLs in selection programs. Useful as they are, simulation 254 

experiments represent a simplification that sometimes can lead to different conclusions 255 

when the parameters used change, therefore they should check the robustness of the 256 
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conclusions and avoid presenting excessively favorable frames for genomic selection.  257 

This can happen when the training population and the population in which genomic 258 

selection is evaluated are too close, when genetic parameters are excessively optimistic, 259 

when the model for generating the data and the model for analyzing it are the same, etc. 260 

For example, often an additive model generates the data and an additive model analyzes 261 

the results; in this case it might be interesting to check the robustness of the simulation 262 

by generating data with non additive genetic effects, common environment not 263 

considered, interactions genotype x environment, etc., and analyze results with the usual 264 

additive model. García-Cortés et al. (2014) have shown that with inbreeding the 265 

coefficient of dominance cannot be estimated with biallelic markers such as SNPs. And 266 

as Schaeffer (2006) said, if epistatic effects are large, then the accuracy of genomic 267 

breeding values may never reach 0.75 (Schaeffer, 2006). 268 

 269 

Another example is the use of excessively optimistic genetic parameters; for 270 

example, Piles et al. (2014) review the response to selection in rabbit experiments, and 271 

the actual responses obtained are consistent with values of heritabilities of 0.03 instead 272 

of the heritability of 0.10 often used for simulation experiments. In pigs, response to 273 

selection for litter size has been variable (see review in Blasco et al., 1995) showing that 274 

it is difficult to choose a single value of the parameter for simulation experiments. The 275 

efficacy of genomic selection when heritabilities are very low is questionable, since 276 

extremely large training populations are needed and low accuracy equations are 277 

obtained that can add little to the accuracy obtained by classical methods. Checking the 278 

robustness of the simulation experiments would permit to generalize their results further 279 

than the precise circumstance that the simulation describes.  280 

 281 
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3.5. Implanting GS in current breeding schemes 282 

Some of the difficulties for implanting genomic selection come from the 283 

characteristics of current breeding schemes. In prolific species, selection is performed in 284 

relatively small selection nucleuses in which several lines are selected for several traits 285 

in order to produce a crossbreeding female and sometimes a crossbreeding male. Often 286 

the benefits of genomic selection are referred to a single trait which was the object of a 287 

simulation experiment or an analysis with real data; however, the benefits of genomic 288 

selection should be evaluated considering not only its efficiency in improving the 289 

accuracy of one trait, but also its contribution to the genetic response on the aggregated 290 

genotype; i.e., on the economic additive value. For example, genomic selection can 291 

improve the accuracy on food conversion rate by genomic selection having an important 292 

effect on the response to selection for this trait (González-Recio et al., 2009); but often 293 

the genetic correlation between food conversion rate and growth rate is high, therefore if 294 

both traits are included in the selection index, as they usually are, the improvement in 295 

the aggregate genotype obtained by using genomic selection for food conversion rate is 296 

more limited. Some traits currently used in breeding programs have a high heritability 297 

(for example, fat content in pigs) or an extremely low heritability (for example litter size 298 

in rabbits and to some extent in pigs). In both cases the benefits of genomic selection 299 

are less clear than in dairy cattle. Undoubtedly, the prestige of using genomic selection 300 

can modify the market quota of some Companies, constituting genomic selection a 301 

value in itself, but the discussion of its impact in the market is out of the limits of the 302 

present review. 303 

 304 

3.6. The cost of genotyping 305 
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Cost of genotyping has been dramatically reduced in the last years allowing the 306 

implantation of genomic selection in dairy cattle in many countries at a reasonable cost. 307 

In general, 45,000 SNPs are used in bulls and low-density 3,000 SNPs chips are used 308 

for genotyping cows, heifers, and calves on commercial dairy farms for less than $50 309 

per animal (Van Eenennaam et al., 2014) using imputation techniques. Nevertheless the 310 

cost is still important enough to prevent using extensive genotyping in some species in 311 

which the breeding animal has a low value and several lines are used for the final 312 

crossbred product, like rabbits, pigs and poultry. Van Eenennaam et al. (2014) discuss 313 

some possible cost/effective implementation of genomic selection in pigs and poultry, 314 

based in the use of low density chips and imputation, but standard solutions are far to be 315 

clearly established and research is still needed about how to implement at least some 316 

aspects of genomic selection in these programs. The need of large training populations 317 

that should be constituted for each line, and the need of high density chips to construct 318 

the imputations can prevent the use of genomic selection for commercial purposes in 319 

these species attending only to the current economic cost. All costs should be 320 

considered before starting a genomic selection program, including the costs associated 321 

to the delay in recovering the investment in the training population.  322 

 323 

4. The future of Genomic selection 324 

4.1. The resurrection of the QTLs detection 325 

The development of the platforms of high density genotyping has hurled new 326 

impetus to the gene detection area in the form of what it is called Genome-wide 327 

association studies (GWAS) that try to use this huge number of markers to locate the 328 

causal genes. Although in some sense the genomic selection is related with the GWAS, 329 

there is a difference in the focus. In GWAS the aim is to deciphering the genetic base of 330 
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quantitative traits whereas in genomic selection the objective is to predict the genetic 331 

values of candidates to selection to choose the parents of the next generation. The 332 

GWAS strategies are now being implemented in livestock species although for the 333 

moment only have been successful in traits controlled by one or few genes, as the gene 334 

MITF that cause the white spots in dogs or the SLC65 and ABCA12 that cause the 335 

congenital muscular dystocia in cattle.  336 

 337 

 The large amount of GWAS studies in the last years, particularly in human 338 

genetics, has been followed by some disappointment when many of the association of 339 

important traits with SNPs disappeared when using larger samples or more detailed 340 

studies. Excessive expectations of GWAS results are generated by different causes. One 341 

of them is the lack of major genes determining most of the traits of interest, it seems 342 

that most traits are determined by many genes of small effects and large effect genes are 343 

usually fixed in selected populations. Another reason is the misinterpretation of the 344 

amount of evidence provided by statistical tests. In a recent paper, using Bayesian 345 

theory Johnson (2013) showed that in order to obtain an evidence of 95% of probability, 346 

the P-value needed is about 0.005; if multiple test techniques are applied for individual 347 

P-values of 0.005, many SNP associations would disappear. Even the meaning of the P-348 

values offered by GWAS studied has been questioned due to the bias introduced by 349 

ignoring the linkage disequilibrium among all markers and all causal genes; this bias 350 

also overestimates the variance explained by the gene detected by GWAS (Gianola et 351 

al., 2013). Another problem of GWAS studies derive from the fact that linkage 352 

disequilibrium can be produced by statistical association between a SNP and a causal 353 

gene instead of by real linkage between the SNP and the gene; i.e., a SNP can be in 354 

linkage disequilibrium with a causal gene although they are in different chromosomes. 355 
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A list of criticism of GWAS has been recently reviewed by Visscher et al. (2012), and 356 

some limitations and pitfalls in the analyses have been commented by Wray et al. 357 

(2013); nevertheless, the conclusion of Visscher et al. (2012) is that the balance of 358 

GWAS is clearly positive in human medicine. As the amount of genotypic data gathered 359 

for genomic selection increase exponentially, it may happens that in the future more 360 

weight will be given to SNPs associated with known genes and less weight to others 361 

that seem to be irrelevant, as some methods of genomic selection propose. 362 

 363 

4.2. New challenges 364 

A final challenge would be to introduce in the genomic prediction equations 365 

other sources of variation:  366 

a) Variation in copy number (CVN): Variation in copy number (CNV) refers to a 367 

segment of DNA in which copy-number differences have been found by comparison 368 

between two or more genomes. 369 

b) MicroRNAs (miRNA): MicroRNAs are single-stranded RNA molecules of 21-370 

23 nucleotides in length, which regulate gene expression. 371 

c) Transcriptomics: Transcriptomics could identify important genetic variation 372 

based indifferences in gene expression and proteomics will study the differences in 373 

proteins. 374 

d) Metabolomics: Metabolomics refers to the description of the set of small-375 

molecule metabolites (such as metabolic intermediates, hormones and other signaling 376 

molecules, and secondary metabolites) that are found in different individuals and 377 

species. 378 
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e) Epigenetics: There is growing evidence that heritable variation in important 379 

phenotypic traits can also be caused by variation in epigenetic modifications of the 380 

genome that sometimes could be heritable.  381 

 382 
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