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Abstract 

Aims. This computational modeling work illustrates the influence of hyperkalemia and 

electrical uncoupling induced by defined ischemia on action potential (AP) propagation and 

the incidence of reentry at the Purkinje-ventricle interface in mammalian hearts. 

Methods. Unidimensional and bidimensional models of the Purkinje-ventricle subsystem, 

including ischemic conditions (defined as phase 1B) in the ventricle and an ischemic border 

zone, were developed by altering several important electrophysiological parameters of the 

Luo-Rudy AP model of the ventricular myocyte. Purkinje electrical activity was modeled using 

the equations of DiFrancesco and Noble.  

 

Results. Our study suggests that an extracellular potassium concentration [K+]o greater than 

14 mM and a slight decrease in intercellular coupling induced by ischemia in ventricle can 

cause conduction block from Purkinje to ventricle. Under these conditions, propagation from 

ventricle to Purkinje is possible. Thus, unidirectional block (UDB) and reentry can result. 

When conditions of UDB are met, retrograde propagation with a long delay (320 ms) may re-

excite Purkinje cells, and give rise to a reentrant pathway. This induced reentry may be the 

origin of arrhythmias observed in phase 1B ischemia. 

 

Conclusions. In a defined setting of ischemia (phase 1B) a small amount of uncoupling 

between ventricular cells, as well as between Purkinje and ventricular tissue, may induce 

UDBs and reentry. Hyperkalemia is also confirmed to be an important factor in the genesis of 

reentrant rhythms, since it regulates the range of coupling in which UDBs may be induced. 

 

Keywords - Arrhythmias, phase 1B ischemia, intercellular coupling, computer simulations, 

reentry, hyperkalemia.    

  



Condensed abstract 

This computational work, in the setting of phase 1B ischemia, reveals that even minimal 

uncoupling within the Purkinje-ventricle subsystem may induce unidirectional block. In 

contrast, a more extensive uncoupling facilitates AP propagation. Hyperkalemia also 

represents an important modulating factor since [K+]o regulates the range of coupling in 

which reentry may be induced. 

 

 

 

 

 

 

  



What’s New? 

New theoretical models have been developed to simulate the electrophysiological changes 

arising in the Purkinje-ventricle interface during phase 1B ischemia. Novel insights from the 

work include: 

(i) The probabilities of unidirectional block and reentry increase in the presence of a low 

degree of uncoupling within the endocardium, and/or between Purkinje and 

ventricular fibers. 

(ii) An intermediate degree of this uncoupling may preserve conduction, thus avoiding 

the emergence of reentrant circuits. 

(iii) A high degree of uncoupling results in the substrate showing bidirectional block and 

no reentry may be generated.  

(iv) The amount of hyperkalemia during ischemia (phase 1B) is a major factor in the 

generation of conduction block.  

(v) Reentrant pathways in the Purkinje-ventricle subsystem can arise as a consequence 

of phase 1B ischemia and arrhythmias result. 

 

 

  



Introduction 

Regional myocardial ischemic episodes are closely related to cardiac arrhythmias.1 The 

arrhythmias induced by ischemia have been categorized into distinct phases and each may 

have different mechanisms.2 Experimental studies carried out on canine hearts have shown 

that arrhythmias during phase 1A often arise in the interval from 2-8 minutes after the onset 

of myocardial ischemia.3 Thereafter, a second phase (denoted 1B) of rhythm disturbances 

has been well characterized.3-5  

The mechanisms for these arrhythmias are thought to be intimately related to the 

electrophysiological changes during phase 1B of ischemia. These include cellular 

uncoupling,4,6 an increase of extracellular potassium [K+]o,4,7,8 reductions in catecholamine 

levels,9 and left ventricular wall stress.10 

Experimental studies have established a relationship between ischemia-induced arrhythmias 

during phase 1B, and the increase in impedance of ventricular tissue (Rt), occurring 

approximately 13 to 15 minutes postocclusion.4,8 The time-course of these increases in Rt 

and [K+]o,11,12 and their extent vary considerably. Nonetheless the degree of hyperkalemia 

and endocardial uncoupling are determinants of arrhythmias in the phase 1B of ischemia. 

The Purkinje network is essential for action potential (AP) propagation and ventricular 

contraction in mammalian hearts. The uncoupling induced by ischemia at the Purkinje-

ventricle interface and the ischemic endocardium contribute to arrhythmogenesis. 

The main objective of the present work was to evaluate the influence of conditions of 1B 

ischemia on AP conduction between Purkinje system and ventricular tissue, and reveal the 

role of these factors in reentry. 

  



Methods 

A. Action Potential Models 

To simulate the electrical activity of the Purkinje-ventricle subsystem, well-characterized AP 

models based on Hodgkin-Huxley formulation were used. Specifically, a modified version of 

the Luo-Rudy phase II model (LRd00)13,14 was used to reproduce the electrophysiological 

characteristics of endocardial ventricular myocytes under normal and 1B ischemia 

conditions. The formulation of Ferrero and coworkers of the ATP-sensitive potassium current 

(IK(ATP)), which reproduces with fidelity ischemic changes,15-18 was also included in the LRd00 

model. 

A number of models for the Purkinje fiber AP have been published for rabbit,19,20 dog,21,22 

mouse,23 and human.24 A detailed comparison of these models can be found in reference 22. 

In the present work, the AP of Purkinje cells was simulated using a modified version of 

DiFrancesco-Noble model.25 The maximum conductance of the sodium current (gNa) was 

changed from 750 to1125 μS to achieve a value of the maximal AP upstroke velocity that lies 

within the known range under control conditions.26 

 

B. Model of Phase 1B of Ischemia 

Several parameters in the LRd00 model were modified as in Pollard et al.27 to simulate the 

electrophysiological changes of ventricular cells during the period 15 to 45 minutes after the 

onset of ischemia. Some of the parameters were changed with respect to Pollard et al. 

model27 and were chosen from experimental observations,7,8 and simulation studies.28 Details 

of these changes are in table 1. 

In addition, ischemia-induced alterations in [ADP]i and Rendo were also evaluated. [ADP]i was 

set to 110 μM and Rendo was varied in the range 5 to 40 Ω·cm2.3,4,6 The ischemic ventricular 

trabeculum and tissue models were both divided into three zones: a central ischemic zone 

(CIZ1B), a border zone (BZ) and a normal zone (NZ). The parameters altered during phase 

1B ischemia were varied in the BZ according to linear spatial gradients. A BZ of 1 cm in 

length was based on experimental observations.29,30 The linear variations in the BZ were 



present along 10, 5, and 1 mm of the tissue to simulate the effects of hyperkalemia, acidosis, 

and hypoxia, respectively.30,31 

 

C. Tissue Models 

In the present work several tissue models were developed. Firstly, in order to study the 

characteristics of AP propagation from Purkinje to ventricle and from ventricle to Purkinje, 

two 1D models were developed and consisted of a Purkinje fiber coupled to either a normal 

ventricular fiber (see Figure 1A) or a ventricular fiber affected by 1B ischemic conditions 

including a CIZ1B, a BZ and a NZ (see Figure 1B). In both models the Purkinje and 

ventricular fibers were coupled through a Purkinje-ventricle junction (PVJ). The delay in 

conduction associated to the PVJ was determined by the values of the Purkinje-ventricle 

resistance (RPVJ). Under normal conditions, RPVJ was adjusted to 16 Ω·cm2, which resulted in 

a delay in conduction from Purkinje to ventricle of 2.21 ms. RPVJ value was increased up to 

40 Ω·cm2 to simulate the effects of ischemia.32,33 Purkinje and ventricular fibers were 1.5 cm 

(100 cells) and 3 cm (300 cells) in length, respectively. The stimulation protocol consisted of 

a train of 11 pulses applied at cell #0 of the Purkinje fiber in the two models. In the case of 

the Purkinje fiber coupled to the ischemic strand, the stimuli were also applied to the NZ of 

the ventricular end, to analyze the AP propagation from ventricle to Purkinje. 

Secondly, a 1D model was defined with a ring structure, where a Purkinje fiber was coupled 

to an 1B ischemic ventricular strand through two Purkinje-ventricular junctions (PVJs). The 

Purkinje fiber was composed by 600 cells (9 cm) and the ventricular strand had 500 cells (5 

cm). The ventricular fiber was divided into 300 cells in the CIZ1B, 100 cells in the BZ, and 

100 cells in the NZ. Uncoupling in the PVJ in the ischemic zone was varied and quantified by 

an elevated value of RPVJ1, whereas PVJ in the normal zone was characterized by normal 

coupling (RPVJ2=16 Ω·cm2). 

The stimulation protocol consisted of two depolarizing pulses applied to cell #99 of the 

Purkinje fiber at a BCL of 1500 ms (see Figure 2). 



A 2D model of a bundle of Purkinje cells coupled to ischemic ventricular tissue through 

Purkinje-ventricle junctions: PVJ1 in the ischemic zone and PVJ2 in the normal zone (see 

Figure 3). The bundle of Purkinje cells consisted of 5×452 nodes. The ventricular tissue had 

an anisotropy ratio of 3:1 and was composed by 275×250 nodes. Each node represented a 

membrane patch with dimensions 100×100 μm. The stimulation protocol consisted of one 

pulse applied at the site indicated in Figure 3. 

 

D. Computation of the Safety Factor 

The safety factor (SF) for conduction was computed and used to evaluate the AP conduction 

from Purkinje to ventricle and from ventricle to Purkinje. SF quantifies the source-sink 

relationship between adjacent cardiac cells. The value of the SF illustrates the success (SF 

value greater than 1) or failure (SF values lower than 1) of AP propagation. Several 

definitions of the SF have been published.34-36 The formulation of Romero et al. (SFR), was 

chosen based on its computational advantages.37 

 

Results 

A. Effects of 1B Ischemia on Cellular Electrophysiology 

The electrophysiological changes in the setting of phase 1B ischemia were analyzed in the 

1D ischemic fiber. APD90, conduction velocity (CV) and resting potential (Vrest) were 

significantly changed. Specifically, APD90 was reduced by 70% in the CIZ1B for [K+]o = 9 mM, 

Vrest was -84 mV in the NZ and -64 mV in the CIZ1B when [K+]o was 12 mM. CV was also 

reduced within the CIZ1B, especially when [K+]o ≥ 9 mM. 

 

B. Conduction Safety at the Purkinje-Ventricle Interface 

The ischemia-induced alterations in the ventricular electrophysiology can affect AP 

propagation between the Purkinje system and ventricular tissue. To analyze the safety of AP 

conduction from Purkinje to ventricle (and from ventricle to Purkinje) we used the parameter 

SF described in the Methods section. Figure 1-A shows the safety factor calculated in a 



Purkinje fiber coupled to a ventricular fiber under normal conditions. SFR values were 2.5 and 

1.82 in Purkinje and ventricular fibers, respectively. 

SFR was also evaluated in the 1D model of a Purkinje fiber coupled to a ventricular fiber 

under phase 1B ischemic conditions. Figures 1-B and 1-C depict the SFR plots obtained for 

these two sets of simulations including selected degrees of coupling between Purkinje and 

ventricular fibers (RPVJ = 16 and 24 Ω·cm2). SFR showed a biphasic behavior, as cellular 

coupling between ventricular cells decreased. This effect was observed for the cases 

illustrated in panels B and C. As depicted in Figure1-B, where RPVJ and [K+]o were set to 16 

Ω·cm2 and 11.5 mM, respectively, successful AP propagation was observed for low and 

moderate values of cellular uncoupling of ventricular cells (when Rendo was varied from 5 to 

38 Ω·cm2). More extensive uncoupling resulted in conduction block. Note that SFR remained 

almost constant in the CIZ1B and its value depended on ventricular coupling. In contrast, 

SFR in the BZ was ad a bell-shaped, as expected since conditions of simulated phase 1B 

ischemia were varied along the BZ. More extensive uncoupling between Purkinje and 

ventricular fibers (RPVJ = 24 Ω·cm2) also resulted in a biphasic behavior of the SFR (see 

Figure 1C). SFR dropped below unity and AP propagation failed at the CIZ1B for low and very 

high values of ventricular uncoupling. 

Retrograde propagation from ventricle to Purkinje was also analyzed in our simulations by 

stimulating cell #399 of the ventricular fiber. A set of simulations was conducted for selected 

values of Rendo, [K+]o, and Purkinje-ventricle coupling (RPVJ). The stimuli were applied either at 

the Purkinje or at the ventricular edge. Figure 1 panels D, E, and F show the results 

obtained. Three different patterns of results were observed: (i) AP conduction success from 

Purkinje to ventricle and from ventricle to Purkinje (white area), (ii) conduction block in both 

directions, i.e. bidirectional block (BDB) at the CIZ1B (light green area), and (iii) unidirectional  

block (UDB) at the PVJ or at the CIZ1B zone (dark green area). In the case of UDB, 

conduction block occurred from Purkinje to ventricle, whereas conduction was achieved from 

ventricle to Purkinje. This conduction block occurred in the ischemic ventricular cells, very 

close to the PVJ. More extensive uncoupling between Purkinje and ventricular fibers, 



resulted in an increased probability of UDB (panel F). It is known that UDBs can set the 

stage for reentry in an ischemic tissue.16-18 

 

C. 1B Ischemia-Induced Reentry 

To investigate whether the UDBs identified in the 1D Purkinje-ischemic ventricle model can 

in fact generate reentry, simulations were conducted using a 1D model ring structure. Figure 

2 shows the three scenarios described above: UDB and reentry (panel A), bidirectional 

conduction and AP collision (panel B), and BDB block at the CIZ1B zone (panel C), 

depending on the degree of cellular uncoupling of ventricular cells. In these simulations [K+]o 

was set to 11.7 mM. RPVJ1 and RPVJ2 were set to 32 and 16 Ω·cm2, respectively, to simulate 

the increased uncoupling in the ischemic region and the normal coupling in the normal 

region. Note that Rendo values differ in panels A, B, and C. The three selected cases are 

indicated by the crosses in Figure 1C. Figure 2A represents the first scenario, where 1B 

ischemic conditions led to UDB at PVJ1. In this case, Rendo was set to 9 Ω·cm2. The 

wavefronts generated by the second pulse started to propagate in both directions along the 

Purkinje fiber. One of the wavefronts was blocked in the ventricular cells next to PVJ1. The 

second wavefront propagated through PVJ2, crossing the junction and starting its 

propagation along the normal zone of the ventricular fiber. When this second wavefront 

reached PVJ1 and propagation succeeded, Purkinje cells close to PVJ1 generated an AP 

and the new cycle of the reentry. This reentry was sustained until the end of the simulation 

(2600 ms). 

When Rendo was increased to 10 Ω·cm2, conduction block from Purkinje to ventricle 

disappeared (Figure 2B). In this case, the moderate uncoupling between ventricular cells 

modified the source-sink relationship between Purkinje and ventricular fibers, such that 

propagation was favored. 

A further increase in ventricular uncoupling (Rendo = 25 Ω·cm2) led to BDB at the CIZ1B (see 

Figure 2C). After propagating through the two PVJs (PVJ1 and PVJ2), BDB occurred at the 

CIZ1B due to high intercellular resistance: the two wavefronts failed to propagate. Our 



simulations show that 1B ischemia may set the conditions that generate a reentry in the 

Purkinje-ventricle subsystem. Note however, that moderate uncoupling of ventricular cells, 

can favor conduction, prevent a reentry, and thus be antiarrhythmic. 

Finally, we evaluated whether the reentry observed in the ring model can occur in a more 

realistic structure. For this purpose, we implemented a 2D model of a bundle of Purkinje 

fibers connected to ventricular tissue, as described in Methods. Figure 3 shows model output 

for two selected sets of conditions. 

A single stimulus was applied at cell #0 of the Purkinje fiber (Figure 3A) and phase 1B 

ischemic parameters were set: RPVJ1 = 25.6 Ω·cm2 (corresponding to an increased 

uncoupling in the ischemic junction), RPVJ2 = 16 Ω·cm2 (corresponding to the normal coupling 

in the normal junction), Rendo=8 Ω·cm2and [K+]o = 14.3 mM. Note that these values are 

different from those utilized in the 1D and ring models, since in 2D simulations the 

parameters yielding conduction block differ somewhat.  

Under these conditions conduction block occurred at PVJ1 and the first wavefront could not 

propagate through the CIZ1B zone of the ventricular tissue. The second wavefront 

propagated through PVJ2, through the three ventricular zones, and reached PVJ1. Note that 

the wavefront failed to re-excite the Purkinje cells near PVJ1 and disappeared (panel A6 of 

Figure 3). A further increase in [K+]o up to 14.5 mM led to reentry in the Purkinje-ventricle 

system, as illustrated in Figure 3B. In this case, one of the wavefronts failed to propagate 

across PVJ1, as in the previous case. However, the second wavefront did propagate across 

PVJ2, throughout the ventricular tissue, and later across PVJ1. This wavefront re-excited 

Purkinje cells, thus generating reentry. The time required for the second wavefront to 

reexcite Purkinje cells was 320 ms. These results suggest that even small changes in 

specific parameters characteristic of phase 1B ischemia can be critical in the generation of 

reentry. 

  



Discussion 

A. Electrical Uncoupling Induced by Phase 1B Ischemia  

Several experimental studies have shown that during ischemia the impedance of the 

ventricular tissue increases between 40% and 200%.4,33,38-40 This increase of tissue 

resistance appears to be connected with the incidence of arrhythmias.38 The range of 

ventricular uncoupling (parameter Rendo was increased up to 80%) in which we observed 

UDBs, is within the range of the published data. 

Details of the electrical uncoupling and conduction delay between Purkinje fibers and 

ventricular ischemic tissue are available from experimental studies.33 However, the exact 

amount of uncoupling at PVJ induced by ischemia is unknown. Accordingly, we evaluated a 

maximum increase of 100% in the ischemia simulations (parameter RPVJ), with respect to 

normal conditions. 

 

B. Biphasic Behavior of the Safety Factor for Conduction  

Our simulations show that the electrophysiological alterations induced by phase 1B ischemia 

change the SFR in a biphasic manner. An intermediate increase in endocardial uncoupling 

led to a SFR increase in the CIZ1B (see Figure 1), whereas CV was decreased, which is in 

accordance with previous theoretical studies. Indeed, Shaw and Rudy obtained an increase 

in SF and a decrease in CV when the conductance of gap junctions was reduced.36 Dhein 

suggested that complete gap junction uncoupling would promote arrhythmogenesis, whereas 

an intermediate uncoupling would increase SF.41 This conclusion is supported by other 

experimental studies in which the maximum ventricular uncoupling related to phase 1B of 

ischemia was 200% and a greater uncoupling was considered as complete uncoupling, 

which was related to the end of incidence of 1B phase arrhythmias.4,6 

The biphasic behavior of SFR results from the complex interaction of the modified 

electrophysiological parameters as a result of 1B ischemia. Cellular uncoupling together with 

hyperkalemia are both important factors. A progressive increase in [K+]o led to a narrower 



range of conduction (see white areas in Figure 1). It is noteworthy that in the Purkinje-1B 

ischemic ventricle model conduction block was obtained for [K+]o greater than 11.7 mM. In a 

multicellular fiber model of 160 cells with a central hyperkalemic region, Wang and Rudy 

reported that a moderate increase ([K+]o=8.5 mM) increased SF and CV, whereas a more 

pronounced increase in [K+]o  (up to 13.5 mM) reduced SF42 and conduction block occurred 

at [K+]o > 14 mM. 

With regard to the behavior of SFR at the Purkinje-ventricle junction, our results show that an 

extensive uncoupling between Purkinje fibers and ventricular tissue, i.e. a high RPVJ, can 

promote propagation failure in the junction (see Figure 1 panel C). However, an intermediate 

increase of ventricular cellular coupling restores propagation at this junction. Similar 

observations were made by Morley et al., who obtained aberrant propagation through PVJs 

in genetically modified mice.43 Other theoretical studies have approached the evaluation of 

SF in a bundle of Purkinje fiber coupled to normal ventricular tissue,21,44 but the present work 

quantifies for the first time propagation safety in the 1B ischemic ventricular tissue. 

 

C  Reentry in the Purkinje-Ventricle Subsystem 

Under phase 1B ischemic conditions, UDBs and reentry in the Purkinje-ventricle interface 

were observed. The probability of occurrence increased for a low degree of uncoupling within 

the myocardium and at the PVJ. A critical temporal relationship between the worsening of 

ischemic conditions and uncoupling may be the origin of UDBs. Indeed, when [K+]o  

accumulation is not high enough, conduction block does not occur, as can be inferred from 

the trend of the dark green region in Figure 1D-1F. In our 1D ring-shape and 2D models of 

the Purkinje-ventricle subsystem, propagation block occurred under 1B ischemia conditions 

at the PVJ1 and CIZ1B zones. Experiments focusing on action potential propagation from 

Purkinje fibers to ventricle have been performed on isolated cells,45,46 and fiber 

preparations.37,38,47 In a study conducted in Purkinje-ventricular cell pairs coupled with a 

variable resistance Rj , Huelsing et al. observed conduction block from Purkinje to ventricle at 

lower values of Rj than in the opposite direction.46 They reported that uncoupling between 



Purkinje and ventricular cells can enhance the likelihood of UDB. Additionally, Ferrier et al. 

observed bidirectional block in canine Purkinje fiber-papillary muscle preparations perfused 

with an ischemic solution.48 Our simulations complement these reports by confirming the 

important role of uncoupling and ischemic components on conduction block in the Purkinje-

ventricle subsystem. 

Experimental and theoretical studies have also described reentry within ventricular tissue 

alone. Patterson and coworkers observed that during the period of 15-30 min of ischemia, 

ventricular extrasystoles were induced with conduction delays greater than 130 ms in canine 

mid-myocardial tissues.2 They reported a relationship between delayed activation in the 

ischemic mid-myocardium and arrhythmias during phase 1B, and suggested that this 

aberrant impulse was generated by a localized reentry in ischemic mid-myocardium. On the 

other hand, Jie et al. confirmed with computer models that heterogeneous uncoupling 

resulted in dispersion of subepicardial effective refractory period, thus optimizing the 

substrate for reentry generation.49 

In summary, we have further defined the conditions of phase 1B ischemia that can lead to 

conduction block in the Purkinje-ventricle subsystem and gained new insights into reentry 

generation in this setting. We observed that even a small degree of uncoupling between 

ventricular cells, as well as between Purkinje and ventricular tissue, may induce UDB and 

reentry in the Purkinje-ventricle subsystem. In contrast, a more extensive uncoupling can 

facilitate AP propagation. In the setting of phase 1B ischemia, the degree of hyperkalemia 

determines the range of uncoupling in which UDB may be induced. Additional experimental 

studies that analyze the effects of hyperkalemia and uncoupling (individually and combined) 

on reentry generation in the PVJ will be very valuable as a basis for improved understanding 

of arrhythmogenic mechanisms resulting from phase 1B ischemia. 
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Tables 

Table 1. Altered parameters in the model of phase 1B ischemia. These include: the ventricular 
tissue resistance (Rendo), intracellular sodium concentration ([Na+]i), extracellular potassium 
concentration ([K+]o), the parameters involved in the sarcoplasmic reticulum calcium dynamics 
(Grel,CICR, Grel, ov and Iup, bar), the parameters for specific Ca2+ currents (GCa, L, GCa, b and Pns, Ca), a 
constant related to sodium-calcium exchanger current (C1, NCX), a constant related to sodium-sodium 
pump (INaK, bar), the intracellular ADP concentration ([ADP]i), and the intracellular ATP concentration 
([ATP]i). Note that all parameters remain unchanged in the 1B central ischemic zone (CIZ1B) and in 
the normal ventricular zone (NZ). However, the 13 parameters assumed to be altered by phase 1B 
ischemia conditions were altered to reflect a spatial gradient in the border zone (BZ). 
 

Parameter Value in 
NZ 

Value in 
CIZ1B 

Width of the BZ 
(mm) 

Rendo(Ω·cm2) 5 5 - 40 100 

[K+]o(mM) 5.4 5.4 -12 100 

[Na+]i(mM) 10 15 100 

[ATP]i(mM) 6.8 3.8 10 

[ADP]i(mM) 15 110 10 

C1, NCX (mA/mF) 2.5·10-4 1.625·10-4 100 

GCa, b(mS/mF) 3.016·10-3 4.11·10-3 10 

Grel,CICR (ms-1) 150 7.5 100 

Grel, ov (ms-1) 4 2.6 100 

INaK, bar (mA/mF) 2.25 4.5·10-1 10 

Iup, bar (mM·ms) 8.75·10-3 4.5·10-3 100 

PCa, L(cm/s) 5.4·10-4 2.7·10-4 50 

Pns, Ca(cm/s) 1.75·10-7 2.98·10-7 10 

 

  



Figures 

 

Fig. 1. Safety factor calculated along the Purkinje and ventricular fibers. A. SFR in the Purkinje fiber 
coupled to the ventricular fiber under normal conditions. B and C. SFR obtained in the Purkinje fiber 
coupled to the ventricular fiber under phase 1B ischemia conditions. Various combinations of coupling 
between both fibers (RPVJ), of [K+]o, and cellular coupling between endocardial cells (Rendo) were 
considered in the simulations. D, E and F. Simulations of AP propagation and block as a function of 
ventricular cellular coupling (Rendo), [K+]o and Purkinje-ventricle resistance (RPVJ). A 1D model of the 
Purkinje fiber (100 cells) connected to the ischemic ventricular fiber (300 cells) was used. Stimuli were 
applied at cell #0 of the Purkinje fiber or at cell #399 of the ventricular fiber. The white area represents 
the cases where AP propagation from Purkinje to ventricle and from ventricle to Purkinje was 
observed. The light green area represents the cases of AP conduction block from Purkinje to ventricle 
and from ventricle to Purkinje (bidirectional conduction block, BDB). The dark green areas represent 
the cases of conduction block from Purkinje to ventricle and AP conduction from ventricle to Purkinje 
(unidirectional conduction block, UDB). Three crosses are depicted in panel F to indicate three 
scenarios considered in Figure 2. 
 

 



 

Fig. 2. Reentry, collision and bidirectional block (BDB) (from left to right) observed in a virtual 1D ring 
composed of a Purkinje fiber coupled to a phase 1Bischemic ventricular fiber through two Purkinje-
ventricle junctions. Uncoupling within the ischemic zone (Rendo) was increased progressing from panel 
A through panel C. Two stimuli at a basic cycle length of 1500 ms were applied to cell #99 of the 
Purkinje fiber. The APs generated by the second pulse are shown for the indicated cells. [K+]o was set 
to 11.7 mM and RPVJ1 and RPVJ2 were set to 32 and 16 Ω·cm2, respectively. 
 

 

 

Fig. 3. Voltage profiles at selected simulation time points utilizing a two-dimensional model consisting 
of a bundle of Purkinje fibers coupled to a sheet of 1B ischemic ventricular tissue. A. Bidirectional 
conduction block at PVJ1 junction when [K+]o=14.3 mM. B. Reentry in the presence of [K+]o = 14.5 
mM. 
 

 


