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Abstract—Some recent approaches have been presented as simple and highly accurate corner finders in the 

sketches including curves, which is useful to support natural human-computer interaction, but these in most cases 

do not consider tangent vertices (smooth points between two geometric entities, present in engineering models), 

what implies an important drawback in the field of design. In this article we present a robust approach based on the 

approximation to parametric cubic curves of the stroke for further radius function calculation in order to detect corner 

and tangent vertices. We have called our approach Tangent and Corner Vertices Detection (TCVD), and it works in 

the following way. 

First, corner vertices are obtained as minimum radius peaks in the discrete radius function, where radius is obtained 

from differences. Second, approximated piecewise parametric curves on the stroke are obtained and the analytic 

radius function is calculated. Then, curves are obtained from stretches of the stroke that have a small radius. 

Finally, the tangent vertices are found between straight lines and curves or between curves, where no corner 

vertices are previously located. The radius function to obtain curves is calculated from approximated piecewise 

curves, which is much more noise free than discrete radius calculation. Several tests have been carried out to 

compare our approach to that of the current best benchmarked, and the obtained results show that our approach 

achieves a significant accuracy even better finding corner vertices, and moreover, tangent vertices are detected with 

an Accuracy near to 92% and a False Positive Rate near to 2%. 

Index Terms—corner and tangent vertices detection, hand-drawn and sketch segmentation, image object 

recognition, natural interfaces 
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1 INTRODUCTION 

N order to achieve interfaces that support natural human -computer interaction, it is necessary 

to develop intelligent techniques for the automatic recognition of sketches that allow users to 

draw as they naturally would  without any constraints, like introducing the sketches in a particu-

lar order or requiring a previous training by the user to learn a set of specified  symbols or shapes. 

Actually, sketching is an established part of the engineering culture, but current avai lable tools for 

Computer Aided Sketching (CAS) supported  by CAD (Computer Aided Design) applications are 

not yet as usable as paper-and-pencil, owing to the lack of many necessary functionalities and 

flexibility [1]. This work also shows the importance of sketching in conceptual design and 

presents the current state of the art in CAS tools by describing the main features and outstanding 

problems in this topic. 

One important feature that should  be considered  by free-hand sketch systems deals w ith the 

problem/ need/ restriction of drawing complex shapes in a single stroke. In order to support this 

feature, it is necessary to split the stroke into its constituent primitives, what involves the deve l-

opment of techniques capable of finding vertices in the stroke. Once the vertices are found, the 

stretches between vertices could  be approximated  to primitives’ straight lines or curves, hence, 

user intent design could  be captured  maintaining the tangency between lines and curves or be-

tween curves. 

The procedure to find  vertices is so called  finding corners or segmentation process, and  a l-

though some works have been carried  out to find  vertices, the segmentation of sketched shapes 

still remains unsolved because this is a very complex task, as stated  by Company et al. [2].  

Apart from sketch-based systems, poly-line corner find ing is a very powerful tool for other 

types of applications, as Wolin et al. shows in [3]. In this work they developed an algorithm they 

called  ShortStraw to find  corners in strokes and compared the obtained r esults to current baseline 

corner finders. This algorithm was found to be highly accurate in both total correct corners and 

all-or-nothing corner accuracy benchmarks in strokes containing straight lines. Later, this alg o-

rithm was improved by Xiong and La Viola [4], presenting a new corner finding algorithm, IS-

traw, that overcome some limitations and attempted  to reduce the lacks while maintaining the 

I 
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computational complexity. This algorithm also extended ShortStraw to deal with strokes contain-

ing curves and  the obtained results showed significant improvements in all-or-nothing corner 

accuracy compared to ShortStraw. 

Although these works have developed algorithms that offer good results in detecting corners, 

and have been presented  as two of the most accurate and simple compared to other existing m e-

thods, they still present some drawbacks to be solved, as for instance the detection of tangent 

vertices. A proposal that takes into account tangent vertices was presented  by Pu and Gur [5]. 

This is a more complex m ethod compared to previous ones, and uses mathematical cu rves to 

approximate the stroke, considering vertices as those being the minimum set of points that can be 

used  to reconstruct with high accuracy the stroke. This method presents two important inconve-

niences: first, it does not d istinguish between corner vertices and tangent vertices, what is a 

drawback from the point of view of the continuity between parts of the stroke ; second , although a 

high refinement post-process is done, the number of false positive in the detection of vertices is 

very high. 

But, why it is important to detect the tangent vertices (smooth transitions) in the strokes? The 

main motivation for tangent-finding vertices is that the geometry of sketches has to be approx-

imated  to their corresponding primitives in order to create the out -lined  section to later generate 

3D models, models that in most cases have tangent transitions between planar -curved surfaces or 

curved-curved surfaces, what makes essential the detection of the designer in tention in the 

sketches by means the finding of tangent vertices. 

As we will see from related  work, almost all methods presented  find  corner vertices but nearly 

no method is capable of finding tangent vertices (smooth transitions) acceptably in sketches. The 

aim of this article is to present a new approach, TCVD (Tangent and Corner Vertices Detection), 

based  on the rad ius function, calculated  first from differences between stroke points (d iscrete 

radius) and then from the stroke approximation to parametric cubic curves (analytic radius), to 

find  so corner vertices as tangent vertices in sketched shapes including curves, and to obtain a 

recognised  parametric equivalent stroke with the corresponding continuity in the tangent vertices 

found. This method has been compared  to some of the most successfu l ones in the state of the art 

and  aimed to the same objective or easily adapted , such as the already mentioned  ShortStraw, 
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IStraw and the presented  by Pu and Gur. The results of comparison show our technique as the 

most accurate one, and with a few false positives in both corner and tangent vert ices. 

This paper is organised  as follows. In the next section we present an overview of the state of 

the art in techniques to find  corners and segmentation of sketches, includ ing a ju stification of the 

methods chosen for comparison  at the end of the section . A detailed  description of the TCVD 

method is covered  in section 3. Section 4 describes the experimental work carried  out and d is-

cusses this method against other three approaches, including results of the temporal cost of the 

algorithm. Sections 5 and 6 show the conclusions and the expected  further work in this field .  Fi-

nally, at the end of this article, an appendix of the approximation by means of parametric cubic 

curves is provided. 

2 RELATED WORK 

In short, the challenge of replacing conventional pencil and paper sketches with a d igital sketch-

ing environment exists. This new environment must be designed in such a way that it favors a 

natural process that does not hinder the user, while also producing its output in the form of a 

d igital design model that can be reused in the remaining phases of the design process.  

Multiple techniques are used  in sketch recognition to detect or classify regular geometric 

shapes [6-8], handwriting characters [9, 10], fingerprints [11], electric circuits [12, 13], d iagrams 

[14, 15], and other user command gestures. For instance, with a classic linear d iscriminator, Ru-

bine [16] calculated  features in order to classify single-stroke sketches as d igits, letters and basic 

commands introduced in a specific way. Also based on similar features Ayaj et al. [17] d istin-

guished five simple geometric shapes basing their classification on thresholds to the ratio filters 

established. Gross [18] described a prototype for the recognition of glyphs, but his algorithm also 

required  sketching in a strict order. Other features that remain invariant with rotation, such as 

convex hull, perimeter and area scalar ratios, were studied  by Fonseca et al. [19], who used ratio 

values in fuzzy sets to recognize a small set of shapes. Xiangyu et al. [20] and Zhengxing et al. [21] 

recognized simple geometric shapes by calculating the average d istance from the vertices of the 

preset shape to the vertices of the stroke. Willems et a l. [22] established d ifferent feature subsets 

using features as length, average curvature, initial angle, absolu te curvature, number of crossings, 
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area, rectangularity, compactness, etc. up to a total of 48 global features, compiled  from various 

works from the literature and using Support Vector Machines (SVM), Multilayer Perceptrons 

(MLP) and Dynamic Time Warping (DTW) classifiers in order to classify multi-stroke gestures 

obtaining d ifferent performances depending on the subset used . 

In most of these and similar works, the vertices of sketches have to be located , since it is an es-

sential key to recognize or interpret a sketched shape. If we search in literature, we can find  works 

aimed at find ing corner vertices, so called  corners, in figures and sketches. For instance, for de-

tecting corners in d igital objects with curves, Zhang and Zhao [23] uses a boundary-constrained  

morphological method for tilting closed  curves into shapes, and after the morphological residues 

are labeled  as candidates of corner sets, the definitive corners can be obtained by redu cing the sets 

to corresponding isolated  points. The main d isadvantage of this method is that corners are not 

detected  in objects with large d ifferences in their corner sizes, and does not deal with finding 

vertices in smooth transitions. One of the most wide used  techniques is the Gaussian scalespace 

[24, 25], where a set of progressively smoother versions of the shape is generated  by a pplying 

series of Gaussian filters with d ifferent standard . Using the same shapes in two previous works, 

Neumann and  Teisseron [26] detected  corners in two steps after assigning support regions to the 

shape: first, points having higher curvature than the estimated  fluctuations over the support r e-

gion assigned are extracted  as candidates; second, adjacent cand idates are merged  and a final 

elimination of corners on each region is performed . Like the previous work, this method neither 

finds vertices in smooth transitions. Arrebola and Sandoval [27] proposed a method to characte-

rise a curve by means of a hierarchical computation of a multiresolu tion, that is, a successive low-

er resolu tion versions of the same shape, that is processed  using a linked py ramid in order to 

segment and detect contour features, but with many false positive, what makes this method u n-

suitable for the purpose stated  in this article. 

Sezgin et al. [28] search peaks in curvature and speed functions, and found real corners after 

combining the candidate previously found as corners with high curvature and low speed valu es. 

Although some authors as [4, 28, 29] also used  time information to detect corners, its use is not 

extended since the results are not d efinitive about the reliability of this information . Scale based  

approaches have also been used to detect corners in strokes, as in the case of Sezgin and Davis 
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[30] who used scaled  curvature data to remove noise and  locate better the corners. Kim and Kim 

[31] resampled the input to provide constant d istance along the stroke, that is, normalised  the 

stroke, then they calculated  the curvature as the change of d irection at each point and other new 

curvature metrics as local convexity and local monoticity to find  corners . In both works the find-

ing of vertices in smooth transitions is not stated . 

Yu and Hse et al. [32, 33] used  both segmentation and primitive approximation to find  d ivid ing 

points. The segmentation of the stroke consists of breaking down the stroke into its constit uent 

primitives, what implicitly removes the noise from the stroke. In the case of Yu the algorithm  used 

an iterative technique. It recursively tried  to approximate the stroke to a pr imitive, and in the case 

the approximation failed , the stroke was d ivided in stretches, repeating this procedure until all 

the split stretches were approximated  by a straight line or an arc. Other examples of finding ver-

tices can be found in [34] where a stroke is broken down and then its pr imitives can be recognized 

with high accuracy, and after they are recombined using geometrical ru les [35, 36]. 

In segmentation of strokes, the process normally done is first identifying segmentation points, 

then classifying the sub-strokes between each pair of adjacent segmentation points, and finally, 

approximating them to primitives. Examples of works that first segment the strokes before facing 

the corner finding are presented  here. For instance, Sarkar et al. [37] used  genetic algorithms to fit 

d igital curves to line segments and circular arcs. In order to avoid  noise in identifying segmenta-

tion points and to obtain a later homogeneous segmentation in sketches, Zhang et al. [38] first 

extracted  graphical primitives from a stroke by a connected  segment growing from a seed -

segment and then u tilised  relationships between the primitives to refine their control parameters . 

Also with noisy curves, Nguyen and Debled -Rennesson [39] applied  two methods, one based on 

a fixed  parameter that is the width of considered  maximal blurred  segments, and  other one (d e-

duced from the previous one) based  on a multi-width approach to obtain a non-parametric ap-

proach without thresholds. In this case the curves are always fitted  to several lines what makes 

this method just limited  to find  corners. Wolin et al. [3] built a simple and effective corner finder 

for strokes composed only by straight lines. They called  t his algorithm ShortStraw, which was 

later modified  by Xiong and La Viola [4] with their IStraw  to allow the strokes containing curves. 

Although none of the two methods are aimed to find  smooth transitions, that is, tangent vertices, 
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their results in finding corners are highly satisfactory compared to the rest of works found in 

literature, and the second one, IStraw, present results on sketches including curves. Besides, both 

ShortStraw and IStraw can be easily implemented , what made us decide for comparing them to 

our method. 

Thus, Qin et al. [40] presented  an on-line procedure based  on heuristic adaptive thresholds (lo-

cal thresholds depending on drawing speed) used  in all stages of the procedure, even in the su b-

sequent refinement processes. They first remove close points, then obtain corner vertices as max-

imums of d irectional deviation, later d ivide the stroke in spans or stretches between consecutive 

corners, and  finally obtain tangent vertices as changes in the sign of curv ature. Apart from using a 

lot of thresholds, they do not avoid  the noise effects and use for the evaluation a poor and limited  

data set: only 22 sketches, without features of engineering drawings that include tangent vertices 

between straight lines and curves, so there is not any ind icator to assess the method proposed. 

As we have seen from this state of the art, m any research works ju st deal with polyhedral 

models (i.e. [1]) or reconstruct 3D models from simple sketches of isolated  lines or arcs (i.e. [41]), 

because the main lack of obtaining curved models from sketches, necessary in most of engineer-

ing models, is that segmentation algorithms are not cap able of detecting smooth transitions from 

straight lines to curves or between curves, and those that try to detect this kind  of transition s are 

not robust, mainly due to the bad results obtained or to the high number of false positives they 

reach. In this respect, Pu  and  Gur [5] try to find  this kind  of smooth transition points in a reasona-

bly robust way using radial basis functions. The per formance of their algorithm is quite promis-

ing, but, as they say in their conclusions, further improvements and refinements have to be done 

in order to reduce the false positive rate using other approaches because it still remains very high 

(about 25%). 

The new approach presented  here intends to solve this problem, providing a high accuracy d e-

tection of this kind  of vertices, with a low false positive ratio and without any refinement, so ca p-

turing the intent design of the user in order to allow the further creation of 3D models with tan-

gent surfaces. Given the impossibility of implementing all methods, and in order to give objective 

results of the high accuracy of the presented  method in the detection of vertices, it has been com-

pared  to the current best benchmarked  in finding corners and tangent vertices, selecting three 
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methods from the stated  art presented  here: ShortStraw, IStraw and Pu&Gur methods.  Short-

Straw has been selected  due to its high ratio of success in finding corners , and IStraw since it im-

proves the accuracy of ShortStraw in finding corners and also deals with shapes including curves. 

Other advantage is that both methods are easy to implement and have simple complexity com-

pared  to other existing ones. Pu&Gu, however, has a higher complexity, but is the only method 

found aimed at finding tangent vertices. Its complexity is higher and so it has not been imple-

mented , thus the comparison is relative. In the next sub-sections the three methods selected  are 

described briefly. 

2.1 ShortStraw 

In 2008, Wolin et al. introduced ShortStraw [3], “a simple and effective corner finder for po ly-

lines” achieving a high accuracy finding corners in polyline strokes, that is, strokes without 

curves. ShortStraw uses first a bottom -up approach to obtain the initial corner set, and then a top -

down approach to find  missed  corners and remove false positives. ShortStraw consists of several 

steps. The first step is to resample the points of the stroke to be evenly spaced. The next step is to 

obtain the “straws”. A straw for  each resampled point ip  is computed  as: 

WiWii ppstraw ,     (1) 

Where W  is a constant window set to 3, and the expression | pi-W,pi+W|  is the Euclidean d istance 

between the points pi-W and  pi+W. Once the straws have been calculated , the initial corner set con-

sists of all the local minimums below a threshold  based on the median straw value.  

After obtaining the initial corner set, the top -down approach refines this set by means of a line 

test: two corners at indices a and  b pass the line test if their Euclidean d istance and their path 

d istance (the sum of Euclidean d istances between the resampled points) are relatively equal.  

This test is applied  first to find  missed  corners: if the line test between two consecutive corners 

fails, a new corner is added at the point with the minimum straw value between them. This 

process is repeated  until no more corners are added. After, this test is applied  to remove false 

corners: for each corner, if the line test between the two corners ad jacent to it i s positive, the cen-

tral corner is removed. This process is repeated  until no more corners are removed. 
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2.2 IStraw 

IStraw [4] was presented  in 2009 by Xiong and La Viola as a review of ShortStraw and included 

some improvements on it. These improvements were the addition of an extension for dealing 

with strokes that contain curves, the use of speed information (because users slow down on co r-

ners) to find  corners, and other improvements such as dynamic thresholds.  

The main improvement of IStraw is the curve test to remove false corners that app ear in 

curves. The curve test (Fig. 1 left) is based  on the d ifferent angles between a wrong corner (C i) 

located  on a curve, and two pairs of resampled points (A-B and  D-E). The indices of A , B, D and  E 

(determined empirically) are i-shift, i+shift, i-(shift/3) and  i+(shift/3), where shift=min(15,Ci-Ci-1,Ci+1-

Ci), being Ci-1 and  Ci+1 the previous and the following corners to Ci respectively. Ci is a correct cor-

ner if ( - )<ta, where the threshold  ta=10+800/ ( +35º) depends on the angle  (because -  in-

creases if  decreases) and it is determined empirically. 

 

Figure 1. Difference between a false corner on a curve (left) and a correct corner between two 

straight segments (right) 

2.3 Pu and Gur method 

Pu and Gur [5] presented  in 2009 their method that uses some mathematical approach to the 

stroke to obtain its vertices. These are the main features: 

 First, they do an approximation by using “radial basis functions” (RBFs). 

 The vertices are located  at the points necessary for the RBFs to fit the stroke. For this rea-

son, they do not d istinguish between corners and tangent vertices (a very important key). 

It is evident that neither straight lines nor curves are found  and fitted  to the stroke. 

 Like ShortStraw and IStraw, performs an intensive post-process to refine the initial set of 

vertices. Even though, the false positive ratio is very high. 
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3 THE TCVD METHOD 

As mentioned in previous section [28, 31], a common way for finding corners in strokes consists 

of looking for peaks of maximum curvature in absolu te value, where curvature is calculated  as 

the change of d irection at each point. Instead  of using the curvature, we use the radius (which is 

the inverse of the curvature). Although curvature has been widely used  in recognition tasks, the 

radius gives us an advantage over curvature: its meaning is more intu itive than the curvature, 

and allows setting better the value of thresholds, that is, with radius we know better the meaning 

of the threshold . Specifically in our case two thresholds have been fixed , a smaller one for corner 

vertices and a larger for arcs or curves, as shown in Fig. 2. 

 
Figure 2. Radio values of a sample of a shape (high values of radio are not represented)  

However, both the d iscrete rad ius and  the curvature are n ot stable in hand -drawn sketches. 

Let’s analyze the noise due to raster effects. Fig. 3 shows, from top to bottom: a) the same stroke 

in Fig. 2 with an arc and a corner vertex with coordinates obtained by arc and line analytic equ a-

tions; b) the d iscrete radius function obtained from the points of the stroke in integer coordinates 

even with some smoothing; and c) the d iscrete radius function with the same smoothing from the 

points of the stroke in real coordinates. As we can see, the corner vertex is a well defined peak of 

minimum radius in both cases, but the d iscrete radius function for the arc has a lot of noise due to 

aliasing raster effects (Fig. 3b). 

 
a) b) c) 

Figure 3. Raster effects in sketching: a) stroke with coordinates obtained from analytical form; 
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b) noise in the d iscrete rad ius function from points in integer coordinates from form above even 

with some smoothing; and c) d iscrete radius function without noise from points in real coord i-

nates from analytical equations 

To avoid  noise due to aliasing raster effects and d iscontinuities in radius of curves (see Fig. 4), 

we obtain a piecewise parametric curve approximation of the stroke, and calculate the radius 

function from the mathematical expressions of the parametric curves in order to segment the 

stroke (get the entities in the stroke keeping the points of tangency between them). This approxi-

mation is very similar to that performed by Bein et al. [42], but in this case they fit the stroke to 

curves to describe best its shape in their 3D modeling system , and we use the approximation to 

obtain the radius more precisely. 

 
Figure 4. Difference between d iscrete radius obtained from differences with high smoothing 

(red), and analytic radius obtained from mathematical expressions of parametric curves (blue) for 

the arc of Fig. 2 

On the other hand, is not recommendable to perform the approximation by means of param e-

tric cubic curves before to obtain the corner vertices, since the major error in approximation is 

always for that kind  of vertices (because we are obtaining smooth transitions for corners), d istort-

ing their radius values. 

Previous to explaining in deep the method, the algorithm of the TCVD segmentation method  is 

presented  (Fig. 5). This algorithm has six d ifferentiated  parts (each inside a rectangle). On the 

right side of the figure appear graphical examples to illustrate the process carried  out in each part 

of the algorithm. 
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Figure 5. The flowchart algorithm of the TCVD method  and radius functions 

Next appears an exhaustive explanation of the steps of the TCVD segmentation method  that in-
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cludes the input, the output, a short description and the implementation of each step . Later, table 

2 shows a compilation of the parameters (and its optimized values) for the TCVD. 

3.1 Computing the discrete radius function 

Input: the sketched stroke as a list of m points at d ifferent d istances introduced by means of a 

graphical input device. 

Output: consists of a vector of n evenly spaced points, which will replace the original stroke from 

now on, and a vector of n points with the radius calculated  at each point, in an approximate way, 

by d ifferences between neighbouring points. 

Short description: first, the d igitised  stroke is resampled  so that all points are evenly spaced and  

smoothed  by a Gaussian filter to reduce the noise. After, the tangent vector at each point is 

calculated  from differences between coordinates of its neighboring points, then the curvature at 

each point is obtained from differences of the tangent angle between neighboring points, and  

finally the radius at each point is calculated  as the inverse of the curvature. 

Implementation: 

In order to compute the d iscrete radius function, some steps have been carried  out.  

Like ShortStraw and IStraw, we resample the m points of the stroke where s (INTERSPAC-

ING_DISTANCE) is the d istance between resampled points. After resampling, the n resampled 

points of the stroke are evenly spaced: 

1,0,
,...,,
,...,,

110

110 ni
yyyy
xxxx

n

n     (2) 

The resampled points (xi,yi) are smoothed with a Gaussian filter (3) to reduce the effects of 

noise in the following calculations of d irection, curvature and radius, where wf (FIL-

TER_WINDOW) is the window used for the filter. 

wfwfhef wf
h

h ,,
2

2

2     (3) 

The smoothed points (xfi,yfi) are obtained by d iscrete convolution of the resampled points with 

the Gaussian filter, d ivid ing each point by the sum of filter values (4). 
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The tangent at a point (xfi,yfi) is calculated  from the d ifferences of coordinates between the end 

points of a window, with  wt (DIRECTION_WINDOW) size  centered  on it (5). The stroke d irec-

tion i at a point (xfi,yfi) is the computed  tangent angle in (6). 

swt
yfyfyf
swt

xfxfxf

wtiwti
i

wtiwti
i

2
'

2
'

    (5) 

wtiwti

wtiwti

i

i
i xfxf

yfyf
xf
yf arctan

'
'arctan     (6) 

The tangent angle is in the range [-π,π] and can present d iscontinuities between consecutive 

values due to the cyclic properties of angles, so a correction of angle values is done using prev ious 

values: 

 While [(αi - αi-1)<(-π)] do (αi αi + 2·π) 

 While [(αi - αi-1)>(π)] do (αi αi - 2·π) 

The curvature ci at a point is calculated  from the d ifferences of d irection angles between the 

end points of a window, with wc (CURVATURE_WINDOW) size centered  on it (7). Finally, the 

radius ri is the inverse of the curvature (8). 

swc
c wciwci

ii 2
'     (7) 

i
ir '

1
    (8) 

Figure 6 shows the d iscrete d irection, curvature and radius function of shape in Fig. 2. 
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Figure 6. From top to bottom: stroke d irection (corrected  to avoid  d iscontinuities), curvature 

and radius d iscrete function from shape in Fig. 2 

3.2 Detection of corner vertices 

Input: a vector with a stroke of n evenly spaced points and a vector with the radius calculated  at 

such points.  

Output: a vector of n points that will contain all the corner vertices, considering the first and the 

last point of the stroke corners. This vector is called  vector of entities and will contain the type of 

entity for each point (straight line, curve, corner vertex and  tangent vertex) at the end of the 

process of the TCVD algorithm . 

Short description: the corner vertices are located  at points with  local minima of the radius, and  

with a radius sufficiently smaller than the points of its environment. 

Implementation: 

The corners are located  at peaks of minimum radius in absolu te value, that is, in points with 

the maximum curvature or maximum variation in stroke d irection. Those local minimums will be 

(in absolu te value) below a parameter set to a maximum value (MAX_CORNER_RADIUS). These 

points are corners if the minimum radius is much smaller than the radius located  on its sides. We 

obtain (only for radius with the same sign) the average radius in the NEIGHBORING_WINDOW 

previous points, and the average radius in the same subsequent points. The ratio of both average 

radius and the minimum rad ius must be greater than a specific value (MIN_RADIUS_RATIO ). 

Besides, the initial and end points of the stroke are always considered  corners. 
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Figure 7. Corner vertices drawn in green: initial stroke point, obtuse angle, sharp angle and 

end stroke point. Positive radio values for right turns and negative for left turns  

3.3 Piecewise parametric curves approximation 

Input: the vector of evenly spaced points and  the vector of entities just containing the corner 

vertices. 

Output: several piece-wise cubic curves (the number of corner vertices minus one) that 

approximate, each one, the points between pairs of corner vertices. 

Short description: the resampled points between pairs of corners are approximated  by means of 

piece-wise cubic curves until the d istance from every approximated  point to the resampled  point 

does not exceed a threshold . If the d istance is greater, the sequence of points is halved  and the 

process is subsequently applied  to the two sides, forcing two curves to have the same tangent at 

the common point (the central point when the previous sequence is d ivided).  

Implementation: 

The approximation of resampled points prj=(xrj,yrj), by means of parametric cubic curves has as 

a main goal the more accurate calculation of radius values in order to obtain the stroke curves .  

A parametric cubic curve consists of two polynomial equations of 3rd degree, for x and  y coor-

d inates each. The two polynomial expressions have 4 coefficients each (in total 8 degrees of fre e-

dom) and depend on a parameter t, whose value is set to 0 at the beginning of the curve and to 1 

at its end. The expressions of a parametr ic cubic curve and its first derivative are the following: 
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The curve must approximate as much as possible to each of the resampled points, that is, it is 

expected  that for each point prj=(xrj,yrj), exists a tj to accomplish: 
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To avoid  errors in corner vertices (as said  in 4), we approximate resampled stroke points to p a-

rametric cubic curves between pairs of corner vertices. These curves have the constraints of pas s-

ing through initial and final corner vertices and approximating the points between them. In the 

case that the approximated  curve overcomes the parameter of maximum distance 

(MAX_DISTANCE) to any of the resampled stroke points, the sequence of points to approximate 

is then half d ivided and two constraints for the two approximated  curves are added: 1) both 

curves have to pass through the middle point; and 2) there must be first order continuity (equal 

d irection of tangent in the middle point) in order to accomplish soft tra nsition. 

As this process can be applied  several times, we can obtain four d ifferent ways to approximate 

a sequence of points by mean a parametric cubic curve (see Table 1), depending on the constraints 

it must accomplish. 

Table 1. Constraints to be accomplished by curves 

The curve passes through The curve has the tangent at  
Initial point Final point Initial point Final point 

X X   
X X X  
X X  X 
X X X X 

 

When a sequence of points to approximate is d ivided, the tangent in the midpoint (first deriv a-

tive) is calculated  from the d iscrete stroke d irection in that point: 

)sin('
)cos('

jj

jj

kyr
kxr  (11) 

Where k is the module of the tangent vector, which is leaved free in order to the least square 
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system obtains the value that bests su its the resampled points, for calculated  value of tange nt. 

In the appendix, the approximation process is described in detail. 

As we can see in Fig. 8 (right), with the valued used  for MAX_DISTANCE, the d ifference be-

tween the resampled points and the approximated  points is worthless, and also noise has been 

removed. 

 

Figure 8. Resampled points of a stroke (red ) and piece-wise parametric cubic curves approxi-

mation (blue). From left to right, with 1, 2 and 3 parametric cubic curves  

3.4 Computing the analytic radius function 

Input: the piece-wise cubic curves. 

Output: a vector of n points with the radius, for each point of the stroke, calculated  by means of 

derivative of the piece-wise cubic curves. 

Short description: the tangent vector at each point is calcu lated  from derivative of piece-wise 

cubic curves, then the curvature at each point is obtained from derivative of the tangent angle, 

and  finally the radius at each point is calculated  as the inverse of the curvature. 

Implementation: 

The stroke d irection α(t) is the angle of the stroke tangent, where the tangent was obtained by 

means the derivative in each point of the stroke with the corresponding parametric cubic curve 

with the parameter tj: 
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Similar to the d iscrete case, the angle values of the α(t) function are corrected  to avoid  d isconti-

nuities.  

The stroke curvature c(t) is the variation of the d irection in each stroke point, when the angle 

changes greatly, the higher is the curvature value. The curvature is the quotient of the derivative 
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of the tangent by the corresponding parametric cubic curve length. α’(t) is the derivative of the 

tangent angle to the stroke, obtained by means the derivative in each point of the stroke with the 

parametric curve with the corresponding parameter tj. 
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Where (k-1)·s is the length of the parametric cubic curve, since s is the d istance between resam-

pled  points and k is the number of resampled stroke points the curve approximates. So, the first 

and second derivatives of the parametric curve are: 

tdcty
tdctx

tdtcbty
tdtcbtx

yy

xx

yyy

xxx

62''
62''

    
32'
32'

2

2  (14) 

The stroke radius r(t) is the inverse of the curvature. In order to get rid  of d ivisions by zero, 

when the absolu te value of the curve is lower than a minimal, the radius is set to a high value 

sharing the curvature sign. 
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Fig. 9 shows the d ifference between d iscrete and analytic radius, and also the d ifference b e-

tween the centers of rotation for each stroke point. The centers of rotation are obtained  perpe ndi-

cular to the d irection of the stroke at a d istance equal to the radius. As we can see, with analytic 

functions, the rad ius values are smoother, and this can be seen clearer in the pos ition of centers. 
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Figure 9. Radius and centers of rotation for the same example in Fig. 8: a) d iscrete (red) and 

analytic (blue) radius; b) centers of rotation (brown) for each point of the stroke calculated  by 

means of d iscrete d irection and rad ius; c) same as b) calcu lated  by means of analytic d irection and 

radius 

3. 5 Detection of lines and curves 

Input: the vector with the radius at each point, calculated  from the piece-wise cubic curves, and  

the vector of entities just containing the corner vertices. 

Output: the vector of entities that contains for each point whether it belongs to a stright line or a 

curve depending on its radio. 

Short description: a point lies on a curve if the rad ius at that point is less than a threshold , other-

wise the point belongs to a straight line. Therefore, a sequence of consecutive curve points is 

definitely a curve if the d istance between the points and the straight line from first sequence point 

to last one is greater than a threshold . 

Implementation: 

The curves are located  in stretches of stroke points whose radius values have the same sign 

and their absolu te value is lower than a specific value (MAX_CURVE_RADIUS). Curves are con-

sidered  as circle arcs for calculations, so the descriptors/ features for curves are the following: 
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 Curve: sequence of consecutive stroke points whose radius values (obtained from equ a-

tions of parametric cubic curves) are lower than  MAX_CURVE_RADIUS. 

 Radius: the median of the radius of curve points. 

 Length: number of curve points multiplied  by the interspacing d istance. 

 Angle: Length /  Radius. 

 Distance from chord  to arc (see Fig. 10): Radius·[1 – cos (Angle /  2) ]. 

 

Figure 10. Distance from chord  (red) to arc (blue) 

The stretches candidate to be curves will be in the case their d istance from chord  to arc was 

higher than a specific value (MIN_DIST_CA). The stretches that are not curves are considered  as 

straight lines. 

 
Figure 11. Shape with curves (blue) and straight lines (red ) separated  by corner vertices. 

Curves are numbered from 1 to 4. The values of radius for curves are below 

MAX_CURVE_RADIUS 
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3.6 Detection of tangent vertices 

Input: the vectors with radius and entities at each point of the stroke. 

Output: the vector of entities also containing the tangent vertices. 

Short description: the tangent vertices are located  at points of transition from straight lines to 

curves (and vice versa), and  at points of transition between curves of radius with d ifferent sign, if 

corner vertices are not previously placed in such transitions. 

Implementation: 

After obtaining the corners, curves and straight lines, the tangent vertices can be located  in 

transitions (without corner vertices) between straight lines and curves, or between curves. But 

first to location of tangent vertices, a brief consideration is done: the straight lines with a length 

lower than a value (MIN_LINE_LENGTH) are converted  to curves if they are besides a curve and 

no corner vertex is in between. In the case that a line stretch has curves on both sides, it is equally 

shared  out between both curves. 

Then the tangent vertices are located  at (see Fig. 12): 

 Changes from a lined  stretch to a curved stretch, and from a curved stretch to lined  

stretch, with no corner vertex in between. 

 Changes from a curved stretch to another curved stretch with no corner vertex in b e-

tween. In this case the tangent vertex is located  in an inflexion point (that  is, in a point 

where the sign of curvature and rad ius function changes) and it is usual to detect a small 

straight line between the curves. As mentioned before, if this line is shorter than the men-

tioned threshold , it is added to the curves (half to each one) placing the tangent vertex in 

the middle. 
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Figure 12.Tangent vertices (d rawn in cyan) between curves and straight lines, and between two 

curves. The background of radius function is blue for curves and red  for straight lines  

4 EXPERIMENTAL WORK 

In order to evaluate our method we have used  a data set of 17 d ifferent shapes, which consists of 

the 11 polyline strokes in [3] (Fig. 13), and 6 curve strokes (see Fig. 14) which contains features of 

engineering drawings such as tangent vertices, that appear in 3 of them. All of them are open 

shapes, and the first and last points of the stroke are always considered  as corner vertices . Both 

Fig. 3 and Fig. 4 show the out-lined  models of the d ifferent shapes used . 

 
Figure 13. Strokes with straight lines (drawn in red) and corner vertices (drawn in green) 
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Figure 14. Strokes with straight lines (drawn in red), curves (drawn in blue), corner vertices 

(drawn in green) and tangent vertices (drawn in blue cyan) 

We collected  data from 8 d ifferent users, and each user d rew 6 times each shape (816 strokes). 

Users were not given any indication about the accuracy, so each one drew the strokes on their 

way. The sketched shapes collected  are available in the following address: 

http:/ / personales.upv.es/ maalbor/ Files/ Data-set.rar 

The parameters used  in TCVD were optimised  by means of Simulated  Annealing algorithm  in 

order to achieve best results, process that is explained in detail in a previous work [43]. Simulated  

Annealing [44] is a well known optimization method, which allow s us tuning the parameters to 

improve segmentation results (especially when the parameters depend on each other). The tuning 

of parameters has been formulated as an optimization problem where the function cost is expressed  as 

the number of errors in the segmentation of the training set. The result of several processes 

carried  out by simulated  annealing optimization shows the need for the Gaussian filter to remove 

noise, although it adversely affects the corners (see figure 3). Should  also be noted  that the 

maximum radius of the curves is directly dependent on the size of the drawing area (800x500 pixels in 

our test application). 

For the determination of the optimal parameters, a training data set with 136 strokes (8 per 

shape) was used , and the remaining 680 were used  as test data set. The training is an off line 

process, so the temporal cost of the convergen ce of the algorithm does not affect the temporal cost 

of the TCVD algorithm . This temporal cost has been of 10 ms per shape using a computer with an 

Intel Core 2 Duo E8400 3.00GHz and Windows XP, where the 86 % is for the step 3 (piecewise 
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parametric curves approximation), the 11 % is for step 1 (computing the d iscrete radius function) 

and the remaining 3 % is for the rest of the algorithm. 

The optimised  parameters are shown in table 2, and these values are d irectly set in the TCVD 

algorithm: 

Table 2. Parameters of the TCVD algorithm  

TCVD Parameters Description Value 
from SA 

INTERSPACING_DISTANCE Interspacing d istance between resampled points 2 
FILTER_WINDOW Window size for Gaussian filter  10 
DIRECTION_WINDOW Window size for stroke d irection calculation  8 
CURVATURE_WINDOW Window size for stroke curvature calculation  2 
MAX_CORNER_RADIUS Maximum radius for corners 60 
NEIGHBOURING_WINDOW Window size for corners neighbouring 10 
MIN_RADIUS_RATIO Minimum ratio between radius of corners and its 

neighbouring 
1.4 

MAX_DISTANCE Maximum distance between resampled points 
and parametric curve approximation 

5.0 

MAX_CURVE_RADIUS Maximum radius for curves 400 
MIN_CURVE_DIST_CA Minimum distance from chord  to arc (curve) 10.6 
MIN_LINE_LENGTH  Minimum length of a straight line 45 
 

As stated  before, as almost all methods in literature do not find  tangent vertices (smooth tran-

sitions), in order to evaluate our method we have chosen the three most relevant and recent m e-

thods in this subject, where properties of two of them are the simplicity and the high accuracy in 

the corner vertices detection in sketches with curves (ShortStraw and IStraw methods), and the 

third  of them relative to tangent vertices (Pu and Gur m ethod). 

Then, for comparison we tested  an implementation of ShortStraw and IStraw, and also com-

pare results with Pu and Gur method. As the implementation of IStraw presented  several draw-

backs with dealing to our test data set, we made some corrections to achieve best results, being 

the most important one d ispensing with time info because the number of errors increases when 

the initial corner set is made up of both, straws and time info. 

The results can be found in  Table 3 and 4 (only for the 440 strokes without curves) and Table 5, 

6 and 7 (for all the 680 strokes in the test data set). These results are expressed  in the same mea s-

ures than ShortStraw and IStraw: “Correct Corners Accuracy” and “All-or-Nothing Accuracy”, 

the first is equal to the number of correct vertices found d ivided by the total number of vert ices, 

and the second is equal to the number of correctly segmented  strokes (without false positives or 
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false negatives) d ivided by the total number of strokes. The “All-or-Nothing Accuracy” measure 

is the most significant because it takes false corners into account. In order to test separately the 

importance of false positive, it has been added the “False Positive Rate” which is the number of 

false positives d ivided by the total number of vertices. 

Table 3. Accuracy results for 440 polyline strokes (without curves or tangent vertices) 

 ShortStraw  IStraw  TCVD  
False Positives 31 3 0 
False Negatives 23 62 3 
Correct Corners 3457 3418 3477 
Total Corners 3480 3480 3480 
Correct Corners Acc. 99.3% 98.2% 99.9% 
False Positive Rate 0.9% 0.1% 0.0% 

 
Table 4. All-or-nothing accuracy results for 440 polyline strokes (without curves or tangent ve r-

tices) 

 ShortStraw  IStraw  TCVD  
All-or-Nothing Acc. 89.8% 91.4% 99.3% 

 
Table 5. Accuracy results for 680 polyline and curve strokes (corner vertices) 

 ShortStraw  IStraw  TCVD  
False Positives 1525 400 12 
False Negatives 24 125 6 
Correct Corners 4616 4515 4634 
Total Corners 4640 4640 4640 
Correct Corners Acc. 99.5% 97.3% 99.9% 
False Positive Rate 32.9% 8.6% 0.3% 

 
Table 6. Accuracy results for 680 polyline and curve strokes (tangent vertices) 

 ShortStraw  IStraw  TCVD  
False Positives --- --- 4 
False Negatives 170 180 16 
Correct Tangent Vertices 30 20 184 
Total Tangent Vertices 200 200 200 
Correct Tangent Vertices Acc. 15.0% 10.0% 92.0% 
False Positive Rate --- --- 2% 

 
Table 7. All-or-nothing accuracy results for 680 polyline and curve strokes 

 ShortStraw  IStraw  TCVD  
All-or-Nothing Acc. 58.1% 63.5% 96.6% 

 
Finding corner vertices on polyline strokes, TCVD reaches higher all-or-nothing accuracy 
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(99%) than both ShortStraw and IStraw, which is already a good result (90%). ShortStraw is not 

ready for dealing with curves and obviously the accuracy decreases when the strokes contain 

curves (many false corners appear). The IStraw curve test removes many of these false corners but 

also some correct corners, what makes the final results are not much better than ShortStraw, and 

whereas accuracy remains high on TCVD (96%) largely because the number of false positives is 

very low. 

TCVD finds most of the tangent vertices (92%) including few false tangent vertices. Neither 

ShortStraw nor IStraw look for tangent vertices, although they find  some false corners near ta n-

gent points, because the tolerance of position must be high. 

Relative to Pu and Gur method, they use complex shapes that are drawn either by hand or 

with CAD applications. Only a very small set of 30 hand -drawn figures is u sed  for their tests. It 

must be noted  that many of them are not able to be drawn at once, that is, there are complex 

shapes that normally are drawn by a designer in several steps (or strokes), raising the pen when it 

is needed and drawing again to get on with it. Moreover, our operating mode is on line, that is, 

the recognition is performed while drawing, and not off line (like Pu and Gur that work with 

scanned complete shapes), and therefore the comparison is relative. 

Table 8 shows the results of this relative comparison. As Pu and Gur do not use the “All-or-

Nothing Accuracy”, these results are expressed  in: “Correct Corners Accuracy” (number of co r-

rect vertices found d ivided by the total number of vertices) and “False Positive Rate” (number of 

false positives d ivided by the total number of vertices). 

Table 8. Percentage of correct and wrong vertices (corner and tangent altogether) 

 Pu and Gur 
(CAD) 

Pu and Gur 
(Hand-drawn) TCVD  

Correct Vertices Acc. 99.2% 97.8% 99.5% 
False Positive Rate 24.5% 24.5% 0.3% 

 
According to the values in the Table 8, the Correct Vertices Accuracy is very similar, but TCVD 

has a much better False Positive Rate. The high number of false positives has a negative effect in 

All-or-Nothing Accuracy, what makes the m ethod powerless and causes a stressfu l effect on the 

user. In addition, Pu and Gur do not d istinguish between corner and tangent vertices (what is an 

important point), because they do not d istinguish between straight lines and curves. Besides it is 



28 

odd that the False Positive Rate is the same for CAD drawings and hand drawings. Finally, note 

that like ShortStraw and IStraw, Pu and Gur method performs an intensive post -process. 

On the other hand, analyzing TCVD, we can see that many missegmentations are due to the 

users were not given any ind ication about the accuracy in drawing the  shape, therefore some of 

the strokes have poor quality and it is easy to confuse corner vertices with curves of small radius 

(Fig. 15 a-row), and straight lines with curves of large radius (Fig. 15 b-row). For shapes in seg-

mentation column the straight lines are in red  and curves in blue colour. 

 Suggested  shape Sketched shape Segmentation 
a) 

 
b) 

 
Figure 15. Poorly segmented -drawn strokes 

The limitation of this method remains dealing with the following aspects: 

 The size of the straight lines and curves that contains the stroke should  be sufficient. In 

other words, strokes with small parts can be a problem. 

 Curves with very large radius may be confused with straight lines. As mentioned before, 

the maximum radius of the curves depends on the size of the drawing area. 

 Like other methods, it should  be advisable for the user to draw thinking about what 

he/ she makes: stopping at corners (to change the d irection and to avoid  confusion with 

curves of small radius), not stopping at tangent vertices (to avoid  changing the d irection 

abruptly), and d rawing straight lines and curves where appropriate (for example, in Fig. 

15 b-row we can see the suggested  shape on the left, the drawn shape on the center -
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where a curve has been extended to include a line- and on the right the segmentation 

with a largest curve instead  of a curve followed by a straight line). 

5. CONCLUSIONS 

TCVD is an important improvement in the field  of free-hand sketches recognition , being the main 

contribution of this method the detection of tangent  vertices in strokes. The accuracy of TCVD 

obtaining corner vertices is higher mainly because it has very few false positives, but also TCVD 

is able to find  curves and straight lines, which allows obtaining tangent vertices between curves 

and between curves and straight lines, even with very few false positives. 

As Fig. 16 shows, the conclusions of this method regarding to radius calculations and vertices 

detection are mainly the following: 

 The approximation of the stroke by parametric cubic curves allows obtaining analytically 

the radius, eliminating most of the noise and keeping the shape of the stroke. The curv a-

ture radius stabilize and consequently so do the curvature centers (Fig. 16a,b,c,d  left). 

 The lack of continuity in the radius of parametric curve is due because in order to main-

tain the enough degrees of freedom for the curve to fit the stroke, just continuity of d ire c-

tion is fixed , so no curvature continuity is availed  (Fig. 16a left). 

 With respect other finding corners, which perform an intensive  post-process, TCVD fo-

cuses on obtaining a good initial corner set by means of the radius function with no lon g-

er post-process. 

 TCVD allows detecting the change in the radius of hand -draw arcs. If the arc is tangent to 

straight lines, the radius is very high next to the straight line (which has an infinity r a-

d ius) and decreases as it approaches the center of the arc (see the centers position in Fig. 

16c right). On the other hand , for isolated  arcs, the radius increases as it approaches the 

center of the arc (see the centers position in Fig. 16d right). 

 Radius function  Sample of sketch with its original 
radius values Radius Calculation 
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a) 

 
b) 

 
c) 

 
d) 

 
Figure 16. Left column: radius function from original sketched points (red ) and from appro x-

imated  parametric cubic curves (blue); Central column: radius from original sketched  points 

represented  (brown); Right column: radius from approximated  parametric cubic curves 

represented  (brown), of d ifferent samples of sketches a), b), c) and d ) respectively  

 

TCVD also proves that sketch recognition can get a lot of good from the approximation to p a-

rametric cubic curves, since most of tangent vertices not found by other methods in literature, can 

be found with a high accuracy, and consequently, the intent design of tangency can be captured  

in order to out-line further the sketch into a parametric CAD application. 

6. FUTURE WORK 

The main improvement is to perform the necessary extensions to deal with closed  shapes, detect-
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ing when the first and last points of a stroke are very close, and considering that there is continu i-

ty between them. 

A possible improvement could  be to process multistrokes in order to have continuous shapes if 

they match some cond itions, so further extrusions can generate intended 3D models. But a t this 

stage the role of TCVD is just to segment single strokes. The multistroke processing is a task that 

could  be performed in higher levels by using TCVD. 

Appendix. Approximation by means of parametric cubic curves using least squares 

As mentioned in section 3.3, the curve must approximate as much as possible to each of the re-

sampled points, that is, it is expected  that for each point prj=(xrj,yrj), exists a tj to accomplish (10). 

Repeating the previous expressions for x and  y coordinates of every resampled point, two li-

near equation systems are made, one for the x and  other for the y coordinate. Each system has 4 

unknown variables (the coefficients a, b, c and  d) [45]. It is usual that the number of points to ap-

proximate is more than 4, so the systems are over-constrained and to solve them for the better 

approximation solu tion to the m resampled points it is necessary to use the minimum least 

squares method. 
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In a matrix form the expressions remains as following: 
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The values of the parameter tj for every resample point prj are unknown and are calculated  on 

an approximated  way supposing that are proportional to the d istances between resampled points:  

 Assign to the first resample point (pr0) a d istance: d0 = 0 

 Assign to each other points (prj) the Euclidean d istance to its previous point (prj-1): dj =| |  

prj- prj-1 | |  

 Obtain the accumulate d istances (daj) of each prj to pr0: daj= d0 + d1 +...+ dj 
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 Obtain the parameter values proportionally to the d istances: tj= (daj / dam-1) 

 

All the previous restrictions subtract freedom degrees to the parametric curves, that is, reduce 

the number of param eters and in consequence, the number of unknown variables in the equation 

systems. The restrictions are: 

 The curve passes through the initial point (2 degrees of freedom are taken away, but we 

can remove from the least squares system the equation of approximation to the initial 

point): 
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 The curve passes through the final point (2 degrees of freedom are taken away, but we 

can remove from the least squares system the equation of approximation to the final 

point): 

11
32

11
32

1         111
        111

1
myyyymyyyy

mxxxxmxxxx
m yrdcbayrdcba

xrdcbaxrdcba
tt  (19) 

 The curve has the specified  tangent (first derivative) in the initial point (xr0’,yr0’). This 

constraint affects the d irection of the tangent, but not to its module, so ju st one degree of 

freedom is removed: 
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 The curve has the specified  tangent (first derivative) in the final point (xrm-1’,yrm-1’). This 

constraint affects the d irection of the tangent, but not to its module, so ju st one degree of 

freedom is removed: 
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Depending on the number of restrictions to apply, the linear equations will be d ifferent and 

will have more or less d egrees of: from 4 (just with restrictions of passing through initial and final 

points) down to 2 (with the matching points restrictions and equal d irections of tangents in initial 

and final points). 
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Besides, equations for curves without initial and final tangent, just with initial tangent, jus t 

with final tangent, and with initial and final tangent have been obtained. The final systems equ a-

tions remain as following: 

The curve passes through the initial and final points
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The curve passes through the initial and final points and has the specified tangent (first derivative) in the 
initial point: X and Y are related by the initial tangent module k0
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The curve passes through the initial and final points and has the specified tangent (first derivative) in the final 

point: X and Y are related by the final tangent module kn-1
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The curve passes through the initial and final points and has the specified tangent (first derivative) in the initial 

and final points: X and Y are related by the initial and final tangent modules k0 and kn-1
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In order to solve linear equation systems we can use any least squares method, but in our pa r-

ticular case we have used  the Householder method that is more stable numerically that the co n-

ventional method  [46, 47]. In order to verify the performed approximation, we will check out  that 

the maximum distance between the resampled points (prj) and the approximated  points (paj) by 

means the cubic curve with the corresponding parameters tj is lower than the value 

MAX_DISTANCE: 

jjj

jyjyjyyjxjxjxxjjjj

paprd

tdtctbatdtctbapayrxrpr 3232 ,    ,,  (22) 
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