

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://ieeexplore.ieee.org/document/7293678/

http://hdl.handle.net/10251/80124

Institute of Electrical and Electronics Engineers (IEEE)

Gil Tomás, DA.; Gracia Morán, J.; Baraza Calvo, JC.; Saiz Adalid, LJ.; Gil Vicente, PJ.
(2016). Injecting Intermittent Faults for the Dependability Assessment of a Fault-Tolerant
Microcomputer System. IEEE Transactions on Reliability. 65(2):648-661.
doi:10.1109/TR.2015.2484058.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

1

Abstract—As scaling is more and more aggressive, intermittent

faults are increasing their importance in current deep submicron
complementary metal-oxide-semiconductor (CMOS)
technologies. This work shows the dependability assessment of a
fault-tolerant computer system against intermittent faults. The
applied methodology lies in VHDL-Based Fault Injection, which
allows the assessment in early design phases, together with a high
level of observability and controllability. The evaluated system is
a duplex microcontroller system with cold stand-by sparing. A
wide set of intermittent fault models have been injected, and
from the simulation traces, coverages and latencies have been
measured. Markov models for this system have been generated
and some dependability functions, such as reliability and safety,
have been calculated. From these results, some enhancements of
detection and recovery mechanisms have been suggested. The
methodology presented is general to any fault-tolerant computer
system.

Index Terms— Fault injection, Hardware description
languages, Intermittent faults, Dependability, Markov models

ACRONYMS AND ABBREVIATIONS
VLSI very large scale of integration
CMOS complementary metal-oxide-semiconductor
CISC complex instruction set computing
RISC reduced instruction set computing
FT fault tolerant
EDMs error detection mechanisms
ERMs error recovery mechanisms
CPU central processing unit
RT register-transfer (related to abstraction level)
VHSIC very high speed integrated circuit
VHDL VHSIC hardware description language
VFIT VHDL-based Fault Injection Tool
WDT watchdog timer
CP checkpointing

Manuscript received January 15, 2014. This work has been partially funded
by the Universitat Politècnica de València under the Research Project
SP20120806, and the Spanish Government under the Research Project
TIN2012-38308-C02-01.

All authors are with the Instituto ITACA, Universitat Politècnica de
València, Spain.

J. Carlos Baraza-Calvo mail: Escuela Técnica Superior de Ingeniería
Informática (ETSInf), Edificio 1G, Despacho 2S6, Universitat Politècnica de
València, Camino de Vera s\n, 46022 Valencia. Work phone: +34963870000
Ext. 75744. Fax: +34963877579. e-mail: jcbaraza@itaca.upv.es.

µs microseconds (10-6 seconds)
ns nanoseconds (10-9 seconds)
R reliability
S safety
SURE Semi-Markov Unreliability Range Evaluator

I. INTRODUCTION
ELIABILITY has become a major challenge in current
computer systems. The feature size scaling of very-large-
scale-of-integration (VLSI) integrated circuits, together

with the reduction of the supply voltage, the increase of
transistor speed and the significant sensitivities to temperature
and electromagnetic noise, have led to the apparition of new
faults. In this context, intermittent faults are increasingly
important in current deep submicron complementary metal-
oxide-semiconductor (CMOS) technologies [1]. New defects,
residues, process variations and wear-out mechanisms may
provoke intermittent faults. These faults occur non-
deterministically at the same location due to unstable or
marginal hardware. Although errors induced by transient and
intermittent faults manifest in a similar way, intermittent faults
are activated repeatedly in the same place, and hence, they are
usually grouped in bursts. Additionally, intermittent faults
may be activated or deactivated by changes in temperature,
voltage or frequency [2].

Transient and permanent faults have been deeply studied and
their models are well established [3], [4]. Permanent faults are
provoked by irreversible physical defects caused by
manufacturing defects and wear-out mechanisms. Transient
faults are commonly generated by environmental conditions,
like electromagnetic interferences or cosmic radiation. Instead,
intermittent faults have been traditionally much less studied,
and they have been typically considered as the prelude of
permanent faults provoked by wear-out processes. In this way,
intermittent fault models have been usually assimilated to
those corresponding to permanent faults.

Nevertheless, their characterization is very complex, as they
appear randomly and manifest in high rate bursts that can
disappear and appear later. In recent works, deeper studies
have been carried out using logged errors provoked by
intermittent faults in real computing systems [1], [2], [5]. In
these works, frequent sources of errors and their manifestation
have been analyzed, and some mitigation techniques are
suggested.

Injecting Intermittent Faults for the
Dependability Assessment of a Fault-Tolerant

Microcomputer System
Daniel Gil-Tomás, Joaquín Gracia-Morán, J. Carlos Baraza-Calvo, Luis J. Saiz-Adalid and Pedro J.

Gil-Vicente, Member, IEEE

R

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

2

In former works, we have studied the impact of intermittent
faults in different microprocessors (with both complex
instruction set computing (CISC) and reduced instruction set
computing (RISC) architectures) at gate and register-transfer
abstraction levels [6], [7], [8]. From the analysis of real logged
faults and the study of the physical mechanisms involved, we
have generated new fault models for intermittent faults. Then,
we have injected these intermittent fault models into the
VHDL models of these systems. Finally, from the simulation
traces obtained in the injection experiments, failures and latent
errors have been registered, and the influence of different fault
parameters has been analyzed. Other works in the literature
have studied the impact of intermittent faults at higher
abstraction levels (application programs) [9], [10], and they all
show similar results as in [6], [7] and [8] regarding the
influence of fault parameters and sensitivities.

In the present work, we go a step further and assess the
dependability of a fault-tolerant (FT) computer system against
intermittent faults. This is related to another research area in
intermittent faults: the design and validation of fault tolerance
mechanisms to cope with intermittent faults. In early tentative
works, a FT microcomputer system was partially assessed. In
[11], transient and permanent faults were injected, and
coverages and latencies were calculated. In [12], intermittent
faults were injected in some prospective targets, and their
impact on the behavior of the detection and recovery
mechanisms was analyzed. The objective of the present work
is to complete the evaluation process against intermittent
faults, as we explain in the following paragraphs.

Fig. 1 summarizes the methodology followed. First, fault
models for intermittent faults are deduced, and injected in the
VHDL model of the FT system (left branch of the graph).
From the analysis of the faulty simulation traces, coverages
and latencies are measured. This information can be used, in a
feedback process (represented with dashed lines), to improve
the Fault Tolerance Mechanisms and update the system, and
hence, its VHDL model. Next, coverage values are introduced
in the Markov model of the system, generated to represent the
behavior of the FT system in the presence of intermittent
faults. Some dependability functions, such as reliability and
safety, are obtained by solving the Markov model. Finally,
these results can be compared to those obtained using other

fault tolerance approaches, for instance applying alternative
redundancy techniques. The overall process can be repeated
iteratively in a feedback path to enhance the design. We have
applied a VHDL-Based Fault Injection technique for two main
reasons: i) it allows the assessment in early phases of the
system design; and ii) it permits high controllability and
observability of the experiments.

Other related works evaluate intermittent error recovery
configurations at a high level. Some of these configurations
are similar to those of our paper. For instance, [13] models a
multicore system at the functional level, while [14] models a
multiprocessor chip based on Stochastic Activity Networks. In
these works, no dependability functions (such as reliability,
safety, etc.) are obtained. Instead, some performance
estimators (such as throughput, latency, overhead, useful
work, etc.) are calculated. On the other hand, in [15] the
tolerance to intermittent faults is designed at the algorithm
level and applied to a distributed system. A formal proof
establishes its correctness. From this point of view, our paper
may strengthen dependability assessment, introducing some
novelties with respect to the related literature.

In summary, the contribution of our paper with respect to
related literature consists in: i) Calculating coverages and
latencies for intermittent faults; ii) Generating Markov models
of the FT system in the presence of intermittent faults; iii)
Obtaining dependability functions to assess the FT system.
The methodology presented in this work is general, and it can
be applied to any FT system at an early phase of the design.

This work is organized as follows. Section II depicts the
fault models for intermittent faults. Section III introduces the
fault injection technique used. Section IV describes the fault-
tolerant system and the main components of the VHDL model.
Sections II to IV match with the left branch in Fig. 1. Section
V explains the parameters of the fault injection experiments.
Section VI discusses the results obtained regarding the
coverages and latencies. Sections V and VI correspond to the
“Detection/recovery coverages and latencies” box in Fig. 1.
Section VII describes the Markov models generated and some
results obtained about the reliability and safety of the system.
This section covers the right branch in Fig. 1. Finally, Section
VIII provides some conclusions.

Fig. 1. Methodology for the Dependability assessment against intermittent faults.

Fault models for
intermittent faults

VHDL model of the
FT system

Detection/recovery
coverages and latencies

Reliability
Safety

Fault injection

Improvement of FT mechanisms (feedback)

Measurement

 Simulation-based
Fault Injection tool

Markov
modeling tool

Physical causes and
mechanisms

Markov models for
intermitttent faults

Comparison
with other FT
approaches

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

3

TABLE I.
INTERMITTENT FAULT MECHANISMS AND MODELS [7]

Causes Targets Fault mechanisms Type of fault Fault models
Residues in cells Memory and registers Intermittent contacts Manufacturing defect Intermittent stuck-at
Solder joints Buses Intermittent contacts Manufacturing defect Intermittent pulse

Intermittent short
Intermittent open

Electromigration
Delamination

Buses
I/O connections

Variation of metal resistance
Voids

Wearout-Timing Intermittent delay
Intermittent short
Intermittent open
Intermittent stuck-at

Crosstalk I/O connections
Buses

Electromagnetic interference Internal noise
Timing

Intermittent pulse
Intermittent delay
Intermittent speed-up

Gate oxide soft breakdown NMOS transistors in SRAM cells Leakage current fluctuation

Wearout-Timing

Intermittent delay
Intermittent indetermination

Negative bias-temperature
instability (NBTI)

PMOS transistors in combinational
logic

Increase of transistor threshold
voltage VTH
Reduction of carrier mobility

Wearout-Timing Intermittent delay

Negative bias-temperature
instability (NBTI)

PMOS transistors in SRAM cells Local mismatches among cell
transistors, decrease of static
noise margin

Wearout Intermittent bit-flip

Hot-carrier injection (HCI) NMOS transistors in combinational
logic

Increase of transistor threshold
voltage VTH

Wearout-Timing Intermittent delay

Low-k dielectric breakdown Buses
I/O connections

Leakage current fluctuation
Temperature variations
Capacity degradation

Wearout-Timing Intermittent delay
Intermittent short

Doping profile and gate length
deviations

MOS transistors in combinational
logic and memory

Deviations in VTH
Deviations in operation speed

Manufacturing variations Intermittent delay

II. INTERMITTENT FAULT MODELING
An intermittent fault is defined as a fault that appears

sporadically at the same hardware location, and lasts for one
or more clock cycles [14]. Intermittent faults can be activated
by environmental changes such as temperature, voltage or
frequency alterations. In addition, manufacturing defects,
process variations and special wear-out processes can also lead
to such faults. In some cases, intermittent faults can evolve to
permanent faults due to aging mechanisms. The introduction
of new deep submicron technologies accentuates the
occurrence of intermittent faults and makes necessary to study
their new fault causes and mechanisms.

Whereas transient and permanent fault models have been
traditionally well established, modeling intermittent faults is a
pending issue [1]. The unpredictable behavior of intermittent
faults makes it difficult to define fault models. In previous
works we have deduced a set of fault models at the logic and
register-transfer abstraction levels which can be simulated into
VHDL models [6], [7]. These fault models are summarized in
Table I.

As stated previously, intermittent faults manifest in bursts.
To model these faults, the following parameters must be
specified (see Fig. 2) [8]: the number of fault activations in the
burst (or burst length, LBurst), the duration of each activation
(or activity time, tA), and the separation between two
consecutive activations (or inactivity time, tI). For the sake of
simplicity, all three parameters have been generated according
to uniform distribution functions.

III. FAULT INJECTION ENVIRONMENT
In this paper, we use a VHDL-based fault injection

technique, which is a simulation-based technique. This
technique allows the assessment of the system in early design

phases. And due to the features of the VHDL modeling
language, this technique provides high controllability and
observability of the injection experiments, as it permits the
modification and monitoring of every element in the system.
Fig. 3 shows different ways to implement the VHDL-based
fault injection techniques [16] [4]:

Fig. 2. Main elements of a burst of an intermittent fault.

Fig. 3. VHDL-based fault injection techniques.

The simulator-commands-based fault injection (or simply

simulator-commands) technique consists in modifying the
value or timing of the signals and/or variables of the VHDL
model at simulation time, by using special commands of the
simulator.

The saboteurs-based fault injection (or simply saboteurs)
technique requires modifying the VHDL code of the system
by inserting injection components called saboteurs between
the components of the model. While inactive, a saboteur does
nothing, but when activated it can alter the value or timing
characteristics of one or more signals, simulating the

tA(1) tI(1)

Activation
#LBurst

Burst

Activation
#1

Activation
#2

tA(2)

≈ ≈ ≈ ≈

tA(LBurst)
tI(LBurst) - 1tA(LBurst) - 1

≈ ≈

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

4

occurrence of faults.
The mutants-based fault injection (or mutants) technique

also requires modifying the VHDL code of the system. In this
case, altered versions of the existing components, called
mutants, are created. These mutated versions of the
components present different wrong behaviors of the
component. If no mutant is activated, the system behaves
normally. By activating a combination of mutants, the
occurrence of faults is simulated.

Finally, Other techniques are implemented by extending the
VHDL language, adding new data types and signals and
modifying the VHDL resolution functions. The new elements
defined include descriptions of faulty behaviors.

Comparing the cost of implementing each method, it is
worth to mention that:

• The simulator-commands technique is the easiest one
to implement, and it introduces the lowest overhead.

• The main drawbacks of the saboteurs technique are
two: i) it is more complex to implement than the
simulator-commands; ii) it adds spatial overhead to
the model. As an important advantage, it allows
injecting a wider set of fault models.

• The mutants technique has the same drawbacks and
advantages as saboteurs. Moreover, it has an
additional issue: the fault modeling becomes hard to
apply at lower abstraction levels, because it is very
difficult to associate VHDL code mutations to
hardware faults.

• The other techniques require the introduction of ad-
hoc compilers and control algorithms to manage the
language extensions, which makes them the most
difficult to implement.

Our research group has developed a fault injection tool
called VFIT (VHDL-based Fault Injection Tool) [4], which is
able to inject faults by means of simulator commands,
saboteurs and mutants techniques.

Recent works on fault injection show other platforms that
perform simulation-based fault injection. For example, [9]
injects faults in a model of a simple five-stage pipeline RISC
processor by using the Sim-Outorder processor simulator,
while [17] injects faults on Verilog models and allows FPGA
accelerated full-system simulation on prototype hardware .

IV. SYSTEM UNDER STUDY
The different fault injection experiments were carried out

on the VHDL model of a fault-tolerant microcomputer system,
whose block diagram is shown in Fig. 4. The system is duplex
with cold stand-by sparing, parity detection and a watchdog
timer [11]. Although the system under study is an academic
FT system, its structure is common in non-critical FT systems,
such as long-life and high availability systems [3].

Both the main and the spare processors are an enhanced
version of the MARK2 processor, developed by J.R.
Armstrong in 1989 for academic purposes [18]. It has been
extended to 16 bits, and several FT mechanisms have been
added.

The structural architecture of the model is composed of the
main and spare CPUs (CPUA and CPUB, respectively), the
random access memory (MEM), the output parallel port
(PORTOUT), the interrupt controller (SYSINT), the clock
generator (CLK), the watchdog timer (WD), the pulse
generator (GENINT), two back-off cycle generators
(TRGENA, TRGENB) and two AND gates (PAND2A,
PAND2B). Each component is modeled by a behavioral
architecture with usually one or more concurrent processes.

Fig. 4. Block diagram of the FT computer system [11].

MA
DATA

BP
IO
RD
WR

PCHK
WTP
RDP
RDS
WTS
INTA

CLK
RESET
INT
BOFF

CPUB

MA
DATA

BP
IO
RD
WR

PCHK
WTP
RDP
RDS
WTS
INTA

CLK
RESET
INT
BOFF

CPUA

ADDRESS
DATA
DPAR

NCS
RD
WR

MEMRESET
PARERR

BACKOFF

TRGENA

RESET
PARERR

BACKOFF

TRGENB

NINT1
NINT2
NINT3
NINT4

INTA

INT

OUTPUT

SYSINT

DI

NDS1
DS2
MD
STB
NCLR

DO(0)
DO(1)
DO(2)
. . . .

DO(15)

NINT

PORTOUT

CLEAR
CLOCK

NOVERFLOW
NHLT

GOSPARE

Q

WD

START
OUTPUTTIMER

GENINT

A

B
O

PAND2A

A

B
O

PAND2B

CLK

CLK

RESET

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

5

To increase the system dependability, both Error Detection
Mechanisms (EDMs) and Error Recovery Mechanisms
(ERMs) have been incorporated. The EDMs include a parity
check in the memory and a program control flow check
performed by a watchdog timer. The watchdog timer
technique implements a timing check of a process. When the
timer goes off, the system can assume that either the processor
is hung or a control flow error in the code of the process has
occurred [19].

The ERMs include the introduction of a back-off cycle
(instruction retry) after parity error detection, checkpointing
when errors are detected by the watchdog timer, and starting
the spare processor in case of permanent errors. The number
of successive error detections required to activate the spare
CPU can be configured in the system.

V. FAULT INJECTION EXPERIMENTS

A. Fault injection technique
Faults have been injected by using VFIT, the fault injection

tool developed by our research group. The different injection
experiments presented in this paper have been carried out
using the simulator-commands-based technique, because this
technique is the easiest to apply and allows injecting all the
fault models selected in the experiments.

The fault injection process can be summarized in the
following steps:

1. Setup of parameters related to the VHDL system model
and the fault types.

2. Fault injection in the VHDL system model.
3. Analysis of the experiments by comparing the golden

run (that is, the simulation trace of the model without
faults) with all the faulty simulation traces.

4. Identification of faults, errors and failures. Calculation
of the dependability estimators.

B. Injection targets
Intermittent faults have been injected in the main processor

and system buses (data, address and control). In this way,
combinational logic and storage components of the arithmetic
and control unit have been perturbed. No faults have been
injected in the spare processor, because it is the backup unit
and it remains inactive while the system is not reconfigured.
When the system reconfigures, the spare processor becomes
the main processor and then it can be faulty. On the other
hand, we have not considered faults in memory because this
study focuses on processor faults.

C. Fault models
From the set of intermittent fault models shown in Table I,

we have chosen the following models for the experiments:
• Intermittent stuck-at in storage elements. We refer to

intermittent contacts produced by manufacturing
residues and observed in storage cells (registers and
memory). This provokes bursts of Single Bit Errors
(SBE) [2].

• Intermittent pulse in buses.
• Intermittent {pulse, open, stuck-at, indetermination} in

combinational logic. Intermittent contacts in the
input/output (I/O) connections of the combinational

logic can manifest also as intermittent stuck-at [7].
These contacts can be provoked by solder joints or
aging processes, such as electromigration or
delamination.

To select these fault models, we have taken into account:
• A set of intermittent faults observed in real computer

systems by means of error logging [2].
• An analysis of representative fault mechanisms related to

manufacturing defects and variations, as well as wear-out
processes that can provoke intermittent faults [7].

• The characteristics of the VHDL model of the system.
For instance, we have not injected time-related faults
(such as the Intermittent Delay fault model) due to the
lack of temporal specifications in the VHDL model.

As mentioned in Section V.A, all the selected fault models

have been injected using the simulator-commands-based fault
injection technique.

D. Workloads
To activate the main components of the model, two typical

and moderate-duration workloads have been executed:
Arithmetic Series and Bubblesort algorithm.

E. Number of faults
1000 faults per experiment have been injected, being

classified as single (one burst in a single target) or multiple
(simultaneous bursts in different targets). It is interesting to
stand out that multiple faults are increasingly important. Due
to technology scaling, intermittent faults will likely affect
multiple locations. In total, more than 60,000 faults have been
injected.

F. Injection instant
For the sake of simplicity, the injection instant has been

selected randomly along the workload duration, according to a
uniform distribution. In real computer systems, other fault
distributions have been observed, such as Exponential or
Weibull [3]. For instance, a Weibull distribution with
increasing fault rate can be used to emulate a wear out process
that increases the frequency of intermittent faults, before
eventually becoming permanent. Nevertheless, it can be
challenging to set up the distribution parameters, because they
depend on system technology and environmental factors such
as the temperature.

G. Burst parameters
The burst parameters have been described in Section II. In

this way, the number of fault activations, or burst length
(LBurst) has been generated according to a random uniform
distribution in the range [1, 10]. The activity and inactivity
times (tA and tI) have been generated according to a random
uniform distribution in the time interval [0.1T–1.0T], where T
is the clock cycle (whose value in our experiments is 1µs).
This is an intermediate interval between [0.01T–0.1T] and
[1.0T–10.0T], used in other works [6]–[8].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

6

H. Analysis of results
For each injection experiment, the simulation traces

generated are compared to the golden run. From this
comparison, the estimated coverages and latencies of the
EDMs and ERMs are automatically calculated. Fig. 5 shows
the fault pathology graph, that represents the evolution of
faults from their injection to the detection and possible
recovery by the FT mechanisms.

From the experimental results, the following measures are
obtained:

First, we obtain the percentage of activated errors, defined
as

inj

act
N
NAct = (1)

where Ninj is the number of injected faults and Nact is the
number of activated errors. A fault is called activated when it
produces a change on a signal or variable of the model. If it
also propagates to signals of the external structural
architecture, then it is logged as an activated error.

Another measure is the error detection coverage. We
distinguish between two types of coverage estimators:

• The coverage of the detection mechanisms, defined as

act

det
d(mech) N

NC = (2)

where Ndet is the number of errors detected by the
EDMs. Similarly, we define the detection coverages of
each EDM as the errors detected by the individual
mechanism (the parity or the watchdog timer):

act

)det(Parity
d(Parity) N

N
C =

act

det(WDT)
d(WDT) N

N
C =

Since det(WDT))det(Paritydet NNN += , then

d(WDT)d(Parity)d(mech) CCC += (3)

• The global system coverage, defined as

act

non_effectdet
d(sys) N

NN
C

+
= (4)

where Nnon_effect is the number of non effective errors,
that is, the errors that do not affect the result of the
running application. They are overwritten or remain
latent in an unused part of the system. Cd(sys) extends
Cd(mech) by including non effective errors (from (2) and
(4)):

act

non_effect
d(mech)d(sys) N

N
CC += (5)

Similarly, we calculate the error recovery coverage. Again,
we distinguish two types of coverage estimators:

• The coverage of the recovery mechanisms, defined as

act

det_rec
r(mech) N

N
C = (6)

where Ndet_rec is the number of detected errors that are
subsequently recovered by the ERMs. As in the case of
the EDMs, we also calculate the recovery coverages of
each individual ERM (in this case, the back-off cycle,

the checkpointing or the spare):

act

ff)det_rec(Bo
r(Boff) N

N
C =

act

)det_rec(CP
r(CP) N

N
C =

act

are)det_rec(Sp
r(Spare) N

N
C =

And the following relationship is accomplished:
r(Spare)r(CP)r(Boff)r(mech) CCCC ++= (7)

• The global system coverage, defined as

act

non_effectdet_rec
r(sys) N

NN
C

+
= (8)

Cr(sys) extends Cr(mech) by including non effective errors
(from (6) and (8)):

act

non_effect
r(mech)r(sys) N

N
CC += (9)

Finally, we calculate the propagation, detection and

recovery latencies, defined as:
Lp = tp – tinj (10)
Ld = td – tp (11)
Lr = tr – td (12)

where tp is the time instant when the fault is visible at the
signals of the external structural architecture, tinj is the
injection time instant, td is the time instant when the error is
detected by the detection mechanisms, and tr is the time
instant when the recovery mechanisms finish the recovery
process.

Similarly to the detection and recovery coverages, we can
calculate the latencies of each detection and recovery
mechanism: Ld(Parity), Ld(WDT), Lr(Boff), Lr(CP) and Lr(Spare).

VI. FAULT-INJECTION EXPERIMENTS RESULTS
Table II and Table III contain the results of the experiment.

The first column of Table II shows the percentage of activated
errors for single and multiple faults, and for both workloads. It
can be observed that multiple faults have much more impact
than single faults, with values near 100%. This is an expected
result, as multiple faults affect several places at the same time.
This trend is fulfilled in the two workloads, with small
differences between them.

Table II also shows the detection coverages (columns
Cd(mech) and Cd(sys)). We make several observations. First, Cd(sys)
is very high, over 90%. This means that most activated errors
are detected or non effective (see Fig. 5). Second, Cd(mech) is
lower, especially in single faults. In multiple faults, Cd(mech)
present values near Cd(sys). And finally, as expected, detection
coverages are higher for multiple faults than for single faults,
as multiple faults provoke a higher impact. The percentage of
non detected errors that provoke a failure (1 – Cd(sys)) is very
low. Thus, we can conclude that the detection process works
quite well. Furthermore, Table II presents the detection
coverage of the different EDMs. As it can be seen, Cd(Parity) is
much greater than Cd(WDT). This indicates that most errors are
detected by the parity mechanism.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

7

Last, Table II also contains the average detection latencies,
both global and separated by mechanisms. We point up that
Ld(Parity) is much lower than Ld(WDT), because WDT involves
the timer overflow, and that the global detection latency is
reduced by the influence of the parity mechanism, as it is the
most frequently activated EDM.

From the results of detection coverages and latencies, WDT
has demonstrated to be a poorly efficient and slow detection
mechanism in our system. This suggests that detection can be
improved by replacing it with other detection techniques, such
as parity in CPU registers and buses, as well as implementing
CPU exceptions. In this way, Cd(mech) for single faults can also
be increased.

Let us now see the recovery coverages and latencies shown
in Table III (Cr(mech) and Cr(sys)) for single and multiple faults,
and for both workloads. We observe that recovery coverages
(Cr) are lower than detection coverages (Cd), because a
fraction of the detected errors cannot be recovered by the
recovery mechanisms (see Fig. 5). Most of them provoke
failures and a small portion is recovered by the intrinsic
redundancy of the system. It is also noticeable that Cr(sys) is
greater than Cr(mech), because Cr(sys) includes non effective
errors. The difference is more pronounced in single faults than
in multiple faults. Finally, we can observe that Cr(mech) in
multiple faults is greater than Cr(mech) in single faults. Although
multiple faults are most difficult to recover once they have
been detected, they are more frequently detected. For this
reason, Cr is bigger. This fact is not accomplished in Cr(sys),
where we can observe lower values for multiple faults.

In addition, we have verified a non-negligible percentage of
failures provoked by detected but non recovered errors (see
Fig. 5), mainly for multiple faults. We can conclude that the

recovery process does not work as well as the detection
process.

On the other hand, Table III shows also the recovery
coverage of the different ERMs. From the table, the spare and
the backoff (retry) cycle are the most activated mechanisms,
while the checkpointing (CP) is much less activated because it
is related with the watchdog timer. The activation of the spare
is especially high in multiple faults, because these faults are
the most harmful and the system interprets them as permanent
faults.

Finally, Table III presents the average recovery latencies,
both global and separated by mechanisms. Some points can be
remarked. First, Lr is much greater than Ld, as Lr includes
longer duration processes. Second, Lr(Boff) is smaller than Lr(CP)
and both are much lower than Lr(Spare). CP includes the reading
of the checkpoint from stable memory. Spare also adds the
reconfiguration time to enable the backup CPU. And finally,
Lr for single faults is lower than Lr for multiple faults. Single
faults recover quicker than multiple faults because when
multiple faults are present, the activation of the spare CPU is
more frequent.

From previous results, retry proves to be the ERM that
presents the best coverage/latency compromise in our system.
Also, its implementation cost is much lower than the spare’s.
In fact, it is considered one of the best methods to tolerate
intermittent faults [20].

Recovery latency must be a key factor to handle intermittent
faults. High frequency intermittent faults may lead to a near
coincident fault scenario, i.e. a new fault arrives before the
handling of the previous one is completed, leading to the
failure of the recovery process. In the following paragraphs,
some proposals to reduce Lr are presented.

Fig. 5. Fault pathology graph [4].

TABLE II.

ERROR ACTIVATION, DETECTION COVERAGES AND LATENCIES
 Act

(%)
Cd(sys)
(%)

Cd(mech)
(%)

Cd(Parity)
(%)

Cd(WDT)
(%)

Ld
(µs)

Ld(Parity)
(µs)

Ld(WDT)
(µs)

Arith. Series Single 63.8 94.04 48.28 41.54 6.74 16.47 2.89 100.21
Multiple 99.4 99.70 93.06 77.77 15.29 13.48 1.18 76.04

Bubblesort Single 57.5 92.35 36.70 33.22 3.48 10.34 3.21 78.47
Multiple 98.9 98.28 90.39 75.13 15.26 14.35 1.98 75.23

TABLE III.

RECOVERY COVERAGES AND LATENCIES
 Cr(sys)

(%)
Cr(mech)

(%)
Cr(Boff)
(%)

Cr(CP)
(%)

Cr(Spare)
(%)

Lr
(µs)

Lr(Boff)
(µs)

Lr(CP)
(µs)

Lr(Spare)
(µs)

Arith. Series Single 87.62 41.85 17.71 2.51 21.63 96.26 10.1 37.83 173.59
Multiple 81.19 74.55 12.47 2.21 59.86 132.11 7.14 33.32 161.81

Bubblesort Single 89.91 34.26 19.83 0.17 14.26 77.43 9.95 0.02 172.2
Multiple 77.65 69.77 19.21 1.01 49.54 119.82 13.63 18.93 163.06

detectederror

failure

correct

faultinitial
activated

lp ld

injected

non activated

non effective (overwritten, latent)

non detected

non recovered

recovered
lr

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

8

The first one is to increase the threshold that activates the
spare CPU. In this way, some intermittent faults can be
recovered by the retry or checkpoint techniques, instead of
activating the spare CPU. Fig. 6 shows this idea, with different
fault types and different threshold (T) values. For instance, T1
and T2 thresholds activate erroneously the spare unit, as the
system interprets long transient faults as well as some
intermittent faults that disappear as permanent faults. On the
other hand, T3 threshold activates the spare unit correctly,
recovering thus permanent faults and long intermittent faults
that become permanent or do not disappear. The difficulty of
this approach is that the programming of the threshold
depends on the transient duration and the intermittent burst
length, and they are not easy to know a priori. They depend
on the hardware technology and the environment.
Nevertheless, at least we can estimate the maximum number
of successive attempts before activating the spare CPU, that is
related with the maximum value of T:

() r(Spare)CP)r(Boff,d LLLn ≤+
Thus

CP)r(Boff,d

r(Spare)
max LL

L
n

+
=

As Cr(Boff) is much greater than Cr(CP), we can approximate
Lr(Boff,CP) ≈ Lr(Boff), and hence

r(Boff)d

r(Spare)
max LL

L
n

+
≈

Another possibility is to implement hot sparing instead of
cold sparing. In this way, the time overhead related with
reading the CP from stable memory is eliminated, reducing the
reconfiguration latency. The disadvantage of this option is the
power consumption overhead introduced. For instance, dual
systems with hot sparing are typical of self-checking flight
computers in aircraft flight control systems [21], where the
response time is critical.

It is also feasible to introduce Error Correcting Codes
(ECC) into the memory and the critical registers of the CPU in
order to improve the recovery from parity detection.
Particularly, Flexible Unequal Error Control Codes (FUEC)
[22] can be good candidates to cope with intermittent faults, as
this type of fault can present unequal error rates in different
parts of the data word.

Finally, applying triple modular redundancy (TMR) [3] [23]
in selected components of the CPU would allow masking
transient and short intermittent faults. Although this technique
may introduce a high hardware overhead, it can take
advantage of the increasing integration density of current deep
sub-micron technologies.

Some authors suggest that hardware implemented error
handling techniques are likely to provide the best solutions to
mitigate the effects of intermittent faults [2], [13]. The high
speed of silicon logic makes hardware implementations well
suited for detection and correction of high rate errors. In
addition, hybrid solutions, which combine hardware error
detection and recovery with software implemented failure
prediction and resource reconfiguration, may improve
dependability significantly [2].

VII. MARKOV MODELS FOR DEPENDABILITY EVALUATION
In this section, we show Markov models generated for our

fault-tolerant system in the presence of intermittent faults, in
order to evaluate their dependability. To calculate the
transition rates of the Markov chains, we have used the
coverage values presented in Table II and Table III The final
objective is to obtain the reliability and safety of the FT
system and compare it with other FT approaches (see Fig. 1).
Particularly, we compare the original duplex-cold-sparing
system with other configurations using warm and hot sparing.

An element with an intermittent fault is usually represented
by a two-state Markov model [23], [24]. The two states are a
failed state and a pseudo-failed state. In the first state, the fault
is active, and using the element produces an incorrect output.
In the second state, the fault is in a benign mode, and the
output is not corrupted when using this element. An
intermittent fault oscillates between these two states with a
frequency that depends on the characteristics of the fault.

Taking the previous considerations into account, we have
generated the Markov chain shown in Fig. 7 for a duplex
system with cold sparing. The intermittent fault oscillation is
observed between states 2 and 3, which corresponds to failed
(active) and pseudo-failed (benign) states, respectively. The
meaning of the different states and transition parameters is
summarized in the figure. The expression of transition rates
will be explained later in a simplified chain.

Fig. 6. Configuration of the spare activation in order to reduce the recovery latency.

T1 T2 T3

Spare (bad):
• Intermittent

that disappears

Long intermittent that becomes
permanent or does not disappear

Spare (ok)

Short transient

Long transient

Intermittent that disappears

Permanent

Short intermittent

Spare (bad):
• Long transient
• Intermittent

that disappears

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

9

A drawback of this type of model is that the on-off cycles of
intermittent faults must be modeled, and the associated
parameters have to be measured. It is very difficult to obtain
realistic estimation of the rates α and β. The unpredictable
behavior of intermittent faults may also impose an update on
the parameters [20].

Another problem is stiffness, which appears in Markov
models with transition rates that differ by several orders of
magnitude. In our case, α and β are usually much higher than
the fault rate λ. Stiffness causes numerical difficulties when
solving the differential equations that arise from the Markov
model [26].

To overcome these issues, some authors suggest the
elimination of the intermittent cycles and the generation of a
Markov chain only with coverages [24], [25], [26]. Although
the resulting model is considerably simpler, it can be much
more accurate because it relies only on parameters that are
directly observable. Fig. 8 shows a simplified version of the
chain after removing fast loops to solve the stiffness problem.
As mentioned, the coverages have been obtained from the
results of the fault injection experiments, analyzed in Section
VI.

The activated error rate is calculated as λactiv = λ×Act, where
Act is the percentage of activated errors (see (1)) and λ is the
intermittent fault rate, that is to say, the arrival rate of
intermittent faults.

The coverages of the chain were also defined in Section
V.H, and Cr(Spare) = Cr(mech) – (Cr(Boff) + Cr(CP)), as pointed in (7).

From the expression of the coverages (Section V.H) and the
fault pathology graph (see Fig. 5), we can demonstrate the
transition rates between states in the Markov model of Fig. 8:

Transition 12:

....)(tu
N

N
N

tu
NC are)det_rec(Sp

act

are)det_rec(Spact
Spareractiv =








×






=λ

(u.t: unit of

time). So, λactivCr(Spare) is the rate of activated errors that are
detected and recovered by the spare mechanism.

Transition 1F:

()

....

)]([
..

1
..

1)(

tu
N

N
N

tu
N

N
NNN

tu
N

N
NN

tu
NC

non_det

act

non_detact

act

non_effectdetactact

act

non_effectdetact
sysdactiv

=







×








=
+−

×







=


















 +
−×






=−λ

So, λactiv(1–Cd(sys)) is the rate of activated errors that are
non-detected and produce a failure.

Transition 1FS:

()

....

..

..)()(

tu
N

N
N

tu
N

N
NN

tu
N

N
N

N
N

tu
NCC

cdet_non_re

act

cdet_non_react

act

det_recdetact

act

det_rec

act

detact
mechrmechdactiv

=







×








=






 −
×








=







−×






=−λ

λactiv(Cd(mech)–Cr(mech)) is the rate of activated errors that are
detected but non recovered, producing a failure.

Transition 2F:
This transition is the same as the 1→F transition, but for the

reconfigured processor.

Transition 2FS:
This transition is similar to the 1→FS transition, but for the

reconfigured processor. In this case, the term λactivCr(Spare) is
added. As the spare unit is exhausted, the activated errors that
would be detected and recovered by the spare mechanism also
produce a failure. Note that this model is also valid for
transient and permanent faults, just changing the
corresponding coverages (Cd(mech), Cd(sys), Cr(mech) and Cr(Spare)),
as well as the activated error rate (λactiv). Thus, the model is
versatile and general for any fault type.

To solve the chain, we use the Semi-Markov Unreliability
Range Evaluator (SURE) tool [27]. SURE is a reliability
analysis program developed at NASA Langley Research
Center. This software is especially suited for the analysis of
fault-tolerant reconfigurable systems. We specifically use
WinSURE, a Windows version of SURE.

Fig. 7. Markov model for a duplex system with cold sparing and intermittent faults.

1: All good / non effective / recovered by Backoff (retry)
or Checkpoint
2: Main processor failed (active)
3: Main processor pseudo-failed (benign)
4: Main processor failed and replaced by the spare
processor
5: Main (replaced) processor failed (active)
6: Main processor (replaced) pseudo-failed (benign)
FS: Safe failure
F:Unsafe failure

λ: Intermittent fault rate
λactiv: Activated error rate
α: Rate active intermittent fault goes benign
β: Rate benign intermittent fault goes active
Cd (mech): Coverage of the detection mechanisms
Cdsys): Global system detection coverage
Cr(mech): Coverage of the recovery mechanisms
Cr(spare):Coverage of the Spare recovery mechanism
Cr(Boff): Coverage of the Backoff recovery mechanism
Cr(CP): Coverage of the Checkpoint recovery mechanism

λactiv [(Cd(mech)-Cr(mech))+Cr(Spare)]
λactiv Cr(spare)

3

2 5

β α

6 F

FS

λactiv (1-Cd(sys))

41 λ

αβ

λactiv [(Cr(Boff)+Cr(CP))+(Cd(sys)-Cd(mech))]

Intermittent fault
oscilation

λactiv (Cd(mech)-Cr(mech))

λactiv (1-Cd(sys))

λ

λactiv [(Cr(Boff)+Cr(CP))+(Cd(sys)-Cd(mech))]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

10

Fig. 8. Markov model for a duplex system with cold sparing eliminating fast loops to solve the stiffness problem.

From the results obtained in Section VI, and taking into
account the variations due to the fault multiplicity
(single/multiple faults), as well as the workload, for the
Markov chain in Fig. 8 we have selected the coverage values
shown in Table IV.

TABLE IV.

COVERAGE VALUE SELECTION FOR THE MARKOV CHAIN IN FIG. 8

Sample values Typical value

Cd(mech) 0.6, 0.7, 0.8, 0.9 0.8
Cd(sys) 0.92, 0.94, 0.96, 0.98, 1.00 0.96

Cr(mech) 0.6, 0.65, 0.7, 0.75, 0.8 0.7
Cr(Spare) 0.4, 0.5, 0.6 0.4

Some comments about the coverage values should be made.

On the one hand, all coverages are normalized with respect to
the number of activated errors (Nact). This fact explains that Cd
> Cr >> Cr(Spare). It can seem that 0.4 is an unacceptably low
value for Cr(Spare), but remember that

Cr(mech) = Cr(Boff) + Cr(CP) + Cr(Spare) (see (7)).
So Cr(Spare) is a portion of Cr(mech). It represents the fraction of
all activated errors that are detected and recovered by one of
the ERMs, the spare. Table III shows the values of Cr(Spare).

On the other hand, in the selection of typical values, we
have chosen a representative “average” value from the
variations of the fault multiplicity and the workload. We have
taken into account the increasing trend of the probability of
occurrence of multiple faults as feature size shrinks. This
consideration makes the coverage values grow slightly.

For the intermittent fault rate λ, we have used a typical
value of 10-4 [25]. From Table II, we have selected an
“average” value for the percentage of activated errors Act =
0.8. So, λactiv = λ × Act = 10-4 x 0.8.

Next, some results obtained by solving the Markov model
with WinSURE are shown. System reliability and safety have
been calculated. Next we deduce the expressions for reliability
(R) and safety (S) from Fig. 8.

The reliability is defined as the probability that the system
works correctly at a given time [3]. Thus:

R = P1 + P2
The safety is defined as the probability that the system

works correctly, or fails in a safe-controlled way. Then:
S = P1 + P2 + PFS = R + PFS

Fig. 9 shows the reliability and the safety as a function of

time. We observe that:
• R and S decrease exponentially with time. R tends

asymptotically to 0, and S tends asymptotically to
Cd(mech). This is an expected behavior, characteristic of
Markov chains with coverages [23].

• S is much greater than R, and the difference grows with
time. Remember that S = R + PFS.

• For low time values, R and S present acceptable values,
over 0.99.

• However, R degrades excessively (R < 0.6) from about
26000 hours (almost 3 years). This shows the necessity
of improving the reliability of the system for long time
runs.

Fig. 9. Dependability variation with time. duplex with cold sparing.

Table V shows the detailed values of R and S for some

representative time values. Acceptable results are observed for
10h and 1 week. On the other hand, a large degradation of R is
observed for high time values, with values under 0.5.

We have also analyzed how the variation of the coverages
affects R and S, in order to improve system dependability (see
Fig.10). We have found that R is sensitive to both Cr(mech) and
Cd(sys), with similar slopes. On the other hand, Cd(sys) is the
coverage that most improves S. Small increases in the
detection coverage yield a significant variation of S.

TABLE V.

VALUES OF R AND S FOR TYPICAL TIME CASES
Time R S
10h 0.9998879551 0.9999680018

1 week 0.9981058140 0.9994629120
5 years 0.3620312000 0.9061447000

As
act

non_effect
d(mech)d(sys) N

N
CC += , (see (5)), it is necessary to

augment Cd(mech) (by improving the fault detection
mechanisms) to enhance Cd(sys).

Let us suppose that the cold sparing system is included in a

1: All good // non effective // detected and recovered by
Backoff (retry) or Checkpoint
2: Main processor failed and replaced by the spare
processor
FS: Safe failure
F:Unsafe failure

λactiv: Activated error rate
Cd (mech): Coverage of the detection mechanisms
Cd(sys): Global system detection coverage
Cr(mech): Coverage of the recovery mechanisms
Cr(spare):Coverage of the Spare recovery mechanismλactiv (1-Cd(sys))

1 2

F

FS
λactiv (Cd(mech)-Cr(mech))

λactiv Cr(Spare)

λactiv (1-Cd(sys))

λactiv [(Cd(mech)-Cr(mech))+Cr(Spare)]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1
37

51
75

01
11

25
1

15
00

1
18

75
1

22
50

1
26

25
1

30
00

1
33

75
1

37
50

1
41

25
1

45
00

1
48

75
1

52
50

1
56

25
1

60
00

1
63

75
1

67
50

1
71

25
1

75
00

1
78

75
1

82
50

1
86

25
1

90
00

1
93

75
1

97
50

1

De
pe

nd
ab

ili
ty

Time (hours)

Reliability Safety

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

11

long-life unmanned spacecraft (such as a satellite or a deep-
space planetary probe). Space probes typically use duplex
systems with cold standby sparing in the Attitude Control
Subsystem, and duplex systems with hot standby sparing in
the Command and Control Subsystem [28]. In this case, it is
mandatory to improve R. On the other hand, S is not a critical
metric since no human life is involved. So effort should be
focused on improving Cr(mech) by the optimization of the
ERMs. Some proposals have been commented in Section VI
when analyzing the coverages results.

On the other hand, suppose that the cold sparing system is
included in the flight control system of a space shuttle (with
mission time about 1 week) or a civil aircraft (with flight time
about 10h). They are safety critical systems with human life
involved. Besides having a high reliability, special care with
safety must be taken into account. In these cases, EDMs
should be enhanced in order to improve Cd(sys).

To sum up, the generic problem of dependability
assessment can be formulated in this way: Given an
application (system) with operation (life) time t, which values
of Cd/Cr are needed in order to achieve required levels for
R/S? This can determine whether the EDMs/ERMs are
effective enough or if they must be improved instead. In the
last case, a feedback process is applied, as shown in Fig. 1.

Finally, we will compare the duplex cold sparing with other
fault-tolerant reconfiguration approaches, such as warm and
hot sparing. In Section VI we have commented that Lr is a key
parameter to tolerate intermittent faults, mainly due to the
possibility of near coincident scenarios. We have said also that
a possible solution to reduce Lr is to introduce sparing variants
such as hot or warm sparing. Hot sparing is a typical
configuration on critical systems where recovery must be done

as soon as possible [28]. Let us see how R and S are affected
by these variants. These techniques can be good alternatives to
improve the tolerance against intermittent faults if R and S
stay at acceptable values.

Fig. 11 shows the Markov model for warm sparing,
including the explanation of states and transition parameters.
This model has been generated taking as reference the cold
sparing model in Fig. 8, adding the state 3 and some
transitions. The key difference is the fault rate of the primary
(λp) and the backup (λb) processors. In cold sparing, λb = 0,
because the backup unit is inactive. λb < λp in warm sparing,
due to the fact that the backup unit is active, but less than the
primary unit. In hot sparing, λb = λp = λ, because both units
run the same tasks simultaneously. Hence, the model is also
valid for hot sparing, making λb = λp.

Different activated error rates are defined for both the
primary (main) and the backup (spare) processor:

λpactiv = Actp x λp
λbactiv = Actb x λb

where Actp and Actb are the percentage of activated errors for
the primary and the backup processors, respectively. They can
be obtained by applying fault injection, as it has been done for
Act.

The transition rates between states can be deduced from the
expression of the coverages, as it was done for the cold
sparing model.

Transition 13:
λbactiv(1–Cd(sys)) represents the rate of activated errors in the

backup unit that are non-detected and produce a failure in this
unit.

Fig. 10. Sensitivity of reliability and safety to coverages. Duplex with cold sparing. Time = 168h.

Fig. 11. Markov model for a duplex system with warm sparing and intermittent faults.

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0.92 0.94 0.96 0.98 1.00

De
pe

nd
ab

ilt
iy

Cd(sys)

Reliability Safety

0.9950

0.9955

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0.60 0.65 0.70 0.75 0.80

De
pe

nd
ab

ilt
iy

Cr(mech)

Reliability Safety

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0.40 0.45 0.50 0.55 0.60

De
pe

nd
ab

ilt
iy

Cr(Spare)

Reliability Safety

λpactiv: Activated error rate of the main processor
λbactiv: Activated error rate of the backup processor
Cd (mech): Coverage of the detection mechanisms
Cdsys): Global system detection coverage
Cr(mech): Coverage of the recovery mechanisms
Cr(spare):Coverage of the Spare recovery mechanism

1: All good // non effective // detected and recovered by
Backoff (retry) or Checkpoint
2: Main processor failed and replaced by the spare
processor // Spare failed and detected
3: Spare failed and not detected
FS: Safe failure
F:Unsafe failure

1 2

F

FS

3

λpactiv (1-Cd(sys))

λpactiv (Cd(mech)-Cr(mech))

λbactiv (1-Cd(sys))

λpactiv Cr(Spare)+ λbactiv (Cd(mech)-Cr(mech))

λpactiv (1-Cd(sys))

λpactiv [(Cd(mech)-Cr(mech))+Cr(Spare)]

λpactiv [(1-Cd(sys))+ Cr(Spare)]

λpactiv (Cd(mech)-Cr(mech))

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

12

Transition 3F:

])1[()()(Sparersysdpactiv CC +−λ has two contributions:

• (1–Cd(sys)), the activated errors in the primary unit that are
non-detected and provoke a failure.

• λpactivCr(Spare), the activated errors in the primary unit that
would be detected and recovered by the spare
mechanism. In this case, the system tries to reconfigure
with the backup unit, but this unit is failed.

Transition 3FS:
λpactiv(Cd(mech)–Cr(mech)) is the rate of activated errors in the

primary unit that are detected but non recovered. This
provokes a safe failure, because the errors are detected.

Transition 12:
It has two contributions:
• λpactivCr(Spare), that has the same meaning as in the cold

system. It indicates the rate of activated errors that are
detected and recovered by the spare mechanism.

• λbactiv(Cd(mech)–Cr(mech)), that indicates the activated errors
in the backup unit that are detected but non recovered. In
this case, they produce a failure in the backup unit while
the primary unit is correct.

The remaining transitions coincide with the cold sparing

model, using λpactiv. This model is also valid for transient and
permanent faults, by simply changing the corresponding
coverage values and the activated error rates.

To solve the model, the following parameters values have
been applied:

• λpactiv = Actp x λp = 0.8 x 10-4
• λbactiv = Actb x λb = 0.5 x 10-5
Notice that λb < λp and Actb < Actp.
According to the system to analyze, the values of the

coverages can be different. Warm and hot sparing usually
include additional EDMs, such as monitoring between the
processors as well as comparison in hot sparing. In this case,
the detection coverages increase. We have assumed that:

• Cd(mech)hot > Cd(mech)warm > Cd(mech)cold
• Cd(sys)hot > Cd(sys)warm > Cd(sys)cold

Table VI summarizes the values of the coverages used for

the three systems.

TABLE VI.
COVERAGE VALUES FOR THE COMPARISON OF HOT, WARM AND COLD

SPARING
Coverages hot warm cold
Cd(mech) 0.95 0.85 0.8
Cr(mech) 0.7 0.7 0.7
Cd(sys) 0.99 0.97 0.96
Cr(spare) 0.4 0.4 0.4

Fig. 12 shows the reliability (R) as a function of time, for
the three types of sparing. We observe:

• An asymptotic exponential decrease, with R(∞)→0, in
the three systems.

• Rcold > Rwarm > Rhot. This is an expected result, since the
fault probability is bigger when the spare unit is active
(hot) or pseudo-active (warm).

• Differences increase with time. Prior to 4500 hours
(about 6 months), R > 0.9 with small differences between
the three systems. After about 18000 hours (about 2
years), Rhot degrades below 0.6.

Fig. 12. Reliability variation with time. Comparison of cold, warm and hot
sparing.

Fig. 13 shows the safety (S) as a function of time, for the

three types of sparing. We notice:
• An asymptotic exponential decrease, but with

R(∞)→Cd(mech). The same trend has been observed for
cold, warm and hot sparing. S values are much greater
than R values. Values near or higher than 0.9 are
observed for all mission times.

• Shot > Swarm > Scold. This is because the detection
coverage is bigger in hot and warm.

• Differences grow with time, although they are not high.

Fig. 13. Safety variation with time. Comparison of cold, warm and hot
sparing.

From these results, we can conclude that for short-medium

times hot (or warm) sparing may be acceptable solutions to
reduce Lr, because R does not degenerate excessively. In
addition, S shows better values than in cold sparing. For long
times, R degrades too much. It should be necessary to improve
the ERMs (Cr(mech)), as stated previously for cold sparing.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1
37

51
75

01
11

25
1

15
00

1
18

75
1

22
50

1
26

25
1

30
00

1
33

75
1

37
50

1
41

25
1

45
00

1
48

75
1

52
50

1
56

25
1

60
00

1
63

75
1

67
50

1
71

25
1

75
00

1
78

75
1

82
50

1
86

25
1

90
00

1
93

75
1

97
50

1

Re
lia

bi
lit

y

Time (hours)

COLD WARM HOT

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1
37

51
75

01
11

25
1

15
00

1
18

75
1

22
50

1
26

25
1

30
00

1
33

75
1

37
50

1
41

25
1

45
00

1
48

75
1

52
50

1
56

25
1

60
00

1
63

75
1

67
50

1
71

25
1

75
00

1
78

75
1

82
50

1
86

25
1

90
00

1
93

75
1

97
50

1

Sa
fe

ty

Time (hours)

COLD WARM HOT

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

13

It is important to notice that, independently of the particular
results obtained for reliability and safety, the methodology
presented is general, and it can be applied to any fault-tolerant
system at an early phase of the design.

VIII. CONCLUSIONS
In this work, we have presented a study of the dependability

assessment of a fault-tolerant system against intermittent
faults. This study is motivated by the increasing incidence of
intermittent faults in deep submicron technologies. The fault-
tolerant microcomputer system studied is duplex with cold
sparing. This redundancy technique is often used in both long-
life unmanned spacecraft systems and high-availability
transactional processing systems. We have applied VHDL-
based fault injection due to its flexibility, as well as the high
observability and controllability of all the modeled
components.

Detection and recovery coverages and latencies have been
calculated in order to assess the fault-tolerance mechanisms.
Among the applied detection/recovery mechanisms, parity and
retry have shown the best coverage-latency compromise.
Finally, some Markov models have been generated to evaluate
the dependability of the fault-tolerant system. Coverages have
been introduced in the Markov model and dependability
attributes (reliability and safety) have been calculated. Results
have been compared with warm and hot sparing. From the
results obtained, and considering the reconfiguration latency
as a key factor to cope with intermittent faults, it is suggested
to use hot sparing for short-medium operation times. The
Markov models generated are flexible and general, and they
can be applied also to manage transient and permanent faults
with no modification of the chain; instead, only coverage
values must be changed.

The methodology presented is general, and it can be applied
to any fault-tolerant system at an early phase of the design. An
iterative improvement of the detection and recovery
mechanisms can be achieved, following a feedback process.

REFERENCES
[1] C. Constantinescu, “Impact of deep submicron technology on

dependability of VLSI circuits,” in Proc. Dependable Systems and
Networks (DSN), Washington, D.C., USA, 2002, pp. 205-209.

[2] C. Constantinescu, “Impact of intermittent faults on nanocomputing
devices,” in Proc. DSN Workshop on Dependable and Secure
Nanocomputing, Edinburgh, UK, 2007, available at
http://www.laas.fr/WDSN07.

[3] D.P. Siewiorek, R.S. Swarz, Reliable computer systems. Design and
evaluation, 3rd ed. Matick, MA, USA: A K Peters, 1998.

[4] D. Gil, J.C. Baraza, J. Gracia, P.J. Gil, “VHDL simulation-based fault
injection techniques,” in Benso & Prinetto eds., Fault injection
techniques and tools for embedded systems reliability evaluation.
Dordrecht, The Nederlands: Kluwer Academic, 2003, pp. 159-176.

[5] C. Constantinescu, “Dependability benchmarking using environmental
test tools,” in Proc. Annual Reliability and Maintainability Symposium
(RAMS 2005), Alexandria, VA, USA, 2005, pp. 567–571.

[6] D. Gil-Tomás, J. Gracia-Morán, J.-C. Baraza-Calvo, L.-J. Saiz-Adalid,
P.-J. Gil-Vicente, “Analyzing the impact of intermittent faults on
microprocessors applying fault injection,” IEEE Design & Test of
Computers, vol. 29, no. 6, pp. 66-73, 2012.

[7] D. Gil-Tomás, J. Gracia-Morán, J.-C. Baraza-Calvo, L.-J. Saiz-Adalid,
P.-J. Gil-Vicente, “Studying the effects of intermittent faults on a
microcontroller,” Microelectronics Reliability, vol. 52, no. 11, pp. 2837-
2846, 2012.

[8] J. Gracia-Morán, J.C. Baraza-Calvo, D. Gil-Tomás, L.J. Saiz-Adalid,
P.J. Gil-Vicente, "Effects of intermittent faults on the Reliability of a
RISC microprocessor," IEEE Transactions on Reliability, vol. 63, no. 1,
pp. 144-153, DOI 10.1109/TR.2014.2299711, 2014.

[9] J. Wei, L. Rashid, K. Pattabiraman and S. Gopalakrishnan, “Comparing
the effects of intermittent and transient hardware faults on programs,” in
Proc. Workshops IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN-W), Hong Kong, China, 2011, pp. 53-58.

[10] S. Pan, Y. Hu and X. Li, “IVF: Characterizing the vulnerability of
microprocessor structures to intermittent faults,” in Proc. Design,
Automation and Test in Europe (DATE), Dresden, Germany, 2010, pp.
238-243.

[11] D. Gil, R. Martínez, J.V. Busquets, J.C. Baraza, P.J. Gil, “Fault injection
into VHDL models: Experimental validation of a fault tolerant
microcomputer system,” Lecture Notes in Computer Science:
Dependable Computing EDCC-3, no. 1667, pág. 191–208, 1999.

[12] J. Gracia-Morán, D. Gil-Tomás, L.J. Saiz-Adalid, J.C. Baraza, P.J. Gil-
Vicente, “Experimental validation of a fault tolerant microcomputer
system against intermittent faults”, in Proc. IEEE/IFIP International
Conference on Dependable Systems & Networks (DSN), Chicago, IL,
USA, 2010, pp. 413-418.

[13] P.M. Wells, K.Chakraborty, G.S. Sohi, “Adapting to intermittent faults
in future multicore systems,” in Proc. International Conference on
Parallel Architectures and Compilation Techniques (PACT), Brasov,
Romania, 2007, pp. 431.

[14] L. Rashid, K. Pattabiraman, S. Gopalakrishan, “Intermittent hardware
errors recovery: Modeling and evaluation,” in Proc. International
Conference on Conference on the Quantitative Evaluation of Systems
(QEST), London, UK, 2012, pp. 220-229.

[15] S. Delaët and S. Tixeuil, “Tolerating transient and intermittent failures,”
Journal of Parallel and Distributed Computing, vol. 62, no. 5, pp. 961–
981, 2002.

[16] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, J. Karlsson, “Fault injection into
VHDL models: the MEFISTO tool,” in Proc. International Symposium
on Fault-Tolerant Computing (FTCS), Austin, TX, USA, 1994, pp. 66-
75.

[17] R. Balassubramanian, K. Sankaralingam, “Understanding the impact of
gate-level physical Reliability effects on whole program execution,” in
Proc. International Symposium on High Performance Computer
Architecture (HPCA), Orlando, FL, USA, 2014, pp. 60-71.

[18] J.R. Armstrong, “Chip-level modeling with VHDL”, Upper Saddle
River, NJ, USA: Prentice Hall, 1989.

[19] I. Koren, C.M. Krishna, Fault-tolerant systems. San Francisco, CA,
USA: Morgan-Kaufman Publishers, 2007.

[20] O. Tasar, V. Tasar, “A study of intermittent faults in digital computers,”
in Proc. AFIPS National Computer Conference, Dallas, TX, USA, 1977,
pp. 807-811.

[21] M. Sghairi, A. de Bonneval, Y. Crouzet, J.-J. Aubert, P. Brot,
“Challenges in building fault-tolerant flight control system for a civil
aircraft,” IAENG International Journal of Computer Science, vol. 35,
no. 4, pp. 495-499, 2008.

[22] L.J. Saiz-Adalid, P.J. Gil-Vicente, J.C. Ruiz-García, D. Gil-Tomás, J.C.
Baraza, J. Gracia-Morán, “Flexible unequal error control codes with
selectable error detection and correction levels,” in Proc. International
Conference on Computer Safety, Reliability and Security (SAFECOMP),
pp. 178-189, France, Sep. 2013.

[23] D.P. Siewiorek, R.S. Swarz, The theory and practice of reliable system
design. Bedford, MA, USA: Digital Press, 1982.

[24] J. Bechta, K. Trivedi, “Coverage modeling for dependability analysis of
fault-tolerant systems,” IEEE Trans. on Computers, vol. 38, no. 6, pp.
775-787, 1989.

[25] R.W. Butler, S.C. Johnson, “Techniques for modeling the reliability of
fault-tolerant systems with the Markov state-space approach,” NASA
Langley Research Center Technical Report, 1995.

[26] M.A. Boyd, “An introduction to Markov modeling: Concepts and uses,”
NASA Ames Research Center Technical Report, 1998.

[27] R.W. Butler, “The semi-Markov unreliability range evaluator (SURE)
program,” NASA Langley Research Center Technical Report, 1984.

[28] D.P. Siewiorek, P. Narasimhan, “Fault-tolerant architectures for space
and avionics applications”, available online at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.5369&rep
=rep1&type=pdf, accessed Nov 22 2013.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.5369&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.5369&rep=rep1&type=pdf

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREDIT) <

14

Daniel Gil-Tomás is an associate professor at the Department of Computer
Engineering (DISCA) of the Universitat Politècnica de València (UPV). He is
also affiliated to the Fault-Tolerant Systems Research Line (STF-ITACA). His
research interests include Design and Validation of Fault-Tolerant Systems,
Reliability Physics and Reliability of Emerging Nanotechnologies.

Joaquín Gracia-Morán is a senior lecturer at the DISCA-UPV. He is also a
member with the STF-ITACA. His research interests include Design and
Implementation of Digital Systems, Design and Validation of Fault-Tolerant
Systems and Fault Injection.

J.-Carlos Baraza-Calvo is an associate professor at the DISCA-UPV. He is
also affiliated to the STF-ITACA. His research interests include Design and
Implementation of Digital Systems, Design and Validation of Fault-Tolerant
Systems and Fault Injection.

Luis-J. Saiz-Adalid is a Ph.D. candidate and a lecturer at the DISCA-UPV,
and he is affiliated to the STF-ITACA. His research interests include Design
and Implementation of Digital Systems, Design and Validation of Fault-
Tolerant Systems and Fault Injection.

Pedro-J. Gil-Vicente (M’93) is professor at the DISCA-UPV, and co-director
of the STF-ITACA. His research focuses on the Design and Validation of
Real-Time Fault-Tolerant Distributed Systems, Dependability Validation
using Fault Injection, Design and Verification of Embedded Systems, and
Dependability and Security Benchmarking. He has authored more than 100
research papers on these subjects.

