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Abstract

In this paper linear and Riccati random matrix differential equations are solved taking advantage of the so called
Lp-random calculus. Uncertainty is assumed in coefficients and initial conditions. Existence of the solution in the
Lp-random sense as well as its construction are addressed. Numerical examples illustrate the computation of the ex-
pectation and variance functions of the solution stochastic process.
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1. Introduction1

The main target of control theory is to develop mathematical models and procedures for the design of complex2

dynamic systems. The necessity for control appears because operating and designing a dynamical system is usually3

subject to uncertainties that cannot be exactly predicted. The uncertainty may be due to errors, inherent difficulties4

(physical or economical) to measure quantities, the appearance of unexpected events, breakdowns, etc. Therefore, it5

is appropriate to investigate control processes with the aid of models incorporating randomness [1].6

Dynamic systems are frequently modelled by differential equations whose unknown is the state of the system. In7

the ordinary differential equations framework the randomness can be incorporated in different ways, depending on8

the way the uncertainty appears in the model and the meaning of the derivatives, i.e., the operational calculus used.9

When one considers stochastic differential equations and uncertainty appears modelled in terms of Gaussian white10

noise, the proper operational rules are based on Itô calculus. This approach was initiated by Langevin [2] in the study11

of Brownian motion, Pontryagin et al. [3] and many other authors later. Since the seminal papers by Wonham [4, 5],12

a number of recent contributions have addressed the study of the Riccati differential equation appearing in stochastic13

control of linear problems [6, 7, 8, 9]. In these cases, randomness is handled taking advantage of the so called Itô14

calculus [10, 11].15

Otherwise, linear filtering models with stationary coefficients occur, for instance, in the study of the position16

of a satellite which cannot be observed at some unexpected random times. It is natural to consider these kind of17

problems where the uncertainty is not modelled in terms of Brownian motion and Itô calculus, allowing other types of18

randomness. Additionally to Itô calculus approach, the mean square calculus provides a different manner to consider19

uncertainty in differential equations. This approach has two suitable properties. The first one is that our solution, say20

X, coincides with the one of the deterministic case, i.e., when random data is deterministic. The second property is21

that, if Xn → X as n → ∞ in the mean square sense, then the expectation and the variance of the approximation Xn22

will converge to the expectation and the variance of the exact solution X, respectively, [12].23

The treatment of differential equations where uncertainty is not forced by a process whose sample trajectories are24

somewhat irregular (nowhere differentiable), such as a Brownian motion or Wiener process, but rather by other mild25
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class of randomness, has been developed in recent years taking advantage of the mean square random calculus. It26

has been done in both scenarios, the scalar and the matrix framework [13, 14, 15, 16, 17, 18]. It is also well-known27

in population modelling the prominent role played by Riccati differential equation, in both the deterministic and the28

random cases [19, 20].29

In this paper, we deal with the following random matrix Riccati initial value problem (IVP):30

W ′(t) +W(t) A + D W(t) +W(t) B W(t) − C = 0 , W(0) = W0 , (1)

where coefficients A ∈ Ln×n
q (Ω), D ∈ Lm×m

q (Ω), B ∈ Ln×m
q (Ω), C ∈ Lm×n

q (Ω) and initial condition W0 ∈ Lm×n
q (Ω) are31

random matrices of size n×n, m×m, n×m, m×n and m×n, respectively, and the unknown W(t) ∈ Lm×n
q (Ω) is a matrix32

stochastic process (s.p.) of size m×n, all of them defined in certain spaces, Lr×s
q (Ω), that will be defined later. In (1), the33

meaning of the derivative W ′(t) must be understood in the mean square sense which will be specified in Section 2. In34

that section, some preliminary definitions and results about Lp-random scalar calculus are given. We also include the35

proof of important results related to the Lp-random matrix operational calculus that will play an important role in the36

construction of solutions to IVP (1). Section 3 deals with the solution of the random linear matrix differential equation37

in the Lp-random sense. The results obtained in this section are applied to solve the random matrix bilateral Riccati38

differential equation (1) in Section 4. The approach used is somewhat inspired in the study of the deterministic Riccati39

operator equation presented in [21]. Section 5 illustrates the theoretical results through several numerical examples40

and simulations. Conclusions are drawn in the last section.41

2. Random matrix calculus42

The aim of this section is to establish the basis of a random matrix calculus allowing the introduction of matrix43

stochastic processes, operational rules and the definition of the matrix exponential stochastic process. Although44

the main motivation is finding the solution to the random matrix Riccati IVP (1), the random matrix calculus must45

be consistent with the so called Lp-random calculus introduced in [12] and [14] for the random scalar calculus,46

corresponding to p = 2 and p = 4, respectively.47

Throughout this paper, the triplet (Ω, F , P) will denote a complete probability space. Let x : Ω −→ R be a48

random variable (r.v.). It is said to be of order p if E [ |x|p] < +∞, p ≥ 1, where E [·] denotes the expectation operator.49

The space Lp(Ω) of all r.v.’s of order p (assuming we do not distinguish between r.v.’s that are equal with probability50

one), endowed with the norm51

‖x‖p =
(

E
[ |x|p])1/p

, (2)

has a Banach space structure [11, p.9]. It is interesting to recall some important results that will be used later in52

the matrix operational calculus. If x ∈ Lp(Ω) and 0 < q ≤ p, then x ∈ Lq(Ω). This is a consequence of Liapunov53

inequality54
(

E
[|x|q])

1
q ≤ (

E
[|x|p])

1
p , or equivalently ‖x‖q ≤ ‖x‖p, for 0 < q ≤ p, (3)

whenever E [|x|p] < +∞. As the norm ‖ · ‖p is not submultiplicative [22, Sec.3], it is convenient to remember that [15]55

‖x y‖p ≤ ‖x‖2p ‖y‖2p , x, y ∈ L2p(Ω) . (4)

For the random scalar calculus, if a ∈ Lp(Ω) and {xn : n ≥ 0} is a sequence in (Lp(Ω), ‖ · ‖p) converging to x ∈ Lp(Ω),56

then the sequence {a xn : n ≥ 0} does not necessarily converge in the norm ‖ · ‖p to the r.v. a x. However, according to57

[22, Lem. 6], if {xn : n ≥ 0} ⊆ L2p(Ω) and a ∈ L2p(Ω) then58

a xn
‖·‖p−−−−−→

n→+∞
a x . (5)

Hereinafter, T will denote an interval of the real line, R. A stochastic process (s.p.), {x(t) : t ∈ T ⊆ R}, is said to be59

of order p if x(t) ∈ Lp(Ω) for each t ∈ T , i.e., E [|x(t)|p] < +∞, ∀t ∈ T . Let xi, j ∈ Lp(Ω), 1 ≤ i ≤ m, 1 ≤ j ≤ n, and let60

X =
(

xi, j

)

m×n
be the matrix of the r.v.’s xi, j. Then the space of all such random matrices, Lm×n

p (Ω), endowed with the61

norm62

‖X‖p =
m

∑

i=1

n
∑

j=1

∥

∥

∥xi, j

∥

∥

∥

p , xi, j ∈ Lp(Ω) , (6)

2



has a Banach space structure. Although we use the same notation for the norms ‖ · ‖p in (2) and (6), no confusion is63

possible because lower case letters are used for scalar quantities and capital letters are used for matrix quantities.64

The next result is a natural extension of inequality (4) to the random matrix framework.65

Proposition 1. Let X = (xi,k) ∈ Lm×n
2p (Ω) and Y = (yk, j) ∈ Ln×q

2p (Ω). Then66

‖X Y‖p ≤ ‖X‖2p ‖Y‖2p . (7)

Proof. One one hand, by (4) one gets67

‖X Y‖p =
m

∑

i=1

q
∑

j=1

∥

∥

∥

∥

∥

∥

∥

n
∑

k=1

xi,k yk, j

∥

∥

∥

∥

∥

∥

∥

p

≤
m

∑

i=1

q
∑

j=1

n
∑

k=1

∥

∥

∥xi,k yk, j

∥

∥

∥

p ≤
m

∑

i=1

q
∑

j=1

n
∑

k=1

∥

∥

∥xi,k

∥

∥

∥

2p

∥

∥

∥yk, j

∥

∥

∥

2p . (8)

On the other hand, manipulating the right-hand side of expression (8) one obtains68

m
∑

i=1

q
∑

j=1

n
∑

k=1

∥

∥

∥xi,k

∥

∥

∥

2p

∥

∥

∥yk, j

∥

∥

∥

2p =

n
∑

k=1

































m
∑

i=1

∥

∥

∥xi,k

∥

∥

∥

2p































q
∑

j=1

∥

∥

∥yk, j

∥

∥

∥

2p



































≤














n
∑

k=1

m
∑

i=1

∥

∥

∥xi,k

∥

∥

∥

2p































n
∑

k=1

q
∑

j=1

∥

∥

∥yk, j

∥

∥

∥

2p

















=















m
∑

i=1

n
∑

k=1

∥

∥

∥xi,k

∥

∥

∥

2p































n
∑

k=1

q
∑

j=1

∥

∥

∥yk, j

∥

∥

∥

2p

















= ‖X‖2p ‖Y‖2p . (9)

From (8) and (9), the result is established. �69

Taking into account Proposition 1 and the proof of the scalar result (5), see [22, Lem. 6], it is easy to establish the70

following lemma that we state without proof.71

Lemma 1. Let A ∈ Lm×n
2p (Ω), and {X` : ` ≥ 0} ⊆ Ln×q

2p (Ω) such that X`
‖·‖2p−−−−−→
`→+∞

X ∈ Ln×q
2p (Ω). Then72

A X`
‖·‖p−−−−−→
`→+∞

A X . (10)

We have seen that the concept of scalar s.p. in the space Lp(Ω) is a collection of r.v.’s, indexed by time, that belong73

to Lp(Ω). The definition of matrix s.p. of size m× n, say {X(t) : t ∈ T ⊆ R} in the space Lm×n
p (Ω) follows analogously74

from the definition of random matrix, simply by imposing that X(t) ∈ Lm×n
p (Ω) for each t ∈ T . In accordance with75

the definition of a scalar differentiable s.p. in Lp(Ω), we define the concept of differentiability of a matrix s.p. in the76

space (Lm×n
p (Ω), ‖ · ‖p) as follows77

Definition 1. Let {X(t), t ∈ T } be a matrix s.p. in Lm×n
p (Ω). We say that X(t) is p-differentiable or ‖ · ‖p-differentiable78

at t0 ∈ T , being X′(t0) its p-derivative or ‖ · ‖p-derivative, indistinctly, if there exists a random matrix X ′(t0) ∈ Lm×n
p (Ω)79

such that80
∥

∥

∥

∥

∥

X(t0 + h) − X(t0)
h

− X′(t0)
∥

∥

∥

∥

∥

p
−−−→
h→0

0 , t0, t0 + h ∈ T .

It is easy to prove that if all the entries xi, j(t) ∈ Lp(Ω) of the matrix s.p. X(t) = (xi, j(t)) ∈ Lm×n
p (Ω) are p-differentiable81

scalar s.p.’s with p-derivative x′i, j(t0), t0 ∈ T , then X(t) is a p-differentiable matrix s.p. at t0 and its p-derivative is the82

random matrix X′(t0) = (x′i, j(t0)) ∈ Lm×n
p (Ω). Reciprocally, if the matrix s.p. X(t) is p-differentiable with p-derivative83

X′(t), then its entries xi, j(t) are all p-differentiable and the p-derivative x′i, j(t) of entry xi, j(t) is the (i, j)-entry of the84

X′(t) matrix.85

Lemma 2. Let G ∈ Lm×n
p (Ω) and g(t) be a deterministic differentiable function. Then, the matrix s.p. G(t) = Gg(t) is86

p-differentiable and its p-derivative is given by G′(t) = Gg′(t).87
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Proof. It follows directly from the definition of the derivative in the p–norm:88

∥

∥

∥

∥

∥

G(t + h) −G(t)
h

−G′(t)
∥

∥

∥

∥

∥

p
=

∥

∥

∥

∥

∥

Gg(t + h) −Gg(t)
h

−Gg′(t)
∥

∥

∥

∥

∥

p
= ‖G‖p

∣

∣

∣

∣

∣

g(t + h) − g(t)
h

− g′(t)
∣

∣

∣

∣

∣

−−−→
h→0

0,

where in the last step we have used that ‖G‖p < +∞ and the differentiability (in the classical or deterministic sense)89

of g(t). �90

The next result is a rule for p-differentiability of the product of two 2p-differentiable matrix s.p.’s. It constitutes a91

generalization of [14, Lemma 3.14] to the matrix scenario.92

Proposition 2. Let F(t) ∈ Lm×n
2p (Ω) and G(t) ∈ Ln×q

2p (Ω) be 2p-differentiable matrix s.p.’s at T ⊆ R, being F ′(t) and93

G′(t) its 2p-derivatives, respectively. Then, H(t) = F(t)G(t) ∈ Lm×q
p (Ω) and is a p-differentiable matrix s.p. with its94

p-derivative is given by95

H′(t) = F′(t)G(t) + F(t)G′(t) .

Proof. Let us consider96

∥

∥

∥

∥

∥

F(t + h)G(t + h) − F(t)G(t)
h

− {

F′(t)G(t) + F(t)G′(t)
}

∥

∥

∥

∥

∥

p
=

∥

∥

∥

∥

∥

F(t + h)G(t + h) − F(t)G(t) − hF′(t)G(t) − hF(t)G′(t)
h

∥

∥

∥

∥

∥

p

and add and subtract F(t + h)G(t), then applying triangular inequality to obtain97

≤
∥

∥

∥

∥

∥

F(t + h)
G(t + h) −G(t)

h
− F(t)G′(t)

∥

∥

∥

∥

∥

p
+

∥

∥

∥

∥

∥

F(t + h) − F(t)
h

G(t) − F′(t)G(t)
∥

∥

∥

∥

∥

p

next, we add and subtract F(t + h)G′(t), then applying again the triangular inequality together with (7) one gets98

≤ ‖F(t + h)‖2p

∥

∥

∥

∥

∥

G(t + h) −G(t)
h

−G′(t)
∥

∥

∥

∥

∥

2p
+ ‖F(t + h) − F(t)‖2p

∥

∥

∥G′(t)
∥

∥

∥

2p +

∥

∥

∥

∥

∥

F(t + h) − F(t)
h

− F′(t)
∥

∥

∥

∥

∥

2p
‖G(t)‖2p .

(11)
Since F(t) ∈ Lm×n

2p (Ω) and G(t),G′(t) ∈ Ln×q
2p (Ω), then ‖F(t + h)‖2p, ‖G(t)‖2p and ‖G′(t)‖2p are finite ∀t, t + h ∈ T .99

Moreover, because of ‖·‖2p-differentiability, and hence ‖·‖2p-continuity, of F(t) and G(t), one gets100

‖F(t + h) − F(t)‖2p −−−→
h→0

0,
∥

∥

∥

∥

∥

F(t + h) − F(t)
h

− F′(t)
∥

∥

∥

∥

∥

2p
−−−→
h→0

0,
∥

∥

∥

∥

∥

G(t + h) −G(t)
h

−G′(t)
∥

∥

∥

∥

∥

2p
−−−→
h→0

0 .

This implies that all the terms in (11) tend to zero as h→ 0. Thereby, the result is established. �101

The following result constitutes a generalization of inequality (17) of [22]:102

∥

∥

∥

∥

∥

∥

∥

s
∏

i=1

Yi

∥

∥

∥

∥

∥

∥

∥

q

≤
s

∏

i=1

(
∥

∥

∥

∥

(Yi)2s−1
∥

∥

∥

∥

q

)
1

2s−1
, E

[

(Yi)2s−1q
]

< +∞, 1 ≤ i ≤ s, q > 0. (12)

It is obtained by applying [22, Prop. 12] to Xi = (Yi)q. Hence, inequality (17) of [22] is a particular case of (12) when103

q = 4.104

As shall be seen later, the solution of the Riccati random matrix differential equation (1) will be expressed in terms105

of the inverse of a random matrix involving some random inputs. Then, we will need to guarantee the existence of106

an ordinary neighbourhood where that random inverse matrix is well-defined. Next, we introduce some definitions107

and results addressed to tackle this issue through the determinant of a random matrix. Although the random matrix108

differential equation (1) is autonomous, i.e., its matrix of coefficients does not depend upon time t, in order to provide109

more generality both conditions and results will be given for s.p.’s instead of r.v.’s.110

Definition 2. Let {ai, j(t), 1 ≤ i, j ≤ n} be s.p.’s defined for t ∈ T ⊂ R. The determinant of the matrix s.p. of size n×n,111

An(t) = (ai, j(t))n×n, is defined by112

det(An(t)) =
∑

σn=( j1 ,..., jn)∈S n

sgn(σn) a1, j1(t) · · ·an, jn (t), (13)

where, as usual, S n denotes the set of all permutations of (1, 2, . . . , n) and sgn(σn) stands for the signature of the113

permutation σn.114
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Notice that the determinant of a random matrix is a r.v. Since An(t) is a matrix s.p., in the context of Definition 2,115

det(An(t)) is a scalar s.p. As an extension of its scalar counterpart, we introduce the following.116

Definition 3. A stochastic process {U(t) : t ∈ T } is said to be invertible if its determinant det(U(t)) is different from117

zero with probability one for every t ∈ T .118

In the context of the above definition, let p ≥ 1 be fixed, and assume that the following statistical moments exist119

and are finite120

E
[

(ai, j(t))2n−1 p
]

< ∞, ∀i, j : 1 ≤ i, j ≤ n, n ≥ 1, ∀t ∈ T . (14)

Then, using inequality (12) one gets that the determinant of the matrix s.p. An(t) is well-defined in the p-norm:121

‖det(An(t))‖p ≤
∑

σn=( j1 ,..., jn)∈S n

∥

∥

∥a1, j1(t) · · · an, jn(t)
∥

∥

∥

p ≤
∑

σn=( j1,..., jn)∈S n

n
∏

k=1

(
∥

∥

∥

∥

∥

(

ai, jk (t)
)2n−1

∥

∥

∥

∥

∥

p

)
1

2n−1

< ∞. (15)

Notice that in the last step, hypothesis (14) has been applied. Inequality (15) can be straightforwardly generalized to122

matrix stochastic processes of size n − r, An−r(t), 0 ≤ r ≤ n − 1 considering the (2r p)-norm123

‖det(An−r(t))‖2r p ≤
∑

σn−r=( j1,..., jn−r)∈S n−r

∥

∥

∥a1, j1(t) · · · an−r, jn−r (t)
∥

∥

∥

2r p ≤
∑

σn−r=( j1,..., jn−r)∈S n−r

n−r
∏

l=1

(
∥

∥

∥

∥

∥

(

al, jl(t)
)2n−r−1

∥

∥

∥

∥

∥

2r p

)
1

2n−r−1

< ∞.

(16)
Notice that if r = 0 in (16) one obtains inequality (15).124

Proposition 3. Let {ai, j(t), 1 ≤ i, j ≤ n} be s.p.’s defined for t ∈ T ⊂ R satisfying condition (14) in an ordinary125

neighbourhood of t:126

∃ ε > 0 such that E
[

(ai, j(s))2n−1 p
]

< +∞, ∀s ∈ (t − ε, t + ε), ε > 0, i, j : 1 ≤ i, j ≤ n, n, p ≥ 1, ∀t ∈ T . (17)

Assume that ai, j(t), 1 ≤ i, j ≤ n are continuous in the (2n−1 p)–norm. Then, the determinant of the matrix s.p. of size127

n × n, An(t) = (ai, j(t))n×n, defined by (13), is continuous in the p–norm.128

Proof. Throughout the proof, we will assume that n ≥ 2, otherwise the result is trivial. Let 0 < |h| < ε, t, t + h ∈ T129

and consider the following development based on the Laplace’s formula to compute the determinant of matrix An(t)130

in terms of the cofactors (−1)1+ jA(1, j)
n−1 (t) of elements a1, j(t), 1 ≤ j ≤ n, of the first row131

‖det (An(t + h)) − det (An(t))‖p =

∥

∥

∥

∥

{

a1,1(t + h)(−1)1+1det
(

A(1,1)
n−1 (t + h)

)

+ · · · + a1,n(t + h)(−1)1+ndet
(

A(1,n)
n−1 (t + h)

)}

−
{

a1,1(t)(−1)1+1det
(

A(1,1)
n−1 (t)

)

+ · · · + a1,n(t)(−1)1+ndet
(

A(1,n)
n−1 (t)

)}

∥

∥

∥

∥

p
.

(18)
Now, we add and subtract ±det

(

A(1,1)
n−1 (t)

)

a1,1(t + h)(−1)1+1, . . ., ±det
(

A(1,n)
n−1 (t)

)

a1,n(t + h)(−1)1+n in the sum of the132

right-hand side of (18) and then we apply triangular inequality together with inequality (4). This yields133

‖det (An(t + h)) − det (An(t))‖p =

∥

∥

∥

∥

{

det
(

A(1,1)
n−1 (t + h)

)

− det
(

A(1,1)
n−1 (t)

)}

a1,1(t + h)(−1)1+1

+
{

a1,1(t + h) − a1,1(t)
}

det
(

A(1,1)
n−1 (t)

)

(−1)1+1

...

+
{

det
(

A(1,n)
n−1 (t + h)

)

− det
(

A(1,n)
n−1 (t)

)}

a1,n(t + h)(−1)1+n

+
{

a1,n(t + h) − a1,n(t)
}

det
(

A(1,n)
n−1 (t)

)

(−1)1+n
∥

∥

∥

∥

p

≤
∥

∥

∥

∥

det
(

A(1,1)
n−1 (t + h)

)

− det
(

A(1,1)
n−1 (t)

)

∥

∥

∥

∥

2p

∥

∥

∥a1,1(t + h)
∥

∥

∥

2p

+
∥

∥

∥a1,1(t + h) − a1,1(t)
∥

∥

∥

2p

∥

∥

∥

∥
det

(

A(1,1)
n−1 (t)

)

∥

∥

∥

∥

2p
...

+

∥

∥

∥

∥
det

(

A(1,n)
n−1 (t + h)

)

− det
(

A(1,n)
n−1 (t)

)

∥

∥

∥

∥

2p

∥

∥

∥a1,n(t + h)
∥

∥

∥

2p

+
∥

∥

∥a1,n(t + h) − a1,n(t)
∥

∥

∥

2p

∥

∥

∥

∥

det
(

A(1,n)
n−1 (t)

)

∥

∥

∥

∥

2p
.

(19)
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By Liapunov inequality (3) and hypothesis (17), one obtains134

∥

∥

∥a1, j1(t + h) − a1, j1(t)
∥

∥

∥

2p ≤
∥

∥

∥a1, j1(t + h) − a1, j1(t)
∥

∥

∥

2n−1 p , 1 ≤ j1 ≤ n, n ≥ 2. (20)

Hence, taking into account that by hypothesis a1, j1(t), 1 ≤ j1 ≤ n, are ‖·‖2n−1 p-continuous, one gets135

∥

∥

∥a1, j1(t + h) − a1, j1(t)
∥

∥

∥

2p −−−→h→0
0 , 1 ≤ j1 ≤ n. (21)

Since A(1, j1)
n−1 (t) has size (n−1)×(n−1), under hypothesis (17) and applying (16) with r = 1 one gets

∥

∥

∥

∥

det
(

A(1, j1)
n−1 (t)

)

∥

∥

∥

∥

2p
<136

+∞, 1 ≤ j1 ≤ n.137

Therefore,138
∥

∥

∥a1, j1(t + h) − a1, j1(t)
∥

∥

∥

2p

∥

∥

∥

∥

det
(

A(1, j1)
n−1 (t)

)

∥

∥

∥

∥

2p
−−−→
h→0

0 , 1 ≤ j1 ≤ n. (22)

To conclude the proof, we now need to show that139

∥

∥

∥

∥

det
(

A(1, j1)
n−1 (t + h)

)

− det
(

A(1, j1)
n−1 (t)

)

∥

∥

∥

∥

2p

∥

∥

∥a1, j1(t + h)
∥

∥

∥

2p −−−→h→0
0 , 1 ≤ j1 ≤ n. (23)

With this goal, we now adapt the reasoning exhibited previously in (18)–(19) developing the determinants of size140

(n− 1)× (n− 1) that appear in (23) using the Laplace’s formula in terms of the cofactors (−1)2+ j2 A(2, j2)
n−2 (t), 1 ≤ j2 ≤ n,141

j2 , j1, which correspond to the elements of the second row of the original matrix An(t), except the element a2, j1 .142

This yields143

∥

∥

∥

∥

det
(

A(1, j1)
n−1 (t + h)

)

− det
(

A(1, j1)
n−1 (t)

)

∥

∥

∥

∥

2p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p
=

{∥

∥

∥

∥

{

det
(

A(2,1)
n−2 (t + h)

)

− det
(

A(2,1)
n−2 (t)

)}

a2,1(t + h)(−1)1+1

+
{

a2,1(t + h) − a2,1(t)
}

det
(

A(2,1)
n−2 (t)

)

(−1)1+1

...

+
{

det
(

A(2, j1−1)
n−2 (t + h)

)

− det
(

A(2, j1−1)
n−2 (t)

)}

a2, j1−1(t + h)(−1)1+( j1−1)

+
{

a2, j1−1(t + h) − a2, j1−1(t)
}

det
(

A(2, j1−1)
n−2 (t)

)

(−1)1+( j1−1)

+
{

det
(

A(2, j1+1)
n−2 (t + h)

)

− det
(

A(2, j1+1)
n−2 (t)

)}

a2, j1+1(t + h)(−1)1+ j1

+
{

a2, j1+1(t + h) − a2, j1+1(t)
}

det
(

A(2, j1+1)
n−2 (t)

)

(−1)1+ j1

...

+
{

det
(

A(2,n)
n−2 (t + h)

)

− det
(

A(2,n)
n−2 (t)

)}

a2,n(t + h)(−1)1+(n−1)

+
{

a2,n(t + h) − a2,n(t)
}

det
(

A(2,n)
n−2 (t)

)

(−1)1+(n−1)
∥

∥

∥

∥

2p

}

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p

≤
∥

∥

∥

∥
det

(

A(2,1)
n−2 (t + h)

)

− det
(

A(2,1)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a2,1(t + h)
∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p

+
∥

∥

∥a2,1(t + h) − a2,1(t)
∥

∥

∥

22 p

∥

∥

∥

∥
det

(

A(2,1)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p

.

..

+

∥

∥

∥

∥
det

(

A(2, j1−1)
n−2 (t + h)

)

− det
(

A(2, j1−1)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a2, j1−1(t + h)
∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p

+
∥

∥

∥a2, j1−1(t + h) − a2, j1−1(t)
∥

∥

∥

22 p

∥

∥

∥

∥

det
(

A(2, j1−1)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p

+

∥

∥

∥

∥

det
(

A(2, j1+1)
n−2 (t + h)

)

− det
(

A(2, j1+1)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a2, j1+1(t + h)
∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p

+
∥

∥

∥a2, j1+1(t + h) − a2, j1+1(t)
∥

∥

∥

22 p

∥

∥

∥

∥

det
(

A(2, j1+1)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p

+

∥

∥

∥

∥

det
(

A(2,n)
n−2 (t + h)

)

− det
(

A(2,n)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a2,n(t + h)
∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p

+
∥

∥

∥a2,n(t + h) − a2,n(t)
∥

∥

∥

22 p

∥

∥

∥

∥
det

(

A(2,n)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p
.

(24)
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In the above expression, all the summands of the form144

∥

∥

∥a2, j2 (t + h) − a2 j2 (t)
∥

∥

∥

22 p

∥

∥

∥

∥

det
(

A(2, j2)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p
, 1 ≤ j1, j2 ≤ n, j2 , j1,

tend to zero as h → 0 because the ‖ · ‖2n−1 p-continuity of {a2, j2 (t)} (and hence, using the Liapunov’s inequality, the ‖ · ‖22 p-continuity145

of {a2 j2 (t)}) and the finiteness of
∥

∥

∥

∥

det
(

A(2, j2)
n−2 (t)

)

∥

∥

∥

∥

22 p
(by applying inequality (16) for r = 2) and

∥

∥

∥a1 j1 (t + h)
∥

∥

∥

2p
(by the Liapunov’s146

inequality and hypothesis (17)). Thereby, to conclude the proof it must be proven that147

∥

∥

∥

∥
det

(

A(2, j2)
n−2 (t + h)

)

− det
(

A(2, j2)
n−2 (t)

)

∥

∥

∥

∥

22 p

∥

∥

∥a2, j2 (t + h)
∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p
−−−→
h→0

0 , 1 ≤ j1, j2 ≤ n, j2 , j1.

Again, we can repeat the previous reasoning in n − 3 additional steps. This leads to show that is enough to prove148

∥

∥

∥det
(

an,n(t + h)
) − det

(

an,n(t)
)

∥

∥

∥

2n−1 p

∥

∥

∥an−1, jn−1 (t + h)
∥

∥

∥

2n−1 p
· · ·

∥

∥

∥a2, j2 (t + h)
∥

∥

∥

22 p

∥

∥

∥a1, j1 (t + h)
∥

∥

∥

2p
−−−→
h→0

0 ,

1 ≤ j1, · · · , jn−1 ≤ n, jk , jl if k , l, k, l ∈ {1, . . . , n − 1}
(25)

to conclude the proof. Notice that all the terms of the form
∥

∥

∥ak, jk (t + h)
∥

∥

∥

2k p
, 1 ≤ k ≤ n − 1, are finite (by Liapunov’s inequality and

hypothesis (17)) and
∥

∥

∥det
(

an,n(t + h)
) − det

(

an,n(t)
)

∥

∥

∥

2n−1 p
−−−→
h→0

0,

because the ‖·‖2n−1 p-continuity of an,n(t). Thus (25) holds and the proof is completed. �149

Let us assume that U(t) ∈ Ln×n
2p (Ω) is invertible and 2p-differentiable and that its inverse, (U(t))−1 ∈ Ln×n

2p (Ω)150

is a 2p-differentiable matrix s.p. Then there exists an ordinary neighbourhood I =]t0 − δ, t0 + δ[, δ > 0 such that151

U(t) ∈ Ln×n
2p (Ω) is invertible for all t ∈ I. Moreover, notice that by Proposition 2152

(

U(t)(U(t))−1
)′
= (In)′ = 0n ⇒ U ′(t)(U(t))−1 + U(t)

(

(U(t))−1
)′
= 0n ⇒

(

(U(t))−1
)′
= −(U(t))−1U ′(t)(U(t))−1,

where 0n and In denote the null and identity random matrix of size n in Ln×n
2p (Ω), respectively. Therefore in the interval153

I, one gets154

Corollary 1. Let U(t) ∈ Ln×n
2p (Ω) be an invertible matrix s.p. on the interval t ∈ I =]t0 − δ, t0 + δ[⊆ R, δ > 0. Let us155

assume that its inverse (U(t))−1 is in Ln×n
2p (Ω) and is 2p-differentiable. Then, its p-derivative is given by156

(

(U(t))−1
)′
= −(U(t))−1U ′(t)(U(t))−1 ∀t ∈ I . (26)

3. Random linear matrix differential systems157

This section deals with the solution of random linear matrix differential systems of the form158

Y ′(t) = L Y(t), t > 0 ,
Y(0) = Y0 ,

}

(27)

where L ∈ Lm×m
p (Ω), Y(t), Y0 ∈ Lm×n

p (Ω). Apart from the fact that system (27) is the natural extension to the random159

framework of the classical linear homogeneous matrix deterministic systems, here they have a particular relevance160

because the solution of the random matrix Riccati differential equation (1) will be constructed in terms of the solution161

of a random rectangular linear differential system of the form (27).162

The fact that the solutions of deterministic linear systems of type (27), as well as the solution of random scalar163

linear differential equations, are given in terms of the exponentials of its coefficient L, [14, 13], suggest that under164

appropriate conditions, to be specified later, the random matrix exponential exp(L t) will play a relevant role justifying165

that a natural candidate solution of (27) is166

Y(t) = exp(L t)Y0 . (28)

Let us assume that the random matrix coefficient L = (li, j) has entries li, j : Ω → R such that there exist positive167

constants mi, j, hi, j satisfying168

E
[

|li, j|r
]

≤ mi, j

(

hi, j

)r
< +∞ , ∀r ≥ 0 ,∀i, j : 1 ≤ i, j ≤ m . (29)
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Note that condition (29) guarantees that L = (li, j) ∈ Lm×m
p (Ω), p ≥ 1 because,169

‖li, j‖p =
(

E
[

|li, j|p
])1/p

< +∞ , ∀i, j : 1 ≤ i, j ≤ m . (30)

Next, we will show that under condition (29) the random matrix series170

∑

k≥0

Lktk

k!
, (31)

is absolutely convergent in the space (Lm×m
p (Ω), ‖ · ‖p) for all t ∈ R.171

Let us denote the (i, j)-th component of matrix Lk by l(k)
i, j , i.e.,172

Lk =
(

l(k)
i, j

)

m×m
, l(k)

i, j =

m
∑

s1,s2,...,sk−1=1

li,s1 ls1,s2 · · · lsk−1, j , (32)

and note that173

‖Lk‖p =
m

∑

i=1

m
∑

j=1

‖l(k)
i, j ‖p ≤

m
∑

i=1

m
∑

j=1

m
∑

s1,s2,...,sk−1=1

‖li,s1 ls1,s2 · · · lsk−1, j‖p . (33)

By applying (12) and hypothesis (29), it follows that174

‖li,s1 ls1,s2 · · · lsk−1, j‖p ≤
(

‖ (li,s1

)2k−1
‖p

)

1
2k−1

(

‖ (ls1,s2

)2k−1
‖p

)

1
2k−1 · · ·

(

‖
(

lsk−1, j

)2k−1

‖p
)

1
2k−1

=
(

E
[

(

li,s1

)2k−1 p
])

1
2k−1 p

(

E
[

(

ls1,s2

)2k−1 p
])

1
2k−1 p · · ·

(

E
[

(

lsk−1, j

)2k−1 p
])

1
2k−1 p

≤
(

mi,s1

(

hi,s1

)2k−1 p
)

1
2k−1 p

(

ms1,s2

(

hs1,s2

)2k−1 p
)

1
2k−1 p · · ·

(

msk−1, j

(

hsk−1, j

)2k−1 p
)

1
2k−1 p

=
(

mi,s1 ms1,s2 · · ·msk−1, j

)
1

2k−1 p hi,s1hs1,s2 · · · hsk−1, j .

(34)

Let us denote175

m̂ = max{mi, j : 1 ≤ i, j ≤ m} < +∞ , ĥ = max{hi, j : 1 ≤ i, j ≤ m} < +∞ . (35)

Then, from (34) one gets176

‖li,s1 ls1,s2 · · · lsk−1, j‖p ≤ (m̂)
k

2k−1 p
(

ĥ
)k
. (36)

Taking into account (36), expression (33) implies177

‖Lk‖p ≤
m

∑

i=1

m
∑

j=1

m
∑

s1,s2,...,sk−1=1

(m̂)
k

2k−1 p
(

ĥ
)k
= mk+1 (m̂)

k
2k−1 p

(

ĥ
)k
. (37)

Let us denote178

αk(t) =
mk+1 (m̂)

k
2k−1 p

(

ĥ
)k
|t|k

k!
, k ≥ 0 , (38)

and note that179

‖Lk‖p|t|k

k!
≤ αk(t) ,

αk+1(t)
αk(t)

= (m̂)
1−k
2k p

mĥ|t|
k + 1

−−−−−→
k→+∞

0 , ∀t ∈ R . (39)

Thus series (31) is absolutely convergent in the space (Lm×m
p (Ω), ‖ ‖p) and thereby we can define180

exp(Lt) =
∑

k≥0

Lktk

k!
, ∀t ∈ R . (40)

The next result is to check that series function exp(Lt) defined by (40) is termwise differentiable in the norm ‖ · ‖p.181

This can be justified by applying the Lemma 3 stated below. This result is an extension of [23, Th.3.1] to the matrix182

8



framework for the q-norm. Indeed, this latter result corresponds to Lemma 3 in the particular case q = 2 (mean183

square convergence). The case q = 4 (mean fourth convergence) was already used in reference [18]. The proof of184

Lemma 3 would just require an adaptation of [23, Th.3.1] as well as the involved intermediate results developed in185

[23] that includes understanding that the integral of a matrix function M(t) = (mi, j(t))m×n ∈ Lm×n
p (Ω) is the matrix of186

the integrals of its components, i.e.,187
∫ b

a
M(t) dt =

(
∫ b

a
mi, j(t) dt

)

m×n
.

Thus, we state without proof the next result.188

Lemma 3. Assume that, for each k ≥ 0, the s.p. {Uk(t) : t ∈ T } ∈ Lm×n
q (Ω) is ‖ · ‖q-differentiable for all t ∈ T , U ′k(t)189

is ‖ · ‖q-continuous for all t ∈ T ,190

∑

k≥0

Uk(t) is ‖ · ‖q − convergent and
∑

k≥0

U ′k(t) is ‖ · ‖q − uniformly convergent for all t ∈ T .

Then, for each t ∈ T , U(t) is ‖ · ‖q-differentiable and191

















∑

k≥0

Uk(t)

















′

=
∑

k≥0

U ′k(t) .

Under condition (29) imposed on L ∈ Lm×m
2p (Ω) ⊂ Lm×m

p (Ω), assuming that Y0 ∈ Lm×n
2p , hence Y0 ∈ Lm×m

p (Ω), by (40),192

Proposition 2, Lemmas 2 and 3, it follows that193

(

exp(Lt)Y0
)′
=

































∑

k≥0

Lktk

k!

















Y0

















′

=

















∑

k≥0

Lktk

k!

















′

Y0 =

















∑

k≥0

(

Lktk

k!

)′














Y0 =

















∑

k≥1

Lktk−1

(k − 1)!

















Y0 = L exp(Lt)Y0 . (41)

Remark 1. Notice that, in order to reach the above conclusion in the Lp(Ω) sense, we need to apply Proposition 2194

and so we require that (exp(Lt))′ be in the L2p(Ω) sense. Then, we need to apply Lemma 3 with q = 2p. For that we195

must prove that the series196

∑

k≥1

Lktk−1

(k − 1)!
(42)

is 2p-uniformly convergent for all real t. It can be proved, with a slight modification of arguments used previously to197

prove that series (31) is ‖ · ‖p-convergent. Observe that all expressions from (33) to (37) are still valid for the 2p-norm198

just changing p by 2p. This leads to the following majorizing series of (42)199

∑

k≥1

γk(t), γk(t) =
mk+1 (m̂)

k
2k p

(

ĥ
)k
|t|k−1

(k − 1)!
.

Let R > 0 arbitrary but fixed and take |t| < R. Then using radio test one gets200

γk(t) <
mk+1 (m̂)

k
2k p

(

ĥ
)k

Rk−1

(k − 1)!
:= γ̂k(t),

and201

γ̂k+1(t)
γ̂k(t)

= (m̂)
1−k

2k+1 p
mĥR

k
−−−−−→
k→+∞

0 , ∀R > 0 .

Based on the so-called Weierstrass test, this proves that series (42) is ‖ · ‖2p-uniformly convergent on the interval202

|t| ≤ R.203

Therefore, Y(t) = exp(Lt)Y0 is a solution of problem (27) on that interval and, since this is true for all R > 0, it is the204

solution for all t. The following result has been established:205

9



Theorem 1. Let L ∈ Lm×m
2p (Ω) and Y0 ∈ Lm×n

2p (Ω) and assume that L satisfies condition (29). Then, Y(t) = exp(Lt)Y0206

is a solution of the random initial value problem (27) in Lm×n
p (Ω) for all t ∈ R.207

Remark 2. Notice that if random variable L satisfies condition (29), then it is guaranteed that L ∈ Lm×m
2p (Ω).208

Remark 3. It is important to point out that condition (29) is quite strong. There are standard r.v.’s that do not satisfy209

it. In fact, if x is an exponential r.v. x ∼ Exp(λ), λ > 0, then210

E[|x|r] = E[xr] =
r!
λr .

Notice that using the Stirling’s approximation r! ≈
√

2πr
(

r
exp(1)

)r
, being exp(1) ≈ 2.718281 . . . the Euler’s constant,211

one gets212

lim
r→∞

r!
(λH)r =

√
2π lim

r→∞

√
r
(

r
λH exp(1)

)r

= +∞.

As a consequence, condition (29) is not fulfilled. Nevertheless, this condition is useful in applications because it is213

easy to check that bounded r.v.’s do satisfy it. Moreover, unbounded r.v.’s, like exponential, can be approximated by214

truncating them. This approach is supported by Chebyshev’s inequality215

P[{ω ∈ Ω : |x(ω) − µx| ≥ kσx}] ≤
1
k2 , k > 0,

which holds for any r.v. x with finite expected value µx and finite variance σ2
x > 0. In particular, the interval216

[µx − 10σx, µx + 10σx] contains at least 99% of probability mass of x independently of the probability distribution of217

r.v. x. Of course, this lower bound can be improved if the probability distribution of x is known.218

4. Random Riccati matrix differential equation219

In this section we take advantage of the well-known linear hamiltonian matrix approach, see [24, p.11] developed220

to the study of the Riccati deterministic matrix problem, in order to generate a solution to the random matrix differ-221

ential problem (1). An excellent study of Riccati matrix equations in the context of control systems can be found in222

[25].223

Given the random IVP (1) where A ∈ Ln×n
q (Ω), B ∈ Ln×m

q (Ω), C ∈ Lm×n
q (Ω), D ∈ Lm×m

q (Ω) and W0 ∈ Lm×n
q (Ω), let224

us consider the random linear matrix problem (27) where225

L =
[

A B
C −D

]

, Y0 =

[

In

W0

]

, (43)

where In is the identity matrix of size n. Note that, if L satisfies condition (29), then by Theorem 1, Y(t) given by (28)226

is a local L(n+m)×n
2p (Ω) solution of (27) in an ordinary neighbourhoodNY (0) about t = 0.227

Let us consider the block-decomposition228

Y(t) =
[

U(t)
V(t)

]

; U(t) ∈ Ln×n
2p (Ω) , V(t) ∈ Lm×n

2p (Ω) , (44)

and let us write problem (27) in the form229

[

U(t)
V(t)

]′
=

[

A B
C −D

] [

U(t)
V(t)

]

;
[

U(0)
V(0)

]

=

[

In

W0

]

. (45)

Note that U(0) = [In, 0] Y(0) = [In, 0] exp(L 0) Y0 = [In, 0]
[

In

W0

]

= In, and that if U(t) is invertible in Ln×n
2p (Ω) in an230

ordinary neighbourhoodNU(0) of t = 0 and (U(t))−1 lies in Ln×n
2p (Ω), then the stochastic process231

W(t) = V(t) (U(t))−1 , t ∈ NU(0) , (46)
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is well-defined and lies in Lm×n
p (Ω).232

Let us consider the block-decomposition233

exp(L t) =
[

Z1,1(t) Z1,2(t)
Z2,1(t) Z2,2(t)

]

∈ L(n+m)×(n+m)
2p (Ω) , (47)

with234

Z1,1(t) ∈ Ln×n
q (Ω), Z1,2(t) ∈ Ln×m

q (Ω), Z2,1(t) ∈ Lm×n
q (Ω), Z2,2(t) ∈ Lm×m

2p (Ω). (48)

Then, from (28), (44), (45) and (47) we can write235

U(t) = Z1,1(t) + Z1,2(t)W0 ; V(t) = Z2,1(t) + Z2,2(t)W0 , t ∈ NU (0) , (49)

and from Theorem 1, both s.p.’s U(t) ∈ Ln×n
2p (Ω) and V(t) ∈ Lm×n

2p (Ω), defined by (49), are p-differentiable. Hence, we236

can write W(t), defined by (46), as237

W(t) = V(t) (U(t))−1 =
(

Z2,1(t) + Z2,2(t)W0
) (

Z1,1(t) + Z1,2(t)W0
)−1
, t ∈ NU(0) . (50)

By Proposition 2, Corollary 1, (45), (46) and, assuming that (U(t))−1 = (Z11(t) + Z12(t)W0)−1 ∈ Ln×n
2p (Ω) and is238

2p-differentiable, it follows that239

W ′(t) = V ′(t) (U(t))−1 + V(t)
[

− (U(t))−1 U ′(t) (U(t))−1
]

= [C U(t) − D V(t)] (U(t))−1 − V(t) (U(t))−1 U ′(t) (U(t))−1

= C − D W(t) −W(t) [A U(t) + B V(t)] (U(t))−1

= C − D W(t) −W(t) A −W(t) B W(t) ,

and W(0) = V(0) (U(0))−1 = W0.240

Summarizing the following result has been established241

Theorem 2. Let us assume that random matrices L and Y0 defined by (43) lie in L(n+m)×(n+m)
4p (Ω) and L(n+m)×n

4p (Ω),242

respectively, and L satisfies condition (29). Let Zi, j(t) be the block-entries of exp(L t) defined by (47)–(48) and let243

U(t), V(t) be defined by (49) with U(0) = In, V(0) = W0 ∈ Lm×n
4p (Ω). If NU(0) is an ordinary neighbourhood of t = 0244

where U(t) ∈ Ln×n
2p (Ω) is 2p-differentiable, invertible and (U(t))−1 ∈ Ln×n

2p (Ω) is 2p-differentiable, then W(t) defined by245

(50) is a solution of random IVP (1) in Lm×n
p (Ω).246

Thinking of applications, it is also interesting the study of the linear bilateral random problem247

W ′(t) +W(t) A + D W(t) = 0 , W(0) = W0 , (51)

that is a particular case of (1) where B = On×m, C = Om×n. With the notation of Theorem 2, observe that L is the248

block-diagonal matrix249

L = diag(A,−D) =
[

A O
O −D

]

(52)

and250

exp(L t) =
[

exp(t A) O
O exp(−t D)

]

, (53)

251

U(t) = Z1,1(t) = exp(t A) ; V(t) = Z2,2(t) W0 = exp(−t D) W0 . (54)

Note that NU(0) is the whole real line because U(t) = exp(t A) is invertible for all t ∈ R, with (U(t))−1 = exp(−t A).252

Using hypotheses of Theorem 2, the solution of (51) in all the real line is given by253

W(t) = exp(−t D) W0 exp(−t A) . (55)

In this case, condition (29) upon random matrix L can be expressed directly in terms of the same property for random254

matrices A and D. Hence, the following result has been established:255

Corollary 2. Assume that random matrices A ∈ Ln×n
2p (Ω), D ∈ Lm×n

2p (Ω) satisfy condition (29) and W0 ∈ Lm×n
2p (Ω).256

Then W(t) defined by (55) is a Lm×n
p (Ω) solution of problem (51).257
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5. Numerical examples258

This section is devoted to present three examples where the theoretical results previously established are illustrated.259

In order to show the capability of the proposed method in different scenarios, the first and second examples consider,260

respectively, two particular cases of that random IVP where m = n = 1, thus corresponding to the scalar case.261

Specifically, the first is a numerical example whereas the second shows an application to the recent random SI-type262

epidemiological model [26] in order to model the early stages of the AIDS epidemic. Finally, the last example deals263

with a random matrix Riccati IVP of the form (1).264

We point out that the uncertainty assigned to each one of the involved random input parameters in all examples is265

considered through a wide range of probability distributions such as beta, exponential, Gaussian, etc. In the examples,266

we will compute the main statistical moments of the solution s.p., namely, the mean and the variance functions.267

Example 1. Let us consider the following scalar Riccati random differential equation268

w′(t) + a w(t) + b (w(t))2 − c = 0 , w(0) = w0, (56)

which is obtained as a particular case of (1) taking269

m = n = 1 , W(t) = w(t) , W(0) = w0 , A = D =
a
2
, B = b , C = c . (57)

We will assume that r.v. a has a Gaussian distribution of mean µ = 2 and standard deviation σ = 0.1 truncated at270

the interval [1.5, 2.5], a ∼ N[1.5,2.5](2; 0.1); b has an exponential distribution of parameter λ = 1/3 truncated at the271

interval [1, 6], b ∼ Exp[1,6](1/3); c has a uniform distribution on the interval [0.5, 1.5], c ∼ U(0.5, 1.5); and finally272

w0 has a Gaussian distribution of mean µ = 1 and standard deviation σ = 0.1 truncated at the interval [0.5, 1.5],273

w0 ∼ N[0.5,1.5](1; 0.1). To simplify subsequent expressions involved in computations, we consider that these four r.v.’s274

are defined in a common complete probability space (Ω,F ,P) as well as they are independent. In order to compute275

the expectation, the following steps have been performed.276

Step 1. Representation of the solution s.p. of (56) in terms of the random data.
Compute the random matrix exponential

exp(Lt) =
[

Z1,1(t) Z1,2(t)
Z2,1(t) Z2,2(t)

]

, L =
[ a

2 b
c − a

2

]

,

using, for example, Mathematica software. This yields277

Z1,1(t) = −
(a −

√
a2 + 4bc) exp

(

− 1
2 t
√

a2 + 4bc
)

2
√

a2 + 4bc
+

(a +
√

a2 + 4bc) exp
(

1
2 t
√

a2 + 4bc
)

2
√

a2 + 4bc
,

Z1,2(t) = −
b exp

(

− 1
2 t
√

a2 + 4bc
)

√
a2 + 4bc

+
b exp

(

1
2 t
√

a2 + 4bc
)

√
a2 + 4bc

,

Z2,1(t) = −
c exp

(

− 1
2 t
√

a2 + 4bc
)

√
a2 + 4bc

+
c exp

(

1
2 t
√

a2 + 4bc
)

√
a2 + 4bc

,

Z2,2(t) = −
(−a −

√
a2 + 4bc) exp

(

− 1
2 t
√

a2 + 4bc
)

2
√

a2 + 4bc
+

(−a +
√

a2 + 4bc) exp
(

1
2 t
√

a2 + 4bc
)

2
√

a2 + 4bc
.























































































































(58)

Observe that entries ±a/2, b and c of matrix L satisfy condition (29) since a, b and c are bounded r.v.’s.278

According to (50) and (58), represent explicitly the solution s.p. of scalar random Riccati IVP (56), w(t), in279

terms of the random parameters as follows280

w(t) = V(t)(U(t))−1 =
Z2,1(t) + Z2,2(t) w0

Z1,1(t) + Z1,2(t) w0
. (59)
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Step 2. Computation of the expectation of the solution s.p. w(t) given by (59).281

Denote by fw0 (w0), fa(a), fb(b) and fc(c) the probability density functions of w0, a, b and c, respectively. Com-282

pute the expectation of w(t) as follows283

E [w(t)] =
∫

R4
w(t) fw0 (w0) fa(a) fb(b) fc(c) dw0 da db dc . (60)

Step 3. Computation of the standard deviation of the solution s.p. w(t) given by (59).284

Compute285

E
[

(w(t))2
]

=

∫

R4
(w(t))2 fw0 (w0) fa(a) fb(b) fc(c) dw0 da db dc , (61)

and then, determine the standard deviation by286

σ [w(t)] = +
√

E
[

(w(t))2] − (E [w(t)])2 , (62)

using (60) and (61).287

Figure 1 shows E[w(t)] and E[w(t)] ± σ[w(t)] on the time interval [0, 5]. We observe that, in this particular case,288

the expectation and standard deviation of the solution stabilize as time goes on.289

0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

 

 

E[w(t)]± σ(w(t))

E[w(t)]

Figure 1: Evolution of the expectation, E [w(t)], and plus/minus the standard deviation, σ[w(t)], of the solution s.p. w(t) of the scalar random
Riccati IVP (56) on the temporal domain t ∈ [0, 5] in the context of Example 1.

Finally, in order to legitimate the earlier application of Theorem 2, notice that it remains to check that U(t) ∈290

L1×1
2p (Ω) is 2p-differentiable and invertible and that (U(t))−1 ∈ L1×1

2p (Ω) is 2p-differentiable. According to (58), let us291

first observe that U(t) has the following form292

U(t) = α1 exp(β1t) + α2 exp(β2t), (63)
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where αi = αi(ω) and βi = βi(ω), i = 1, 2, ω ∈ Ω are defined by293

α1 =
−a − 2bw0 +

√
a2 + 4bc

2
√

a2 + 4bc
, α2 =

a + 2bw0 +
√

a2 + 4bc

2
√

a2 + 4bc
, β1 = −

√
a2 + 4bc

2
< 0, β2 =

√
a2 + 4bc

2
> 0.

Moreover, taking into account the domains of bounded absolutely continuous r.v.’s a, b, c and w0, it is clear that294

a2 + 4bc = (a(ω))2 + 4b(ω)c(ω) > 0 for all ω ∈ Ω, thus αi = αi(ω) and βi = βi(ω), i = 1, 2, are well-defined and, for295

each t ≥ 0 and p ≥ 1 fixed, one gets296

Mt,p := max
ω∈Ω
{(α1 exp(β1t) + α2 exp(β2t))2p} < +∞.

Then, one gets297

E[(U(t))2p] =

∫ 2.5

1.5

∫ 6

1

∫ 1.5

0.5

∫ 1.5

0.5

(

α1 exp(β1t) + α2 exp(β2t)
)2p fw0 (w0) fc(c) fb(b) fa(a) dw0 dc db da

≤ Mt,p

(∫ 1.5

0.5
fw0 (w0) dw0

) (∫ 1.5

0.5
fc(c) dc

) (∫ 6

1
fb0(b) db

) (∫ 2.5

1.5
fa(a) da

)

= Mt,p < +∞.

Notice that in the last step we have used that every integral is 1. This shows that U(t) ∈ L1×1
2p (Ω) for each t ≥ 0. Taking298

into account that αi = αi(ω) and βi = βi(ω), i = 1, 2 lie in closed finite intervals, one can check that U(t) = U(t)(ω) > 0299

for all ω ∈ Ω and defining300

mt,p := min
ω∈Ω
{(α1 exp(β1t) + α2 exp(β2t))2p} > 0,

it is straightforward to show, using an analogous argument, that, for each t ≥ 0 and p ≥ 1 fixed, one gets301

E
[

((U(t))−1)2p
]

≤ 1
mt,p
< +∞.

Bearing in mind that, by (63), U(t) is a linear combination of two exponential processes, to prove that U(t) is 2p-302

differentiable about t = 0 it is enough to observe that, for a s.p., g(t) = exp(βt), one gets303

(
∥

∥

∥

∥

∥

g(h) − g(0)
h

− g′(0)
∥

∥

∥

∥

∥

2p

)2p

= E















(

exp(βh) − 1
h

− β
)2p













= E















(

exp(βh) − (1 + βh)
h

)2p












= O(h2p) −→ 0 as h→ 0.

A similar argument justifies that (U(t))−1 is 2p-differentiable about t = 0 since U(t) = U(t)(ω) > 0 for all ω ∈ Ω.304

Example 2. SI-type models are useful to study simple epidemics where the only transition in the population is from305

susceptible (S) to infected (I). It is assumed that the total population size, say n̂, is constant for all time t because this306

hypothesis is credible during certain time-intervals, particularly in developed countries as well as for populations307

under control. SI-models can be described by the following IVP308

s′(t) = −β
n̂

s(t)[n̂ − s(t)] , s(0) = m, (64)

where s(t) is the number of susceptibles at the time instant t, m represents the initial number of susceptibles and309

β > 0 denotes the transmission rate of decline in the number of susceptibles. In [27], authors rewritten equation310

(64) in terms of the proportion of susceptibles at time t, w(t) = s(t)/n̂, obtaining the following scalar Riccati random311

differential equation312

w′(t) = −βw(t)[1 − w(t)] , w(0) = w0, (65)

where w0 = m/n̂ is the initial proportion of susceptibles verifying w0 ∈ [0, 1]. In this manner, the authors assume that313

the initial condition w0 is a r.v., following a beta distribution, that is w0 ∼ Be(a; b), whose domain is the interval [0, 1].314

And for simplicity, they consider that the transmission rate β in (65) is deterministic. However, using our theoretical315

results previously developed, we can introduce uncertainty in both parameters w0 and β and compute the prevalence316
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of people with HIV antibodies in a representative sample of homosexual men. Identifying all the elements of the scalar317

Riccati random differential equation (65) as we did in Example 1, we obtain318

m = n = 1 , W(t) = w(t) , W(0) = w0 , A = D =
β

2
, B = −β , C = 0 . (66)

According to [27], we assume w0 ∼ Be(a = 3.4998; b = 0.2168) and consider parameter β as a r.v. following a319

Gaussian distribution of mean µ = 1.18 and standard deviation σ = 0.11 truncated at the interval [µ − 3σ, µ + 3σ] =320

[0.85, 1.51], that is β ∼ N[0.85,1.51](1.18; 0.11), instead of taking the deterministic estimation, β̂ = 1.18(±0.11), used in321

[27].322

Following similar steps as the ones described in the Example 1, we obtain the expressions323

Z1,1 = exp
(

t β
2

)

,

Z1,2 = − exp
(

− t β
2

)

(−1 + exp(t β)
)

,

Z2,1 = 0
Z2,2 = exp

(

− t β
2

)

,



































and the solution s.p. of scalar random Riccati IVP (65), w(t), in terms of the random parameters is324

w(t) = V(t)(U(t))−1 =
Z2,1(t) + Z2,2(t) w0

Z1,1(t) + Z1,2(t) w0
=

exp
(

− t β
2

)

w0

exp
(

t β
2

)

− exp
(

− t β
2

)

(−1 + exp(t β)
)

w0

. (67)

Observe that entries ±β/2 and −β of the matrix L =
[ β

2 −β
0 − β2

]

satisfy condition (29) since β is a bounded r.v. The325

expectation function, E[w(t)], can be computed with Mathematica software from (67) using expression326

E [w(t)] =
∫ 1

0
w(t) fw0 (w0) fβ(β) dw0 dβ .

In Figure 2 we have plotted E [w(t)] together with the four observed data points of the prevalence of HIV antibodies327

in a representative sample of homosexual men (San Francisco City Clinic cohort, 1978–1984), see [27].328

Finally, it must be checked that U(t) ∈ L1×1
2p (Ω) is 2p-differentiable and (U(t))−1 ∈ L1×1

2p (Ω) is 2p-differentiable, being329

U(t) = exp
( t β

2

)

− exp
(

− t β
2

)

(−1 + exp(t β)
)

w0.

We omit this proof since it can be proved following a similar reasoning we used in Example 1.330

Example 3. Let us consider the random Riccati IVP (1) where331

W(t) =
[

w1(t)
w2(t)

]

, W0 =

[

w1,0

w2,0

]

, A = a , B =
[

b1,1 b1,2

]

, C =
[

c1,1

c2,1

]

, D =
[

d1,1 d1,2

d2,1 d2,2

]

. (68)

We will assume that w2,0 = 1 and b1,2 = c2,1 = d1,2 = d2,1 = d2,2 = 0. The rest of the parameters are assumed to be332

r.v.’s with the following distributions: w1,0 has a beta distribution of parameters α = 3 and β = 2, w1,0 ∼ Be(3; 2); a333

has a beta distribution of parameters α = 2 and β = 1, a ∼ Be(2; 1); b1,1 has an exponential distribution of parameter334

λ = 1 truncated at the interval [2, 3], b1,1 ∼ Exp[2,3](1); c1,1 has a Gaussian distribution of mean µ = 1 and standard335

deviation σ = 0.1 truncated at the interval [0.5, 1.5], c1,1 ∼ N[0.5,1.5](1; 0.1) and, finally d1,1 has a uniform distribution336

on the interval [1, 2], d1,1 ∼ U(1, 2). We will assume that all the input parameters are independent r.v.’s.337

In order to compute the expectation, the following steps have been performed.338

Step 1 . Representation of the matrix solution s.p. in terms of the random data.339

Compute the solution (28) of random IVP (27) where340

L =





















a b1,1 0
c1,1 −d1,1 0
0 0 0





















, Y0 =





















1
w1,0

1





















. (69)
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Figure 2: Expectation of the percentage of non-HIV+ from year 1978 until 1984, E[w(t)], in a sample of homosexual men and the four exact
percentages (0.955, 0.874, 0.759 and 0.326) at time points 0, 1, 2 and 6 corresponding to the years 1978, 1979, 1980 and 1984, respectively.

Note that entries a, b1,1, c1,1, and −d1,1 of matrix L satisfy condition (29) since a, b1,1, c1,1 and d1,1 are bounded341

r.v.’s. Define a column vector of size 3 × 1342

Y(t) = exp(L t) Y0 =

[

Z1,1(t) Z1,2(t)
Z2,1(t) Z2,2(t)

] [

1
W0

]

=





















z1,1(t) z1,2(t) z1,3(t)
z2,1(t) z2,2(t) z2,3(t)
z3,1(t) z3,2(t) z3,3(t)









































1
w1,0

1





















. (70)

According to (50) and (70), represent explicitly the solution s.p. of random Riccati IVP (1), W(t) = [w1(t) w2(t)]T,343

in terms of the random parameters as follows344

[

w1(t)
w2(t)

]

=
(

Z2,1(t) + Z2,2(t)W0
) (

Z1,1(t) + Z1,2(t)W0
)−1

=

{[

z2,1(t)
z3,1(t)

]

+

[

z2,2(t) z2,3(t)
z3,2(t) z3,3(t)

] [

w1,0

1

]} {

z1,1(t) +
[

z1,2(t) z1,3(t)
]

[

w1,0

1

]}−1

.

(71)

Step 2. Computation of the expectation.345

Expression (71) gives a representation of components wi(t), i = 1, 2, of W(t) in terms of the random input346

parameters w1,0, a, b1,1, c1,1 and d1,1. Denote by fw1,0 (w1,0), fa(a), fb1,1 (b1,1), fc1,1 (c1,1) and fd1,1 (d1,1) their347

probability density functions (p.d.f.’s), respectively. Compute the expectation of the solution s.p. W(t) as follows348

E [wi(t)] =
∫

R5
wi(t) fw1,0 (w1,0) fa(a) fb1,1(b1,1) fc1,1 (c1,1) fd1,1 (d1,1) dw1,0 da db1,1 dc1,1 dd1,1, i = 1, 2. (72)
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Step 3. Computation of the standard deviation.349

Compute350

E
[

(wi(t))2
]

=

∫

R5
(wi(t))2 fw1,0 (w1,0) fa(a) fb1,1 (b1,1) fc1,1 (c1,1) fd1,1 (d1,1) dw1,0 da db1,1 dc1,1 dd1,1, i = 1, 2 , (73)

and then, determine the standard deviation by351

σ [wi(t)] = +
√

E
[

(wi(t))2] − (E [wi(t)])2, i = 1, 2, (74)

where E [wi(t)] is given by (72).352

Figure 3 shows the expectation plus/minus the standard deviation for each one of the two components, w1(t) (plot353

(a)) and w2(t) (plot (b)), of the solution s.p. W(t) of the Riccati random differential equation (1). In this particular354

example, we observe that the expectations and standard deviations of both components tend to stabilization.355
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(b)

Figure 3: Expectations E [wi(t)] and plus/minus the standard deviations E [wi(t)] ± σ[wi(t)], i = 1, 2, of the two components of the solution W(t) of
the random Riccati IVP (1) on the time domain t ∈ [0, 5] in the context of Example 3.

We finally point out that it must be checked that U(t) ∈ L1×1
2p (Ω) is 2p-differentiable and (U(t))−1 ∈ L1×1

2p (Ω) is356

2p-differentiable, being357

U(t) = z1,1(t) +
[

z1,2(t) z1,3(t)
]

[

w1,0

1

]

.

This can be done following a similar reasoning we used in Example 1.358

6. Conclusions359

Riccati matrix differential equations with uncertainty play a relevant role in many different type of real problems360

such as population dynamics and control theory, for instance [28]. When uncertainty is driven by Brownian motion,361

the differentiability is considered in the Itô calculus sense and models are formulated by Itô type stochastic differential362

equations. In this paper, we consider an alternative type of randomness and we then apply the so called Lp-random363

calculus to solve random differential equations. Throughout this paper we have established some results belonging364

to the Lp-random matrix calculus to extend methods of deterministic calculus to the random framework. This has365

been done assuming certain conditions involving statistical moments of coefficients, forcing term and initial condition366

of the random differential equation. Although these conditions are, from a mathematical point of view, somewhat367

strong, they are met in many practical situations. Several numerical examples illustrate the applicability of the results368

established through this paper.369
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