

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 This is the author’s version of a work that was accepted for publication in The Journal of
Systems and Software. Changes resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently published in Multi-criteria
analysis of measures in benchmarking: Dependability benchmarking as a case study.
Journal of Systems and Software, 111, 2016. DOI 10.1016/j.jss.2015.08.052.

http://dx.doi.org/10.1016/j.jss.2015.08.052

http://hdl.handle.net/10251/80735

Elsevier

Friginal López, J.; Martínez, M.; De Andrés, D.; Ruiz, J. (2016). Multi-criteria analysis of
measures in benchmarking: Dependability benchmarking as a case study. Journal of
Systems and Software. 111:105-118. doi:10.1016/j.jss.2015.08.052.

Multi-Criteria Analysis of Measures in Benchmarking:
Dependability Benchmarking as a Case Study

Jesús Friginala, Miquel Martı́nezb, David de Andrésb, Juan-Carlos Ruizb

jesus.friginal@laas.fr, {mimarra2, ddandres, jcruizg}@disca.upv.es

aLAAS-CNRS, 7 Avenue du Colonel Roche. 31077 Toulouse Cedex, France
bSTF-ITACA Universitat Politècnica de València, Campus de Vera s/n, 46022, Spain

Abstract

Benchmarks enable the comparison of computer-based systems attending to a vari-

able set of criteria, such as dependability, security, performance, cost and/or power

consumption. Despite its difficulty, the multi-criteria analysis of results remains today

a subjective process rarely addressed in an explicit way in existing benchmarks. It is

thus not surprising that industrial benchmarks only rely on the use of a reduced set

of easy-to-understand measures, specially when considering complex systems.This is

a way to keep the process of result interpretation straightforward and unambiguous.

However, it limits at the same time the richness and depth of the analysis process.

This is why the academia prefers to characterize complex systems with a wider set of

measures. Marrying the requirements of industry and academia in a single proposal

remains a challenge today. This paper addresses this question by reducing the uncer-

tainty of the analysis process using quality (score-based) models. At measure defini-

tion time, these models make explicit (i) which are the requirements imposed to each

type of measure, that may vary from one context of use to another, and (ii) which is the

type, and intensity, of the relation between considered measures. At measure analysis

time, they provide a consistent, straightforward and unambiguous method to interpret

resulting measures. The methodology and its practical use are illustrated through three

different case studies from the dependability benchmarking domain, which usually

Preprint submitted to Elsevier May 13, 2015

consider several different criteria including both performance and dependability ones.

Although the proposed approach is limited to dependability benchmarks in this doc-

ument, its usefulness for any type of benchmark seems quite evident attending to the

general formulation of the provided solution.

Keywords: Multiple-Criteria Decision Making (MCDM), Logic Score of

Preferences, Dependability benchmarking, Quality models

1. Introduction

Benchmarks are well-known tools to compare and select distributed systems mainly

attending to their performance, cost and power consumption. Standardization bodies,

such as the Transaction Processing Performance Council [1], currently propose a set of

representative (since widely accepted by the community) benchmarks for distributed

systems. In the last decade, some initiatives have addressed the challenging goal of in-

cluding the evaluation of dependability and security properties in conventional bench-

marks. Resulting benchmarks are typically called dependability benchmarks.

Like in conventional benchmarks, controllability and repeatability of experiments

and interpretation of results are essential in dependability benchmarks [2], [3], [4]. To

date, most of the efforts done in the community around this topic have been oriented

towards providing controllability and repeatability of experiments. These efforts can

be understood given the need to obtain the same (or at least statistically similar or

comparable) experimental measures when the same experimental setup is considered.

However, and without taking importance away from this point, controllability and

repeatability also affects other stages of the benchmarking process, such as the anal-

ysis of results. The reader should understand that dependability benchmarks intro-

duce the need of performing a more complex analysis of target systems, considering

their behavior in the presence of faults and attacks, and characterizing such behavior

with a larger set of measures, including dependability and security specific ones. This

2

evidence becomes a challenge when considering the evaluation of complex systems

formed by a large and heterogeneous set of sub-systems and components. This is a

challenge not only for the amount of measures to consider, but also for their variety of

origin and typology.

To date, the analysis of results from dependability benchmarks has been an as-

pect strongly relying on the human factor. Evaluators subjectively interpret measures

following considerations that are usually omitted in the finally generated reports. In

consequence, repeating the same analysis of measures and obtaining the same conclu-

sions, even when results are the same, becomes sometimes a complex task.

The underlying problem is that most proposals limit their purpose to the delivery

of benchmark measures. In deed, the consideration of a representative set of measures

has been traditionally enough to justify their selection for benchmarking purposes [5].

Then, the analysis of such measures, and consequently the related comparison of alter-

natives, is typically considered outside the purpose of the specification of most bench-

marks, including dependability benchmarks. This can be something acceptable in the

context of conventional benchmarks but it is unaffordable in the case of dependability

benchmarks, since any aspect leading to a wrong alternative selection may have a neg-

ative impact on the safety or security of the system, with the subsequent losses, in the

case of critical systems, of reputation, money or lives.

On the one hand, benchmark measures must be contextualized during the analysis

process. Without contextualizing their meaning throughout factors such as the environ-

ment, the type of system targeted, or the evaluation performer, same results may have

different interpretations depending on the evaluation consumer’s subjectivity. On the

other hand, it must be clearly specified in the analysis process which are the relations

considered among measures, and the intensity of such relations. Otherwise, it may

be very difficult to guess which have been all the assumptions adopted by someone

analyzing a set of benchmark measures. In other words, it may be difficult to verify

3

the conclusions issued from the analysis of a set of benchmark measures.

It is worth mentioning that even if all this effort is done, the analysis and interpre-

tation of results remains an error-prone process requiring a very deep dependability

expertise, in the case of dependability benchmarks. This situation increases the un-

certainty of evaluation analyses and thus negatively affects the credibility of the con-

clusions obtained. This ambiguous interpretation of concepts is commonly known as

semantic heterogeneity [6].

This challenge could be addressed through a process of semantic reconciliation [6].

Such process involves covering the existing gap between the explicit result of the eval-

uation, that is, the conclusions distilled from the analysis of measures, and the implicit

real intention of evaluators, which concerns the interpretation procedure to obtain such

conclusions. This fact increases the sensitivity of analyses, potentially revealing sur-

prising insights about the system under evaluation. This approach is specially useful

when there is no obvious optimal (or unanimous) solution due to the large number of

criteria that need to be taken into account, or when decisions often require the ful-

fillment of conflicting objectives (e.g., design or choice of systems maximizing their

dependability or performance). It has also the potential for improving the work of

system evaluators by leading them to unequivocal and more objective conclusions.

Unfortunately, to date, semantic reconciliation remains a non-addressed issue in the

domain of distributed systems dependability benchmarking.

The main novelty of this paper relies on a double fact. First, providing a multi-

criteria analysis methodology to ease the multiple interpretations that the measures

issued from dependability benchmarks may have depending on the criteria followed

by evaluators. The goal of this methodology is to make explicit the subjective in-

terpretation rules that evaluators typically apply implicitly when determining to what

extent measures satisfy evaluation requirements. Doing this in a systematic and repeat-

able way is essential when different evaluators need to make a fair comparison of their

4

results, so the methodology relies on a mathematical formalism. Second, defining our

methodology in such a way it may satisfy the conflicting positions between (i) those

evaluation consumers that prefer having all the possible measures as field data for en-

abling deep result analysis and promote data sharing among community members [7]

(e.g., people from academia), and (ii) those adopting a more pragmatical viewpoint

that ask for an small set of meaningful and representative scores to characterize, rank

and compare evaluated systems [8] (e.g., people from industry). To cope with this goal

we rely on the notion of quality model, adopted from ISO/IEC 25000 standards [9], to

formulate not only rigorous but also usable and flexible interpretation rules.

Before closing this introduction, it is important to say that the integration of a

multi-criteria analysis methodology in very simple benchmarks may be useless, spe-

cially where few, or only one, measure or measure type is under consideration. The

use of the methodology proposed in this paper makes sense in benchmarking contexts

where the analysis process asks for the simultaneous consideration (aggregation and/or

comparison) of different measures of different type. The higher the number of mea-

sures or the heterogeneity of such measures the higher the usefulness of the proposal.

Since this is what happens in dependability benchmarks, the present proposal limits its

purpose to this type of benchmarks, and this despite its obvious potential for any other

type of benchmarks.

The rest of the paper is structured as follows. Section 2 introduces a brief back-

ground about dependability benchmarking and multi-criteria analysis. Section 3 presents

our multi-criteria analysis methodology. Section 4 shows the feasibility of our ap-

proach through three different case studies and finally. Section 5 concludes the paper.

2. Background

Computer benchmarks are standard tools that enable the evaluation and compar-

ison of different systems, components, and tools according to specific characteris-

5

tics [10]. Benchmarks have been widely used to compare the performance of systems

(e.g. transactional systems [1] or embedded systems [11]. From a high-level view-

point, the specification of a conventional benchmark encompasses with the definition

of the following components:

• The system under benchmarking and the benchmark target, which specify the

context of use of the system under evaluation and the model of the considered

target;

• The measures that will be employed to characterize and compare existing alter-

natives;

• The execution profile required to parameterize and exercise both the system un-

der benchmarking and the benchmark target during experimentation. This is

typically a workload;

• The experimental procedure specifying how to run the selected execution profile

and how to trace the resulting activity;

• The process to follow in order to transform traces (experimental measurements)

into expected benchmark measures.

The main benefit of conventional benchmarks is that, once the set of proposed

measures are widely accepted by a community, systems produced by such community

can be compared in a quite straightforward and unambiguous way. The key issue here

is the that most of the considered measures are homogeneous. In deed, they simply

characterize evaluated systems in terms of either their performance or their cost. As a

result, comparisons among systems are carried out in a more representative way, since

based on the use of a set of measures widely accepted by a given community.

Things become however quite different when conventional benchmarks evolved

to dependability benchmarks. The seminal work on dependability benchmarking dates

6

from 15 years ago and was produced in the context of the European project DBench [2].

Dependability benchmarks characterize the ability of evaluated systems to cope with

their purpose not only in the absence of faults and attacks, as conventional benchmarks

do, but also in their presence. The feasibility of the approach and its applicability to

different application domains and systems have been shown in [12]. Roughly speak-

ing, dependability benchmarks are specified as conventional benchmarks, but revisit-

ing the concepts of performance profile and experimental procedure as follows:

1. The notion of execution profile is enriched with the specification of a set of

accidental faults and attacks, those to which the system must be exposed during

experimentation. This set is called the perturbation-load.

2. The experimental procedure is reformulated in order to specify not only how

considered systems or components must be exercised using the workload, but

also how to apply the specified perturbation-load.

Recently, the concept of dependability benchmarking has been also applied in the

context of autonomous system, resulting in a new type of benchmark called resilience

benchmark. In the context of these new benchmarks, benchmarks targets are evaluated,

not only in the absence and presence of perturbation-loads, but also in the presence of

changes affecting the behavior and/or structure of such targets.

Contrary to conventional benchmarks, the number and heterogeneity of the con-

sidered measures is a constant in the various existing dependability benchmarking pro-

posals [12]. Indeed, researchers have proposed, from the very beginning, the use of

on-line analytical processing and data warehousing approaches for the analysis and

sharing of results from dependability benchmarking experiments [13]. Some other

have proposed also the definition of a common repository for sharing the experimental

data produced by dependability benchmarks, like the one conducted by the European

project AMBER [14]. However, the problem of combining measures in a meaningful

and repeatable way was not address by any of these initiatives, although it is of ma-

7

jor importance when considering a large number of heterogeneous measures, as in the

case of dependability benchmarks.

2.1. Comparison of alternatives through aggregation

Measures aggregation is a common approach trying to enable meaningful compar-

isons among systems that eases the analysis of benchmarked systems or components.

However, although these techniques are usually applied in the community of depend-

ability benchmarking, it is surprising that so far there is still a lack of unified criteria

when addressing the aggregation of measures and their subsequent analysis. Common

methods applied by users for aggregation range from simple mathematical operations

(e.g., addition or mean average) to more serious and systematic distribution fitting [15]

and custom formulae [16] approaches.

Kiviat or radar diagrams [17] are graphical tools which represent the results of the

benchmark in an easy-to-interpret footprint. Kiviat diagrams can show different mea-

sures using only one diagram and, although some training is required, the comparison

of different diagrams is fairly simple. The scalability of Kiviat diagrams enables the

representation of up to tens of measures. However, managing such a huge amount of

information may make difficult the interpretation and analysis of results. The problem

previously stated is solved in [17] throughout the use of an analytical technique named

the figure of merit which, imposing certain restrictions to the graph axes, synthesizes

all the measures into a unique numerical value associated to the footprint shape. How-

ever, the problem of this solution, as it happens with most techniques using the mean

or the median, is that valuable information could be hidden behind a unique number,

and consequently, the comparison between systems could result quite vague [18].

Other approaches, like the presented in [15], characterize the level of goodness of

the measures according to their ability to fit with a particular statistical distribution.

Nevertheless, this approach presents three main drawbacks. First, it assumes that a

measure follows the same distribution for all the systems, which may be false depend-

8

ing on the context of use. Second, to understand this type of characterization, it is

necessary to understand the assumed statistical model, which is not straightforward.

Third, the subjectivity of the probability distributions will strongly affect the sensitiv-

ity analysis. Finally, it is necessary to handle those situations when there is not enough

information to build probability distributions for evaluation data.

Finally, Correia et al. [19] apply the notion of thresholds to map measures into a

particular scale for software systems certification. Yet, they assume all the measures

have the same importance when it is not always the case.

In sum, previous methodologies lack the ability of aggregating measures into a

meaningful way. Generally, these techniques focus on aggregation of results and do

not provide any insights on how to cope with the interpretation of the resulting aggre-

gated scores. Accordingly, open questions requiring further research in the domain of

dependability benchmarking are (i) how to systematically aggregate such measures to

capture in a single or small set of scores the information required to characterize the

overall system quality, and (ii) how to ensure the consistency of interpretations issued

from the use of such scores with respect to the conclusions obtained from the direct

analysis of benchmark measures. Next section is focused on describing how these

open questions are coped in this work.

2.2. A potential step forward using multi-criteria analysis

The problem of comparing a set of targets according to an heterogeneous set of

measures has many similarities with the multi-criteria decision problems typically

considered in the operational research field. So, the use of multi-criteria decision

making (MCDM) methods to support the analysis of dependability benchmarking mea-

sures seems quite promising.

There exist multiple MCDM methods that can be used to address this problem,

some of them are widely used in many application domains like business industry,

social science, engineering, etc. Among the large number of MCDM methods, some

9

have gained more popularity than others, the Analytic Hierarchy Process (AHP) [20]

for example, and its use can be found in many works ([21] and [22], for example). Our

previous work ([23], [24] and [25]) already presented the feasibility of using MCDM

methods to perform the analysis of measures in dependability benchmarking.

The methodology presented in this work will adapt the concepts that apply to

MCDM methods with the aim of not only providing mechanisms to better compare

different alternatives from benchmarking results, but also to cover the lacks in the

analysis that can make dependability benchmarks in particular improve the confidence

people from the industry have on them. To that end, next section deeply describes the

methodology developed in this work, and its integration in the benchmarking process.

3. A multi-criteria analysis methodology to interpret evaluation results

The proposed multi-criteria analysis methodology does not intend to automate the

task of benchmarking performers when selecting a proper system; it rather tries to

support and guide the comparison of the systems or components fulfilling the system

requirements for a particular application, and the selection of the most suitable one.

What makes it interesting for dependability benchmarking with respect to the rest

of approaches presented in Section 2.1, is its capability to systematize the way to com-

pute the global score of a component not only considering the measures themselves,

but also formalizing their interpretation attending to aspects such as the relationship

among the measures, and their relative importance within a particular context of use.

Accordingly, it is easy to obtain a hierarchical quality model, inspired in the software

quality model proposed by the ISO/IEC 25000 (SQuaRE) standard [9], which assists

the navigation from the fine-grained measures to the coarse-grained scores without los-

ing the numerical perspective of results. In such a way, one can keep the consistency

in the interpretation and analysis of results independently from the viewpoint (fine or

10

coarse) acquired by the benchmark user.

Figure 1 illustrates how the quality model (QM) should be integrated into the de-

pendability benchmarking process, and when it should be applied to provide conclu-

sions from the resultant measures. The definition of the benchmark characteristics in

the experimental set up lets the evaluator determine the quality model that will later be

used to analyze the final measures. The early definition of the analysis process, even

before benchmarks are performed, reduces the subjectivity that can be introduced in

the analysis process when partial results are being obtained or conclusions are antici-

pated, which may bias this analysis. This will also ease the cross-comparison among

works done from third-party evaluators, as results will be comparable under exactly

the same procedure, which may also contribute to the acceptance of dependability

benchmarks by the industry.

Figure 1: Integration of the quality model in the dependability benchmarking process

Defining the quality model according to the requirements of the evaluator (or eval-

uators) demands the definition of a set of features for the analysis. Upcoming subsec-

tions describe these features in detail, identifying their role in the methodology and

mapping them to their respective characteristic in the evaluators requirements. The

application of the quality model in the analysis process will be later illustrated in Sec-

tionc̃aseslabel through different case studies.

3.1. Benchmark user and target system

The first step is to identify the benchmark targets (in case of more than one alter-

native), the application context where they operate in and their goal, that obviously

11

depend on the evaluation performer. These aspects are crucial to (i) determine the

requirements of the system; and (ii) fix their level of accomplishment.

System requirements can be expressed through the notion of quality model, previ-

ously introduced in standards such as [9]. A quality model is a framework to ensure

that all the information required by the stakeholder to perform the proper decision-

making is taken into account to carry out the analysis of benchmark measures. With re-

spect to this point, the rest of this methodology will introduce the instruments (thresh-

olds, relationships, weights) required to enrich the meaning of measures within the

benchmarking process.

3.2. Criteria under evaluation

During the experimental set up, benchmark performers determine a set of measur-

able attributes (noted m1 to mn) that are representative of the system quality or simply

of interest for the evaluation performer. These measures constitute the output of the

benchmark, and they are used to compare different benchmark targets and perform the

election of the most suitable choice.

In the proposed methodology, the measures defined by the benchmark performer

in the first step of the benchmarking process conform the base level criteria of the

quality model. These criteria must be understood as the inputs for the quality model

that will be used in the analysis process to determine the relative quality of the system

according to the defined model. Obviously, the quality and precision of the measures

selected in the experimental set up, which correspond to the criteria defined in the

quality model, will have a high influence on the quality of the conclusions extracted

from applying that model in the analysis process. Different works have focused on the

selection of attributes in benchmarks to provide good quality measures. Authors in [26]

dealt with this problem from a metrology point of view, pointing out the attributes that

selected measures must fulfill, so good quality conclusions can be extracted from them.

When benchmark performers lack of criteria to determine which measures should be

12

selected, it would be convenient that measures were non-redundant, independent and

thoroughly selected attending to their capability to represent quantitative elemental

aspects of the system, such as delay, throughput or data availability in a network. This

involves that no measure should be derived from other. According to this remark, if

we are already taking into account the system’s throughput in presence of faults as

a measure, considering any other throughput-based measure, such as a ratio between

the throughput in absence and presence of faults, would be unfairly providing more

importance to throughput than the rest of measures. Despite its importance, and as

it has already been considered in other works, the selection of measures is out of the

scope of the proposed methodology, that aims at providing mechanisms to improve the

comparison of benchmark targets based on the (high quality) resultant measures.

3.3. Scales of measures

Given the heterogeneity of the measures considered in dependability benchmark-

ing, it is easy to find different measures using distinct scales and dimensions, e.g.,

seconds or milliseconds if measuring time, joules if measuring energy, and so on. Ob-

viously, this hinders the analysis and comparison of measures for non-skilled users.

To compare various alternatives, the measures should be brought to the same scale,

and normalization methods can be applied to do so. Although normalization methods

scale the values in different ways, they share some common properties. Normalizing

by the sum of all the values keeps the proportion between values in the normalized

ones. This means, that if a result ri is the double of rk, the normalized result vi

will still be the double of vk. When normalizing by an extreme value (either Max

or Min), proportion is also kept, but in both methods, normalized values tend to be

grouped together. The use of thresholds, on the other hand, does not tend to group

the normalized values but they are distributed along the given range according to their

original value.

13

With the aim of coping with this normalization problem, this methodology propose

the use of thresholds within the definition of quality criterion functions ci(mi) which

specify how to quantitatively evaluate each measure, i.e., they establish an equivalence

between the measured value and the system quality requirements within a 0-to-100

quality scale. The result of each criterion function, known as elementary score (or ele-

mentary preference), corresponds to si. Formally, such elementary preferences si can

be interpreted as the degree of satisfaction of a measure mi with respect to the qual-

ity requirements specified by the benchmark performer for such measure in the form

of a minimum and a maximum threshold (Tmini and Tmaxi respectively). Since all

the measures are scored according to the same normalized scale, resulting elementary

preferences are directly comparable. Such equivalence can be mapped to discrete or

continuous functions. Equations (1) and (2) show an example of lineal increasing and

decreasing functions when measures are the higher the better and the lower the better,

respectively. However, these criterion functions can be adapted to satisfy the eval-

uator’s requirements for the normalization of the measures. Examples of how these

functions can be adjusted are shown in Section 4 through the case studies presented.

si = ci(mi) =


0, mi ≤ Tmini

100
mi−Tmini

Tmaxi−Tmini
, Tmini < mi < Tmaxi

100, mi ≥ Tmaxi

(1)

si = ci(mi) =


100, mi ≤ Tmini

100
Tmaxi−mi

Tmaxi−Tmini
, Tmini < mi < Tmaxi

0, mi ≥ Tmaxi

(2)

The use of minimum and maximum thresholds within criterion functions is nec-

14

essary to position and compare the value of measures with respect to reference values

of the applicative domain, thus easing their interpretation. For example, the interpre-

tation of the measured throughput in a communication system (let us assume 8 Kbps)

will be better if the measure is obtained from a Wireless Sensor Network in charge of

monitoring temperature (where the optimum value may round 10 Kbps) rather than if

it is obtained from a Wireless Mesh Network to provide Internet access (where even

the minimum value allowed for a quality communication, let us assume 500 Kbps,

is greater than the value obtained). For each applicative domain, thresholds can be

obtained through previous experimentation, the opinion of experts in the domain, or

certification and widely-used references. Evaluators or experts in the field should agree

on their definition for each measure in a given applicative domain. In this way, com-

paring the results obtained for different systems is easier, as normalized results are

distributed along the range defined by thresholds, instead of being grouped together as

happens with other normalization methods. Indeed, the definition of thresholds gives

meaning to the values obtained for each measure. Consequently providing the min-

imum and maximum values that can receive each measure will be very important to

determine their preference.

Once measures have been scored, evaluation performers have a founded intuition

about the system behavior. In fact, they are able to determine if the individual goal for

each particular measure has been accomplished or not. For example, obtaining a score

of 75% in one measure could be interpreted as a positive feedback. However, their

global preferences about the system requirements are not mapped yet in the result of

the evaluation. The idea of the following stage is to aggregate the characteristics of the

system according to the evaluation performer’s requirements and preferences.

3.4. Preferences aggregation

To address the aggregation of scores, this stage of our methodology structures a

quality model through a hierarchy of high-level objectives, sub-objectives, etc., where

15

previously computed scores are located at the leaves of the hierarchy. The construction

of such hierarchy is relative. First, it is necessary to classify each single score regard-

ing the system characteristic it better fits in. For example, let us assume a transactional

system where four measures such as throughput, delay, availability and reliability have

been considered. In this case, the first level of aggregation could group throughput and

delay within the characteristic of performance, and availability and reliability within

the characteristic of dependability. This classification of measures can continue group-

ing similar sub-characteristics into characteristics. Thus, a second level of aggregation

would group both performance and dependability to determine the global quality of

the system.

Despite modeling the hierarchical structure of the system, not all the system re-

quirements may have the same importance depending on factors such as the bench-

mark performer’s preferences and the application domain. To cope with this problem,

the proposed methodology enables the refinement of the quality model using weights

to determine the relative importance among requirements for the analysis.

The benchmark performer’s requirements that define the quality model should be

able to reflect the purpose of the benchmarked system in a given application domain. In

some application domains, some measures might be considered of greater importance

than others when benchmarking the same system, and thus the quantification of that

importance should be implicit in the performer’s requirements. Then, the importance

that each particular measure has for the analysis is quantified with a weight wi, where

wi is the weight of the ith particular measure (criterion or resulting sub-characteristic)

in a hierarchical level. This measures are weighted according to their relative im-

portance or influence to their direct upper level measure, in such a way that for k

measures in a level,
∑k

i=1wi = 1. Weights enable to tune the way in which system

characteristics contribute to the global quality of the system. Then, consensus between

benchmark performers on how measures must be weighted for a given application do-

16

main is necessary to contribute to the acceptance of dependability benchmarks in the

industry. As an example of weighting in different application domains, let us take into

consideration a distributed system within a non-critical solution such as comfort elec-

tronic control in cars, probably a rapid response in terms of performance aspects will

have more weight than dependability ones (e.g., weighting them 75% and 25% respec-

tively). Conversely, if for example we refer to the Antiblock Brake System (ABS) of

the vehicle, evaluation performers may weight dependability above performance as-

signing weights of 75% and 25% respectively. Fig. 2 illustrates this last example. The

number above the tree branches indicates the weight assigned in each case.

Figure 2: Example of weights assignment.

Once weights are assigned, it is essential to determine the relation between the

elements of the model. For this, different types of operators o may be used to define

the conditions under which characteristics are aggregated in Fig. 2. The power or

generalized mean [27], defined in (3), is a generic expression to compute an infinity

of aggregation types, considering the notions of scores and weights previously stated.

When exponent r = 1, this expression is equivalent to traditional arithmetic mean,

widely used for aggregation. However, strikingly, the use of different aggregation

operators has been rarely considered despite their power to represent, for instance, a

punishment in the aggregation result when requirements are not being accomplished

or a reward for those requirements that satisfy evaluation criteria. Thanks to (3), it is

possible to define as many aggregation types as values may take exponent r. Indeed,

authors such as Dujmovic propose up to 20 different ones [28]. However, the selection

17

of the proper aggregation operator is a task whose complexity increases as far as more

alternatives are considered. Thus, our goal is to define a reduced set of equivalence

classes that intuitively represent the different possible levels of aggregation through

distinct values of r.

S = (
k∑

i=1

wis
r
i)

1
r (3)

To address this challenge, first, it is necessary to introduce the notion of and-

ness [29], and how it relates to exponent r. The andness of an aggregation operator o,

defined in (4), is a 1-to-0 coefficient where andness = 1 represents that all the system

requirements must be satisfied at the same time, and andness = 0 involves that just

accomplishing any system requirement (regardless which one) is enough.

andness(o) =
max(x)− o(x)

max(x)−min(x)
(4)

According to [28], andness = 1 is associated to r = −∞ whereas andness = 0

equates to r = ∞. Mathematically, it is quite easy to prove how min is the oper-

ator o(x) that makes andness = 1, and max is that making andness = 0. For

the sake of homogeneity, let us denote min with S+ to intuitively illustrate the idea

that all the system requirements keep a relationship of strong simultaneity. Follow-

ing the analogous reasoning, let max be represented with R+ to show the notion

that any accomplished system requirement strongly replaces the rest (despite they are

not satisfied). In the middle, andness = 0.5 matches to arithmetic mean, which, as

previously introduced, is represented with r = 1. Let us denote this operator with

N to associate its use with the meaning of neutrality. Between andness = 1 and

andness = 0.5 there is a gradation of aggregation operators that can be explained

as filters that progressively boost the influence of simultaneity against replaceability

in system requirements, as far as andness tends to 1. Mathematically, this implies

18

minimising the influence of higher scores while maximizing that of lower ones in the

aggregation result. For the sake of simplicity, we have selected andness = 0.75 as a

representative value of this range. Let us denote this operator of weak simultaneity as

S. Conversely, the range of operators among andness = 0.5 and andness = 0 boosts

the influence of replaceability with respect to simultaneity as far as andness tends to

0. Similarly, this implies minimizing the influence of lower scores while maximizing

that of higher ones. We have selected the aggregation operator with andness = 0.25

to represent this equivalence class. Let us denote the weak replaceability of this ag-

gregation operator with R. The different values exponent r takes depending on the

number of inputs of the aggregation can be found in Table 1. For instance, considering

the aggregation of 5 different scores with normalized values of 90, 70, 70, 50 and 20,

with evenly distributed weights, the final score obtained for operators R+, R, N , S,

and S+ are 90 (max), 72, 60 (arithmetic mean), 48, and 20 (min), respectively.

Table 1: Value of exponent r for the operators considered.

Aggregation operators 2 inputs 3 inputs 4 inputs 5 inputs
S+ (strong simultaneity) +∞ +∞ +∞ +∞
S (weak simultaneity) 3.93 4.45 4.83 5.11
N (neutrality) 1 1 1 1
R (weak replaceability) -0.72 -0.73 -0.72 -0.71
R+ (strong replaceability) −∞ −∞ −∞ −∞

Previous simple aggregations between scores can be nested to denote those require-

ments having a special meaning or priority, i.e., a certain degree of mandatoriness or

sufficiency for a particular system requirement within the same hierarchical level. For

example, Fig. 3a illustrates a case where characteristic A feedbacks its own simultane-

ity aggregation (e.g., S), which basically means that satisfying that characteristic is a

mandatory condition for the system. Logically, this can be seen as A ∧ (A ∨B), with

different degrees of andness depending on the selected operators. Thus, not satisfy-

ing the requirements of that characteristic would severely penalize the system. Con-

19

versely, applying a replaceability operator (e.g., R), would involve defining that char-

acteristic as a sufficient requirement. Likewise, this could be logically expressed as

A ∨ (A ∧ B), with the selected degrees of andness. Fig. 3b depicts exactly the same

model as Fig. 3a but using a simplified notation to ease the use of mandatory and suf-

ficient requirements. Thick branch represents priority requirements in such a way they

become mandatory if using S or S+ operators, and sufficient if using R and R+. To

complete this simplification, neutrality operator N and equitable weighs are assumed

for the branches omitted. In the rest of the paper the simplified notation will be used.

Figure 3: Model representing the priority of Characteristic A versus Characteristic B:
(3a) full model showing how Characteristic A feedbacks its own simultaneity operator
(Characteristic A is mandatory), and (3b) compact version of that model representing
exactly the same hierarchy.

3.5. Sensitivity of the quality model

The sensitivity of the quality model is determined by how the sources of uncer-

tainty present in the inputs of the model are translated into uncertainty in the conclu-

sions provided from the application of this quality model.

The aforementioned inputs of the quality model might suffer from a certain degree

of uncertainty. For example, errors in the process of measurements (inaccurate mea-

sures), a poor understanding of the relevance that each criterion has for the application

domain (leading to erroneous weights), or a lack of comprehension of the common

behavior of the targeted systems (wrong definition of thresholds). This uncertainty

present in the inputs of the model will certainly impact the confidence that benchmark

users can place in the conclusions provided as output of the quality model.

20

Accordingly, the quality model must be analyzed to determine the sensitivity that

its output has to the uncertainty in its inputs. This sensitivity analysis can be performed

through different methodologies, like those that can be found in [30].

As it was explained in earlier sections, works like [26] have studied the uncertainty

from the measurements point of view, setting guidelines to obtain good quality mea-

surements in the system to generate measures with a low uncertainty. Even though

studying the uncertainty of the base measures is of prime importance, analyzing the

sensitivity of the whole quality model requires a great effort. An extensive analysis

on how the combined uncertainty of the inputs of the quality model affect the output

conclusions has already been studied in [31] and [32] from the perspective of multi-

criteria decision making methods.

As the main goal of the paper focused on the definition of a methodology to deal

with the analysis of results and comparison of targets in benchmarking, no sensitivity

analysis will be done in this work. Nevertheless, this analysis could be very impor-

tant towards the acceptance of proposed quality models by the industry in different

application domains.

Next section presents a set of three different scenarios in the domain of depend-

ability benchmarking that will be used as case studies to illustrate the application of

the proposed methodology.

4. Case studies

This section shows the feasibility of our multi-criteria analysis methodology along

three case studies in the domain of distributed systems, such as web servers, on-line

transactional databases and wireless ad hoc networks. As it is possible to apply our

methodology at any stage of the analysis (even if measures are already selected, or nor-

malized into scores), as well as to increase the confidence of our study, we apply our

methodology from the results delivered by accepted papers in the community. Thus,

21

the information extracted from the papers will be used to elaborate adequate quality

models matching author’s requirements. The goal is to objectively model the system

characteristics to compare the results we are able to obtain through our methodology

with those originally delivered by authors. The case studies have been selected in such

a way they show the power of our methodology when benchmarking users need to (i)

exploit the meaning of measures to properly analyze the system; (ii) rank systems at-

tending to different potentially countered criteria; and (iii) determine the influence that

a particular characteristic of the system may have in its behavior. In this way it will be

shown the usefulness of the methodology to carry out the analysis of systems following

a structured, simple and repeatable way under well-defined evaluation criteria.

4.1. Intermediate and global scores to benchmark web servers

In [33], authors perform the comparison of two well-known web servers (Apache

and Abyss), running on top of three different operating systems (Windows XP, Win-

dows 2000 and Windows 2003) through the SPECWeb99 benchmark [34]. Thus, au-

thors aim at selecting the best combination of the pair {web server, operation system}.

Despite target systems are subjected to 12 different faults encompassing both software

and hardware faults, authors finally present only two types of results: those regarding

the execution of the system in absence of faults (baseline) and execution in presence

of faults.

4.1.1. Criteria under evaluation

The results of the benchmark are analyzed using 6 measures (3 from performance

and 3 from dependability). The set of performance measures is composed of the num-

ber of simultaneous connections (con) correctly established (SPECf); the number of

operations (op) per second (THRf); and the average time in milliseconds (ms) that the

operations requested by the client take to complete (RTMf). With respect to depend-

ability, authors consider autonomy, as a percentage of administrative interventions with

22

respect to the number of faults injected (AUT); accuracy, as a percentage of requests

with error with respect to the total amount of requests (ACR); and the percentage of

time the system is available to execute the workload from the total (AVL). Table 2

collects the results for these measures.

Table 2: Measures characterizing the behavior of the pair {web server, operating sys-
tem} in presence of faults [33].

AUT AVL SPECf THRf RTMf ACR
System (%) (%) (# con) (# op/s) (ms) (%)
Apache-2000 93.98 95.28 13.82 79.24 382.2 97.21
Apache-XP 95.48 97.94 18.07 71.63 359.7 97.60
Apache-2003 96.77 97.62 11.27 79.21 373.1 97.29
Abyss-2000 94.36 96.35 10.32 75.96 363.7 94.78
Abyss-XP 95.97 97.31 13.71 68.22 362.0 94.50
Abyss-2003 96.25 97.53 12.91 66.18 358.7 95.55

4.1.2. Scales of measures

As previously mentioned in Section 3.3, thresholds can be determined in differ-

ent ways. In this case, given the need of authors for ranking systems in the presence

of faults, and the lack of field references to determine proper thresholds, an adequate

way to get them is using the maximum and minimum values of each measure obtained

during the experimentation in presence of perturbations. This enables a relative com-

parison between targeted systems in such a way that the maximum value will obtain a

score of 100 and the minimum a score of 0. This assignation of scores is suitable when

authors are not so interested in the sensibility or meaning of the quantitative measure,

since baseline results are not considered, but just in establishing a clear ranking of sys-

tems in presence of faults. Thus, we have defined two linear criterion functions ci(mi),

one increasing for the-higher-the-better measures such as SPECf, THRf, AUT, ACR

and AVL; and another decreasing, for RTMf, which is the-lower-the-better, similar to

23

those shown in (1) and (2) respectively. Maximum and minimum thresholds are shown

in Table 3.

Table 3: Minimum and maximum thresholds for the measures of web servers.

Thresholds
Measure Function Min Max
AUT Increasing 93.98 96.77
AVL Increasing 95.28 97.94
SPECf Increasing 10.32 18.07
THRf Increasing 66.18 79.21
RTMf Decreasing 362.0 382.2
ACR Increasing 94.5 97.60

4.1.3. Preferences aggregation

According to authors [33]: “In this case study we assumed a general-purpose web-

server scenario and assigned equal relevance to all six benchmark measures”. To

satisfy such considerations, the quality model has been established following a trade-

off solution. In particular, measures have been equally weighted within their category,

and neutral operator (N) has been used for the aggregation. The representation of the

complete quality model is depicted in Fig. 4.

Figure 4: Quality model defined for web servers.

4.1.4. Analysis of results

It is worth noting that the results obtained when computing the quality model,

shown in Table 4, match those obtained by the authors in the paper. When comparing

24

the operating systems for each web-server, “Windows XP seems to provide the best

platform for Apache and Windows 2003 the best for Abyss”. The comparison of the 6

systems brings up the same conclusions as those given by the authors: “the combina-

tion Apache/XP seems to be the one where the service degradation caused by faults is

less noticeable”. A global score of 81 points quantifies this fact.

Table 4: 0-to-100 normalized results (scores) after applying the quality model shown
in Fig. 4.

Perfor- Depen- Global
System AUT AVL SPECf THRf RTMf ACR mance dability score

A
pa

ch
e 2000 0 0 45 100 0 87 48 29 38

XP 54 100 100 42 96 100 78 84 81
2003 100 88 12 100 39 90 50 92 71

A
by

ss 2000 14 40 0 75 79 9 51 21 36
XP 71 76 44 16 86 0 48 49 48
2003 81 85 33 0 100 34 44 66 55

Apart from that, it is remarkable that scores at leaves are consistent with those

delivered at intermediate ones (performance and dependability scores) and the root

(global score). As seen, it is possible to navigate from fine-grained to coarse-grained

scores through intermediate ones. Indeed, it is possible to discover sensitive informa-

tion that is not provided in the original paper. Attending to intermediate criteria, it is

possible to observe that the pairs {Apache, XP}, with 78 points, and {Apache, 2003},

with 92 points, are the best candidates from a performance and dependability view-

point respectively. As observed, the use of quality models can be useful to improve the

exploitability of measures in the analysis of results.

4.2. Managing multiple criteria for comparing OLTP systems

In [5] the authors propose a dependability benchmark for On-Line Transaction

Processing (OLTP) systems. Thus, ten targets (A to J) are defined based on the combi-

nations of (i) two different versions (DB 1, DB 2) of a leading commercial Data Base

25

Management System (DBMS), (ii) two DBMS configurations (Conf A, Conf B), (iii)

three operating systems (Windows 2000, Windows XP, SuSE Linux 7.3) and (iv) two

different hardware platforms (HW 1, HW 2).

4.2.1. Criteria under evaluation

From the benchmarking process, the authors obtain measures based on three dif-

ferent criteria: baseline performance, performance in presence of faults, and depend-

ability. Such measures, typically used in the TPC-C [1] benchmark, are the number of

transactions (trans) per minute (m) and price ($) per transaction. When these mea-

sures are obtained in absence of faults (baseline performance), they are labeled as

tpmC and $/tpmC respectively, but when obtained in presence of faults (performance

in presence of faults) they are labeled as Tf and $/Tf. Dependability measures make

reference to the percentage of time the server is available (AvtS), and the percentage of

time the client is available (AvtC). Table 5 shows the original values of the measures

provided in the paper.

Table 5: Original measures extracted from [5] characterizing the 4-tuple {operating
system, DBMS, configuration, hardware platform}.

tpmC $/tpmC Tf $/Tf AvtS AvtC
System (#trans/m) ($/#trans) (#trans/m) ($/#trans) (%) (%)
A: {Win 2000, DB 1, Conf A, HW 1} 2244 12 1525 17.7 86.1 75.4
B: {Win 2000, DB 2, Conf A, HW 1} 2493 11.6 1818 16 87.2 79.5
C: {Win XP, DB 1, Conf A, HW 1} 2270 11.9 1667 16.2 88 79.4
D: {Win XP, DB 2, Conf A, HW 1} 2502 11.6 1764 16.4 88.6 79.5
E: {Win 2000, DB 1, Conf B, HW 1} 1411 19.1 896 30.1 74.2 68.7
F: {Win 2000, DB 2, Conf B, HW 1} 1529 19 969 29.9 76.6 69.7
G: {SuSE 7.3, DB 1, Conf A, HW 1} 1961 12.7 1406 17.8 86.3 77
H: {SuSE 7.3, DB 2, Conf A, HW 1} 1958 13.8 1400 19.3 93.5 83.9
I: {Win 2000, DB 1, Conf A, HW 2} 3655 7.7 2784 10.1 89.4 79.5
J: {Win 2000, DB 2, Conf A, HW 2} 4394 6.8 3043 9.9 88 80.9

26

4.2.2. Scales of measures

Given the absence of clear or explicit arguments of authors to carry out the compar-

ison of systems in this case study, let us perform the selection of thresholds positioning

the results of their evaluation with respect to referenced values obtained in the com-

munity [35] in the last years. This choice pursues a double goal. First, not only to

compare target systems among one another in a local way, but also to provide a use-

ful feedback about their behavior when adopting a wider perspective and comparing

them with other systems using TPC-C benchmarks, even when they are not subjected

to faults. Second, showing the capability of our methodology to incorporate multiple

ways to select scales of measurement. Hence, for the definition of thresholds, we have

taken into account the results delivered in [35] for the year 2000, when the hardware

platforms considered in this case study appeared. Table 6 shows the upper (maximum

threshold) and lower (minimum threshold) values of the trend for TPC-C in the inter-

section with that year. It must be noted that tpmC and Tf, on the one hand, and $/tpmC

and $/Tf, on the other, represent the same measures but in absence and presence of

faults, respectively. This is why the same thresholds are defined for both measures.

Table 6: Thresholds determined for the different measures of OLTP systems.

Thresholds
Measure Function Min Max
tpmC Increasing 1400 4800
$/tpmC Decreasing 1 20
Tf Increasing 1400 4800
$/Tf Decreasing 1 20
AvtS Increasing 74 100
AVtC Increasing 70 100

4.2.3. Preferences aggregation

The authors classify the ten systems attending, each time, to a different criterion

(baseline performance, performance in presence of faults and dependability). Despite

27

this situation may require the generation of three different quality models, one per

criterion considered, it is also possible to generate just one quality model that can be

parameterized in such a way that the different cases are represented at the same time.

Let us take into account this last alternative to show the expressiveness power of our

approach.

Figure 5: Parameterized quality model gathering all the single criterion stated by au-
thors and the proposed trade-off between all measures.

Table 7: Weights for the parameterized quality model shown in Fig. 5.

Characteristics w1 w2 w3 w4 w5 w6 w7 w8 w9

Baseline performance 1 0 0 1 0 0 0 0 0
Performance with faults 0 1 0 0 0 1 0 0 0
Dependability 0 0 1 0 0 0 0 0.70 0.30
Trade-off 0.33 0.33 0.33 0.5 0.5 0.5 0.5 0.70 0.30

Each branch of the quality model defined in Fig. 5 has been assigned a given

weight, whose value can be modified as shown in Table 7 to model the three dif-

ferent criteria defined by authors. Weights for tpmC, Tf, $/tpmC and $/Tf scores have

been properly parameterized, as the last two are not considered by authors in the defi-

nition of the classifications. Likewise, being the availability of the server more critical

than the exhibited by clients, as explicitly commented by authors, weights have been

accordingly adapted. Finally, the authors also propose the generation of a trade-off

ranking to reach a consensus between the three criteria previously tackled. Unfortu-

nately, despite they let the reader know that it is based on the previous rankings, they

28

do not structure a clear reasoning on how this classification is achieved. Given the role

of our methodology to cover potential ambiguities and lacks of thoroughness, it would

be possible to define alternative weights to adequately address the trade-off ranking

concerned.

4.2.4. Analysis of results

Table 8 shows the intermediate and global scores for each system after computing

the trade-off quality model previously proposed. Table 9 collects the different rankings

to ease the comparison between systems. From the intermediate scores that belong to

the different criteria, it can be appreciated that the single criterion rankings match those

defined by the authors. Nevertheless, the ranking established according to the trade-

off criterion presents a similar, but not equal order. While in the paper the trade-off

ranking is “I, J, D, B, C, H, G, A, F and E”, with the methodology proposed systems

“I, J” and “G, A” swap their positions. The problem, in consequence, is not so the

analysis done by the authors, probably correct, but the difficulty to exactly reproduce

it again with the tools they provide. This result shows the need for establishing clear

and explicit rules when addressing the analysis of benchmarked systems. As observed,

the use of quality models can be useful not only to easily rank different systems despite

applying different criteria, but also to unequivocally repeat this ranking when needed.

Table 8: 0-to-100 normalized results (scores) after applying the trade-off weights from
Table 7 to the quality model shown in Fig. 5.

Baseline Performance
System performance with faults Dependability Trade-off

A 33 7 37 26
B 38 16 45 33
C 34 13 47 32
D 39 14 49 34
E 2 0 1 1
F 4 0 7 3
G 27 5 39 24
H 24 1 67 31
I 65 46 51 53
J 78 50 49 58

29

Table 9: Original rankings carried out in [5] against those obtained from applying
quality models.

Ranking of systems
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Baseline performance
Original J I D B C A G H F E
Quality model J I D B C A G H F E

Performance in presence of faults
Original J I B D C A G H F E
Quality model J I B D C A G H F E

Dependability
Original H I D J C B G A F E
Quality model H I D J C B G A F E

Trade-off
Original I J D B C H G A F E
Quality model J I D B C H A G F E

4.3. Evaluating perturbations on ad hoc networks

This case study aims to show the feasibility of this methodology to determine the

impact that each single perturbation has over a system when considering its injec-

tion separately from the rest of perturbations compounding the faultload. In [36], the

authors perform the evaluation of two different and representative types of ad hoc net-

works, a static Wireless Sensor Network (WSN) where 6 real nodes execute AODV

routing protocol (Network A) and a Mobile Ad Hoc Network (MANET) where 6 real

mobile nodes run OLSR routing protocol (Network B), when subjected to perturba-

tions. Such set of perturbations is formed by accidental faults like signal attenuation

and ambient noise; and attacks such as flooding attack, replay attack and tampering

attack.

The networks studied on this paper are mapped into a specific context of use, rep-

resenting each one different situations of the real world. The specifications of each

network are represented in Table 10.

4.3.1. Criteria under evaluation

In the paper, the authors evaluate the impact of each perturbation in the network

considering two performance measures: the applicative throughput (or Goodput), and

30

Table 10: Experimental configuration of Network A and Network B presented in [36].

Network RP Speed Area Range Workload

A AODV 6 nodes: 0 m/s 30 x 50 m 20 m Text data (500 bps)
B OLSR 6 nodes: [0-3] m/s 300 x 150 m 125 m VoIP traffic (100 Kbps)

RP: Routing Protocol

the increment of delay (or Jitter); and two measures of dependability: the percentage

of packets correctly delivered (or Integrity), and the percentage of time the network

is ready to be used (or Availability). Table 11 illustrates the values measured by the

authors for each considered perturbation in Network A and Network B.

Table 11: Measures obtained from the case study of ad hoc networks.

Perturbations
Golden Signal Ambient Replay Flooding Tampering

Measure run attenuation noise attack attack attack

N
et

w
.A

Availability (%) 92.94 73.98 88.74 93.89 51.22 90.12
Integrity (%) 99.03 97.53 92.12 98.54 97.56 8.01

Goodput (Kbps) 0.19 0.17 0.18 0.19 0.10 0.19
Jitter (ms) 319.89 353.45 332.66 300.78 721.66 312.44

N
et

w
.B

Availability (%) 95.14 73.9 87.00 75.20 65.00 90.33
Integrity (%) 98.34 98.73 92.26 99.44 98.23 62.90

Goodput (Kbps) 96.45 85.19 90.56 70.90 80.18 96.45
Jitter (ms) 199.98 210.23 211.11 220.88 230.55 195.00

4.3.2. Scales of measure

This case study has an interesting detail that can not be found in the previous case

studies. Unlike the others, the authors establish a discrete three level criteria (Low,

Medium or High) to evaluate the impact of perturbations on the measures: “In this

way, the impact is considered low, medium or high if the measure is degraded under-

neath 5%, over 5% or over 10% respectively, according to the golden run results”.

Accordingly, (5) and (6) define a discrete three-level criterion function for the-higher-

the-better measures (availability, integrity and goodput), and the-lower-the-better mea-

sure (jitter), respectively. In these equations, B(mi) refers to the baseline computed

31

value for measure mi.

si = ci(mi) =


0, mi ≤ 0.90 ·B(mi)

50, 0.90 ·B(mi) < mi < 0.95 ·B(mi)

100, mi ≥ 0.95 ·B(mi)

(5)

si = ci(mi) =


100, mi ≤ 1.05 ·B(mi)

50, 1.05 ·B(mi) < mi < 1.10 ·B(mi)

0, mi ≥ 1.10 ·B(mi)

(6)

4.3.3. Preferences aggregation

After identifying the three different levels quantifying the impact of perturbation

on the obtained measures, authors do not detail how to determine the impact of the per-

turbation on the whole system. Instead, they perform a qualitative analysis (also based

on three discrete levels) with no clear rules about how it was perform. Accordingly, as

no special requirements for the scores aggregation are defined, equitable weights and

neutral aggregations have been considered for all the branches of the proposed quality

model shown in Fig. 6.

Figure 6: Quality model to determine the impact of each perturbation on the considered
ad hoc network.

32

Table 12: Characterization of the impact level according to the scores for Network A
and Network B.

Quality Model Original
Perturbation Score Impact level Impact level

N
et

w
or

k
A

Signal Attenuation 25.0 High High
Flooding attack 25.0 High High
Ambient noise 75.0 Low Low
Replay attack 100.0 Low Low
Tampering attack 75.0 Low Low

N
et

w
or

k
B

Signal Attenuation 37.5 High High
Flooding attack 25.0 High High
Ambient noise 50.0 Medium Medium
Replay attack 25.0 High High
Tampering attack 62.5 Medium Low

4.3.4. Analysis of results

The global scores obtained for each of the networks are listed in Table 12. As

previously stated, authors make a qualitative analysis of the impact of each perturba-

tion on each measure to determine the actual impact of the perturbation on the whole

system (Low, Medium, High). Since there is no explicit information about how this

analysis is performed, we propose to determine the impact level according to the global

score obtained for each perturbation. As measures are normalized according to their

deviation with respect to the baseline, final scores between 100 and 70 indicate that the

perturbation is barely affecting the system (low impact level), scores between 69 and

40 show a medium impact level, and scores between 39 and 0 reflect a high impact.

The resulting classification for perturbations affecting both networks matches that

obtained in the original paper, but for the tampering attack on Network B, which is

now classified as having a Medium instead of Low impact. This divergence obviously

derives from the vague description of the characterization performed on the original

paper. As in Section 4.2.4, this shows the necessity of precisely defining the crite-

ria and procedure followed during the results analysis. Otherwise, the same results

could be interpreted in a completely different way, preventing this process from being

33

repeatable.

In addition to the analysis performed in the original work, and to show the potential

of the proposed approach, it could be possible to define a new quality model to help

evaluators when deploying a new routing protocol in the network, tuning routing pro-

tocol parameters, or introducing new fault tolerance mechanisms, for instance. This

model could take into account the information extracted from this case study, so those

perturbations presenting a high impact on the system could be aggregated with equal

weight under critical perturbations category, and those with a lower impact could be

grouped under the non-critical perturbations category. The severity of critical pertur-

bations could be remarked by punishing those critical scores with a low value. So, a

mandatoriness relationship with the simultaneity operator S, could be used to illustrate

this purpose. Medium and low impact perturbations could present different weights,

like 0.75 and 0.25 respectively, to reflect their different importance. Fig. 7 and 8 show

the resulting quality models for Network A and Network B respectively.

Figure 7: Aggregation of perturbations for Network A (WSN).

Figure 8: Aggregation of perturbations for Network B (MANET).

34

5. Conclusion

In this paper, we have presented a methodology to make straightforward, consistent

and objective the analysis of dependability benchmarking measures, a big challenge in

todays distributed systems. Our methodology addresses how to adequately select and

gather the types of measures to represent the system quality. Since there are distinct

ways to do it, our methodology enables the generation of multiple representations (or

quality-scores-based models) from the same system when different criteria are applied

by evaluators. Among their benefits, the scores obtained from our methodology are

repeatable simply following the explicit criteria defined in each quality model, which

eases the comprehension of evaluation assumptions, thus assisting the benchmark user

to minimize errors during the results interpretation. Indeed, the model provided be-

comes not only a way to express which measures are under consideration, but also a

mean to drive their analysis in a more objective and systematic way. Objectiveness is

important to minimize the provision of biased conclusions, while the systematization

of the approach enables the provision of tools to assist users in the consideration of a

big number of targets, faults and measures during experimentation.

Furthermore, our methodology results a very useful approach to overcome the

problem of measures scalability and gets a more quantitative vision of the system de-

spite the multiple aggregation of scores. Nevertheless, regarding previous results, the

application of this technique requires the adequate definition of the quality thresholds

(Xmin and Xmax) for each criterion functions, the weight (wi) assigned to each score

within the same hierarchical level, and the operator type (oi) in charge of the scores

aggregation. All these aspects highly depend on the applicative context the system

is conceived to be deployed in. Despite the selection of these parameters may result

subjective, our methodology forces the benchmark performer to make them explicit,

which eases the transparency and comparison between systems. This is an advantage

with respect to traditional benchmarking, where the criteria considered usually remain

35

subjective and hidden to the benchmark report consumer.

The application of our methodology in the case studies presented in the paper be-

gin from a stage of the evaluation where measures are already available, which is very

often when authors compare their results. However, conversely to other measures-

aggregation techniques, our methodology could play an active role during the bench-

mark definition, being applied from the very beginning, i.e., before benchmark exper-

iments are carried out. Considering this point is a first step towards improving the

characterization of the wide amount of applicative domains in distributed systems. We

argue that this type of approaches can be useful not only to quantify the impact of

faults with respect to the actual application context (where components and systems

are planned to be deployed), but for the comparison and selection of those targets

which best fit the system requirements.

In the future work, we ambition to provide evaluators different templates with

precomputed parameters that they could customize for their particular deployments to

semi-automate the application of this methodology for the quantitative benchmarking

of different types of distributed systems.

Acknowledgments

This work is partially supported by the Spanish project ARENES (TIN2012-38308-

C02-01), ANR French project AMORES (ANR-11-INSE-010), the Intel Doctoral Stu-

dent Honour Programme 2012, and the “Programa de Ayudas de Investigación y De-

sarrollo” (PAID) from the Universitat Politècnica de València.

References

[1] TPC. Transaction Processing Performance Council. [Online]. Available: http://www.tcp.org/, 2013.

36

[2] DBench. Dependability Benchmarking. IST Programme, European Commission, IST 2000-25425,

[Online]. Available: http://www.laas.fr/DBench, 2003.

[3] Raquel Almeida, Naaliel Mendes, and Henrique Madeira. Sharing experimental and field data: the

amber raw data repository experience. In Distributed Computing Systems Workshops (ICDCSW), 2010

IEEE 30th International Conference on, pages 313–320. IEEE, 2010.

[4] A. Ceccarelli. Analysis of critical systems through rigorous, reproducible and comparable experimen-

tal assessment. PhD thesis, Università Degli Studi di Firenzi, 2012.

[5] Marco Vieira and Henrique Madeira. A dependability benchmark for oltp application environments.

In Proceedings of the 29th international conference on Very large data bases - Volume 29, VLDB ’03,

pages 742–753. VLDB Endowment, 2003.

[6] Ateret Anaby-Tavor, Avigdor Gal, and Alberto Trombetta. Evaluating matching algorithms: the mono-

tonicity principle. In IIWeb, pages 47–52, 2003.

[7] K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, and P. Rumeau. Benchmarking the dependability

of windows and linux using postmark/spl trade/ workloads. In 16th IEEE International Symposium on

Software Reliability Engineering (ISSRE), pages 10–20, nov. 2005.

[8] European New Car Assessment Programme (EuroNCAP). EuroNCAP. [Online]. Available:

http://www.euroncap.com/, 2013.

[9] International Organization for Standardization (ISO) and the International Electrotechnical Commis-

sion (IEC). ISO/IEC 25000. Software Engineering - Software product Quality Requirements and

Evaluation (SQuaRE) - Guide to SQuaRE. Geneve ISO, 2010.

37

[10] Jim Gray. Benchmark Handbook: For Database and Transaction Processing Systems. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1992.

[11] EEMBC’s Benchmarks. Embedded Microprocessor Benchmark Consortium, [Online]. Available:

http://www.eembc.org/benchmark/products.php, 2014.

[12] Karama Kanoun and Lisa Spainhower, editors. Dependability Benchmarking for Computer Systems.

Wiley and IEEE Computer Society Press, 2008.

[13] Henrique Madeira, Marco Vieira, et al. The olap and data warehousing approaches for analysis and

sharing of results from dependability evaluation experiments. In IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), pages 86–86, 2003.

[14] Amber project. Amber (assessing, measuring, and benchmarking resilience). FP7 Coordination Ac-

tion, European Commission, 2008.

[15] Giulio Concas, Michele Marchesi, Sandro Pinna, and Nicola Serra. Power-laws in a large object-

oriented software system. IEEE Transactions on Software Engineering, 33:687–708, October 2007.

[16] Yazeed A. Al-Sbou, Reza Saatchi, Samir Al-Khayatt, Rebecca Strachan, Moussa Ayyash, and Mo-

hammad Saraireh. A novel quality of service assessment of multimedia traffic over wireless ad hoc

networks. In Proceedings of the 2008 The Second International Conference on Next Generation Mo-

bile Applications, Services, and Technologies, pages 479–484, 2008.

[17] Michael F. Morris. Kiviat graphs: conventions and figures of merit. ACM/Sigmetrics Performance

Evaluation Review, 3(3):2–8, 1974.

[18] David de Andres, Juan Carlos Ruiz, and Pedro Gil. Using dependability, performance, area and energy

38

consumption experimental measures to benchmark ip cores. In Forth Latin American Symposium on

Dependable Computing (LADC), pages 49–56, 2009.

[19] J. P Correia and J Visser. Certification of technical quality of software products. In Proceedings of

the International Workshop on Foundations and Techniques for Open Source Software Certification,

pages 35–51, 2008.

[20] ThomasL. Saaty. What is the Analytic Hierarchy Process? In Gautam Mitra, HarveyJ. Greenberg,

FreerkA. Lootsma, MarcelJ. Rijkaert, and HansJ. Zimmermann, editors, Mathematical Models for

Decision Support, volume 48 of NATO ASI Series, pages 109–121. Springer Berlin Heidelberg, 1988.

[21] Nian Liu, Jianhua Zhang, Hao Zhang, and Wenxia Liu. Security assessment for communication net-

works of power control systems using attack graph and mcdm. Power Delivery, IEEE Transactions

on, 25(3):1492–1500, 2010.

[22] Christopher W Karvetski, James H Lambert, and Igor Linkov. Scenario and multiple criteria decision

analysis for energy and environmental security of military and industrial installations. Integrated

Environmental Assessment and Management, 7(2):228–236, 2011.

[23] M. Martı́nez, D. de Andrés, J.-C. Ruiz, and J. Friginal. From Measures to Conclusions Using An-

alytic Hierarchy Process in Dependability Benchmarking. Instrumentation and Measurement, IEEE

Transactions on, 63(11):2548–2556, 2014.

[24] M. Martı́nez, D. de Andrés, and J.-C. Ruiz. Gaining Confidence on Dependability Benchmarks’

Conclusions through “Back-to-Back” Testing. In 2014 Tenth European Dependable Computing Con-

ference, pages 130–137, 2014.

39

[25] M. Martı́nez, D. de Andrés, J.-C Ruiz, and J. Friginal. Analysis of results in dependability benchmark-

ing: Can we do better? International Workshop on Measurements and Networking, pages 127–131,

2013.

[26] A. Bondavalli, A. Ceccarelli, L. Falai, and M. Vadursi. Foundations of measurement theory applied to

the evaluation of dependability attributes. In Dependable Systems and Networks, 2007. DSN ’07. 37th

Annual IEEE/IFIP International Conference on, pages 522 –533, june 2007.

[27] P.S. Bullen. Handbook of Means and Their Inequalities. Mathematics and Its Applications. Springer,

2003.

[28] J.J. Dujmovic and R. Elnicki. A DMS Cost/Benefit Decision Model: Mathematical Models for Data

Management System Evaluation, Comparison, and Selection. National Bureau of Standards, Wash-

ington D.C., No. GCR 82-374. NTIS No. PB 82-170150, 1982.

[29] R.R Yager. A note on weighted queries in information retrieval systems. Journal of The American

Society for Information Science, 38(1):23–24, 1987.

[30] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli,

Michaela Saisana, and Stefano Tarantola. Global sensitivity analysis: the primer. John Wiley & Sons,

2008.

[31] Evangelos Triantaphyllou and Alfonso Sánchez. A sensitivity analysis approach for some determinis-

tic multi-criteria decision-making methods*. Decision Sciences, 28(1):151–194, 1997.

[32] Y. Chen, J. Yu, and S. Khan. Spatial sensitivity analysis of multi-criteria weights in gis-based land

suitability evaluation. Environmental Modelling & Software, 25(12):1582 – 1591, 2010.

40

[33] Marco Dur?, Jo?and Vieira and Henrique Madeira. Dependability benchmarking of web-servers. In

Maritta Heisel, Peter Liggesmeyer, and Stefan Wittmann, editors, Computer Safety, Reliability, and

Security, volume 3219 of Lecture Notes in Computer Science, pages 297–310. Springer Berlin Heidel-

berg, 2004.

[34] SPEC’s Benchmarks. Standard Performance Evaluation Corporation, [Online]. Available:

https://www.spec.org/benchmarks.html, 2014.

[35] Jim Gray. A measure of transaction processing 20 years later. CoRR, abs/cs/0701162, 2007.

[36] J. Friginal, D. de Andres, J.-C. Ruiz, and P. Gil. On selecting representative faultloads to guide

the evaluation of ad hoc networks. In Dependable Computing (LADC), 2011 5th Latin-American

Symposium on, pages 94 –99, april 2011.

41

