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Abstract 17 

In the present paper, three different soot-measuring techniques, namely Laser Extinction 18 

Method (LEM), 2-Color Pyrometry (2C) and Laser-Induced Incandescence (LII) have been 19 

simultaneously employed to characterize soot distribution inside a diesel flame. Two                20 

single-component fuels (n-Decane and n-Hexadecane) and two derived blends 21 

(50%Dec/50%Hex and 30%Dec/70%Hex) have been used. Tests have been performed at an 22 

optical diesel engine, under different in-cylinder conditions.  The study has been complemented 23 

with the measurement of ignition delay and Lift-off length. 24 

The present work pursues a twofold objective. On the one hand, the effect of fuel properties on 25 

soot formation have been analysed, under different engine operating conditions. On the other 26 

hand, sensitivity and performance of the three optical techniques has been evaluated,   27 

identifying their main advantages and drawbacks in the framework of the current study. LEM 28 

has been considered as the reference technique, as the measurement principle can be 29 

implemented without important limitations associated to the other two. Results highlight that 30 

larger molecules produce more soot than the smaller ones, with both reactivity and soot 31 

formation changing with the proportion of the heavier fraction. Despite describing similar 32 

trends, LEM and 2C do not provide the same KL values, with the pyrometry reaching some sort 33 

of saturation when increasing flame soot. A detailed analysis confirms that 2-Color 34 

measurements are strongly biased by soot and temperature distribution inside the flame. 35 

Nevertheless, it could still be a good option for low sooting conditions. On the other hand, an 36 

attempt to calibrate LII signal by means of LEM measurements has been reported. This approach 37 

should make it possible to obtain additional information on the soot spatial distribution. 38 

However, inconsistencies have been identified which stem from the inherent limitations of LII 39 

technique in highly sooting conditions.  40 

Keywords: 41 

Soot Measurement, Laser induced incandescence, two-colour pyrometry, laser extinction 42 

method, n-alkane, Diesel combustion 43 

1. INTRODUCTION  44 

Optical diagnostic techniques have been traditionally used to improve the insight on the basic 45 

phenomena that dominate combustion within internal combustion engines. In particular, the 46 

characterization of the soot formation during combustion is a challenging topic, as it involves 47 



complex physical and chemical processes that dominate both formation and later oxidation [1, 48 

2]. Three main optical techniques can be found in the literature for the study of this topic: Laser-49 

Induced Incandescence (LII), 2-Colour Pyrometry (2C) and Laser Extinction Method (LEM). They 50 

have been applied traditionally to diesel flames, but they present certain advantages and 51 

drawbacks that must be considered before choosing the most suitable tool for each specific 52 

study. 53 

LII is based on recording the high intensity radiation emitted by soot particles that are previously 54 

heated by a laser pulse. The magnitude of the signal can be correlated with the volume fraction 55 

of particles in the detection region. This technique has been used extensively for qualitative [3–56 

6] and even quantitative measurements [7-9]. However, quantitative measurements require a 57 

firm understanding of the factors that influence the LII signal, which are detailed in [10]. As an 58 

intermediate step, calibration of LII signal with LEM measurements is quite often employed [11–59 

16], in theory should make it possible to derive 2D soot volume fraction distributions. This 60 

approach, however, does not solve the inherent limitations of LII related to radiation 61 

attenuation processes within the flame. 62 

2-Colour Pyrometry is based on the detection of the spontaneous thermal radiation emitted by 63 

incandescent soot particles at two different wavelengths. The technique makes it possible to 64 

obtain not only the soot distribution but also the corresponding temperature. Moreover, 65 

modern high-speed cameras offer a high time resolution. This technique has been widely used 66 

by the diesel engine research community [17-27]. However, the analysis of results does not 67 

always consider the intrinsic limitations of the technique [22, 23]. 68 

While 2C and LII could be strongly affected by the interaction of emitted radiation with other 69 

soot particles within the flame, the third technique, LEM, is just based on this property. The 70 

attenuation can be related to the optical thickness of the soot cloud and, eventually, to the soot 71 

volume fraction. This technique has been widely used in single diffusion flames [28-31] and, with 72 

the proper considerations [30], reliable results can be obtained. LEM applications are based on 73 

point measurements along the flame, using a small laser beam. It allows high time resolution 74 

but it is spatially limited by the beam size. However, nowadays applications start to appear 75 

where a larger light source is combined with high-speed cameras, offering both good spatial and 76 

time resolution [32]. 77 

In the present work, the three techniques (LII, 2C and LEM) have been proposed to characterize 78 

soot formation under diesel engine conditions. They have been applied simultaneously, to 79 

evaluate the effect of physical and chemical properties of two single-component surrogates       80 



(n-Decane and n-Hexadecane) and two derived blends. The analysis of experimental results will 81 

make it possible to fulfil a twofold objective: firstly, describe the effect of fuel properties over 82 

soot formation; secondly, identify the strengths and limitations of each methodology. The first 83 

part of the paper presents a detailed description of the experimental apparatus and procedure. 84 

Then, a comparison among results obtained by each technique is presented. Trends and 85 

numerical results are analysed and discussed, trying to clarify the main differences observed. 86 

Finally, the main conclusions regarding the influence of fuel properties and the optical 87 

techniques, together with recommendations for the proper use of these experimental tools, will 88 

be summarized. 89 

2. EXPERIMENTAL METHODOLOGY 90 

2.1. Experimental Test Bench 91 

All the tests have been performed at an optically accessible single cylinder engine, which is 92 

described in detail in [33]. The facility is based on a 2-stroke single cylinder direct injection diesel 93 

engine (Jenbach JW 50), with three liter displacement and 15.7 effective compression ratio. It is 94 

motored at low engine speed (500 rpm). Intake and exhaust processes are handled by transfers 95 

on the liner and the cylinder head is specially designed to provide optical access to the 96 

combustion chamber. A cylindrical combustion chamber was designed in a way that spray wall 97 

impingement is avoided. The chamber has an upper port where the injector can be mounted 98 

and four lateral accesses. A pressure transducer is installed in one of the accesses, whereas the 99 

other three are equipped with oval-shaped quartz windows, 88 mm long, 37 mm large and 28 100 

mm thick. A cutaway view of the cylinder head is depicted in Figure 1. The cylinder head and the 101 

engine temperature are controlled by means of coolant recirculation. Their temperature was set 102 

to 353 K, to guarantee a good performance of the lubricant oil. 103 

In-cylinder thermodynamic conditions during the cycle are controlled by the intake air 104 

temperature and pressure. The first one is regulated by two sets of electrical resistors, while the 105 

desired intake pressure is achieved thanks to a compressor that is fed with ambient air. The 106 

engine is operated under skip-fired mode, so that in-cylinder conditions are not influenced by 107 

the remaining residual gases from previous combustion cycles. An injection takes place each 30 108 

cycles, which guarantees that ambient conditions are kept constant between consecutive 109 

repetitions and temperature transients are avoided.  110 



 111 

Figure 1 Cutaway view of the cylinder head layout 112 

A common-rail injection system is used, together with a single-hole piezoelectric injector with a 113 

140 µm outlet diameter nozzle. The injector hole is 1 mm long with conical shape (Ks factor of 114 

1.5). The injected mass is so low that thermodynamic conditions inside the combustion chamber 115 

are barely affected by the fuel evaporation [24]. Due to the low injection frequency used during 116 

tests, the injected fuel initial temperature can be considered the same. 117 

2.2. Experimental procedure 118 

Two single-component fuels have been used, namely n-Decane and n-Hexadecane, together 119 

with two derived binary blends: 50%Decane/50%Hexadecane and 30%Decane/70%Hexadecane 120 

(percentages in mass). The main advantage of using such simple fuels is that it is expected that 121 

they will form less soot than other fuels like commercial diesel, thanks to the absence of ring or 122 

branched structures as well as sulphur [2]. The most relevant properties of the fuels for the 123 

purposes of this work are given in Table 1.  124 

 125 

 126 

 127 



Fuel 
Density 
at 373 K 

[Kg/m3] 
Formula 

Derived 
Cetane 
number 

C-C 
Bonds 

H/C 

n-Decane 669.2 C10H22 65.9 9 2.19

 
50Dec/50Hex 693.9 - 82.2 11.37 2.16

 30Dec/70Hex 703.7 - 85.4 12.56 2.14

 n-Hexadecane 718.5 C16H34 92.9 15 2.12

 Table 1 Fuel properties. 128 

The full test matrix comprises a combination of two in-cylinder top dead center (TDC) 129 

temperature values (800/900 K) with three different TDC pressure values (4.3, 5.3 and 7.3 MPa) 130 

and three injection pressures (50/100/150 MPa). In-cylinder thermodynamic conditions (Figure 131 

2 -right-) have been calculated from measured in-cylinder pressure, using a first-law 132 

thermodynamic analysis as it can be found in [31, 33]. The model takes into account blow-by, 133 

heat losses and mechanical deformations. The trapped mass is estimated using the intake 134 

temperature and volume at the exhaust vent close. Then, temperature along the engine cycle 135 

can be calculated using the equation of state and correcting the trapped mass with blow-by 136 

estimations.  137 

 138 

Figure 2 Test matrix (left) and the corresponding thermodynamic conditions in the combustion chamber 139 

As previously mentioned, three different optical techniques have been applied simultaneously 140 

to measure soot formation inside the flame. The injector energizing time was set to 3 ms (9 CAD) 141 

for all conditions, which results in an approximate 6 ms (18 CAD) real injection duration, 142 

considering electrical and hydraulic delays. The injector was triggered at 6 CAD before TDC (SoE), 143 

while the injection started at approximately 5 CAD before TDC (SoI), so that the variations of the 144 

in-cylinder thermodynamic conditions during the injection event were minimized. The 2-Color 145 

Pyrometry and Laser Extinction Method are able to measure the soot formation during the 146 

whole combustion event, thanks to the high sampling rate of the detectors. On the one hand, 147 



two high-speed cameras (2C) were set to start registering the light emitted by the flame at SoE, 148 

with ∆𝑡𝑡 = 66 𝜇𝜇𝜇𝜇 (0.2 CAD) between two consecutive frames. On the other hand, a fast-response 149 

photodiode (LEM) was continuously measuring the intensity of a laser that was aligned 150 

perpendicular to, and intersecting, the flame axis. Finally, for each injection event a Nd:YAG laser 151 

was fired at 3 CAD after SoE, to measure the induced incandescence from soot. This instant was 152 

chosen in order to guarantee the stabilization of the diffusion flame before the laser was fired.  153 

2.3. Optical System 154 

Different optical techniques have been applied simultaneously, taking advantage of the three 155 

available optical accesses located in the cylinder head. The optical arrangement is shown in 156 

Figure 3. In the following subsections, a more detailed description on the soot techniques is 157 

presented. Additionally, images of OH* radiation with an ICCD camera were recorded 158 

simultaneously with the soot measurements. The procedure and results are summarized in 159 

Appendix 1. 160 

 161 

 162 

Figure 3 Schematic of the optical arrangement. 163 

 164 

2.3.1. Laser Extinction Method 165 

The Laser Extinction Method is based on the attenuation that a light beam undergoes when it 166 

traverses a soot cloud, which is quantified in terms of the Lambert-Beer’s law as: 167 

𝐼𝐼 = 𝐼𝐼0𝑒𝑒𝑒𝑒𝑒𝑒(−𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (1) 168 



where I and I0 are the attenuated and original intensities, KLEM is the dimensional extinction 169 

coefficient of the cloud of particles and L is the path length, which corresponds to the size of the 170 

cloud in the direction of the light beam. The extinction coefficient can be expressed as: 171 

𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑣𝑣
𝜆𝜆

  (2) 172 

where fv is the soot volume fraction, λ is the laser wavelength and ksoot is the dimensionless 173 

extinction coefficient. The optical arrangement set for the Laser Extinction Method is shown in 174 

Figure 3. A continuous Argon laser was set to cross the combustion chamber through two aligned 175 

optical accesses. The laser was tuned at 514.5 nm with 400 mW and oriented with a 1 degree 176 

angle of incidence in relation to the entrance quartz window due to space and optics limitations. 177 

Besides, it was observed that this orientation made it possible to remove any influence of the 178 

etalon effect on the measurements [30]. In order to minimize the divergence of the laser, a 500 179 

mm focal length lens was set just at the output of the fiber optics that were used to guide the 180 

beam from the laser output towards the test rig. The minimum beam waist (300 µm diameter) 181 

was located in the region of the flame and the laser beam was aligned in a way that it was 182 

crossing the flame axis. Once the laser left the combustion chamber, it was reflected by a beam 183 

splitter (60% Transmission – 40% Reflection) towards the collection optics. .  184 

Musculus et al. [30] present an extended analysis of several uncertainty sources that must be 185 

considered when LEM is applied. Two major issues were identified: beam steering and the 186 

contamination of measurement by light coming from the flame. The first one is a consequence 187 

of the refractive index gradients inside the combustion chamber due to fuel evaporation and 188 

combustion. In order to minimize this effect, a 50 mm diameter lens was placed just after the 189 

beam splitter, to collect deviated rays up to a maximum divergence angle of 150 mrad. If the 190 

maximum divergence angle collected is too large, the light emitted by the flame can be also 191 

registered leading to an underestimation of the light extinction. In this sense, a diaphragm was 192 

located at the focal plane of the lens to limit the maximum divergence angle to 100 mrad [30]. 193 

Finally a bandpass filter was placed between the diaphragm and the detector (centered at 514 194 

nm with 10 nm FWHM) to reject the major part of the flame radiation. The detector is a fast 195 

response photodiode, connected directly to an integrating sphere.  196 



 197 

Figure 4 Average KLEML and standard deviation for Pc = 5.3 MPa, Tc = 900 198 
K and Pinj = 100 MPa, at 50 mm from nozzle tip. 199 

Light extinction was measured at several positions along the spray axis: 33 mm, 42 mm, 51 mm 200 

and 60 mm for two nominal conditions (Pc = 5.3 MPa, Pinj= 100 MPa and the two in-cylinder 201 

temperatures), and only at 33 mm and 51 mm for the rest of conditions. In order to calculate 202 

the instantaneous transmissivity of the flame, the attenuated intensity from each combustion 203 

event is compared with the intensity registered in the previous motored cycle (equation -1- ). 204 

This ensures that effects like window fouling or intensity variations from the laser do not affect 205 

measurements. In Figure 4, an example of KLEML evolution is presented. The black line shows the 206 

KLEML averaged between 15 repetitions. The grey area represents is limited by ± one standard 207 

deviation, which is not negligible. A similar behaviour was previously reported by Payri et al. 208 

[31], where the authors analyse the scattering inherent to the test rig.  209 

2.3.2. 2-Color Pyrometry 210 

2-Color Pyrometry is based upon recording of spontaneous soot incandescence. The intensity of 211 

such radiation source (Isoot) is equal to the product of the radiation emitted by a black body at 212 

the same temperature (T) and the emissivity of the particles, which can be expressed in terms 213 

of soot concentration, working wavelength (λ) and a dispersion exponent (α) [22]. Therefore, 214 

Isoot can be expressed as the following equation: 215 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝜆𝜆,𝑇𝑇,𝐾𝐾𝐾𝐾) = �1− 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐾𝐾2𝐶𝐶𝐿𝐿
𝜆𝜆𝛼𝛼

�� 1
𝜆𝜆5

𝑐𝑐1
�𝑒𝑒𝑒𝑒𝑒𝑒�𝑐𝑐2𝜆𝜆𝜆𝜆�−1�

 (3) 216 



where c1 = 1.1910439 x 10-16 Wm2sr-1 and c2 = 1.4388 x 10-2mK. Zhao et al. [19] reported that α 217 

is less dependent on the wavelength in the visible range than in the infrared. According to that, 218 

550 and 650 nm have been chosen for this work, so that α = 1.39 for most of the fuels [34]. The 219 

dependence of the emissivity on the soot amount within the optical path is usually expressed in 220 

terms of K2CL. This variable accounts for the total contribution of the soot along the optical path, 221 

no matter either the soot distribution or geometrical size.  222 

Two CMOS sensors were employed to measure soot radiation. The signal recorded signal 𝑆𝑆𝜆𝜆 can 223 

be expressed after several simplifications can be applied [22] according to equation (4): 224 

𝑆𝑆𝜆𝜆 = 𝐶𝐶𝜆𝜆𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜆𝜆,𝑇𝑇,𝐾𝐾𝐾𝐾)  (4) 225 

where Cλ is a constant that quantifies the effects of the area A of the sooting flame within the 226 

field of view of the detector, the solid angle Ω and the wavelength λ. The two first parameters 227 

being constant, Cλ is calculated by means of a radiance calibration procedure as described by 228 

Payri et al. [22].  229 

In the setup shown in Figure 3, light emitted by the sooting flame crossed a first beam splitter 230 

(60% transmission – 40% reflection), which was placed to reflect the LEM laser. Then, a second 231 

beam splitter is used to transmit and reflect 50% of the soot radiation to each of the two high-232 

speed CMOS cameras employed ( Phantom V12 for 650 nm, and Photron SA5 for 550 nm). Both 233 

cameras were equipped with a 100 mm focal length and f/2 lens and an interference filter, 234 

centred at 650 nm and 550 nm respectively with 10nm FWHM. Images were recorded at 15000 235 

fps, with 5 to 8 us exposure time for 650 nm and 8 to 12 us for the 550 nm, depending on test 236 

conditions. To match both images on a pixel by pixel basis, a spatial transformation matrix is 237 

calculated, considering translation, rotation and scaling. For both images, background 238 

segmentation is also applied. A threshold value is obtained, considering a percentage of the total 239 

dynamic range of each image. The value of this percentage was set to 5% for all the tests, which 240 

has shown a good accuracy on the flame boundary detection for all the tests. 241 



 242 

Figure 5 Composition of instantaneous (A) and average (C) soot natural luminosity at 550 and 650 nm and the 243 
corresponding K2CL (B and D) distributions. Data were taken for n-Decane, at Pc = 5.3 MPa, Tc = 900 K and Pinj = 244 
100 MPa. 245 

Once both images are coupled, equation (3) is applied for each wavelength and K2CL and 246 

temperature can be obtained. In Figure 5, an example of the application is shown. A colour 247 

composition of the instantaneous soot natural luminosity for 550 nm and 650 nm (A) is 248 

presented, together with the calculated map of K2CL (B). It is possible to see that the K2CL 249 

distribution is not homogeneous and even some spots of constant K2CL = 3 are observed. These 250 

spots are artificially introduced, and are formed by pixels where the combination of radiation at 251 

the two wavelengths leads to a non-physical solution. In Figure 6, radiance values at 550 and 252 

650 nm for each pixel of the flame shown in Figure 5 are presented. Moreover, three curves are 253 

plotted which represent the different combinations of radiation that lead to K2CL = 0.1 (green), 254 

K2CL = 0.5 (blue) and K2CL = 3 (red). When K2CL increases, its emissivity tends asymptotically to 1 255 

(black body). For K2CL = 3, the corresponding emissivity at 550 nm is 0.999. Therefore, the red 256 

curve can be interpreted as a frontier of the 2C methodology. Different uncertainty sources [21, 257 

22] can lead to a combination of intensities of radiation located in the red area of Figure 6, which 258 

leads to a non-physical solution. When this happens, it is not possible to obtain a value of K2CL 259 

for such pixels and maximum K2CL = 3 is assigned. A similar heterogeneous distribution was 260 

previously reported by other authors [21, 26, 27]. Svensson et al. [21] suggest that the 261 

heterogeneity is real and not caused by uncertainty sources. However, Payri et al. [22] conclude 262 

that their influence is not negligible, leading to variations of K2CL up to 20%. To minimize the 263 

effect of such non-physical pixels, the 2C method is applied to the ensemble-averaged imaged 264 

at each time position (Figure 5 - C), similar to Yan et al. [17]. Corresponding K2CL results are 265 

presented in Figure 5 - D. In that way, the influence of measurement uncertainties such as read 266 



noise are minimized. The KL distribution shown in Figure 5 – D also shows that the number of 267 

pixels with non-physical solutions are reduced. 268 

 269 

Figure 6 Intensity of radiation for each pixel of a flame, at 550 and 650 270 
nm. Data was taken for n-Decane, at Pc = 5.3 MPa, Tc = 900 K and                 271 
Pinj = 100 MPa. 272 

 273 

2.3.3. Laser-Induced Incandescence 274 

Laser-Induced Incandescence is based on the thermal radiation emitted by a soot cloud, when 275 

it is irradiated with an intense laser pulse that increases its temperature, with a corresponding 276 

increase in local radiation. In the present contribution, a laser sheet was created to heat the soot 277 

particles at the symmetry plane of the flame. A Nd:YAG laser pulse at 1064 nm was used, with 278 

600 mJ/pulse and a Gaussian intensity profile. The main wavelength of this laser was chosen to 279 

avoid the PAH fluorescence, as it has been previously reported by Bobba et al. [4]. Three 280 

cylindrical lenses were used to obtain a 45 x 0.35 mm2 collimated laser sheet, with 450 mJ/pulse 281 

at the entrance of the combustion chamber. The equivalent energy fluence is 2.87 J/cm2, which 282 

is large enough to get a signal independent of the laser pulse energy as it has been previously 283 

reported by other authors [4, 13, 16]. However, care must be taken during analysis as this high 284 

energy fluence could evaporate the smallest soot particles. The laser sheet was located to obtain 285 

LII signal from 22 to 67 mm from the injector nozzle, covering a similar range as the LEM 286 

measurement. The signal was registered by a 16-bit intensified CCD camera (LaVision 287 

Dynamight), equipped with a 100 mm focal length and f/2 UV lens. A low pass filter with the 288 



cutting wavelength at 400 nm was placed in front of the detector, to improve the separation 289 

between LII and natural luminosity from the flame. Nevertheless, for each test, five background 290 

radiation images were recorded, ensemble-averaged and substracted from the LII signal. Such 291 

background levels were around 10% of the LII signal. It must be noted that this procedure is not 292 

an instantaneous correction. Therefore, it can be introducing local errors when single repetitions 293 

are considered. A 50 ns gate width was chosen, to minimize the influence of ambient conditions 294 

and possible electronic jitter between the laser and the camera [13]. 295 

 296 

2.4. Evaluation strategy for soot quantification techniques 297 

One of the main goals of the present contribution is a comparison among all three diagnostic 298 

techniques. For that purpose, KL values (optical thickness) have been chosen as metrics of soot 299 

measurements [6, 30, 31, 35]. In this sense, a discussion regarding soot optical properties is 300 

avoided. According to the literature survey, LEM measurements have been chosen as reference, 301 

so performance and limitations of 2C-Pyrometry and LII can be analysed relative to this 302 

technique.  303 

Under the assumption of thermal equilibrium, the emissivity of the soot cloud equals its 304 

absorptivity (Kirchhoff’s law). Moreover, if the interaction between light and soot particles is in 305 

the Rayleigh regime, absorption would be dominant and scattering could be disregarded. 306 

Therefore, the emissivity of the 2-Color Pyrometry and LEM absorption can be compared as 307 

follows: 308 

1 − exp(−𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐾𝐾2𝐶𝐶𝐿𝐿
𝜆𝜆𝛼𝛼

�  (5) 309 

where KLEML is the optical thickness obtained by means of LEM. To compare both techniques, 310 

the same physical magnitude has to be used. At this point, nomenclature in the literature is 311 

inconsistent, as both extinction and 2C derived results are defined as KL. Therefore, 𝐾𝐾2𝐶𝐶∗ =312 

𝐾𝐾2𝐶𝐶 𝜆𝜆𝛼𝛼⁄   has been defined, which should enable a direct comparison between 2C and LEM, i.e. 313 

𝐾𝐾2𝐶𝐶∗ = 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿. Hence, considering that the wavelength used for laser extinction was 514.5 nm 314 

and α = 1.39, the following relationship can be derived in this case: 315 

𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐾𝐾2𝐶𝐶∗ 𝐿𝐿 = 2.519 ∙ 𝐾𝐾2𝐶𝐶𝐿𝐿   (6) 316 

which allows comparing the optical thickness of the flame obtained by means of LEM with 2C 317 

measurements. Note that the right-hand side of equation (5) is a semi-empirical derivation 318 

where λ is to be expressed in µm. 319 



On the other hand, the starting point of LII technique is the assumption that the recorded signal 320 

is proportional to the soot volume fraction [19], equation (7): 321 

𝑓𝑓𝑣𝑣 = 𝐶𝐶 ∙ 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 (7) 322 

where fv is the soot volume fraction, C is a constant and ILII is the registered LII signal intensity at 323 

each pixel. The calculation of C can be addressed in two different ways. The first one is based on 324 

numerical approaches to characterize all the physical phenomena involved in the process. 325 

Different theoretical models can be found in the literature [10]. However, all of them show high 326 

complexity, especially under engine conditions. The second procedure is based on an empirical 327 

calibration by means of an additional experimental technique [11-16]. Despite certain 328 

limitations, results suggest that at least some semi-quantitative results on the soot distribution 329 

can be obtained. Following this approach, if equation (2) and (7) are combined, the following 330 

expression can be obtained: 331 

𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐶𝐶 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜆𝜆

∙ 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐶𝐶∗
∙ 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 (8) 332 

As the comparison between LII and LEM has to be done in integrated values along the optical 333 

path, an integrated LII signal SLII is defined as: 334 

𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 = ∫ 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑
𝐿𝐿
0  (9) 335 

and by integration of equation (8) the following expression is obtained: 336 

𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐶𝐶∗𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (10) 337 

As previously discussed, the calibration constant C* has been calculated by comparing KLEML 338 

measurements with the corresponding ILII integrated along the optical path (the width of the 339 

flame). Once the calibration constant is obtained, a LII-derived optical thickness for λ = 514.5 340 

nm has been calculated (KLIIL) to enable a comparison with LEM and 2C results according to 341 

equation (11). 342 

𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐶𝐶∗
𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿  (11) 343 

In Figure 7, the comparison between SLII and KLEML for n-Decane is shown. 360 different 344 

measurement points are plotted which include all the different test conditions and the LEM 345 

measurement positions. KLEML values correspond to the average of the last 50 µs just before the 346 

LII laser is fired, to minimize scattering caused by the measuring technique (Figure 4). 347 



 348 

Figure 7 Correlation between KLEML and SLII for n-Decane. Single shot values. 349 

Even though this issue was left aside in the previous theoretical derivation, attenuation of laser 350 

sheet along the soot cloud as well as subsequent signal trapping of emitted LII signal limit the 351 

applicability of LII for soot quantification. Such effects are present in Figure 9, from which the 352 

existence of a linear relationship between KLEML and SLII seems to be doubtful. De Francqueville 353 

et al. [13] suggested that one of the main uncertainty sources was the signal trapping 354 

effect. Cenker et al. [16] observed a similar scattering but, in this case, signal trapping was 355 

discarded and it was attributed to a combination of different uncertainty sources from both 356 

techniques.  357 

 358 

Figure 8 Comparison between individual repetitions and the averaged signal for n-Decane, at Pc = 5.3 MPa,                          359 
Tc = 900 K and Pinj = 100 MPa. The dashed lines represent the positions where laser extinction was measured. 360 



In Figure 8 (A), single-shot LII images for different n-Decane injections are shown. Scattering is 361 

clearly present among different repetitions and, what is more, the flame is not perfectly 362 

axisymmetric. The authors consider that this behaviour is inherent to the operating conditions 363 

of the test rig, caused by the interaction between the spray and the air flow inside the 364 

combustion chamber, which was previously analysed by Payri et al. [31]. In that work a strong 365 

scattering observed on LoL and KLEML measurements was also reported. However, if the 366 

ensemble-averaged LII signal is observed (Figure 8 -B-), the assumption of axisymmetry still 367 

seems to be reasonable. Following this approach, Figure 9 shows the same relationship as Figure 368 

7 based on ensemble-averaged values (sample size 75 repetitions for nominal points, i.e. Pc = 369 

5.3 MPa and Pinj = 100 MPa, and 30 for other conditions). Data from all fuels have been included. 370 

Based on a linear regression (R2 = 0.942) the calibration constant C* for the whole data set can 371 

be obtained, which is independent of fuel and in-cylinder conditions.  372 

 373 

Figure 9 Comparison between KLEML and SLII for the four fuels. Ensemble-averaged values. 374 

Summing up, individual cycle realization show hardly any correlation between the LEM and LII 375 

signals, but when using ensemble-averaged ones the situation improves. Based upon previous 376 

experiences with this experimental setup [31], where a strong cycle-to-cycle is present, coupled 377 

to the 1º inclination angle between the LEM point laser and the LII laser sheet could be a strong 378 

reason why a single realization comparison may not be fully correlated. When using ensemble-379 

averaged values, the assumption of axissymmetry is recovered, and the correlation between 380 

both signals improves. However, some scattering is still present, which hints at the presence of 381 



absorption phenomena. Therefore LII results should be used in a semi-quantitative way. More 382 

discussion on such effects will be shown in Section 4. 383 

 384 

3. FUEL EFFECTS ON SOOT DISTRIBUTION 385 

LEM, 2C and LII have been utilized to study the effect of fuel properties over soot formation.  386 

However, a direct comparison between the different techniques also makes it possible to 387 

determine reliability and limitations of each of them. As previously mentioned, LEM has been 388 

chosen as reference and is compared with 2C and then LII. From Figure 10 to Figure 12, KL 389 

measurements on the flame axis are presented for the four fuels at three different ambient 390 

conditions, which have been selected from the test matrix as representative of low (Pc= 4.3 MPa, 391 

Tc= 800K), medium (Pc= 5.3 MPa, Tc= 800K) and high (Pc= 5.3 MPa, Tc= 900K) sooting conditions. 392 

KLEML values correspond to the average of the last 50 µs just before the LII laser is fired. K2C
∗ L 393 

values correspond to the 2C results obtained at 3 CAD after TDC, coinciding with the LII 394 

measurement. For each LEM position, 15 LII images were recorded, which means that the LII 395 

signal is averaged from 75 different images for the nominal points (Pc = 5.3 MPa and Pinj = 100 396 

MPa) and 30 for the rest of the tests matrix. KLIIL is derived by means of equation (11). 397 

 398 

  399 

Figure 10 KLEML, 𝐾𝐾2𝐶𝐶∗ L (left) and KLIIL  (right) on the flame axis, for the four fuels at 800 K in-cylinder temperature,                     400 
Pc = 4.3 MPa and Pinj = 100 MPa. 401 



  402 

Figure 11 KLEML, 𝐾𝐾2𝐶𝐶∗ L (left) and KLIIL  (right) on the flame axis, for the four fuels at 800 K in-cylinder temperature,                     403 
Pc = 5.3 MPa and Pinj = 100 MPa. 404 

  405 

Figure 12 KLEML, 𝐾𝐾2𝐶𝐶∗ L (left) and KLIIL  (right) on the flame axis, for the four fuels at 900 K in-cylinder temperature,                     406 
Pc = 5.3 MPa and Pinj = 100 MPa. 407 

If LEM is used as a reference, soot is observed to effectively increase with ambient density. Such 408 

a result is consistent with literature studies [29, 31], and can be justified based on the reduction 409 

in lift-off length (LoL) that occurs with ambient density, which increases the equivalence ratio at 410 

the flame base, and hence induces higher soot formation. LoL values derived from OH* 411 

chemiluminiscence images recorded simultaneously with the soot measurements (Appendix 1) 412 

confirm such a reduction for the present test matrix. 413 

On the other hand, for a given operating condition LEM measurements evidence that the 414 

increase in n-Hexadecane content results in more soot being formed. Two main factors 415 

contribute to such a trend. On the one hand, simultaneous OH* measurements for this fuel 416 

sweep (Figure 17) indicate that LoL is reduced with the increase of n-Hexadecane, due to the 417 

increased reactivity of this fuel (higher CN). As the mixing field is quite similar for all investigated 418 



fuels, this results in an increase of the equivalence ratio at the flame base, which enhances soot 419 

formation. On the other hand, the Threshold Sooting Index (TSI) is also observed to increase 420 

when shifting to larger alcanes [37], which means that the fuel is more prone to form soot. 421 

A summary of the aforementioned trends with fuel composition is presented in Figure 13. KLEML 422 

for n-Decane is compared with the other three fuels for all investigated conditions. Although 423 

some scattering is present, such a plot confirms the observed result in Figures 10 to 12.  424 

 425 

 426 

Figure 13 Comparison between KLEML of n-Decane and the other three fuels. 427 

 428 

 429 

4. DISCUSION ON SOOT DIAGNOSTICS 430 

The previous section has shown the spatially resolved results obtained for the investigated 431 

conditions and fuels keeping LEM as the reference technique. This section will provide further 432 

discussion on the other two optical techniques.  433 

On the one hand, 2C is observed to be quite insensitive to operating conditions, especially when 434 

shifting from medium to high density conditions (Figures 11 and 12). Even for a single operating 435 

condition, the increase of K2C
∗ L  along the spray axis is quite modest in comparison with KLEML 436 

evolution. In terms of fuel, only decane is consistently in the low range of measured values, while 437 



the trends among the other fuels are difficult to discern. Both statements confirm that, if any 438 

sensitivity in 2C is to be obtained, it mainly occurs in the low soot range. Figure 14 summarizes 439 

these findings on a one-to-one comparison between techniques. In general, it can be stated that 440 

values provided by 2C are lower than the ones obtained by LEM. Furthermore, these differences 441 

are shown to increase when the optical thickness of the flame increases (larger KLEML). Svensson 442 

[38] also reported differences in experimental optical thickness from the two techniques, with 443 

maximum values between 4.49 and 2.66 for KLEML, and between 1.3 and 1.02 for K2C
∗ L. 444 

 445 

Figure 14 Comparison between experimental KLEML and 𝐾𝐾2𝐶𝐶∗ 𝐿𝐿. 446 

A theoretical approach has been followed to better understand the behaviour of 2C technique. 447 

This analysis, which is described in Appendix 2, is based on dividing the flame profile in finite 448 

elements with defined ksoot and temperature. An accumulated radiated intensity is calculated 449 

for 650 and 550 nm and equation (3) is applied to obtain the corresponding K2CL. At the same 450 

time, the optical thickness of the profile is calculated, which corresponds to KLEML. For different 451 

ksoot and temperature distributions (Figure 18), the corresponding K2C
∗ L and KLEML have been 452 

obtained. Three data sets are presented in Figure 15. For each of them, the temperature profile 453 

and the value of Min Ksoot were kept constant, while Max Ksoot was modified to simulate the 454 

variation in the total soot mass within the flame. Values of Max Ksoot have been varied between 455 

45 (fv = 13 ppm) and 370 (fv = 50 ppm). 456 



 457 

Figure 15 Theoretical comparison of KLEML and 𝐾𝐾2𝐶𝐶∗ 𝐿𝐿 for different ksoot and 458 
temperature distributions. 459 

Theoretical calculations show a trend that is consistent with the experimental results presented 460 

in Figure 14. For the high Tmean case, no differences can be observed in K2C
∗ L when soot 461 

distribution shape is modified at constant KLEML. This suggests that the total amount of soot is 462 

more important than its distribution along the flame width. However, when the total soot 463 

amount changes (KLEML increases) at constant Tmean, K2C
∗ L  changes with a much lower sensitivity. 464 

This means that absorption effects within the optical path become relevant, and a fraction of 465 

the intensity emitted by the different soot layers does not reach the detectors. The difference 466 

between KL values from both techniques ranges from 20% for KLEML ≈ 1 to almost 80% for KLEML 467 

≈ 4.  468 

On the other hand, if both temperature profiles are compared at constant soot distribution, an 469 

increase in K2C
∗ L with Tmean is observed. This result agrees with recent measurements by Skeen 470 

et al. [39], where the ratio between KL as derived from LEM and spectral radiation 471 

measurements range from 1.5 at the highest temperature to 5 at the lowest temperature. Some 472 

explanation can be found by using the radiation propagation model. For that purpose, one has 473 

to keep in mind that the measured radiation is the result of the emitted radiation that 474 

propagates through the soot cloud and therefore becomes attenuated. The emission term 475 

depends on local temperature and soot amount, while the absorption one on the soot 476 

distribution. The measured radiation (and therefore temperature and KL factor) is therefore a 477 



weighted value along the line-of-sight. Derived results coincide with the real ones only if a 478 

uniform temperature distribution exists. If this is not the case, emitted radiation is biased 479 

towards the hottest part of the soot cloud, because of the non-linear temperature dependence 480 

of Planck’s law. Considering the temperature variation in the previous plot, the high Tmean case 481 

has a more uniform temperature distribution, which results in a better agreement between 482 

K2C
∗ L and KLEML. When going to the low Tmean case, temperature gradients increase within the 483 

flame, and the influence of the outer (hotter) layers over the final measured radiation is more 484 

important than in the high Tmean case. This leads to larger differences between the soot as 485 

measured from the 2C and the real soot. Such effects decrease when soot concentration is low, 486 

as attenuation effects decrease and the contribution of the inner layers can still be maintained. 487 

Therefore, care must be taken when using results obtained from 2-Color Pyrometry under highly 488 

sooting conditions. 489 

Similar arguments can be found in Musculus et al. [23] when comparing CFD calculations and 490 

experimental measurements of integrated radiation from the whole combustion chamber. 491 

These and other experimental references hint at the same conclusions, namely that 2C 492 

thermometry cannot resolve the full soot amount within the flame.  493 

On the other hand, results in the previous section has shown that LII has a sensitivity to operating 494 

conditions and fuels comparable to LEM. However, some inconsistencies are present regarding 495 

the one-to-one comparison between LEM and LII, especially for the highest sooting operating 496 

condition, where a high discrepancy is found for hexadecane. It is known that LII can be strongly 497 

affected by phenomena like signal trapping or laser light attenuation [10], which would lead to 498 

a lack of LII signal at certain areas of the flame. This effect would be observable when KLEML and 499 

SLII were compared, as a deviation from linearity. De Francqueville et al. [13] have used this 500 

information to identify a set of experimental conditions where signal trapping is taking place, 501 

namely the situation where low LII signal is detected but high KLEML is measured. In the present 502 

work, few cases show this behaviour (Figure 9). On the one hand, KLEML was measured up to 60 503 

mm from the nozzle orifice only for the reference points, while up to 50 mm for the rest of test 504 

conditions. Moreover, LII signal is triggered at a timing where the flame is in a quasi-steady state. 505 

Therefore, the high soot vortex is out of the field of view, and the high soot area is reached at 506 

mid-way through the observation window. In this sense, considering the distributions observed 507 

by the three techniques, the regions of maximum soot optical thickness were not measured with 508 

LEM. 509 



Still, some cases exhibit the soot attenuation effects. Figure 16 shows the LII-derived soot 510 

volume fraction distribution from n-Decane (left) to n-Hexadecane (right) at Pc = 5.3 MPa, Tc = 511 

900 K and Pinj = 100 MPa, corresponding to the evolution shown in Figure 12. The general aspect 512 

of the 2D distribution is similar, with an increasing soot volume fraction with axial distance from 513 

the nozzle. When comparing fuels, n-Decane and 50Dec\50Hex show similarly low soot values. 514 

However, moving closer to pure n-Hexadecane results in higher soot. In particular, an apparent 515 

decrease of soot when moving from 30Dec to pure n-Hexadecane in regions downstream of 50 516 

mm can only be explained in terms of strong attenuation processes within the flame. Moreover, 517 

in this region, soot distribution for n-Hexadecane becomes non-symmetrical, with higher values 518 

on the left side of the image. With the optical set up described previously, the laser sheet was 519 

entering from the left side of the flames shown in Figure 16. Thus, the previous effect could be 520 

interpreted as being due to either beam attenuation or signal trapping by soot particles, as it 521 

has been previously reported that both phenomena have a similar effect [11, 13]. 522 

The previous analysis invalidates the application of Equation (10) for the highest sooting 523 

condition due to strong signal trapping, which breaks the proportionality between LII signal and 524 

soot volume fraction. However, in the explored conditions, such effects are only present at some 525 

particular conditions, and the validity of LII as a semi-quantitative technique can be assumed as 526 

a fair argument. 527 

 528 

 529 

Figure 16 Soot volume fraction distribution for the four fuels at Pc = 5.3 MPa, Tc = 900 K and Pinj = 100 MPa. 530 

 531 

 532 



5. CONCLUSIONS 533 

Four different fuels were characterized in terms of soot formation. For this purpose, the three 534 

most extended optical techniques were used: Laser Extinction Method, 2-Color Pyrometry and 535 

Laser-Induced Incandescence. The three optical accesses available allowed applying the three 536 

techniques simultaneously, so that results were directly comparable. All the results have been 537 

analysed in order to determine the reliability and usefulness of each technique. The main 538 

conclusions are: 539 

• In comparison with KLEML, K2C
∗ L presents in general lower values and its sensitivity to 540 

thermodynamic conditions and fuel properties is reduced. Moreover, it has been 541 

observed that K2C
∗ L seems to saturate when flame optical thickness increases. A further 542 

theoretical analysis suggested that the measurements are strongly influenced by soot 543 

and temperature distribution within the flame. When soot concentration is reduced 544 

(KLEML ≤ 1), 2C is still reliable.  545 

• Laser-Induced Incandescence makes it possible to measure the soot distribution at any 546 

plane within the flame, which is an advantage compared with line-of-sight diagnostics 547 

such as LEM and 2C. A calibration procedure based on the combination of LII signal and 548 

LEM measurements has been evaluated. The methodology has shown enough 549 

sensitivity to characterize the influence of the different experimental parameters. 550 

However, the beam attenuation and signal trapping effects have been observed to 551 

strongly influence on the measurements for the highest soot conditions and locations. 552 

Except for such cases, for most of the conditions LII can still be used as a semi-553 

quantitative measurement technique. 554 

LEM and LII have shown to be accurate enough to characterize the differences in soot formation 555 

for the four fuels considered in this study. It has been observed that the larger the molecule the 556 

more soot is formed. This results from a concurrent reduction in lift-off length, which implies 557 

lower oxygen entrainment at the flame base and therefore higher soot formation. A second 558 

important effect, though, is the inherent sooting tendency of the fuel type (TSI index), which 559 

increases with the molecule size for the investigated cases.  560 

 561 

  562 



APPENDIX 1: Lift-off Length measurements 563 

Visualization of OH*-Chemiluminescence at the base of the flame makes it possible to quantify 564 

the lift-off length (LoL). A gated 16-bit intensified CCD camera (Andor iStar) was utilized, 565 

equipped with a UV f/4 100 mm focal length lens. An interference filter centred at 310 nm (10 566 

FWHM) was placed in front of the camera to remove the major part of the radiation of the flame 567 

while keeping OH*-Chemiluminescence. The camera was triggered at 6.6 after SoE while the 568 

intensifier was gated during 2.4 CAD and the gain was set to use the complete dynamic range of 569 

the camera without saturating it. Background segmentation was applied, based on a threshold 570 

value calculated as a percentage of the dynamic range of each image. This percentage was set 571 

to 10%, as it offered a good compromise for all the different test conditions. Then lift-off length 572 

was defined as the average distance between the nozzle and the ten nearest pixels of the flame. 573 

In Figure A-1 LoL vs. fuel composition is presented, for different injection pressures (left) and          574 

in-cylinder pressures (right) f both in-cylinder temperatures. It can be observed that the LoL 575 

increases with the n-Decane fraction, which is consistent with the change in fuel reactivity (lower 576 

Centane number). LoL increases for all the fuels with injection pressure, while it decreases with 577 

in-cylinder pressure. However, differences are seen to decrease when in-cylinder pressure and 578 

temperature are increased. A similar effect is observed when the injection pressure is 579 

decreased.  580 

 581 

Figure 17 Lift-off length vs. n-Decane content, for different injection pressures (left) and different in-cylinder 582 
pressures (right), at 800 and 900 K in-cylinder temperature. 583 

 584 

 585 



APPENDIX 2 – Radiation propagation model 586 

Simple radiation propagation concepts have been used to improve the understanding of the 587 

differences between K2CL and KLEML, following a similar methodology as Payri et al. [22]. These 588 

authors described the behaviour of the 2-Colour Pyrometry technique under different in-589 

cylinder conditions and compared experimental measurements with theoretical predictions, 590 

based on the equations shown in the previous sections.  591 

A flame profile, perpendicular to its axis, can be discretized as an axisymmetric distribution of 592 

layers, with constant ksoot and temperature. Each of this layers both emits (Isoot,i) and absorbs (αi) 593 

radiation from the previous layers. Thus, the intensity measured by one detector on one side of 594 

the flame is the result of an accumulation of emission and absorption processes along the optical 595 

path, through all the layers inside the flame. Isoot,i is calculated by equation (3) while αi is 596 

obtained from equation (5). Finally, it is possible to calculate the corresponding optical thickness 597 

of the profile (KLEML) as the accumulation of the KLEML,i from the different “i” layers inside the 598 

flame as it is defined by equation (12).  599 

𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∑ 2.519𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖𝐿𝐿𝑖𝑖2𝑅𝑅
𝑖𝑖=1  (12) 600 

Where R represents the maximum radius of the profile and L is the width of each layer. Several 601 

flame temperature and ksoot radial distributions have been evaluated, based on previously 602 

published experimental results [22], which are shown in Figure 18. It must be noted that this 603 

approach assumes instantaneous oxidation of soot at the diffusion flame front. Therefore, radial 604 

distribution of both Temperature and ksoot are only considered until that particular location. The 605 

shape of ksoot profile was kept constant for all the calculations while the Min ksoot and Max ksoot 606 

were modified to vary the total amount of soot. The temperature profile shape was kept also 607 

constant, but the minimum value was modified in order to evaluate its influence on the final 608 

measured K2CL. Peak temperature was fixed at 2800 K, close to the values obtained at the edge 609 

of the flame for Tc = 900 K cases.  610 



 611 

Figure 18 Theoretical radial profiles for ksoot and flame temperature distribution 612 
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