

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-44802-
2_2

https://link.springer.com/chapter/10.1007/978-3-319-44802-2_2

http://hdl.handle.net/10251/80771

Springer Verlag (Germany)

Lucas Alba, S. (2016). Use of Logical Models for Proving Operational Termination in
General Logics. Lecture Notes in Computer Science. 9942:26-46. doi:10.1007/978-3-319-
44802-2.

Use of Logical Models for Proving Operational
Termination in General Logics?

Salvador Lucas

DSIC, Universitat Politècnica de València, Valencia, Spain
slucas@dsic.upv.es

http://users.dsic.upv.es/~slucas/

Abstract. A declarative programming language is based on some logic
L and its operational semantics is given by a proof calculus which is often
presented in a natural deduction style by means of inference rules. Declar-
ative programs are theories S of L and executing a program is proving
goals ϕ in the inference system I(S) associated to S as a particulariza-
tion of the inference system of the logic. The usual soundness assumption
for L implies that every model A of S also satisfies ϕ. In this setting,
the operational termination of a declarative program is quite naturally
defined as the absence of infinite proof trees in the inference system I(S).
Proving operational termination of declarative programs often involves
two main ingredients: (i) the generation of logical models A to abstract
the program execution (i.e., the provability of specific goals in I(S)), and
(ii) the use of well-founded relations to guarantee the absence of infinite
branches in proof trees and hence of infinite proof trees, possibly taking
into account the information about provability encoded by A. In this
paper we show how to deal with (i) and (ii) in a uniform way. The main
point is the synthesis of logical models where well-foundedness is a side
requirement for some specific predicate symbols.

Keywords: Abstraction, Logical models, Operational Termination.

1 Introduction

A recent survey defines the program termination problem as follows [4]: “using
only a finite amount of time, determine whether a given program will always
finish running or could execute forever.” Being an intuitively clear definition,
some questions should be answered before using it: (Q1) What is a program?
(Q2) What is running/executing a program? (Q3) How to determine the prop-
erty (in practice!)? In declarative programming, early proposals about the use of
logic as a programming framework provide answers to the first two questions:
(A1) programs are theories S of a given logic L; and (A2) executing a program
S is proving a goal ϕ as a deduction in the inference system I(L) of L, written
S ` ϕ [15, Section 6].

? Partially supported by the EU (FEDER), Spanish MINECO TIN 2013-45732-C4-1-P
and TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/013.

Example 1. The following Maude program is a Membership Equational Logic
specification [16] somehow sugared, as explained in [13]. Sort Node represents
the nodes in a graph and sorts Edge and Path are intended to classify paths
consisting of a single edge or many of them, respectively [3, pages 561-562]:

fmod PATH is

sorts Node Edge Path .

subsorts Edge < Path .

ops source target : Edge -> Node .

ops source target : Path -> Node .

op _;_ : [Path] [Path] -> [Path] .

var E : Edge .

vars P Q R S : Path .

cmb E ; P : Path if target(E) = source(P) .

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

ceq source(P) = source(E) if E ; S := P .

ceq target(P) = target(S) if E ; S := P .

endfm

The execution of PATH is described as deduction of goals t →[s] u (one-step
rewriting for terms t, u with sorts in the kind [s]), t →∗[s] u (many-step rewrit-

ing), or t : s (membership: claims that term t is of sort s) using the inference
system of the Context-Sensitive Membership Rewriting Logic [5] in Figure 1 (see
also [13]). Here, a new kind [Truth] with a constant tt and a function sym-
bol eq : [Node] [Node] -> [Truth] are added to deal with equalities like
target(E) = source(P) as reachability conditions eq(target(E), source(P))→∗
tt. And a new membership predicate t :: s arises where terms t are not rewritten
before checking its sort s. Also note that the overloaded functions source and
target (which are used to describe edges in a graph by establishing their source
and target nodes, respectively) receive a single rank [Path] -> [Node] and the
different overloads are modeled as rules (M1Esrc), (M1Etgt), (M1Psrc), and (M1Ptgt).

The notion of operational termination [11] (often abbreviated OT in the
subsequent related notions and definitions) provides an appropriate definition of
termination of declarative programs: a program S is operationally terminating
if there is no infinite proof tree for any goal in S. We have recently developed a
practical framework for proving operational termination of declarative programs
[14]. In our method, we first obtain the proof jumps A ⇑ B1, . . . , Bn associated

to inference rules
B1···Bn···Bn+p

A in I(S) (where A, B1, . . . , Bn, . . . , Bn+p are logic
formulas, n > 0, and p ≥ 0). Proof jumps capture (infinite) paths in a proof
tree T as sequences (chains) of proof jumps. A set of proof jumps τ is called an
OT problem. We call it finite if there is no infinite chain of proof jumps taken
from τ . The initial OT problem τI consists of all proof jumps obtained from
the inference rules in I(S) as explained above. Thus, (A3) determining that
S is operationally terminating is equivalent to proving τI finite. This answers Q3.

2

(SRN)
t →[Node] u u : Node

t : Node
(SRE)

t →[Path] u u : Edge

t : Edge

(SRP)
t →[Path] u u : Path

t : Path
(M1P)

X :: Edge

X :: Path

(M1Esrc)
X :: Edge

source(X) :: Node
(M1Etgt)

X :: Edge

target(X) :: Node

(M1Psrc)
X :: Path

source(X) :: Node
(M1Ptgt)

X :: Path

target(X) :: Node

(M2N)
t :: Node

t : Node
(M2E)

t :: Edge

t : Edge

(M2P)
t :: Path

t : Path

(R∗N)
t →∗[Node] t

(R∗P)
t →∗[Path] t

(R∗T)
t →∗[Truth] t

(TN)
t →[Node] u u →∗[Node] v

t →∗[Node] v

(TP)
t →[Path] u u →∗[Path] v

t →∗[Path] v
(TT)

t →[Truth] u u →∗[Truth] v

t →∗[Truth] v

(Csrc)
t →[Path] u

source(t) →[Node] source(u)
(Ctgt)

t →[Path] u

target(t) →[Node] target(u)

(Csq1
)

t →[Path] u

t ; v →[Path] u ; v
(Csq2

)
t →[Path] u

v ; t →[Path] v ;u

(CNeq1
)

t →[Node] u

eq(t, v) →[Truth] eq(u, v)
(CNeq2

)
t →[Node] u

eq(v, t) →[Truth] eq(v, u)

(M1 ;)
E :: Edge P :: Path eq(target(E), source(P)) →∗[Truth] tt

E;P :: Path

(Re1)
P :: Path Q :: Path R :: Path eq(target(P), source(Q)) →∗[Truth] tt eq(target(Q), source(R)) →∗[Truth] tt

(P ;Q);R →[Path] P ; (Q;R)

(Re2)
E :: Edge P :: Path S :: Path P →∗[Path] E;S

source(P) →[Node] source(E)

(Re3)
E :: Edge P :: Path S :: Path P →∗[Path] E;S

target(P) →[Node] target(S)

(Re4)
N :: Node

eq(N,N) →[Truth] tt

Fig. 1. Inference rules I(PATH) for PATH

The OT Framework provides an incremental proof methodology to simplify OT
problems τ in a divide-and-conquer style to eventually prove termination of the
program (Section 2). In order to remove proof jumps ψ : A ⇑ B1, . . . , Bn from
τ we often use well-founded relations: if there is a well-founded relation A on
formulas of the language of S such that, for all substitutions σ,

if S ` σ(Bi) for all i, 1 ≤ i < n, then σ(A) A σ(Bn), (1)

then we can remove ψ from τ to obtain a new OT problem τ ′ whose finiteness
implies that of τ [14]. For the sake of automation, recasting (1) as follows:

∀x(B1 ∧ · · · ∧Bn−1 ⇒ A A Bn) (2)

would be interesting to apply theorem proving or semantic methods to prove
(1). In [14] we anticipated that logical models are useful for this purpose.

In order to provide a general treatment of the aforementioned problems which
is well-suited for automation, we need to focus on a sufficiently simple but still

3

powerful logic which can serve to our purposes. In [6] Order-Sorted First-Order
Logic (OS-FOL) is proposed as a sufficiently general and expressive framework to
represent declarative programs, semantics of programming languages, and pro-
gram properties (see Section 3). In [10] we show how to systematically generate
models for OS-FOL theories by using the convex polytopic domains introduced
in [12]. In Section 4 we extend the work in [10] to generate appropriate inter-
pretations of predicate symbols that can be then used to synthesize a model for
a given OS-FOL theory S.

Unfortunately, even with S an OS-FOL theory, (2) is not a formula of the
theory S: the new predicate symbol A is not in the language of S. And (2) is
not well-formed because predicate A is applied to formulas A and Bn rather
than terms as required in any first-order language. Section 5 shows how to solve
this problem by using theory transformations. It also shows how to obtain well-
founded relations when the general approach to generate interpretations of pred-
icate symbols described in Section 4 is used. Section 6 illustrates the use of the
new developments to prove operational termination of PATH in the OT Frame-
work. Automation of the analysis is achieved by using AGES [8], a web-based
tool that implements the techniques in [10] and also in this paper. Section 7
concludes.

2 The OT Framework for General Logics

A logic L is a quadruple L = (Th(L),Form,Sub, I), where: Th(L) is the class of
theories of L, Form maps each theory S ∈ Th(L) into a set Form(S) of formulas
of S, Sub is a mapping sending each S ∈ Th(L) to its set Sub(S) of substitutions,
with a containment Sub(S) ⊆ [Form(S)→Form(S)].

Remark 1. In [14, Section 2] we further develop the generic notion of substitution
we are dealing with. In this paper we focus on first-order theories where the
notion of substitution is the usual one: a mapping from variables into terms
which is extended to a mapping from terms (formulas) into terms (formulas) in
the usual way.

Finally, I maps each S ∈ Th(L) into a subset I(S) ⊆ Form(S) × Form(S)∗,
where each (A,B1 . . . Bn) ∈ I(S) is called an inference rule for S and denoted
B1...Bn

A . In the following we often use Bn to refer a sequence B1, . . . , Bn of n
formulas. A proof tree T is either

1. an open goal, simply denoted as G, where G ∈ Form(S). Then, we denote
root(T) = G. Or

2. a derivation tree with root G, denoted as T1 ··· Tn
G (ρ) where G ∈ Form(S),

T1,. . . ,Tn are proof trees (for n ≥ 0), and ρ : B1...Bn
A is an inference rule in

I(S), such that G = σ(A), and root(T1) = σ(B1), . . . , root(Tn) = σ(Bn) for
some substitution σ ∈ Sub(S). We write root(T) = G.

A finite proof tree without open goals is called a closed proof tree for S. If there
is a closed proof tree T for ϕ ∈ Form(S) using I(S) (i.e., such that root(T) = ϕ),
we often denote this by writing S ` ϕ.

4

A proof tree T for S is a proper prefix of a proof tree T ′ (denoted T ⊂ T ′)
if there are one or more open goals G1, . . . , Gn in T such that T ′ is obtained
from T by replacing each Gi by a derivation tree Ti with root Gi. A proof tree T
for S is well-formed if it is either an open goal, or a closed proof tree, or a tree
T1 ··· Tn

G (ρ) where there is i, 1 ≤ i ≤ n such that T1, . . . , Ti−1 are closed, Ti
is well-formed but not closed, and Ti+1, . . . , Tn are open goals. An infinite proof
tree T for S is an infinite sequence {Ti}i∈N of finite trees such that for all i,
Ti ⊂ Ti+1. We write root(T) = root(T0).

Definition 1. [11] A theory S in a logic L is called operationally terminating
iff no infinite well-formed proof tree for S exists.

A proof jump ψ for S is a pair (A ⇑ Bn), where n ≥ 1 and A,B1, . . . , Bn ∈
Form(S); A and Bn are called the head and hook of ψ, respectively. The proof
jumps of I(S) are JS = {(A ⇑ Bi) | Bn

A ∈ I(S), 1 ≤ i ≤ n}.

Remark 2. Given an inference rule B1,...,Bn
A with label ρ and 1 ≤ i ≤ n, [ρ]i

denotes the i-th proof jump A ⇑ B1, . . . , Bi which is obtained from ρ.

An (S,J)-chain is a sequence (ψi)i≥1 of proof jumps ψi : (Ai ⇑ Bi
ni) ∈ J

together with a substitution σ such that for all i ≥ 1, σ(Bini) = σ(Ai+1) and
for all j, 1 ≤ j < ni, S ` σ(Bij). An OT problem τ in L is a pair (S,J) with
S ∈ Th(L) and J ⊆ Jumps(S); τ is finite if there is no infinite (S,J)-chain; τ
is called infinite if it is not finite. The set of all OT problems in L is OTP(L).
The initial OT problem τI of a theory S is (S,JS).

Theorem 1. [14] A theory S is operationally terminating iff (S,JS) is finite.

An OT processor P : OTP(L)→ P(OTP(L)) ∪ {no} maps an OT problem into
either a set of OT problems or the answer “no”. A processor P is sound if for
all OT problems τ , if P(τ) 6= no and all OT problems in P(τ) are finite, then
τ is finite. A processor P is complete if for all OT problems τ , if P(τ) = no or
P(τ) contains an infinite OT problem, then τ is infinite. By repeatedly applying
processors, we can construct a tree (called OT-tree) for an OT-problem (S,J)
whose nodes are labeled with OT problems or “yes” or “no”, and whose root is
labeled with (S,J). For every inner node labeled with τ , there is a processor
P satisfying one of the following: (i) P(τ) = no and the node has just one child
that is labeled with “no”. (ii) P(τ) = ∅ and the node has just one child that is
labeled with “yes”. (iii) P(τ) 6= no, P(τ) 6= ∅, and the children of the node are
labeled with the OT problems in P(τ).

Theorem 2 (OT-Framework). Let (S,J) ∈ OTP(L). If all leaves of an OT-
tree for (S,J) are labeled with “yes” and all used processors are sound, then
(S,J) is finite. If there is a leaf labeled with “no” and all processors used on the
path from the root to this leaf are complete, then (S,J) is infinite.

5

3 Order-Sorted First-Order Logic

Given a set of sorts S, a many-sorted signature is an S∗ × S-indexed family
of sets Σ = {Σw,s}(w,s)∈S∗×S containing function symbols with a given string
of argument sorts and a result sort [7]. If f ∈ Σs1···sn,s, then we display f
as f : s1 · · · sn → s. This is called a rank declaration for symbol f . Constant
symbols c (taking no argument) have rank declaration c : λ → s for some sort
s (where λ denotes the empty sequence). An order-sorted signature (S,≤, Σ)
consists of a poset of sorts (S,≤) together with a many-sorted signature (S,Σ).
The connected components of (S,≤) are the equivalence classes [s] corresponding
to the least equivalence relation ≡≤ containing ≤. We extend the order ≤ on
S to strings of equal length in S∗ by s1 · · · sn ≤ s′1 · · · s′n iff si ≤ s′i for all i,
1 ≤ i ≤ n. Symbols f can be subsort-overloaded, i.e., they can have several
rank declarations related in the ≤ ordering [7]. Constant symbols, however, have
only one rank declaration. Besides, the following monotonicity condition must
be satisfied: f ∈ Σw1,s1 ∩Σw2,s2 and w1 ≤ w2 imply s1 ≤ s2. We assume that Σ
is sensible, meaning that if f : s1 · · · sn → s and f : s′1 · · · s′n → s′ are such that
[si] = [s′i], 1 ≤ i ≤ n, then [s] = [s′]. An order-sorted signature Σ is regular iff
given w0 ≤ w1 in S∗ and f ∈ Σw1,s1 , there is a least (w, s) ∈ S∗ × S such that
f ∈ Σw,s and w0 ≤ w. If, in addition, each connected component [s] of the sort
poset has a top element >[s] ∈ [s], then the regular signature is called coherent.

Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint sets of variables
(which are also disjoint from the signature Σ), the set TΣ(X)s of terms of sort s
is the least set such that (i) Xs ⊆ TΣ(X)s, (ii) if s′ ≤ s, then TΣ(X)s′ ⊆ TΣ(X)s;
and (iii) for each f : s1 · · · sn → s and ti ∈ TΣ(X)si , 1 ≤ i ≤ n, f(t1, . . . , tn) ∈
TΣ(X)s. If X = ∅, we write TΣ rather than TΣ(∅) for the set of ground terms.
Terms with variables can also be seen as a special case of ground terms of the
extended signature Σ(X) where variables are considered as constant symbols
of the apporpriate sort, i.e., Σ(X)λ,s = Σλ,s ∪ Xs. The assumption that Σ is
sensible ensures that if [s] 6= [s′], then TΣ(X)[s] ∩TΣ(X)[s′] = ∅. The set TΣ(X)

of order-sorted terms is TΣ(X) = ∪s∈STΣ(X)s.
Following [6], an order-sorted signature with predicates Ω is a quadruple

Ω = (S,≤, Σ,Π) such that (S,≤, Σ) is an coherent order-sorted signature, and
Π = {Πw | w ∈ S+} is a family of predicate symbols P , Q, . . . We write P : w for
P ∈ Πw. Overloading is also allowed on predicates with the following conditions:

1. There is an equality predicate symbol =∈ Πss iff s is the top of a connected
component of the sort poset S.

2. Regularity : For each w0 such that there is P ∈ Πw1
with w0 ≤ w1, there is

a least w such that P ∈ Πw and w0 ≤ w.

We often write Σ,Π instead of (S,≤, Σ,Π) if S and ≤ are clear from the context.
The formulas ϕ of an order-sorted signature with predicates Σ,Π are built up
from atoms P (t1, . . . , tn) with P ∈ Πw and t1, . . . , tn ∈ TΣ(X)w, logic connec-
tives (e.g., ∧, ¬) and quantifiers (∀) as follows: (i) if P ∈ Πw, w = s1 · · · sn, and
ti ∈ TΣ(X)si for all i, 1 ≤ i ≤ n, then P (t1, . . . , tn) ∈ FormΣ,Π (we often call
it an atom); (ii) if ϕ ∈ FormΣ,Π , then ¬ϕ ∈ FormΣ,Π ; (iii) if ϕ,ϕ′ ∈ FormΣ,Π ,

6

then ϕ ∧ ϕ′ ∈ FormΣ,Π ; (iv) if s ∈ S, x ∈ Xs, and ϕ ∈ FormΣ,Π , then
(∀x : s)ϕ ∈ FormΣ,Π . As usual, we can consider formulas involving other logic
connectives and quantifiers (e.g., ∨, ⇒, ⇔, ∃,...) by using their standard defini-
tions in terms of ∧, ¬, ∀. A closed formula, i.e., whose variables are all universally
or existentially quantified, is called a sentence.

Order-Sorted Algebras and Structures. Given a many-sorted signature
(S,Σ), an (S,Σ)-algebra A (or just a Σ-algebra, if S is clear from the context)
is a family {As | s ∈ S} of sets called the carriers or domains of A together
with a function fAw,s ∈ Aw → As for each f ∈ Σw,s where Aw = As1 × · · · ×Asn
if w = s1 · · · sn, and Aw is a one point set when w = λ. Given an order-sorted
signature (S,≤, Σ), an (S,≤, Σ)-algebra (or Σ-algebra if (S,≤) is clear from the
context) is an (S,Σ)-algebra such that (i) If s, s′ ∈ S are such that s ≤ s′, then
As ⊆ As′ , and (ii) If f ∈ Σw1,s1 ∩Σw2,s2 and w1 ≤ w2, then fAw1,s1 ∈ Aw1 → As1
equals fAw2,s2 ∈ Aw2 → As2 on Aw1 . With regard to many sorted signatures
and algebras, an (S,Σ)-homomorphism between (S,Σ)-algebras A and A′ is an
S-sorted function h = {hs : As → A′s | s ∈ S} such that for each f ∈ Σw,s with

w = s1, . . . , sk, hs(f
A
w,s(a1, . . . , ak)) = fA

′

w,s(hs1(a1), . . . , hsk(ak)). If w = λ, we

have hs(f
A) = fA

′
. Now, for the order-sorted case, an (S,≤, Σ)-homomorphism

h : A → A′ between (S,≤, Σ)-algebras A and A′ is an (S,Σ)-homomorphism
that satisfies the following additional condition: if s ≤ s′ and a ∈ As, then
hs(a) = hs′(a).

Given an order-sorted signature with predicates (S,≤, Σ,Π), an (S,≤
, Σ,Π)-structure (or just a Σ,Π-structure) is an order-sorted (S,≤, Σ)-algebra
A together with an assignment to each P ∈ Πw of a subset PAw ⊆ Aw such that
[6]: (i) for P the identity predicate = : ss, the assignment is the identity
relation, i.e., (=)A = {(a, a) | a ∈ As}; and (ii) whenever P : w1 and P : w2 and
w1 ≤ w2, then PAw1

= Aw1
∩ PAw2

.
Let (S,≤, Σ,Π) be an order-sorted signature with predicates and A,A′ be

(S,≤, Σ,Π)-structures. Then, an (S,≤, Σ,Π)-homomorphism h : A → A′ is an
(S,≤, Σ)-homomorphism such that, for each P : w in Π, if (a1, . . . , an) ∈ PAw ,
then h(a1, . . . , an) ∈ PA′w . Given an S-sorted valuation mapping α : X → A, the
evaluation mapping []αA : TΣ(X) → A is the unique (S,≤, Σ)-homomorphism
extending α [7]. Finally, []αA : FormΣ,Π → Bool is given by:

1. [P (t1, . . . , tk)]αA = true for P : w and terms t1, . . . , tk if and only if
([t1]αA, . . . , [tk]αA) ∈ PAw ;

2. [¬ϕ]αA = true if and only if [ϕ]αA = false;
3. [ϕ ∧ ψ]αA = true if and only if [ϕ]αA = true and [ψ]αA = true;

4. [(∀x : s) ϕ]αA = true if and only if for all a ∈ As, [ϕ]
α[x7→a]
A = true;

We say that A satisfies ϕ ∈ FormΣ,Π if there is α ∈ X → A such that [ϕ]αA =
true. If [ϕ]αA = true for all valuations α, we write A |= ϕ and say that A is a
model of ϕ. Initial valuations are not relevant for establishing the satisfiability
of sentences; thus, both notions coincide on them. We say that A is a model of
a set of sentences S ⊆ FormΣ,Π (written A |= S) if for all ϕ ∈ S, A |= ϕ. And,
given a sentence ϕ, we write S |= ϕ if and only if for all models A of S, A |= ϕ.

7

Sound logics guarantee that every provable sentence ϕ is true in every model of
S, i.e., S ` ϕ implies S |= ϕ.

4 Interpreting Predicates Using Convex Domains

In [10] we have shown that convex domains [12] provide an appropriate basis to
the automatic definition of algebras and structures that can be used in program
analysis with order-sorted first-order specifications. In the following definition,
vectors x,y ∈ Rn are compared using the coordinate-wise extension of the or-
dering ≥ among numbers which, by abuse, we denote using ≥ as well:

x = (x1, . . . , xn)T ≥ (y1, . . . , yn)T = y iff x1 ≥ y1 ∧ · · · ∧ xn ≥ yn (3)

Definition 2. [12, Definition 1] Given a matrix C ∈ Rm×n, and b ∈ Rm, the
set D(C, b) = {x ∈ Rn | Cx ≥ b} is called a convex polytopic domain.

Sorts s ∈ S are interpreted as convex domains As = D(Cs, bs), where Cs ∈
Rms×ns and bs ∈ Rms for some ms, ns ∈ N. Thus, As ⊆ Rns . Function symbols
f : s1 · · · sk → s are interpreted by F1x1 + · · · + Fkxk + F0 where (1) for all i,
1 ≤ i ≤ k, Fi ∈ Rns×nsi are ns × nsi-matrices and xi are variables ranging on
Rnsi , (2) F0 ∈ Rns , and (3) the following algebraicity condition holds:

∀x1 ∈ Rns1 , . . .∀xk ∈ Rnsk
(

k∧
i=1

Csixi ≥ bsi ⇒ Cs(F1x1 + · · ·+ Fkxk + F0) ≥ bs
)

In [10] no procedure for the automatic generation of predicate interpretations
was given. We solve this problem by providing (parametric) interpretations for
predicate symbols P of any rank w ∈ S+. Each predicate symbol P ∈ Πw with
w = s1 · · · sk with k > 0 is given an expression

R1x1 + · · ·+Rkxk +R0 (or

k∑
i=1

Rixi +R0 for short)

where (i) for all i, 1 ≤ i ≤ k, Ri ∈ RmP×nsi are mP × nsi-matrices for some
mP > 0 and xi are variables ranging on Rnsi and (ii) R0 ∈ RmP . Then,

PAw = {(x1, . . . ,xk) ∈ As1 × · · · × Ask |
k∑
i=1

Rixi +R0 ≥ 0}

or, in our specific setting,

PAw = {(x1, . . . ,xk) ∈ Rns1 × · · · × Rnsk |
k∧
i=1

Csixi ≥ bsi ∧
k∑
i=1

Rixi +R0 ≥ 0}

Note that PAw ⊆ Aw, as required. As explained in [10, Section 4], the automatic
generation of predicate interpretations is treated as done for sorts s and function
symbols, i.e., by using parametric entries in the involved matrices and vectors
that are given numeric values through constraint solving processes.

8

Example 2. ‘Extreme’ relations PAw associated to a predicate P ∈ Πw are ob-
tained as follows: if w = s1 · · · sk, letRi be null mP×nsi-matrices for i = 1, . . . , k.

– If R0 = (1, 0, . . . , 0)T , then PAw = ∅ (empty relation).
– If R0 is a null vector, then PAw = Aw (full relation).

Example 3 (Equality). Equality cannot be defined as such at the (first-order)
logical level1. For this reason, the interpretation of an equality predicate = ∈
Πs s is explicitly required to be the equality relation {(x, x) | x ∈ As} in the
domain As of sort s. Fortunately, we can easily obtain such an interpretation by
using the generic method above. With mP = 2ns, R1, R2 ∈ RmP×ns given by

R1 =

[
Ins
−Ins

]
(for Ins the identity matrix of ns × ns entries) and R2 = −R1,

respectively, and R0 = (0, . . . , 0)T ∈ RmP , we obtain the equality predicate on
Rns .

Example 4 (Orderings). The coordinate-wise extension (3) of ≥ to n-tuples
x,y ∈ Rn is obtained if R1 = In, R2 = −In and R0 = 0. In particular, if
n = 1, we obtain the usual ordering ≥ over the reals.

Definition 3 (Well-Founded Relation). Consider a binary relation R on a
set A, i.e., R ⊆ A × A. We say that R is well-founded if there is no infinite
sequence a1, a2, . . . such that for all i ≥ 1, ai ∈ A and ai R ai+1.

In the following, given δ > 0, and x, y ∈ R, we write x >δ y iff x− y ≥ δ.

Example 5 (Well-founded strict ordering). Borrowing [2], the following strict or-
dering on vectors in Rn:

(x1, . . . , xn)T >δ (y1, . . . , yn)T iff x1 >δ y1 ∧ (x2, . . . , xn)T ≥ (y2, . . . , yn)T

is obtained if R1 = In, R2 = −In and R0 = (−δ, 0, . . . , 0)T . In particular, if
n = 1, we obtain the ordering >δ over the reals which is well-founded on subsets
A of real numbers which are bounded from below, i.e., such that A ⊆ [α,∞) for
some α ∈ R.

Example 6. For tuples of natural numbers the following strict ordering on vec-
tors in Rn x >wΣ y iff x ≥ y ∧

∑n
i=1 xi >1

∑n
i=1 yi, borrowed from the “weak

decrease + strict decrease in sum of components” ordering over tuples of natu-
ral numbers in [17, Definition 3.1] is obtained if mP = n + 1 (hence R1, R2 are
(n+ 1)× n-matrices and R0 ∈ Rn+1) and we let

R1 =

[
1T

In

]
R2 = −R1 R0 = (−δ, 0, . . . , 0)T

for some δ > 0, where 1 is the constant vector (1, . . . , 1)T ∈ Rn.

1 It is well-known that equality x = y can be defined by the second-order expression
∀P (P (x)⇔ P (y)).

9

5 Using the Removal Pair Processor

We can remove proof jumps (A ⇑ Bn) from OT problems (S,J) by using re-
moval pairs (&,A), where & and A are binary relations on Form(S) such that
A is well-founded and & ◦ A ⊆ A or A ◦ & ⊆ A (we say that & is compatible
with A) provided that the hook Bn is ‘smaller ’ (w.r.t. A) than the head A.

Definition 4. [14] Let (S,J) ∈ OTP(L), ψ : A ⇑ Bn ∈ J , and (&,A) be a
removal pair. Then, PRP (S,J) = {(S,J − {ψ})} if and only if

1. for all C ⇑ Dm ∈ J − {ψ} and substitutions σ, if S ` σ(Di) for all 1 ≤
i < m, then σ(C) & σ(Dm) or σ(C) A σ(Dm), and

2. for all substitutions σ, if S ` σ(Bi) for all 1 ≤ i < n, then σ(A) A σ(Bn).

In order to use PRP , we need to check conditions (1) and (2) in Definition 4. That
is, given a proof jump F ⇑ Ep with E1, . . . , Ep, F ∈ Form(S), and ./ ∈ {&,A},
we have to prove statements of the following form: for all substitutions σ,

if S ` σ(Fi) for all i, 1 ≤ i < p, then σ(E) ./ σ(Fp) (4)

Although (4) is an “implication”, the provability statements S ` σ(Fi), and the
presence of symbols & and A (in statements σ(E) ./ σ(Fp)) which do not belong
to the language of S, prevents (4) from being an implication of the language of
S. We use theory transformations to overcome this problem.

Remark 3. Our approach leads to implementing PRP when applied to an OT
problem τ = (S,J) as a satisfiability problem, i.e., the problem of finding a
model A for a theory Sτ which is obtained by extending S with appropriate
sentences to represent the application of PRP to τ (see Section 5.2).

5.1 Transforming Order-Sorted First-Order Theories

We define a transformation of order-sorted signatures with predicates as follows:
given Ω = (S,≤, Σ,Π), an Ω-theory S and an OT problem τ = (S, {Ai ⇑ Bi

ni |
1 ≤ i ≤ m}) where for all i, 1 ≤ i ≤ m, Ai and Bini are Ω-atoms, a new order-
sorted signature with predicates Ωτ = (Sτ ,≤τ , Στ , Πτ) is defined, where, if we
let Ψτ = {pred(Ai) | 1 ≤ i ≤ m} ∪ {pred(Bini) | 1 ≤ i ≤ m}, then

– Sτ = S ∪ {sτ} where sτ is a fresh sort symbol.
– ≤τ extends ≤ by defining sτ ≤τ sτ , and for all s, s′ ∈ S, s ≤τ s′ iff s ≤ s′.

Note that we do not assume any subsort relation between sτ and sorts s ∈ S.
– Στ = Σ ∪ {fP : w → sτ | w ∈ S+, P ∈ Ψτ ∩ Πw}, i.e., each (overloaded

version of a) predicate symbol P in Ψτ with input sorts w is given a new
function symbol fP : w → sτ with input sorts w and output sort sτ .

– Πτ = Π ∪ Πsτsτ where Πsτsτ = {π&, πA} for new binary (infix) predicate
symbols π& and πA.

Since Ωτ is an extension of Ω, every Στ , Πτ -structure A is also a Σ,Π-structure.
Given an atom P (t1, . . . , tn) with P ∈ Ψτ ∩Πs1···sn and terms ti ∈ TΣ(X)si , for

1 ≤ i ≤ n, the transformation ↓ from atoms in Ω to terms in Ωτ is obtained
by replacing P by fP ∈ Στ : P (t1, . . . , tn)↓ = fP (t1, . . . , tn). We can use Ωτ -
structures A to define binary relations on Ω-formulas.

10

Definition 5. Let Ω be an order-sorted signature with predicates, τ be an OT-
problem, and A be an Ωτ -structure. Given π./ ∈ Πsτsτ , we define a relation ./
on Ω-formulas as follows: for all Ω-formulas A and B A ./ B iff A |= A↓π./B

↓.

Now, we can recast (4) as a logic formula:

∀x(F1 ∧ · · · ∧ Fp−1 ⇒ E↓ π./ F
↓
p) (5)

Theorem 3. Let Ω be an order-sorted signature with predicates, τ = E ⇑ F p
be an OT-problem, A be an Ωτ -structure such that A |= S, π./ ∈ Πsτsτ , and σ
be a substitution. If for all i, 1 ≤ i < p, S ` σ(Fi) holds and A |= ∀x(F1 ∧ · · · ∧
Fp−1 ⇒ E↓ π./ F

↓
p), then (4) holds for ./ as in Definition 5.

Proof. Since for all i, 1 ≤ i < p, S ` σ(Fi) holds and A |= S, by soundness we
have A |= σ(Fi) for all i, 1 ≤ i < p. Now, since A |= ∀x(F1 ∧ · · · ∧ Fp−1 ⇒
E↓ π./ F

↓
p), we have that A |= σ(E↓ π./ F

↓
p) holds, i.e., A |= σ(E)↓ π./ σ(Fp)

↓

holds. Thus, by Definition 5, we have σ(E) ./ σ(Fp) as desired.

Compatibility. Component & of a removal pair (&,A) must be compatible with
A. This can be guaranteed at the logical level by the following Ωτ -sentence:(
∀xyz : sτ (x π& y ∧ y πA z ⇒ x πA z)

)
∨
(
∀xyz : sτ (x πA y ∧ y π& z ⇒ x πA z)

)
Well-foundedness. We also need to guarantee well-foundedness of A. Unfortu-
nately, the well-foundedness of a relation PA interpreting a binary predicate
symbol P can not be characterized at once in first-order logic [18, Section 5.1.4].
We can guarantee well-foundedness of A, though, at the semantic level by inter-
preting πA as a well-founded relation πAA in the Ωτ -structure A.

Proposition 1. Let Ω be an order-sorted signature with predicates, τ be an OT
problem, and A be a Ωτ -structure. If πAA is a well-founded relation on Asτ , then
A as in Definition 5 is a well-founded relation on Ω-formulas.

Proof. By contradiction. If there is an infinite sequence (Ai)i≥1 of Ω-formulas
such that for all i ≥ 1 Ai A Ai+1, then, by Definition 5, for all i ≥ 1 we have
A |= A↓i πA A↓i+1, i.e., for all valuations α, ([A↓i]

α
A, [A

↓
i+1]αA) ∈ πAA . Therefore,

there is an infinite sequence ([A↓i]
α
A)i≥1 for some valuation α that contradicts

well-foundedness of πAA .

5.2 A Semantic Version of the Removal Pair Processor

We can provide the following semantic version of the removal pair processor.

Definition 6 (Semantic version of PRP). Let L be an OS-FOL with order-
sorted signature with predicates Ω, τ = (S,J) ∈ OTP(L), A be an Ωτ -structure,
and ψ : A ⇑ Bn ∈ J . Then, PRP (S,J) = {(S,J − {ψ})} if A |= S, and the
following conditions hold:

11

1. if J − {ψ} 6= ∅, then

A |=
(
∀xyz : sτ (x π& y ∧ y πA z ⇒ x πA z)

)
∨
(
∀xyz : sτ (x πA y ∧ y π& z ⇒ x πA z)

)
2. for each C ⇑ Dm ∈ J − {ψ}, there is π./ ∈ {π&, πA} such that

A |=
∧m−1
i=1 Di ⇒ C↓ π./ D

↓
m.

3. πAA is well-founded and A |=
∧n−1
i=1 Bi ⇒ A↓ πA B

↓
n

Definition 6 transforms the application of PRP to (S,J) into the problem of
finding a model A of S which satisfies the following formulas (where J is the
number of proof jumps in J):

1. ϕ1 (for the modeling condition (1) in Definition 6; only required if J > 1),
2. ϕ2

1, . . . , ϕ
2
J−1 (where, for all j, 1 ≤ j < J , ϕ2

j is a disjunction of two formulas
due to condition (2)) and

3. ϕ3 (the formula in the removal condition (3)).

Remark 4 (Finding models to implement PRP). Let Sτ = S ∪
{ϕ1, ϕ2

1, . . . , ϕ
2
J−1, ϕ

3}. We can use the theory in [10] and Section 4 to
obtain a model A such that A |= Sτ holds. Then, if πAA is well-founded, we can
remove the targetted proof jump ψ from J in τ .

We still need to envisage a method to guarantee that πAA is well-founded. In the
following section, we show how to guarantee that binary relations synthesized
as part of a model as explained in Section 4 are well-founded.

5.3 Well-Foundedness of Relations Defined on Convex Domains

The following result provides a sufficient condition to guarantee well-foundedness
of a binary relation R on a subset A ⊆ Rn defined as explained in Section 4. It
is based on generalizing the fact that the relation >δ over real numbers given by
x >δ y iff x− y ≥ δ is well-founded on subsets A ⊆ R of real numbers which are
bounded from below (i.e., A ⊆ [α,+∞) for some α ∈ R) whenever δ > 0 [9].

Theorem 4. Let R1, R2 ∈ Rm×n and R0 ∈ Rm for some m,n > 0, and R be
a binary relation on A ⊆ Rn as follows: for all x,y ∈ A, x R y if and only if
R1x+R2y +R0 ≥ 0. If there is i ∈ {1, . . . , n} such that

1. (R2)i· = −(R1)i·, i.e., the i-th row of R2 is obtained from the i-th row of R1

by negating all components,
2. There is α ∈ R such that for all x ∈ A, (R1)i·x ≥ α, and
3. (R0)i < 0,

then R is well-founded.

Proof. By contradiction. If R is not well-founded, then there is an infinite se-
quence x1, . . . ,xn, . . . of vectors in Rn such that, for all j ≥ 1, xj R xj+1.
By (1), we have that, for all j ≥ 1, (R1)i·xj − (R1)i·xj+1 + (R0)i ≥ 0. For all
p > 0,

12

p∑
j=1

(R1)i·xj − (R1)i·xj+1 + (R0)i = (R1)i·x1 − (R1)i·xp+1 + p(R0)i ≥ 0

By (2), there is α ∈ R such that for all p > 0, (R1)i·xp ≥ α. Therefore, for all
p > 0, (R1)i·x1−α ≥ (R1)i·x1−(R1)i·xp+1, and then (R1)i·x1−α+p(R0)i ≥ 0.
By (3), (R0)i < 0; let r = −(R0)i. Note that r > 0. Then, for all p > 0,
(R1)i·x1 ≥ α+ pr, leading to a contradiction because α+ pr tends to infinite as
p grows to infinite, but (R1)i·x1 ∈ R is fixed.

Example 7. Theorem 4 applies to >δ and >wΣ defined on As as follows:

1. for >δ, take A ⊆ [α,+∞) × Rn−1, for some α ∈ R and i = 1 in Theorem 4
with the corresponding R1, R2, and R0 to prove >δ well-founded on A.

2. for >wΣ , take A ⊆ [α,+∞)n, for some α ≥ 0 and i = 1 with the corresponding
R1, R2, and R0 to prove >wΣ well-founded on A.

Note that we can use Theorem 4 to prove well-foundedness of relations R defined
on domains A which are not bounded from below.

Example 8. Consider C =

[
1 0
−1 0

]
and b = (0,−2)T . Then, A = D(C, b) =

[0, 2] × R is not bounded from below in the sense that there is no α ∈ R such

that A ⊆ [α,+∞)2. The relation R on A defined by R1 =

[
1 0
1 1

]
, R2 =

[
−1 0
0 1

]
and R0 = (−1, 0) is well-founded as it satisfies the conditions of Theorem 4.

6 Operational Termination of PATH in the OT-Framework

The set JPATH of proof jumps for I(PATH) has 43 elements. A powerful processor
to reduce the size of an OT problem (S,J) is the SCC processor [14]. The so-
called estimated proof graph EPG(S,J) for (S,J) has J as set of nodes; and
there is an arc from ψ : (A ⇑ Bm) to ψ′ : (A′ ⇑ B′n) iff σ(Bm) = σ(A′) for
some substitution σ. The Strongly Connected Components (SCCs) of a graph
are its maximal cycles, i.e., those cycles that are not part of other cycles. The
SCC Processor (PSCC) is given by

PSCC (S,J) = {(S,J ′) | J ′ is an SCC in EPG(S,J)}

This is a sound and complete processor.

Example 9. Although EPG(PATH,JPATH) is huge and we do not display it here,
the SCCs are displayed in Figure 2. The involved proof jumps are made explicit
in Figure 3 to ease our further developments. We use PSCC to transform the
initial OT problem τPATH = (PATH,JPATH) by PSCC (τPATH) = {τ1, . . . , τ9} where

τ1 = (PATH, {[SRN]2}) τ2 = (PATH, {[SRE]2}) τ3 = (PATH, {[SRP]2})

τ4 = (PATH, {[TN]2}) τ5 = (PATH, {[TP]2}) τ6 = (PATH, {[Csq1]
1})

τ7 = (PATH, {[Csq2]
1}) τ8 = (PATH, {[M1 ;]2}) τ9 = (PATH, {[TT]2})

13

[SRN]2 [SRE]2 [SRP]2

[Csq1]
1 [Csq2]

1

[TN]2 [TP]2

[M1 ;]2 [TT]2

Fig. 2. SCCs of the estimated dependency graph of PATH

[SRN]2 t : Node ⇑ t→[Node] u u : Node

[SRE]2 t : Edge ⇑ t→[Path] u u : Edge

[SRP]2 t : Path ⇑ t→[Path] u u : Path

[TN]2 t→∗[Node] v ⇑ t→[Node] u u→∗[Node] v

[TP]2 t→∗[Path] v ⇑ t→[Path] u u→∗[Path] v

[TT]2 t→∗[Truth] v ⇑ t→[Truth] u u→∗[Truth] v

[Csq1]
1 t ; v →[Path] u ; v ⇑ t→[Path] u

[Csq2]
1 v ; t→[Path] v ;u ⇑ t→[Path] u

[M1 ;]2 E;P :: Path ⇑ E :: Edge P :: Path

Fig. 3. Proof jumps of the SCCs in Figure 2

Any further use of PSCC on τ1, . . . , τ9 is hopeless. Note that τ1, . . . , τ9 all consist
of a single proof jump, i.e., τi = (PATH, {ψi}) for 1 ≤ i ≤ 9. With PRP we prove
them finite, thus obtaining a proof of operational termination of PATH.

6.1 Using PRP to Prove τPATH finite

Following the approach in Section 5.2 (see Remark 4), for each OT problem τi
we need to find a appropriate model Ai to remove ψi from τi thus obtaining
the empty OT problem (PATH,∅) which is trivially finite. For this purpose, we
use the tool AGES to automatically generate models for order-sorted first-order
theories [8]. The tool provides an implementation of the techniques introduced
in [10] and also in this paper (Sections 4 and 5.3).

First we express the order-sorted first-order signature with predicates that
corresponds to PATH as a Maude module as follows:

mod PATH_OSSig is

sorts KTruth .

sorts Node KNode .

sorts Edge Path KPath .

subsorts Node < KNode .

14

subsorts Edge < Path < KPath .

op tt : -> KTruth .

op eq : KNode KNode -> KTruth .

ops source target : KPath -> KNode .

op seq : KPath KPath -> KPath .

op mbEdge : KPath -> Bool .

op mbNode : KNode -> Bool .

op mbPath : KPath -> Bool .

op redN : KNode KNode -> Bool .

op redsN : KNode KNode -> Bool .

op redP : KPath KPath -> Bool .

op redsP : KPath KPath -> Bool .

op redT : KTruth KTruth -> Bool .

op redsT : KTruth KTruth -> Bool .

endm

where

1. KNode, KPath, and KTruth represent kinds [Node], [Path], and [Truth] of the
MEL specification of PATH and have the expected subsort relation with the
corresponding sorts in the kind.

2. We use the function seq instead of the infix operator _;_.
3. We are using predicates (encoded here as boolean functions, as Maude has

no specific notation for predicates) mbEdge, mbNode, and mbEdge instead of
: Edge, : Node and : Path.

4. Similarly, we use redN, redsN, redP, redsP, redT, and redsT instead of
→[Node], →∗[Node], →[Path], →∗[Path], →[Truth], and →∗[Truth], respectively.

The OS-FOL theory SPATH consists of the sentences obtained from I(PATH) in
Figure 1 when each rule B1···Bn

A (with variables x1, . . . , xm of sorts s1, . . . , sm)
is interpreted as a sentence ∀x1 : s1 · · ·xm : sm(B1 ∧ · · · ∧Bn ⇒ A) and written
by using the symbols in PATH_OSSig. For instance, rule (SRN) becomes

redN(t:KNode,u:KNode) /\ mbNode(u:KNode) => mbNode(t:KNode)

in the notation used in AGES, where each variable bears its sort, and universal
quantification is assumed.

For the sake of brevity, rather than computing a model Ai for each OT
problem τi, 1 ≤ i ≤ 9, we proceed in three steps by computing models for
different clusters of OT Problems.

– For OT problems τ1, . . . , τ5, we compute a model A of S∪{ϕ3
1, . . . , ϕ

3
5} being

ϕ3
i for 1 ≤ i ≤ 5 the specific formula ϕ3 in Section 5.2 particularized to ψi.

– For OT problems τ6, . . . , τ8, we compute a model A′ of S ∪ {ϕ3
6, . . . , ϕ

3
8}.

– For τ9, we compute a model A′′ of S ∪ {ϕ3
9}.

Obviously, each computed structure can be used with each individual OT prob-
lem τi in its cluster to remove the corresponding proof jump. Note that, since

15

each OT problem τi contains a single proof jump, we do not pay attention to
the component &i of the removal pair. Hence, no instance of formulas ϕ1 and
ϕ2 in Section 5.2 is required in the extensions of S.

OT Problems τ1, . . . , τ5. We extend PATH_OSSig with new sorts, functions
and predicate symbols due to the transformation described in Section 5.1:

mod PATH-tau1to5 is

sorts Top1 Top2 Top3 Top4 Top5 .

op fmbNode : KNode -> Top1 .

op wfr1 : Top1 Top1 -> Bool [wellfounded] .

op fisEdge : KPath -> Top2 .

op wfr2 : Top2 Top2 -> Bool [wellfounded] .

op fisPath : KPath -> Top3 .

op wfr3 : Top3 Top3 -> Bool [wellfounded] .

op fredsN : KNode KNode -> Top4 .

op wfr4 : Top4 Top4 -> Bool [wellfounded] .

op fredsP : KPath KPath -> Top5 .

op wfr5 : Top5 Top5 -> Bool [wellfounded] .

endm

In AGES we can impose that the relations interpreting binary predicates
wfr1, . . . , wfr5 (representing the well-founded components Ai of the removal
pair which is used in the application of PRP to τi for 1 ≤ i ≤ 5) be well-
founded2. AGES uses Theorem 4 to ensure this. Then, we obtain a new theory
SPATH1..5 by adding new sentences ϕ3

1, . . . , ϕ
3
5 corresponding to the proof jumps in

τ1, . . . , τ5 to SPATH; in AGES notation:

redN(tN:KNode,uN:KNode) =>

wfr1(fmbNode(tN:KNode),fmbNode(uN:KNode))

redP(tP:KPath,uP:KPath) =>

wfr2(fisEdge(tP:KPath),fisEdge(uP:KPath))

redP(tP:KPath,uP:KPath) =>

wfr3(fisPath(tP:KPath),fisPath(uP:KPath))

redN(tN:KNode,uN:KNode) =>

wfr4(fredsN(tN:KNode,vN:KNode),fredsN(uN:KNode,vN:KNode))

redP(tP:KPath,uP:KPath) =>

wfr5(fredsP(tP:KPath,vP:KPath),fredsP(uP:KPath,vP:KPath))

AGES obtains the following model A for SPATH1..5 :

1. Interpretation of sorts:

AKTruth = [−1,+∞) ANode = [−1, 0] AKNode = [−1, 0]
AEdge = {−1} APath = {−1} AKPath = [−1, 0]

ATop1 = [0,+∞) ATop2 = [−1,+∞) ATop3 = [0,+∞)
ATop4 = [0,+∞) ATop5 = [−1, 0]

2 We have enriched the syntax of Maude modules to specifiy this requirement.

16

2. Interpretation of function symbols (with argument variables taking values in
the corresponding sort):

eqA(x, y) = y − x seqA(x, y) = −1− y sourceA(x) = 0
targetA(x) = −1 ttA = 0

fisEdgeA(x) = 1 + x fisPathA(x) = 2 + x fmbNodeA(x) = 2 + x
fredsNA(x, y) = 4 + x+ y fredsPA(x, y) = 0

3. Interpretation of predicate symbols (as characteristic predicates):

mbEdgeA(x)⇔ x ∈ [−1, 0] mbNodeA(x)⇔ x ∈ [−1, 0]
mbPathA(x)⇔ x ∈ [−1, 0] redNA(x, y)⇔ false
redPA(x, y)⇔ false redTA(x, y)⇔ x, y ∈ [−1,+∞) ∧ y ≥ x
redsNA(x, y)⇔ x, y ∈ [−1, 0] redsPA(x, y)⇔ x, y ∈ [−1, 0] ∧ x ≥ y

redsTA(x, y)⇔ x, y ∈ [−1,+∞) ∧ y ≥ x
wfr1A(x, y)⇔ x, y ∈ [0,+∞) ∧ x >1 y
wfr2A(x, y)⇔ x, y ∈ [0,+∞) ∧ x >1 y
wfr3A(x, y)⇔ x, y ∈ [0,+∞) ∧ x >1 y
wfr4A(x, y)⇔ false
wfr5A(x, y)⇔ x, y ∈ [−1, 0] ∧ y >1 x

Note that redNA and redPA are empty relations. Actually, this is enough to
guarantee that conditions ϕ3

1, . . . , ϕ
3
5 for the proof jumps at stake hold, thus

enabling their removal from the corresponding OT problem.

OT Problems τ6, . . . , τ8. We extend now PATH_OSSig with the following:

mod PATH-tau6to8 is

sorts Top6 Top7 Top8 .

op fredP : KPath KPath -> Top6 .

op wfr6 : Top6 Top6 -> Bool [wellfounded] .

op fredP : KPath KPath -> Top7 .

op wfr7 : Top7 Top7 -> Bool [wellfounded] .

op fisPath : KPath -> Top8 .

op wfr8 : Top8 Top8 -> Bool [wellfounded] .

endm

The new theory SPATH6..8 extends SPATH with ϕ3
6, . . . , ϕ

3
6, i.e.,

wfr6(fredP(seq(tP:KPath,vP:KPath),seq(uP:KPath,vP:KPath)),

fredP(tP:KPath,uP:KPath))

wfr7(fredP(seq(vP:KPath,tP:KPath),seq(vP:KPath,uP:KPath)),

fredP(tP:KPath,uP:KPath))

EP:KPath :: Edge =>

wfr8(fisPath(seq(EP:KPath,PP:KPath)),fisPath(PP:KPath))

AGES computes the following model A′ of SPATH6..8 :

17

1. Interpretation of sorts:

A′KTruth = [−1,+∞) A′Node = [0,+∞) A′KNode = [0,+∞)
A′Edge = {1} A′Path = [1,+∞) A′KPath = [1,+∞)

A′Top6 = [0,+∞) A′Top7 = [0,+∞) A′Top8 = [0,+∞)

2. Interpretation of function symbols:

eqA
′
(x, y) = x+ y − 1 seqA

′
(x, y) = x+ y sourceA

′
(x) = x− 1

targetA
′
(x) = 0 ttA

′
= 0

fisPathA
′
(x) = 1 + x fredPA

′
(x, y) = y − 1

3. Interpretation of predicate symbols:

mbEdgeA
′
(x)⇔ x ∈ [1,+∞) mbNodeA

′
(x)⇔ x ∈ [0,+∞)

mbPathA
′
(x)⇔ x ∈ [1,+∞) redNA

′
(x, y)⇔ x, y ∈ [0,+∞) ∧ x ≥ y

redTA
′
(x, y)⇔ x, y ∈ [−1,+∞) redPA

′
(x, y)⇔ x, y ∈ [1,+∞) ∧ x ≥ y

redsNA
′
(x, y)⇔ x, y ∈ [0,+∞) redsPA

′
(x, y)⇔ x, y ∈ [1,+∞)

redsTA
′
(x, y)⇔ x, y ∈ [−1,+∞)

wfr6A
′
(x, y)⇔ x, y ∈ [0,+∞) ∧ x >1 y

wfr7A
′
(x, y)⇔ x, y ∈ [0,+∞) ∧ x >1 y

wfr8A
′
(x, y)⇔ x, y ∈ [0,+∞) ∧ x >1 y

Note that wfr6A
′
, wfr7A

′
, and wfr8A

′
coincide with the ordering >1 on [0,+∞)

which is clearly well-founded.

OT Problem τ9. We extend PATH_OSSig with:

mod PATH-tau9 is

sorts Top9 .

op fredsT : KTruth KTruth -> Top9 .

op wfr9 : Top9 Top9 -> Bool [wellfounded] .

endm

We obtain a new theory SPATH9 by adding the sentence ϕ3
9:

wfr9(fredsT(tT:KTruth,vT:KTruth),fredsT(uT:KTruth,vT:KTruth))

corresponding to the proof jumps in τ9 to SPATH. We obtain a model A′′ of SPATH9 :

1. Interpretation of sorts:

A′′KTruth = [−1,+∞) A′′Node = [−1, 1] A′′KNode = [−1, 1]
A′′Edge = {−1} A′′Path = {−1} A′′KPath = [−1, 0] A′′Top9 = [−1,+∞)

2. Interpretation of function symbols:

eqA
′′
(x, y) = x− y + 1 seqA

′′
(x, y) = 0 sourceA

′′
(x) = −x

targetA
′′
(x) = −1 ttA

′′
= 0 fredsTA

′′
(x, y) = x

18

3. Interpretation of predicate symbols:

mbEdgeA
′′
(x)⇔ x ∈ [−1, 0] mbNodeA

′′
(x)⇔ x ∈ [−1, 1]

mbPathA
′′
(x)⇔ x ∈ [−1, 0] redNA

′′
(x, y)⇔ false

redPA
′′
(x, y)⇔ false redTA

′′
(x, y)⇔ x, y ∈ [−1,+∞) ∧ x >1 y

redsNA
′′
(x, y)⇔ x, y ∈ [−1, 1] redsPA

′′
(x, y)⇔ x, y ∈ [−1, 0] ∧ x ≥ y

redsTA
′′
(x, y)⇔ x, y ∈ [−1,+∞) ∧ x ≥ y

wfr9A
′′
(x, y)⇔ x, y ∈ [−1,+∞) ∧ x >1 y

6.2 Proof of Operational Termination of PATH

Putting all together, we have the following OT-Tree for the proof:

τPATH
yes!

PSCC

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9

yes

PARP

yes

PARP

yes

PARP

yes

PARP

yes

PARP

yes

PA
′

RP

yes

PA
′

RP

yes

PA
′

RP

yes

PA
′′

RP

We label the application of PRP with symbols A, A′, and A′′ to highlight the
different ways to apply it. By Theorem 2, PATH is operationally terminating.

7 Conclusions

The use of logical models in proofs of operational termination in the OT Frame-
work was suggested in [14] as an possible approach to implement the new pro-
cessor PRP introduced in the paper. This observation was a main motivation
to develop the idea of convex polytopic domain [12] as a sufficiently simple but
flexible approach to obtain a variety of domains that can be used in proofs of
termination and which are amenable for automation [10]. The research in this
paper closes some gaps left during these developments and provides a basis for
the implementation of PRP in the OT Framework by means of the automatic
generation of logical models for order-sorted first-order theories.

We have extended the work in [10] to achieve the automatic generation of
interpretations for predicate symbols using convex polytopic domains. These re-
sults are the basis of the implementation of the tool AGES for the automatic
generation of models for OS-FOL theories. To our knowledge, no systematic
treatment of the generation of (homogeneous or heterogeneous, i.e., with argu-
ments in different sorts) predicate interpretations has been attempted to date.
We have also shown how to mechanize the use of PRP in the OT Framework for
proving operational termination of declarative programs by recasting it as the
problem of finding a model through appropriate transformations.

19

We believe that the research in this paper is an important step towards the
practical use of logical models in proofs of operational termination of programs
and hence towards the implementation of a tool for automatically proving oper-
ational termination of declarative programs based on the OT Framework in [14].
This is a subject for future work.

Acknowledgments. I thank Raúl Gutiérrez for implementing the results of Sec-
tions 4 and 5.3 in AGES.

References

1. B. Alarcón, R. Gutiérrez, S. Lucas, R. Navarro-Marset. Proving Termination Prop-
erties with MU-TERM. In M. Johnson and D. Pavlovic, editors, Proc. of the
13th International Conference on Algebraic Methodology and Software Technology,
AMAST’10, LNCS 6486:201-208, Springer-Verlag, 2011.

2. B. Alarcón, S. Lucas, R. Navarro-Marset. Using Matrix Interpretations over the
Reals in Proofs of Termination. In F. Lucio, G. Moreno, R. Peña, editors, Proc. of
IX Jornadas sobre Programación y Lenguajes, PROLE’09. pages 255-264, Septem-
ber 2009.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude – A High-Performance Logical Framework. LNCS 4350,
Springer-Verlag, 2007.

4. B. Cook, A. Rybalchenko, and A Podelski. Proving Program Termination. Com-
munications of the ACM 54(5):88-98, 2011.

5. F. Durán, S. Lucas, C. Marché, J. Meseguer, X. Urbain, Proving Operational
Termination of Membership Equational Programs, Higher-Order and Symbolic
Computation 21(1-2):59–88, 2008.

6. J. Goguen and J. Meseguer. Models and Equality for Logical Programming. In
H. Ehrig, R.A. Kowalsky, G. Levi, and U. Montanari, editors, Proc. of the In-
ternational Joint Conference on Theory and Practice of Software Development,
TAPSOFT’87, vol. 2: Advanced Seminar on Foundations of Innovative Software
Development II and Colloquium on Functional and Logic Programming and Spec-
ifications (CFLP) LNCS 250:1-22, Springer-Verlag, 1987.

7. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217–273, 1992.

8. R. Gutiérrez, S. Lucas, and P. Reinoso. A tool for the automatic generation of
logical models of order-sorted first-order theories. Submitted; tool available at
http://zenon.dsic.upv.es/ages/.

9. S. Lucas. Polynomials over the Reals in Proofs of Termination: from Theory to
Practice. RAIRO Theoretical Informatics and Applications, 39(3):547–586, 2005.

10. S. Lucas. Synthesis of models for order-sorted first-order theories using linear
algebra and constraint solving. Electronic Proceedings in Theoretical Computer
Science 200:32-47, 2015.

11. S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional
term rewriting systems. Information Processing Letters, 95:446–453, 2005.

12. S. Lucas and J. Meseguer. Models for Logics and Conditional Constraints in
Automated Proofs of Termination. In G.A. Aranda-Corral and F.J. Mart́ın-Mateos,
editors, Proc. of the 12th International Conference on Artificial Intelligence and
Symbolic Computation, AISC’14, LNAI 8884:7-18, Springer-Verlag, 2014.

20

13. S. Lucas and J. Meseguer. Operational Termination of Membership Equational
Programs: the Order-Sorted Way. In G. Rosu, editor, Proc. of the 7th International
Workshop on Rewriting Logic and its Applications, WRLA’08, Electronic Notes in
Theoretical Computer Science, 238:207-225, 2009.

14. S. Lucas and J. Meseguer. Proving Operational Termination Of Declarative Pro-
grams In General Logics. In O. Danvy, editor, Proc. of the 16th International Sym-
posium on Principles and Practice of Declarative Programming, PPDP’14, pages
111-122, ACM Digital Library, 2014.

15. J. Meseguer. General Logics. In H.-D. Ebbinghaus et al., editors, Logic Collo-
quium’87, pages 275-329, North-Holland, 1989.

16. J. Meseguer. Membership algebra as a logical framework for equational specifi-
cation. In F. Parisi-Presicce, editor, Proc. of the 12th International Workshop on
Recent Trends in Algebraic Development Techniques, WADT’97, LNCS 1376:18–
61, Springer-Verlag, 1998.

17. F. Neurauter and A. Middeldorp. Revisiting Matrix Interpretations for Prov-
ing Termination of Term Rewriting. In M. Schmidt-Schauss, editor, Proc. of the
22nd International Conference on Rewriting Techniques and Applications, RTA’11,
LIPICS 10:251-266 , 2011.

18. S. Shapiro. Foundations without Foundationalism: A Case for Second-Order Logic.
Clarendon Press, 1991.

21

