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Abstract

The use of Cartesian meshes independent of the geometry has some ad-
vantages over the traditional meshes used in the finite element method. The
main advantage is that their use together with an appropriate hierarchical
data structure reduces the computational cost of the Finite Element analy-
sis. This improvement is based on the substitution of the traditional mesh
generation process by an optimized procedure for intersecting the Cartesian
mesh with the boundary of the domain and the use efficient solvers based
on the hierarchical data structure. One major difficulty associated to the
use of Cartesian grids is the fact that the mesh nodes do not, in general, lie
over the boundary of the domain, increasing the difficulty to impose Dirich-
let boundary conditions. In this paper, Dirichlet boundary conditions are
imposed by means of the Lagrange multipliers technique. A new functional
has been added to the initial formulation of the problem that has the effect
of stabilizing the problem. The technique here presented allows for a simple
definition of the Lagrange multipliers field, that even allow us to directly
condense the degrees of freedom of the Lagrange multipliers at element level.

Keywords: Dirichlet boundary conditions, Lagrange multipliers,
Stabilization, Immersed boundary method, Cartesian grid

1. Introduction

The finite element method (FEM) is one of the most widely used tech-
niques for solving differential equations in the industrial and academic envi-

Preprint submitted to Elsevier May 9, 2017



ronments. The first step in the analysis process by means of the FEM is to
discretize the geometry of the problem by subdividing the domain into sub-
domains of simple geometry called elements. The standard version of FEM
is based on the use of a mesh of elements that conforms to the geometry of
the domain to be analyzed. According to [1], a study at Sandia National
Laboratories (USA) revealed that the generation of the finite element (FE)
numerical model, including the process of creating a geometry suitable for
analysis by the FEM and the subsequent process of meshing of the geometry,
use 80% of the total time spent on the analysis, whereas only 20% is devoted
to the numerical analysis which provides the solution of the problem. An
alternative to reduce the time devoted to the generation of the model is to
use an approach in which the FE mesh is independent of the geometry of
the problem. In fact we can find numerous variants of the FEM which have
followed this alternative to improve the performance of the method. Two
of these techniques are the Extended Finite Element Method (XFEM) [2, 3]
and the Generalized Finite Element Method (GFEM) [4, 5]. For example,
in the XFEM, mainly devoted to the study of cracks in structural compo-
nents, two types of enrichment functions are introduced. The first group of
functions take into account the discontinuities of the displacement field into
the elements cut by the crack, whereas the second type of functions describe
the known behavior of the singular solution around the crack tip. The use
of these enrichment functions avoids using fine meshes adapted to the crack
geometry as in the standard FEM. In GFEM enrichment functions are also
introduced to describe the known characteristics of the solution by means of
the partition of unity method (PUM). The GFEM mesh can be independent
of the geometry to be analyzed, such as in the 2D cartesian mesh used in the
implementation GFEM III described in [4].

Another approach to improve the performance of the FEM is to use an
auxiliary domain 2 containing the problem domain €. In this case the
domain discretized by FEM is (g which is, in general, a domain with a
simple geometry that can be easily meshed. Therefore this technique is
closely related to the GFEM. In our implementation for 2D linear elasticity
problems, (1 is a square whose discretization into quadrilateral elements
is very simple. In the literature related to this subject, such techniques
can be found under different names, such as Fictitious Domain [6, 7, 8, 27,
9], Implicit Meshing [10], Immersed Finite Element Method [11], Immersed
Boundary Method [12, 13|, Fized Grid Finite Element Method [14, 15], and
are described in [16] under the generalized term Finite elements in ambient
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space.

Since the mesh does not conform to the geometry it is necessary to use
appropriate procedures for integration when evaluating the element matrices.
In elements cut by the boundary of the domain, the integration must be only
extended to the area of the element located inside of €.

An important difference between this approach and the traditional FEM
is the procedure to apply the Dirichlet boundary conditions since it must be
taken into account that, in general, the FE nodes do not lie on the boundary.
In this paper we propose to use the Lagrange multipliers method to impose
Dirichlet boundary conditions. The use of this method in the case of the
standard FEM was analyzed by [17] and [18]. The case of Cartesian meshes
independent of the geometry is more complex to solve because the nodes of
FE model are not located on the boundary. In this case it is more difficult to
find compatible discretizations of displacements and multipliers that satisfy
the InfSup condition [19]. Some procedures have been proposed to define
the Lagrange multipliers that fulfill the InfSup in the case of linear elements
in 2D [20] and 3D [21]. Another alternative, widely used in fluid dynamics
(22, 23], is to use a procedure to stabilize the solution of the problem. Some
methods to implement Dirichlet boundary conditions with stabilized solution
in Cartesian meshes, can also be found in [24, 25, 26, 28, 27|. In this paper
we propose a stabilization method suitable for h-refinement based on the use
of hierarchical Cartesian grids where stabilization term does not depend on
the solution of the current mesh. The definition of the Lagrange multipliers
field allow us to directly condense the degrees of freedom of the Lagrange
multipliers at element level.

2. Problem statement

Let ©Q be a 2D bounded domain with a sufficiently smooth boundary
I' where we want to find a displacement field u that satisfies the internal
and boundary equilibrium equations for linear elasticity problems and the
imposed displacements on the Dirichlet boundary. The boundary can be
divided into non-overlapping parts I'p and I'y, the Dirichlet and Neumann
boundaries.

The weak form of the differential equation is expressed by the strain



energy, which is defined as follows:

a(, )V x¥V —R
a(u,v) = /Qa(u) e(v) dQ

where o(-) and €(-) are the stress and strain tensors. The solution u is
defined in the space ¥ = (H'(2))”.

We want to make use of the Lagrange multipliers technique to impose
Dirichlet boundary conditions. The following integral can be defined to
weakly impose these constraints

b(-,:): M xV — R

b(,u,u):/F p-udl @)

(1)

2
where A = <H 2 (FD)> is the space where the Lagrange multipliers p are

defined.

We define f, € L*(Q) as the volumetric forces, f, € L?*(T'y) as the surface
loads and g € .#’ the value of the displacements imposed on the boundary
where .#’ is the dual space of .#. The virtual work of the external forces
can be defined as

c(v):/QV~fde+/F v-f, dl (3)

The formulation of the problem can be written as follows:

Find [u, A] € ¥ x . such that
a(u,v)+b(Av)=c(v) YWwe? (4)

b(p,u) = (1, 8) Ve A

where (-,-) denotes the scalar product. The problem in equation (4) has a
solution and this solution is unique [29, 19] provided that the spaces ¥ and
A are chosen so that the following conditions are satisfied:

(i) Continuity. The bilinear functionals are continuous, i.e., there exist
two constants C, > 0 and C} > 0, such that

a(u,v) < Cyllully||v|» Yu,ve ¥

()
b(u,v) < Gllpllellvily Ve, VeV



(ii) ElKer (Ellipticity in the Kernel). The functional a (-,-) is coercive in
the kernel of b (-, -), i.e. there exists a constant a > 0 such that

a(v,v) > al|[v||%, v # 0 satisfying b (A, v) =0 (6)

(iii) InfSup. The functional b(-,-) has the following coercivity property:
There exist a constant S > 0 such that for p # 0 and v # 0 the
following expression is satisfied

b
inf supM > (7)
ped vey ||pllallviy

The problem in (4) can be derived from a constrained minimization prob-
lem solved using the Lagrange multipliers method. The problem consist of
finding the saddle point [u, A] (minimum respect to the variable and maxi-
mum respect to the multipliers) of the following functional:

L (V)= 5a(v,v) +b(u,v) - c(v) (8)

N | —

2.1. Finite element discretization

The problem in (4) is discretized using the finite element method, making
use of the discretized spaces for the displacements ¥ C ¥ and multipliers
A" C . We have to solve the following problem

Find [u®, A"] € " x .#" such that
a(u,vh) +b (A" vh) =c(vh)  wheyh 9)
b(ph,ut) = (u,g) Yl e "
The problem in (9) can be rewritten in a more compact form as follows:
Find [u", A"] € 7" x .#" such that:

Q (u", X', v", u")) = F (v", u"]) Vivh p e vh < a"
(10)

Q ([uh, )\h] [vh, uh]) = (uh, vh) +b ()\h, vh) +0 (Mh7 uh)



In this paper we are interested in imposing Dirichlet boundary conditions
on a Finite Element model where the mesh is defined by a so-called Cartesian
grid. The problem domain €2 is embedded in a regular grid of quadrilateral
elements (Cartesian grid) independent of the boundary I' as shown in Figure
(1). H-adaptive refinement is obtained by splitting each element into four
new elements. Multi-point-constraints (MPC) are used to impose C° continu-
ity between adjacent elements of different refinement level [30]. A maximum
refinement difference of one level is allowed between adjacent elements.

= |
External —|

Boundary

Internal

Figure 1: Cartesian mesh intersected by the geometry. We can observe the internal el-
ements (blue), external elements (white) and boundary elements (red inside and green
outside).

Standard isoparamentric four-node bilinear elements (Qy) and eight-node
quadratic elements (Qg) are considered for the interpolation of the displace-
ment field into each element. Now we have to define the interpolation of the
Lagrange multipliers. To do this while maintaining the theoretical conver-
gence rate of the finite element method, we must find a space of Lagrange
multipliers satisfying the stability conditions. The formulation in equation
(10) is stable if the continuity, ElKer and InfSup conditions (equations (5),
(6) and (7), respectively) are satisfied in the selected finite element space
V" x #". The first two conditions are easily satisfied by almost any stan-
dard finite element discretization. The third condition InfSup can be easily
satisfied for a given mesh, but the optimal convergence rate is only achieved
if this condition is satisfied for a sequence of refined meshes with constant
independent of the mesh size. This requires certain degree of compatibility



between the displacement space and the space of Lagrange multipliers which
is difficult to verify. The Vital Vertex method solves this problem for linear
elements in 2D [20] and for linear tetrahedral elements in 3D [21].

The following mesh-dependent norms can be defined for the finite element
spaces of displacements and Lagrange multipliers [18, 31]:

2 _
||uh||“2Vh = ‘uh}H17Q + Z he 1||uh||%2,FeD

e ™ (1)
1IN = D7 Rl A

where the summation extends to all elements of the mesh that are intersected
by I'p and h, is the size of the contour segment corresponding to each element.

3. Stabilization method

In this work we are interested in freely defining the Lagrange multiplier
field. Therefore the InfSup condition will not be verified and we need other
method to obtain the optimal convergence. As pointed out above, an alterna-
tive to solve the problem in (4) are the so-called stabilization methods. These
methods provide more flexibility in the selection of the Lagrange multipliers
space .#", since they do not require to satisfy the InfSup condition. The
strategy consists in modifying (4) (or equivalently modifying the Lagrangian
in (8)), by adding a function that stabilizes the whole problem (10). Stabi-
lization methods can be classified into two groups: residual-based methods
and projection methods.

In general terms, residual-based methods are obtained by adding two
terms to the mixed problem (the differential equation and the constraint
equation) weighted by certain functions. Different methods are obtained de-
pending on the selection of the weighting functions providing different stabil-
ity and convergence properties of the stabilized problem. In [22] Barbosa and
Hughes describe different residual methods proposed in the context of fluid
dynamics. The advantage of these methods is that they stabilize the solution
while maintaining consistency. The drawback is that the optimal convergence
often depends on certain parameters that must be defined by the user. The
projection methods are not based on the residual and, in general, they are
not consistent in the sense that the exact solution of the continuous problem
(4) does not satisfy the equation of the discretized stabilized one (9).



In general, these methods can be written by adding a new stabilization
term to the discretization of the Lagrangian of equation (8) which can be
written as:

25 (Vo) = Ja (V) — e (V) b (V) - g (- Tt - T)

with s (¢",0") =k h. [ ¢"-0"dl
e I

(12)

where h, is the size of the Dirichlet boundary corresponding to each element
and k is a positive penalty parameter that should not affect the convergence
rate of the method. The different stabilization methods are obtained by
setting the value of the term T'. The idea behind these methods is that the
choice of the Lagrange multipliers interpolation imposes too many constraints
on the degrees of freedom of the problem. An over-constrained problem im-
plies that the constraint equations tend to become increasingly dependent
and, therefore, the value of the multiplier tend to become less bounded. The
stabilization term prevents excessive oscillations of the Lagrange multipli-
ers solution, since it penalizes the difference between the multipliers and a
given function T'. In practice, an adequately defined function T will prop-
erly couple the multipliers eliminating redundant constraint equations, thus
recovering the optimal convergence rate of the method.

In [23] Bochev et al. propose a polynomial projection for the Darcy
problem. Polynomial interpolations of the same degree are defined both,
for the multipliers and for variable u. The term T is then calculated as the
projection of the Lagrange multipliers field in a polynomial space, one degree
lower than that used for variable u, defined element-wise. This will penalize
the higher degree terms in the Lagrange multipliers field while maintaining
the low degree terms required to achieve optimal convergence. Reference
[32] demonstrates that if the term T corresponds to a discretization that
fulfills the InfSup condition, then the Lagrange multipliers field does not
need to satisfy this requirement to achieve the optimal convergence rate with
the stabilized problem. Based on this property several functions for the
stabilization term can be defined.

The Barbosa-Hughes stabilization [33] was used to impose Dirichlet bound-
ary conditions in the standard finite element method. In this case the term
T in (12) would correspond to the traction vector T = —a (u”) - n. Sten-
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berg [31] demonstrated the the Barbosa-Hughes stabilization was equivalent
to the classical Nitsche’s method. In the context of immersed boundary,
the Nitsche’s method was analyzed in [24, 28] and its stabilized version in
[25]. Haslinger and Renard [25] pointed out that the use of Barbosa-Hughes
stabilization to immersed boundary method needs additional regularity as-
sumption on the intersection of the mesh with the boundary. To overcome
the problem they proposed a technique which consists in using an extrapola-
tion operator that takes into account the internal degrees of freedom for small
intersected elements. This idea was also explored by Codina and Baiges [34].

3.1. Stabilization term for Cartesian grids

In this paper we are interested in hA-refinement analysis techniques based
on the use of Cartesian grids where the final solution is evaluated by generat-
ing a sequence increasingly refined finite element meshes obtained by element
splitting. This procedure has some advantages as described in [35, 30] mainly
the reduction of the computational cost of the FE analysis. In this case it
makes sense to propose a stabilization term based on the solution obtained
with the previous mesh of the sequence of meshes used for the analysis. We
propose to define the term T for mesh ¢ as the solution of the boundary trac-
tions in the previous mesh T" = —o (ul_,) - n, where n is the vector normal
to the Dirichlet boundary and u? | are the displacements evaluated in mesh
1 — 1. Unlike other methods in the literature, in this case, the additional
term is independent of the field variables. Therefore it does not introduce
any new matrices in the finite element discretization that must be evaluated
and assembled. Furthermore, observing (12) we realize that, since in the
exact solution the Lagrange multipliers field is equal to the tractions along
the Dirichlet boundary, the stabilization term becomes increasingly smaller.
Therefore the method is consistent in the limit when the element size tends
to zero.

Thus, from equation (12), the stabilized problem can be formulated as
follows:

Find [u", A"] € 7" x .#" such that:
Qs ([u", A", [v", p"]) = Fs ([v", u") V[vh ouh e v at
where
Qs ([uh, A", ", uh]) =a (uh,vh) +0 ()\h,vh) +0b (,u,h7 uh) — 8 (p,h, )\h)
Fs (V' p']) = (£.v") + (1" 8) — s (0", T7) )
13



The bilinear form Qg (-, -) is continuous and the following norm can be defined
T, NI = [l 4 X2 (14)

As we shall see later, the problem in equation (13) is stable. To ensure
that the stabilized problem is well constrained, we follow the approach pro-
posed in [31] and used also in [32]. We will assume that for each u" € ¥"
there exists a continuous projection £"(u") € .#" that, as discussed below,
ensure that the problem is well constrained and prevent rigid body motions.
The following properties are required:

(@) 1€M@ L < Cellu|[ 5
(@) aglu"[[7n < a(u"u") +b (" ("), u")
with C¢ and o positive constants.

The stability of the problem in (13) is demonstrated in the following
theorem:

(15)

Theorem 1. Given [u", \"] € ¥" x 4" satisfying the properties in (15),
there exists a positive constant 3 > 0 independent of the mesh size h such
that the following expression is satisfied:

QS ([uh7 Ah]? [Vha .u’h])
sup -
[vh eV hx. ah V" ]

> BllI[" Nl V[u", N € 7" < a”
(16)

Proof:

For any variable [u", A"], it will be sufficient to show that the inequality
holds for a certain value of [v", u"], since the supremum is always greater
than or equal to a particular value. Taking v = u” and p = —(A"—&"(u")),
where £"(u") satisfies the properties in (15), we have

QS ([11 7>‘h]’ [ h ]) QS ([uha Ah]? [uh’ _<Ah - gh(uh))]) =

( ) b( ) —{—b( (Ah—gh(uh)),uh) —S(—(Ah—fh(uh)),)\h) =
a(u",u") +b (" ("), u") + s (A" = ("), A")

Applying expression (ii) from equation (15) and taking into account the
definition of the stabilization term in (12) and the norm of the multiplier in
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(11) together with expression (i) in (15), we obtain
QS ([uhv Ah]a [Vh7 Mh]) >

1 1 1

el [+ 55 (N N) = s (€1 (), €1 () + s (X" — (), A" — € (u?)) >
k kC: 1

el 3 + 2 30 RN ey — “SE R + S5 (A — € (), A" - €h(u") 2

g

>0

kC: k
(0 = 555 ) I+ SN

Thus, for a sufficiently small value of the stabilization parameter k, a pos-
itive constant [ independent of the mesh size can be defined such that the
following expression is satisfied

Qs ([u", N, [v", ") = B1/1+ CZ ([l |50 + IN"]1%) (17)

On the other hand, recalling the definition of v and u” above and taking
into account (15) (i), the following expression is satisfied
IV 150+ I 1% =[50 + A" = € (") <
(1+C2) (a5 + A" 1)
thus verifying the theorem. [J

4. A priori error estimates

Once the stability of the problem has been proven it is easy to show that
the stabilized problem can be solved and has a unique solution. The optimal
convergence rate of the method, still to be proven, is analyzed in this section.
The a priori error estimate is based on the following theorem:

Theorem 2. Let [u,A\] € ¥ x A be the solution of the continuous problem
(4) and [0", A"] € ¥ x A" the solution of the discrete stabilized problem of
equation (13) that fulfills equation (15). The following expression is satisfied:

[l ="l + [IX = X <
. h . h £ (18>
C{ inf fla—=v"lyn 4+ nf A= p®lpn +E[X =T
I"he%h

vheyh

where C' is a positive constant independent of the mesh size.
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Proof:

We follow the ideas presented in [23] but adapted to our stabilized func-
tional. Any [v, u] € ¥ x . satisfies (4). As V"' x.#" is a subspace of ¥ x .4,
in particular, any [v", "] € ¥" x 4" will also satisfy (4). Therefore we can
write

a (u,vh) +0b ()\,vh) = (f,vh) wh e vt
b(u'u) = (u"g) Vu'es"
Including the term —s (,u,h, )\) on both sides of the second equation of the

above expression and subtracting equation (13) corresponding to the stabi-
lized problem from the resulting expression, we have:

a(u—uh,vh)+b()\—)\h,vh):0 v eyt
b(uh,u—uh)—s(uh,)\—)\h):—s(uh,)\—T*) vu' e . ah

or, in compact form

QS ([u_uhu)‘_Ah]7[Vh7Mh]) = =S (l-‘l’h7A_T*) (19>
We consider now any [w”, v"] € ¥" x .#". We have that

[ =" [l A = X{| g <
o =W+ 1N = 2" gn + " = w4 IA" = 27| g
so, to prove (18) it suffices to bound the last two terms in the right hand

side of the previous expression. Considering the coercivity of the stabilized
functional (equation (16)) and equation (19) and operating we have

h_Wh h_yh QS ([uh_Wh7Ah_Vh]7[Vh7“h]) o
=t A=l T T -
Qs ([u" —u, X' = A, [v", p"]) + Qs ([u — w", X =", [v", p"])
LINaey78Il

s (Mh7>‘ — T*) + Qg ([u —wh X —vh], [Vh,uh])
HINayZail

In what follows the symbol < is used to denote < up to a positive constant
independent of the mesh size. Taking into account the continuity of the
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functional of the stabilized problem, from the above expression we have

" =Wy + [N = 0] S [l — W', A" = 2] <

—s (u" X - T") n [ —w™ X =] [[[[v", w"]ll|
[TV, "] [TV, pe]ll] -

—s (ph A= T%)
[TV, b

Then, assuming that ||p"|| 4 # 0, the proof is completed taking into account
that the stabilization term can be bounded using the Cauchy-Schwartz in-
equality:

—5 (uh,)\—T*) < |s (,uh,)\—T*)
VIV 2~ e

If the stabilization term ||[A — T™|| 4» decreases properly, the previous
theorem implies that the finite element solution is the best approximation
to the exact solution that can be obtained within the finite element space.
In our case, this term is the error of the finite element tractions computed
in the Dirichlet boundary I'p measured in the mesh dependent norm. Its
convergence rate is O(th’%), where p is the degree of interpolation of the
displacements. Therefore, if the finite element interpolation has good ap-
proximation properties to the exact solution, the convergence of the method
is optimum. Reference [31] shows that if the solution is smooth enough, the
convergence rates of the best approximation of the finite element space mea-
sured in the || - ||y» and || - || 4» norms, at least have a convergence of orders
O(h?) and O(h“%), where ¢ is the degree of the Lagrange multipliers. The
assumed regularity is that u € HP™(Q) and A € H7™(T'p).

Another alternative for T' would be to use improved tractions obtained by
a superconvergent patch stress recovery process which is known to provide a
higher convergence rate that the FE solution [36, 37], although this has not
been explored in this work.

+ flu = wlyn + | X = V| gn

" [ |7 = Al
"

<k

O

5. Interpolation of the Lagrange multipliers

There are multiple alternatives to define the interpolation of the Lagrange
multipliers. The only conditions that must be satisfied are: i) the interpola-
tion must have good approximation properties to the exact solution, and i)

13



the interpolation must verify equation (15). With polynomial interpolation
it is easy to satisfy the first condition. The second is related to the minimum
number of constraints necessary to prevent rigid body motions.

One of these alternatives consist of using the so called naive approach
20, 38] in which a continuous piecewise linear or quadratic interpolation is
defined based on the intersection points of the boundary with the edges of
the elements. Another alternative used in [23, 26] would be to define the
multiplier interpolation in the trace space of the displacements u"|p on the
boundary.

In this paper we propose to use a different interpolation scheme which
has some advantages over previously proposed schemes, like the possibility
to eliminate the Lagrange multipliers before assembling the system. The
intersection points of the boundary with the edges of the elements define a
subdivision of the boundary into possibly curved segments (see figure (2)).
We define n, quadrature points on each segment. The polynomial interpo-
lation of the multipliers on each segment is based on the multipliers at the
quadrature points. Therefore, the use of n, quadrature points at each seg-
ment define a piecewise discontinuous polynomial of degree ¢ = n, —1 on the
boundary. We consider a quadrature rule with ny, = 2 points for Q4 elements
and n, = 3 for Qg elements, namely the interpolation of multipliers inside
the elements in the first case is linear (p = 1 and ¢ = 1) and quadratic in the
second (p = 2 and ¢ = 2). Therefore according to equation (18), the error
in energy norm of the displacements will converge with order 1 for Q4 and
with order 2 for Qg elements.

Note that as the quadrature points are used to define the Lagrange mul-
tipliers interpolation, it is not necessary to explicitly calculate the shape
functions to evaluate the integrals. The number of quadrature points en-
sures that the integrals on the boundary are exactly computed for straight
segments, using Gaussian quadrature. This is the reason to choose the pro-
posed values of g. Even though the best approximation of the multipliers
has a high convergence rate, O(hﬁ%), the global convergence is limited by
the approximation of the displacement field O(h?).

Let us show now that the interpolation scheme selected satisfies the prop-
erties of equation (15). We follow an approach similar to that presented in
[32]. The function £"(u") can be defined as the projection of the trace of the
displacements over the Lagrange multiplier space divided by the size of ele-
ment h,, i.e. £*(u") = ,%Hh(uh) with 6 > 0, where the projection II* € .Z"

14



)
A d A d

) )
A d A d A d

Figure 2: Examples of Q4 and Qg meshes. Segmentation of the boundary I', based on the
intersection of the intersection of the boundary with the element edges (squares). The ’'x’
symbols denote the quadrature points where the Lagrange multipliers are used to define
a piecewise discontinuous linear interpolation for Q4 elements and quadratic for Qs.

fulfills
(M"(u") —u") - phdl =0 vp"e.n" (20)

I'p

Taking into account the definition of the norm in .#Z", and the continuity
of the projection operator, it is obvious that the first equation in (15) is

satisfied:
1€ (u")]1% = 5Zh21|\ﬂh(uh)lliz,p% < a5 (21)

To prove the second equation in (15) we need to bound the second term as
follows

)
h( . h h\ __ h(..h h _
b (" (u"),u") —gh—e/%ﬂ (u*) - u"dll =
o, _
> ohet (e g + I ()22 pg — = T (") 3 1 )

Then, taking into account the Poincaré inequality h_'||u" — II"(u")]2, re <

C, ‘uhﬁ{l’ﬂe that holds within each element and considering the equivalence

15



between the energy norm and the seminorm ||, o, (with positive constant
Cyq) we have:

a (uh, uh) +b (fh(uh), uh) >
o, _
o (u' )+ 305 (N[22 g, = 0" = T (") 22 g ) > )

0 oC
Calu [}, o + SO b gy — 52D 0", oo > acllu”|%
e (S

6. Implementation

Standard shape functions are used to interpolate the displacement as
u" = Nd, where d is the vector of nodal displacements. After evaluating the
finite element discretization, the stabilized problem of equation (13) can be
obtained by assembling the contribution of each element. The structure of
the problem both at global level and at element level takes the form:

AP T RIS B

where the index e indicates the element number and U denotes assembly. A°
is the standard stiffness matrix and f° is the equivalent force vector.

The definition of the Lagrange multiplier field as an interpolation based
on the value of the multiplier at the quadrature point allow us to evaluate the
matrices B, and S, and the vectors g, and t} without explicitly calculating
the interpolation at each element. For example, for the evaluation of the
constraint matrix, B¢, we will have

1 g g
[ outadr = [Nt =3 Ny Higdd” = 3 Bd” (24
e -1 ig=1 ig=1

Note that every value p;; multiply a row of matrix B®. N, is the shape
function matrix evaluated at the quadrature point g of the contour integral,
H;, is the weight and J;, is the Jacobian of the transformation.

Following a similar procedure, we obtain the diagonal stabilization matrix
where each 2x2 block in the diagonal is the weight of each quadrature point
that defines the multiplier times the determinant of the transformation, that
is

S(i

ig,ig

- HigJigIQthe (25)
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Similarly, the values for point ig on the right side of equation (23) are
calculated as
85, = HigJig8ig t*i, = HigJiy T, (26)

where g;, and T}, denote variables evaluated at the quadrature point.

Since the Lagrange multipliers are decoupled and the element stabilizing
matrix S¢ is diagonal, it is very easy to condense the Lagrange multipliers
from equation (23) at each element directly leading to a system of equations
without the degrees of freedom of the multipliers:

<L6J [Ae + BeTSe—lBe]> {d} — LeJ {fe + BeTSe—l <ge _ t*e)} (27>

6.1. Evaluation of the first mesh

The proposed methodology is based on the use of the solution T obtained
in a previous (coarser) mesh of the refinement mesh sequence. Therefore, the
question arises of how to solve the first mesh. The only constraint to select
the Lagrange multiplier interpolation in the first mesh is to obtain a solvable
system of equations. Note that once initiated, the overall process satisfies
the convergence conditions.

We propose two methods, M; and M, to solve the first mesh. Method
M, considers the stabilization term using T = 0 in the first mesh. In this
case the structure of the system matrix is unchanged. The second alternative,
method My, consists in defining a multiplier field such that the number of
constraint equations (i.e. the number of multipliers) is lower than or equal
to the number of degrees of freedom affected by the constraints (i.e. degrees
of freedom of the intersected elements). To do this we choose the so-called
naive approach, i.e. a piecewise linear interpolation with a degree of freedom
at each intersection point of the boundary with the element edges. In this
case, the matrix and vectors derived from the stabilization term in the first
mesh are not taken into account.

7. Numerical examples

The proposed technique has been used to solve linear elasticity problems
with exact solution in order to check the convergence of the proposed sta-
bilization method. The finite element stresses directly calculated from the
displacement interpolation have been used in the examples as stress stabiliza-
tion term T. In the case of Q4 elements the error of the Lagrange multipliers
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is much higher than the error in displacement field. An improved definition
of the multipliers is defined based on the interpretation of the multipliers as
the traction on the boundary. The definition is motivated by the observation
that the nodal reaction forces of the Lagrange multipliers r = B'm, and the
nodal reaction forces of the exact traction are very similar. We can define the
boundary tractions as p* = N;p; where the nodal value of the traction p; is
the reaction at node j divided by its associated length over the boundary:
L

p; = A—] , where A; = N;dI' (28)

J I'p

We use a parameter £ to define the penalty constant as k = 1/xE, where
E is the Young modulus. The factor 1/F introduced in the stabilization term
s(+,-) helps to make the equation dimensionally consistent.

7.1. Example 1: Cubic polynomial displacements in a polygonal domain

FE =1000, v =0.3
/\\& v
1t I'n 25 o, 25 4, 25
Uy = ——— + —2° — —x" — —y+
I'p, N 192 64 24 4
25 25 25
05k i 49 o9 49 o | 49 9 9
/ \ PR A AR
‘ ) 20 + 65 3 65 4 10212
L | uy=—z+ —x —x°y — 10x
0 E D 12" v
10 .
\ / - —ay’
05 | 1 3
s\ /o 5
Oxx = 5x7323+82y+4xy2
Rl
\\ 5:p+ 14:1:3 18z 9zy?
Oyy = — — — —
sl I'p NN ~Ty Wt 3 v
e 1 2 5 2 2 4.3
. Ogy = = +92° — —y+ 927y —4y” — —y
1.5 1 05 0 05 1 15 6 2 3

Figure 3: Initial mesh of the polygonal domain problem and exact solution.

The first example corresponds to the polygonal domain of boundary I’
represented with thick lines in Figure (3) which has been embedded into a
Cartesian uniform grid. Dirichlet and Neumann boundary conditions have
been applied as shown in the figure. The right hand side of the figure shows
the Young’s modulus £ and Poisson’s ratio v of the material together with the
expressions for the exact displacement and stress fields. Note that V - o = 0,

18



Method‘ M;

10" E

s 10°F
%/ - — 1
5107t E E
= E E
107% ¢ ~

L | | | j

10—1.5 10—1 10—0.5
Mesh size, h

—o—Qy, k=10 —5— Qy, kK =100 —— Qy, kK = 1000
—— Qg, k=20 —=— Qg, k = 100 —— Qg, k = 1000
- Q47 K = 10, szft‘* Q4, KR = ].00, T:X**\* Q4, x = 1000, T:x
-o- Qg, k = 20, TZX -u- Qg, k = 100, TZX -=»- Qg, k = 1000, TZX

Figure 4: Problem 1. Discretization error in energy norm for Q4 and Qg elements. Com-
parison of method M with T* = 0 and exact tractions for the initial mesh. The triangles
show the optimal convergence, 1 for linear elements and 2 for quadratic elements.

therefore body loads b are zero in this case. The mesh shown in Figure
3 is the first one of a sequence of meshes generated by uniform refinement
obtained by splitting each element into 4 new elements.

The exact discretization error in energy norm of the finite element solution
has been evaluated for each of the meshes, considering different values of the
penalty parameter k. Figure (4) show the results for method M; and figure
(5) for method M. The curve show stable results for a wide range of values
of k. We can observe that the optimal convergence is achieved for linear and
quadratic elements and both methods. The results show that the proposed
technique produces convergence rates very close to the theoretical expected
value for a wide rage of values of k.

To evaluate the influence of the solution projected from the first mesh
in the error of the method, we solved the first mesh with the stabilized
formulation using the exact traction in the field T. The results are shown in
figure (4). We see that the results obtained are very similar for a sufficiently
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method Mj;. The triangles show the optimal convergence, 1 for linear elements and 2 for
quadratic elements.
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large x. This indicates that the accuracy and convergence rates of the results
obtained with the proposed methodology do not seem to be affected by the
solution of the initial mesh in a wide range of values of k. Of course, for
very small values of k the stabilization term becomes the most important
term in the energy, and the choice of T" = 0 for the first mesh makes the
solution to have a high error. This could also affect the convergence of the
method. However another choice of the field T* based on recovered stresses
could improve this behavior.

The convergence of the Lagrange multiplier field is analyzed considering
method M; in tables (1) and (2). These tables represent, for linear and
quadratic elements, the error percentage of the multipliers in L? norm, and
the error of the Lagrange multipliers and the stabilization term measured in
the mesh dependent norm. The results are shown for a penalty parameter
k = 100. The expected convergence [39] of Lagrange multipliers is p in the
L? norm and p+% in the mesh dependent norm. The theoretical convergence
of the stabilization term is also p + % We see that these values are achieved
in practice.

Mesh | % A =p"lzz | [A=P"Lsn | [IX=T"| o
1 5.3292 (-) 435.27 () 1653.4 (-)
2 | 2.0724 (0.842) | 159.41 (1.449) | 664.99 (1.314)
3 | 1.2741 (1.222) | 52.935 (1.590) | 240.68 (1.466)
4 | 0.44190 (1.528) | 13.629 (1.957) | 89.651 (1.425)
5 | 0.23395 (0.917) | 4.9035 (1.475) | 31.279 (1.519)

Table 1: Problem 1. Error of the tractions and convergence rate (in brackets, theoretically

expected values 1, 1.5 and 1.5) for Q4 elements using method M.

Mesh % (A — A" .2 P A =T 4
1 18.554 (-) 1048.6 (-) 161.41 (-)
2 1.5460 (3.585) 81.298 (3.689) 16.389 (3.300)
3 0.38779 (1.995) 14.463 (2.491) 2.7832 (2.558)
4 0.10063 (1.946) 2.6921 (2.426) 0.51402 (2.437)
5 | 24427 -1072 (2.042) | 0.47707 (2.496) | 9.1564 -10~2 (2.489)

Table 2: Problem 1. Error of the tractions and convergence rate (in brackets, theoretically

expected values 2, 2.5 and 2.5) for Qg elements using method M.
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7.2. Example 2: Hollow cylinder under internal pressure

Figure 6: Initial mesh of the hollow cylinder problem.

The second example, shown in figure (6), corresponds to the analysis
of a hollow cylinder subjected to internal pressure. This figure shows the
first mesh of the sequence of uniformly refined meshes obtained by element
splitting. The numerical analysis considered in the previous were also used
in this case. Figures (7) and (8) show the relative discretization error in
energy norm for linear and quadratic elements using methods M; and My,
respectively. Tables (3) and (4) show the error in the tractions using £ = 100.
The results presented in these figures and tables are similar to those presented
in the first example. Note that again method M provides results similar to
method M;;. Therefore, we suggest the use of method M; which does not
require any special treatment of the first mesh.

Mesh | % [[A — p"[| A= P"[Lgn [A =T
1 3.1200 (-) 0.13015 (-) 0.26577 (-)
2 14397 (1.116) | 4.0141 -10 2 (1.697) | 8.5765 -102 (1.632)
3 0.63127 (1.189) | 1.0730 -10~2 (1.903) | 3.1371 -10~2 (1.451)
4 0.20679 (1.610) | 2.4429 -1073 (2.135) | 1.1612 -10~2 (1.434)
5 | 7.8993 -10~7 (1.388) | 5.7586 -10~* (2.085) | 4.1385 -10~3 (1.488)

Table 3: Problem 2. Error of the tractions and convergence rate (in brackets, theoretically
expected values are 1, 1.5 and 1.5) for Q4 elements using method M.

In this example, we also solved the problem using an h-adaptive mesh
refinement. Multipoint constraints are used to impose the continuity of the
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Figure 7: Problem 2. Discretization error in energy norm for Q4 and Qg elements for
method M;. The triangles show the optimal convergence, 1 for linear elements and 2 for
quadratic elements.
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Mesh | % [[A — A"z A = X[ [A =T g
1 1.6026 (-) 6.6828 102 (-) 7.7181 1072 (-)
0.20229 (2.986) | 6.1750 -10 ° (3.436) | 8.9338 -10° (3.111)
3.9818 -10 2 (2.345) | 8.6503 -10 1 (2.835) | 7.9124 10~ * (3.497)
1.1425 1072 (1.801) | 1.7420 -10~* (2.312) | 1.7010 -10~* (2.218)
3.3726 -10° (1.760) | 3.3331 -10° (2.386) | 6.2112 -10° (1.453)
(2.182) (2.572) (3.621)

O O | W N

7.4312 -107% (2.182) | 5.6048 -107° (2.572) | 5.0478 -107° (3.621

Table 4: Problem 2. Error of the tractions and convergence rate (in brackets, theoretically
expected values are 2, 2.5 and 2.5) for Qg elements using method Mj.

displacement field in the hanging-nodes. The first four meshes of the se-
quence are plotted in figure (9). The percentage of error in energy norm is
plotted in figure (10) as a function of the number of degrees of freedom of
the mesh. The value of k = 100 was used. A comparison with the results
of uniform refinement is shown in the same figure. Note that in this case,
the optimal convergence rate is 0.5 for linear elements and 1 for quadratic
elements because the error is plotted versus the number of degrees of freedom
instead of the element size. As can be observed, to obtain the same level of
error the h-adapted mesh needs lower number of degrees of freedom.

8. Conclusions

A new a stabilized method to impose Dirichlet boundary conditions using
the Lagrange multipliers method in FE meshes not conforming to the geom-
etry of the domain has been presented. The stabilization term penalizes the
difference between the Lagrange multiplier field associated to a mesh and the
finite element stress on the Dirichlet boundary obtained in a coarser mesh.
This characteristic of our method simplifies the formulation and implemen-
tation as the stabilizing term T does not depend on the current mesh.

It has been demonstrated that a sufficiently small value of the penalty
parameter must provide the optimal convergence rate of the discretization
error in energy norm, 1 for linear elements and 2 for quadratic elements, as a
function of the element size. The numerical results in Section 7 show that the
optimal convergence rate of the finite element error is obtained in both cases
for a wide range of values of the penalty parameter. The errors obtained
with different values of the penalty parameter k and different techniques to
obtain the solution of the first analysis mesh, whose results are required to
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Figure 9: Sequence of meshes obtained by h-adaptive refinement using Q4 elements,
method M; and x = 100.
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start the process, remain practically unchanged. The numerical analysis show
that even the use of T™ = 0 for the first mesh is a reasonable alternative. An
additional advantage of the proposed method is that the Lagrange multipliers
can be eliminated from the system of equations of each element, thus, the
overall size of the system of equations is not increased by use of the Lagrange
multipliers technique.
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