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Roberto Capilla

Departamento de Ingenieŕıa Electrónica
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Copyright c© 2015 Vicente Soler, Emilio Defez and Roberto Capilla. This article is

distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Abstract

In this paper, a method to construct the solution of non-homogeneous
parabolic coupled systems with non-homogeneous boundary conditions
of the type ut−Auxx = G(x, t), A1u(0, t)+B1ux(0, t) = P (t), A2u(l, t)+
B2ux(l, t) = Q(t), 0 < x < 1, t > 0, u(x, 0) = f(x), where A is a pos-
itive stable matrix and A1, A2, B1, B2 are arbitrary matrices for which

the block matrix

(
A1 B1

A2 B2

)
is non-singular, is proposed. Two illus-

trative examples of the method are given.
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1 Introduction

Coupled partial differential systems with coupled boundary-value conditions
are frequent in different areas of science and technology. Recently, an exact
series solution for the homogeneous initial-value problem

ut(x, t)− Auxx(x, t) = 0 , 0 < x < 1 , t > 0 (1)

A1u(0, t) +B1ux(0, t) = 0 , t > 0 (2)

A2u(1, t) +B2ux(1, t) = 0 , t > 0 (3)

u(x, 0) = f(x) , 0 ≤ x ≤ 1 , (4)

where u = (u1, u2, . . . , um)T and f(x) = (f1(x), f2(x), . . . , fm(x))T are a
m−dimensional vectors, was constructed under the following hypotheses and
notation:

1. The matrix coefficient A is a matrix which satisfies the following condition

Re(z) > 0 , ∀z ∈ σ(A), (5)

where σ(C) denotes the set of all the eigenvalues of a matrix C in Cm×m.
Thus A is a positive stable matrix (where Re(z) denotes the real part of
z ∈ C).

2. Matrices Ai, Bi, i = 1, 2, are m×m complex matrices, and we assume that
the block matrix (

A1 B1

A2 B2

)
is regular , (6)

and also that the matrix pencil

A1 + ρB1 is regular . (7)

Condition (7) is well known in the literature of singular systems of dif-
ferential equations, see [1], and involves the existence of some ρ0 ∈ C
so that matrix A1 + ρ0B1 is invertible. In this case, matrix A1 + ρB1

is invertible with the possible exception of at most a finite number of
complex numbers ρ. In particular, we may assume that ρ0 ∈ R.



A method to solve non-homogeneous strongly coupled ... 1957

Using condition (7) we can introduce the following matrices Ã1 and B̃1

defined by

Ã1 = (A1 + ρ0B1)
−1A1 , B̃1 = (A1 + ρ0B1)

−1B1, (8)

which satisfy the condition Ã1 + ρ0B̃1 = I, where matrix I denotes, as usual,
the identity matrix. Under hypothesis (6), is it easy to show that matrix

B2 − (A2 + ρ0B2) B̃1 is regular and we can introduce matrices Ã2 and B̃2

defined by

Ã2 =
[
B2 − (A2 + ρ0B2) B̃1

]−1
A2 , B̃2 =

[
B2 − (A2 + ρ0B2) B̃1

]−1
B2, (9)

that satisfy the conditions B̃2 −
(
Ã2 + ρ0B̃2

)
B̃1 = I, B̃2Ã1 − Ã2B̃1 = I.

Under the above assumptions, the homogeneous problem (1)–(4) was solved
in [2, 3] under two different cases:

(a) We can consider the following hypothesis:

exist b1 ∈ σ
(
B̃1

)
− {0} , b2 ∈ σ

(
B̃2

)
, and v ∈ Cm − {0},

such that
(
B̃1 − b1I

)
v =

(
B̃2 − b2I

)
v = 0 .

(10)

Then, if the vector valued function f(x) satisfies hypotheses

f ∈ C2 ([0, 1])

(1− ρ0b1) f(0) + b1f
′(0) = 0

−
(

1− b2 + ρ0b1b2
b1

)
f(1) + b2f

′(1) = 0


, (11)

with the additional condition:

f(x) ∈ Ker
(
B̃1 − b1I

)⋂
Ker

(
B̃2 − b2I

)
, 0 ≤ x ≤ 1

and

Ker
(
B̃1 − b1I

)⋂
Ker

(
B̃2 − b2I

)
is an invariant subspace with respect to matrix A,

(12)

where a subspace E of Cm is invariant by the matrix A ∈ Cm×m, if
A(E) ⊂ E, we can construct an exact series solution u(x, t) of homoge-
neous problem (1)–(4). This construction was made in Ref. [2].



1958 Vicente Soler, Emilio Defez and Roberto Capilla

(b) We can consider the following hypothesis:

0 ∈ σ
(
B̃1

)
, a2 ∈ σ

(
Ã2

)
, and we have w ∈ Cm − {0},

so that B̃1w =
(
Ã2 − a2I

)
w = 0 .

(13)

Then, if the vector valued function f(x) satisfies the hypotheses

f ∈ C2 ([0, 1])

f(0) = 0

a2f(1) + f ′(1) = 0

 , (14)

under the additional condition:

f(x) ∈ Ker
(
B̃1

)
∩Ker

(
Ã2 − a2I

)
, 0 ≤ x ≤ 1

and

Ker
(
B̃1

)
∩Ker

(
Ã2 − a2I

)
is an invariant subspace respect to matrix A,

(15)
then we can construct an exact series solution u(x, t) of homogeneous
problem (1)–(4). This construction was made in Ref. [3].

By other hand, the solution of the non-homogeneous problem

ut(x, t)− Auxx(x, t) = G(x, t) , 0 < x < 1 , t > 0 (16)

A1u(0, t) +B1ux(0, t) = 0 , t > 0 (17)

A2u(1, t) +B2ux(1, t) = 0 , t > 0 (18)

u(x, 0) = f(x) , 0 ≤ x ≤ 1 , (19)

was made in Ref. [4] under the two different hypotheses (a) and (b).

This paper deals a method to construct the exact solution of the non-
homogeneous problem with non-homogeneous conditions

ut(x, t)− Auxx(x, t) = G(x, t) , 0 < x < 1 , t > 0

A1u(0, t) +B1ux(0, t) = P (t) , t > 0

A2u(1, t) +B2ux(1, t) = Q(t) , t > 0

u(x, 0) = f(x) , 0 ≤ x ≤ 1 ,
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in term of solutions of problems of the type (16)-(19). Throughout this
paper we will assume the results and nomenclature given in [2, 3, 4]. This
paper is organized as follows: In section 2 a method to construct a solution of
(16)–(19) is obtained. In section 3 an algorithm and two illustrative examples
are given. Conclusion are presented in section 4.

2 The proposed method

We consider the non-homogeneous problem with non-homogeneous conditions

ut(x, t)− Auxx(x, t) = G(x, t) , 0 < x < 1 , t > 0 (20)

A1u(0, t) +B1ux(0, t) = P (t) , t > 0 (21)

A2u(1, t) +B2ux(1, t) = Q(t) , t > 0 (22)

u(x, 0) = f(x) , 0 ≤ x ≤ 1 , (23)

where u(x, t), G(x, t), P (t), Q(t) and f(x) are vectors in Cm, and matrices
A1, A2, B1, B2 ∈ Cm×m satisfying the conditions (5) and (6)–(7).

We are looking for a solution of (20)–(23) in the form

u(x, t) = w(x, t) + v(x, t), (24)

where function v(x, t) satisfies the conditions

A1v(0, t) +B1vx(0, t) = P (t) , t > 0,

A2v(1, t) +B2vx(1, t) = Q(t) , t > 0.

 . (25)

Thus, we can define the function G1(x, t) as

G1(x, t) = vt(x, t)− Avxx(x, t) (26)

then v(x, t) satisfies:

vt(x, t)− Avxx(x, t) = G1(x, t) , 0 < x < 1 , t > 0

A1v(0, t) +B1vx(0, t) = P (t) , t > 0

A2v(1, t) +B2vx(1, t) = Q(t) , t > 0


which implies that w(x, t) must satisfy
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wt(x, t)− Awxx(x, t) = G(x, t)−G1(x, t)

= G̃(x, t) , 0 < x < 1 , t > 0

with the homogeneous conditions:

A1w(0, t) +B1wx(0, t) = 0 , t > 0,

A2w(1, t) +B2wx(1, t) = 0 , t > 0.

 .

and the initial condition:

w(x, 0) = f(x)− v(x, 0)

= f̃(x) , 0 ≤ x ≤ 1.

Then, function u(x, t) defined by (24) satisfy:

ut(x, t)− Auxx(x, t) = vt(x, t)− Avxx(x, t) + wt(x, t)− Awxx(x, t)
= G1(x, t) +G(x, t)−G1(x, t)

= G(x, t),

with the boundary conditions (21)-(22) and the initial condition (23), so it
is the desired solution of our problem (20)–(23).

Summarizing, the following theorem has been proved:

Theorem 2.1 Let be consider the problem (20)–(23). Let v(x, t) be a vec-
tor valued function satisfying conditions (25). We define the vector valued
functions

G̃(x, t) = G(x, t)−G1(x, t) , f̃(x) = f(x)− v(x, 0),

where G1(x, t) is given by (26). We consider the non-homogeneous problem
with homogeneous conditions

wt(x, t)− Awxx(x, t) = G̃(x, t) , 0 < x < 1 , t > 0 (27)

A1w(0, t) +B1wx(0, t) = 0 , t > 0 (28)

A2w(1, t) +B2wx(1, t) = 0 , t > 0 (29)

w(x, 0) = f̃(x) , 0 ≤ x ≤ 1 , (30)

which solution w(x, t) can be obtain using Theorem 2.1 of Ref. [4] if con-
ditions established in this theorem holds. Then, u(x, t) = v(x, t) + w(x, t) is a
solution of problem (20)-(23).
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3 Algorithm and Examples

We can establish the following algorithm to solve problem (20)–(23):

Algorithm 1 Solution of problem (20)-(23).
Input data: Matrices A,A1, A2, B1, B2 ∈ Cm×m, vectors G(x), f(x) ∈ Cm.
Result obtained: If the stated assumptions are met, the series solution
u(x, t).

1: Determine a vector valued function v(x, t) satisfying conditions (25).

2: Determine G̃(x, t) = G(x, t)−G1(x, t) and f̃(x) = f(x)− v(x, 0).
3: Using the Algorithm given in Ref. [4] determine, if it is possible, a solution
w(x, t) of problem (27)–(30).

4: Determine the solution of problem (20)–(23) as u(x, t) = w(x, t) + v(x, t).

Of course, the choice of the function v(x, t) determine the choice of the

functions G̃(x, t) and f̃(x), which must satisfy the hypotheses of Theorem 2.1
of Ref. [4], and depend on the nature of the given function G(x, t). Here we
present two different examples.

Example 3.1 We consider problem (20)–(23) where function G(x, t) is a
linear combination of functions sin (πx) and cos (πx). Then, we will look for
a function v(x, t) which is also a linear combination of functions sin (πx) and
cos (πx) with coefficients are functions of variable t. Thus, we look for a solu-
tion of (25) given in the form

v(x, t) = R1(t) sin (πx) +R2(t) cos (πx) , (31)

where vector-valued functions Ri(t) ∈ C1[0,+∞), i = 1, 2 must be determi-
nate. This solution (31) must to satisfy boundary conditions (25):

A1v(0, t) +B1vx(0, t) = P (t) =⇒ A1R2(t) + πB1R1(t) = P (t)

A2v(1, t) +B2vx(1, t) = Q(t) =⇒ −A2R2(t)− πB2R1(t) = Q(t)


(32)

Writing (32) in matrix form:(
A1 B1

−A2 −B2

)(
R2(t)
πR1(t)

)
=

(
P (t)
Q(t)

)
. (33)

Premultiplying (33) by the invertible matrix

(
I 0
0 −I

)
one gets(

A1 B1

A2 B2

)(
R2(t)
πR1(t)

)
=

(
P (t)
−Q(t)

)
. (34)
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Under hypothesis (6) this system has an unique solution. Thus, we have
shown that we can determine a vector valued function v(x, t) satisfying condi-
tions (25) and defined by expression (31). Thus, we have now that

G1(x, t) = vt(x, t)− Avxx(x, t)
= R′1(t) sin (πx) +R′2(t) cos (πx) + π2Av(x, t), (35)

and we can apply Theorem 2.1. We will consider a concrete numerical
example. Consider problem (20)-(23) where matrix A ∈ C4×4 is given by

A =


2 0 0 1
1 2 0 −2
−1 0 2 1

0 0 0 1

 , (36)

and the 4× 4 matrices Ai, Bi, i ∈ {1, 2}, are

A1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , A2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0



B1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , B2 =


1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 . (37)

The vectorial valued function f(x) is defined by

f(x) =


0
0

x2 − 2x
0

 , (38)

function G(x, t) is

G(x, t) =



− cos (πx)
(
cos (t) + 2

(
t+ π2t2 + π2 sin (t)

))
+

sin (πx)

π

(
2t
(
1 + π2t

))
− cos (πx)

(
t
(
2 + 3π2t

)
+ π2 sin (t)

)
+ πt2 sin (πx)

e−t(−1 + x)2x+ π2 cos (πx)
(
t2 + sin (t)

)
− πt2 sin (πx)

0


,

(39)
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and functions P (t) and Q(t) are defined by

P (t) =


t2

0
0
0

 , Q(t) =


0

sin (t)
0
0

 . (40)

We follow the Algorithm 1 step by step

1. We will determine a vector valued function v(x, t) fulfilling conditions
(25). As any of the components of the vector valued function G(x, t) are
combinations of functions sin (πx) and cos (πx), we will look for v(x, t)
in the form given by (31). To do this, from (34) we obtain

R1(t) =


t2/π

0
0
0

 , R2(t) =


−t2 − sin (t)
−t2
0
0

 ,

and thus determine the function v(x, t) defined by

v(x, t) =


−t2 cos (πx)− cos (πx) sin (t) +

t2 sin (πx)

π
−t2 cos (πx)

0
0

 ,

where replacing in (35) one gets

G1(x, t) =



− cos (πx)
(
cos (t) + 2

(
t+ π2t2 + π2 sin (t)

))
+

2t (1 + π2t) sin (πx)

π

− cos (πx) (t (2 + 3π2t) + π2 sin (t)) + πt2 sin (πx)

π (π cos (πx) (t2 + sin (t))− t2 sin (πx))

0


.

Thus, vector valued function v(x, t) verifies trivially (25).
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2. From the definition of v(x, t) we determine G̃(x, t) and f̃(x):

G̃(x, t) =


0
0

(x− 1)2xe−t

0

 ,

f̃(x) = f(x) =


0
0

x2 − 2x
0

 .

3. Using the algorithm given in Ref. [4] we can construct a solution w(x, t) of
problem (27)-(30) with these date. Observe that this problem is precisely
the non-homogeneous problem with homogeneous conditions which was
solved in the Example 3.2 of Ref. [4], whose exact solution is given by
the series

w(x, t) =∑
n≥0

−
32e−

1
2 (π+2nπ)2t sin

(
1
2 (1 + 2k)πx

)
π3(2k + 1)3




0
0
1
0



−


∑
n≥0

3072(−1)ne−
(2n+1)2π2t

2

(
e
(−2+(2n+1)2π2)t

2 −1

)(
(2n+ 1)2π2−10

)
sin
(

(2n+1)πx
2

)
(2n+ 1)6π6 (−2 + (2n+ 1)2π2)




0
0
1
0

 .

4. The solution of problem (20)-(23) is given by u(x, t) = w(x, t) + v(x, t),
i.e., by the expression:

u(x, t) =∑
n≥0

−
32e−

1
2 (π+2nπ)2t sin

(
1
2 (1 + 2k)πx

)
π3(2k + 1)3




0
0
1
0



−


∑
n≥0

3072(−1)ne−
(2n+1)2π2t

2

(
e
(−2+(2n+1)2π2)t

2 −1

)(
(2n+ 1)2π2−10

)
sin
(

(2n+1)πx
2

)
(2n+ 1)6π6 (−2 + (2n+ 1)2π2)




0
0
1
0



+


−t2 cos (πx)− cos (πx) sin (t) + t2 sin (πx)

π
−t2 cos (πx)

0
0

 .
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Example 3.2 We consider problem (20)–(23). Suppose that G(x, t) is a
polynomial in x, with coefficients are functions of the variable t. Thus, we look
for a vector valued function v(x, t) which is also a polynomial in x (cubic, for
example), whose coefficients are functions of the variable t, in the form

v(x, t) = R3(t)x
3 +R2(t)x

2 +R1(t)x+R0(t) , (41)

where functions Ri(t) ∈ C1[0,+∞), i = 0, 1, 2, 3 must be determinate. This
function (41) satisfy the boundary conditions (25), i.e.

A1R0(t) +B1R1(t) = P (t)

A2 (R3(t) +R2(t) +R1(t) +R0(t)) +B2 (3R3(t) + 2R2(t) +R1(t)) = Q(t).


we can write the above system in matrix form:

(
A1 B1 0 0
A2 A2 +B2 A2 + 2B2 A2 + 3B2

)
R0(t)
R1(t)
R2(t)
R3(t)

 =

(
P (t)
Q(t)

)
. (42)

Taking block matrices

Â =


I 0 0 0
0 I 0 0
0 −3I I 0
0 2I 0 I

 , B̂ =


I 0 0 0
0 I 0 0
0 3I I 0
0 −2I 0 I

 ,

which trivially satisfy that ÂB̂ = I, (42) can be writen in the form

(
A1 B1 0 0
A2 A2 +B2 A2 + 2B2 A2 + 3B2

)
ÂB̂


R0(t)
R1(t)
R2(t)
R3(t)

 =

(
P (t)
Q(t)

)
,

thus

(
A1 B1 0 0
A2 B2 A2 + 2B2 A2 + 3B2

)
R0(t)
R1(t)

3R1(t) +R2(t)
R3(t)− 2R1(t)

 =

(
P (t)
Q(t)

)
. (43)

We can rewrite (43) in the form
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(
A1 B1

A2 B2

)(
R0(t)
R1(t)

)
+

(
0 0

A2 + 2B2 A2 + 3B2

)(
R2(t) + 3R1(t)
R3(t)− 2R1(t)

)
=

(
P (t)
Q(t)

)
.

(44)

If we impose the condition:(
0 0

A2 + 2B2 A2 + 3B2

)(
R2(t) + 3R1(t)
R3(t)− 2R1(t)

)
=

(
0
0

)
or equivalently:

R2(t) = −3R1(t)
R3(t) = 2R1(t)

}
, (45)

from (44) we have the matrix block system(
A1 B1

A2 B2

)(
R0(t)
R1(t)

)
=

(
P (t)
Q(t)

)
. (46)

Taking into account (6), system (46) have an unique solution. Thus, we
have shown that we can determine a vector valued function v(x, t) satisfying
conditions (25) and defined by expression (31). Thus, we have now that

G1(x, t) = vt(x, t)− Avxx(x, t)
= R′3(t)x

3 +R′2(t)x
2 +R′1(t)x+R′0(t)− A (6R3(t)x+ 2R2(t)) .(47)

and we can apply Theorem 2.1. We will consider a concrete numerical
example. Consider problem (20)-(23) where matrix A ∈ C4×4 is given by

A =


2 0 0 −1
1 2 1 −2
−1 0 2 1

0 0 0 1

 , (48)

and the matrices Ai, Bi, i ∈ {1, 2} given by (37). Also, the vectorial valued
functions f(x) and G(x, t) will be defined respectively as

f(x) =


0

x2 − 1
0
0

 , (49)

and
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G(x, t) =


cos (t)− 2t+ 12t2 + 2tx− 24t2x− 6tx2 + 4tx3

−2t+ 6t2 − 12t2x+ e−tx3 − 2e−tx4 + e−tx5

−6t2 + 12t2x
0

 , (50)

and functions P (t) and Q(t) defined by (40).

We follow the Algorithm 1 step by step

1. We will determine a vector valued function v(x, t) fulfilling conditions
(25). As any of the components of the vector valued function G(x, t)
are polynomials in the variable x, with coefficients are functions of the
variable t, we will look for v(x, t) in the form given by (41). To do this,
from (46) we obtain

R0(t) =


sin (t)− t2
−t2
0
0

 , R1(t) =


t2

0
0
0

 ,

and from (45) we obtain

R2(t) =


−3t2

0
0
0

 , R3(t) =


2t2

0
0
0

 ,

and therefore we have the function

v(x, t) =


−t2 + t2x− 3t2x2 + 2t2x3 + sin (t)

−t2
0
0

 .

From (47) one gets

G1(x, t) =


−2t+ 12t2 + 2tx− 24t2x− 6tx2 + 4tx3 + cos (t)

−2t+ 6t2 − 12t2x
−6t2 + 12t2x

0

 .

Thus, vector valued function v(x, t) verifies trivially (25).
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2. From the definition of v(x, t) we determine G̃(x, t) and f̃(x):

G̃(x, t) =


0

(x− 1)2x3e−t

0
0

 ,

f̃(x) = f(x) =


0

x2 − 1
0
0

 .

3. Using the algorithm given in Ref. [4] we can construct a solution w(x, t) of
problem (27)-(30) with these date. Observe that this problem is precisely
the non-homogeneous problem with homogeneous conditions which was
solved in the Example 3.1 of Ref. [4], whose exact solution is given by
the series

w(x, t) =

(∑
n≥0

−
32(−1)ne−

1
2
(π+2nπ)2t cos

(
1
2
(2n+ 1)πx

)
π3(2n+ 1)3

)
0
1
0
0



+

∑
n≥0

−
64e−

(2n+1)2π2t
2

(
e

(−2+(2n+1)2π2)t
2 − 1

)
A(n) cos

(
(2n+1)πx

2

)
(2n+ 1)6π6 (−2 + (2n+ 1)2π2)




0
1
0
0


where

A(n) =(480+(2n+1)π(−144(−1)n+(2n+1)π((−1)n(2n+1)π−6))).

4. The solution of problem (20)-(23) is given by u(x, t) = w(x, t) + v(x, t),
i.e., by the expression:

u(x, t) =
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(∑
n≥0

−
32(−1)ne−

1
2
(π+2nπ)2t cos

(
1
2
(2n+ 1)πx

)
π3(2n+ 1)3

)
0
1
0
0



+

∑
n≥0

−
64e−

(2n+1)2π2t
2

(
e

(−2+(2n+1)2π2)t
2 − 1

)
A(n) cos

(
(2n+1)πx

2

)
(2n+ 1)6π6 (−2 + (2n+ 1)2π2)




0
1
0
0



+


−t2 + t2x− 3t2x2 + 2t2x3 + sin (t)

−t2
0
0

 ,

where

A(n) =(480+(2n+1)π(−144(−1)n+(2n+1)π((−1)n(2n+1)π−6))).

4 Conclusion

In this paper a method to solve non-homogeneous problem with non-homogeneous
conditions of the type (20)-(23) in terms of the solution of a non-homogeneous
with homogeneous conditions problem (16)-(19) with appropriate parameters,
is developed. The computational process is outlined in Algorithm 1. The
choose of the appropriate function v(x, t) is illustrated in the examples 3.1 and
3.2.
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