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Abstract

In this paper we propose a dynamic analysis methodology for improving the diagnosis of
erroneous Maude programs. The key idea is to combine runtime checking and dynamic trace
slicing for automatically catching errors at runtime while reducing the size and complexity
of the erroneous traces to be analyzed (i.e., those leading to states failing to satisfy some
of the assertions). First, we formalize a technique that is aimed at automatically detecting
deviations of the program behavior (symptoms) with respect to two types of user-defined
assertions: functional assertions and system assertions. The proposed dynamic checking is
provably sound in the sense that all errors flagged are definitely violations of the specifications.
Then, upon eventual assertion violations we generate accurate trace slices that help identify the
cause of the error. Our methodology is based on (i) a logical notation for specifying assertions
that are imposed on execution runs; (ii) a runtime checking technique that dynamically tests
the assertions; and (iii) a mechanism based on (equational) least general generalization that
automatically derives accurate criteria for slicing from falsified assertions. Finally, we report on
an implementation of the proposed technique in the assertion-based, dynamic analyzer ABETS
and show how the forward and backward tracking of asserted program properties leads to a
thorough trace analysis algorithm that can be used for program diagnosis and debugging.

Keywords: Trace Slicing, Runtime Checking, Dynamic Program Slicing, Program Diagnosis
and Debugging, Rewriting Logic, Maude, Equational least general generalization

1. Introduction

Program debugging is crucial to reliable software development because the size and com-
plexity of modern software systems make it almost impossible to avoid errors in their (require-
ments and design) specifications. Unfortunately, debugging is generally a burdensome process
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that takes up a large portion of the software development effort, with developers painfully
going through volumes of execution traces to locate the actual cause of observable misbehav-
iors. In order to mitigate the costs of debugging, automated tools and techniques are required
to help identify the root cause of (anticipated) errors. In this paper, we propose a general
approach for the debugging of programs that is based on systematically combining runtime
assertion checking and automated trace (and program) simplification.

Assertion checking is one of the most useful automated techniques available for detecting
program faults. In runtime assertion checking, assertions are traditionally used to express con-
ditions that should hold at runtime. By finding inconsistencies between specified properties
and the program code, dynamic assertion checking can prove that the code is incorrect. More-
over, since an assertion failure usually reports an error, the user can direct his attention to the
location at which the logical inconsistency is detected and (hopefully) trace the errors back to
their sources more easily. Runtime assertion checking can also be useful in finding problems in
the specifications themselves, which is important for keeping the specifications accurate and
up-to-date. Although not universally used, assertions seem to have widely infiltrated common
programming practice, primarily for finding bugs in the later stages of development. A brief
history of the research ideas that have contributed to the assertion capabilities of modern
programming languages and development tools can be found in [IJ.

Program slicing [2, 3] is another well-established activity in software engineering with in-
creasing recognition in error diagnosis and program comprehension since it allows one to focus
on the code fragment that is relevant to the piece of information (known as slicing criterion)
that we want to track from a given program point. The basic idea of program slicing is to
isolate a subset of program statements that either (i) contribute to the values of a set of vari-
ables at a given point or (ii) are influenced by the values of a given set of variables. The first
approach corresponds to forms of backward slicing, whereas the second one corresponds to
forward slicing. Work in this area has focused on the development of progressively more effec-
tive, useful, and powerful slicing techniques, which have been transferred to many application
areas including program testing, software maintenance, and software reuse.

In order to cope with very complex distributed systems, tools and methods that can
improve the early specification are key to the system development effort. Maude [4] is a high-
performance language and system that provides a powerful variety of correctness tools and
techniques including prototyping, state space exploration, and model checking of temporal
formulas. Maude programs correspond to specifications in rewriting logic (RWL) [5], which is
an extension of membership equational logic [6] that, besides supporting equations and allow-
ing the elements of a type or sort to be characterized by means of membership axioms, adds
rewrite rules that can be non-deterministic in order to represent transitions in a concurrent
system. Thanks to its reflective design and meta-level capabilities, the Maude system pro-
vides powerful and highly efficient meta-programming facilities. This has further contributed
to its success, giving support to the development of sophisticated tools and techniques for the
modeling and analysis of Maude specifications, such as LTLR model checking [7], abstract
certification [§], Web verification [9], [10], narrowing-based code-carrying theory [L1], etc. (for
a survey of the related literature, see [12]).

The use of slicing for debugging Maude programs is discussed in [13], and relies on a rich
and highly dynamic parameterized scheme for exploring rewriting logic computations defined
in [I4], [15] that can significantly reduce the size and complexity of the runs under examina-



tion by automatically slicing both programs and computation traces. However, Maude does
not currently provide general support for asserting properties that are dynamically-checked.
Hence, the aim of this work is to provide Maude with runtime assertion-checking capabilities
by first introducing a simple assertion language that suffices for the purpose of improving
error diagnosis and debugging in the context of rewriting logic. We follow the approach of
modern specification and verification systems such as Spec? or the Java Modeling Language
(JML) where the specification language is typically an extension of the underlying program-
ming language and specifications are used as contracts that guarantee certain properties to
hold at a number of execution states (e.g., before or after a given function call [16]). We
believe that this choice of a language is of practical interest because it facilitates the job of
programmers. Even if Maude is a highly declarative language that supports a programming
style where no conceptual difference exists between programs and high-level specifications,
there can be good reasons not to use the code itself as a contract. Assertions can be seen as
a form of lightweight, possibly incomplete or weaker specification embedded in the program
text that may help developers identify program properties or behaviors to be preserved when
modifying code. Independent assertions can also improve the effectiveness of tests, can be
used as contracts to check the conformance of an implementation to its formal specification,
and are key for static verification and automated test case generation. During the design
process, they can simulate a design, allowing one to explore its properties before committing
to the long development process. The advantages of equipping software with assertions are
extensively discussed in [17].

In our framework, if an assertion evaluates to false at runtime, an assertion failure results,
which typically causes execution to abort while delivering a huge execution trace. By automat-
ically inferring deft slicing criteria from falsified assertions, we derive a self-initiating, enhanced
dynamic slicing technique that automatically starts slicing the trace backwards at the time
the assertion violation occurs, without having to manually determine the slicing criterion in
advance. As a by-product of the trace slicing process, we also derive a dynamic program slice
that preserves the program behavior for the considered program inputs [2]. In the proposed
approach, assertions are external and evaluated at runtime whenever the state associated with
the assertion is reached during execution. This use of assertions involves checking individual
(finite) program executions as well as non-deterministic execution trees (up to a finite depth),
rather than proving (or disproving) the correctness of every program execution.

1.1. Our contribution and plan of the paper

The paper is organized as follows. We begin by providing a brief introduction to rewriting
logic and Maude, and we present the running example that we use throughout the paper:
a conditional rewrite theory that models a simple (object-oriented), distributed, on-line car-
rental store (§2)). Then, we proceed with the main contributions of our work, which can be
summarized as follows:

1. A simple assertion language for Maude programs that allows us to express properties that
are both executable in user-defined programs and quite versatile, by including Boolean
formulas that are specialized by means of state templates (i.e., a sort of term patterns).
We distinguish two groups of assertions: 1) functional assertions, for specifying proper-
ties of functions defined by an equational theory; and 2) system assertions, which allow
properties concerning the system’s execution to be expressed. We give semantics to



assertions by providing a specification for what it means for an equational simplifica-
tion trace (resp. a system state) to satisfy functional (resp. system) assertions. This
is a purely declarative specification that says which states and traces satisfy the given
assertions without saying how satisfaction checks might be performed (

2. An assertion-based trace slicing technique for simplifying rewriting logic computations.
This technique exploits the information that is dynamically computed when an assertion
fails (called error symptoms) to help correlate the simple external evidence of the error
with the complexity of searching possible program locations for the faults that caused the
error. More precisely, by exploiting the notion of equational least general generalization
recently investigated in [18], we soundly combine the error symptoms computed from
violated assertions with the trace slicing technique of [I4} 15] to derive well-suited slicing
criteria that automatically bootstrap the slicing process (§4).

3. A novel procedure for the dynamic analysis of rewriting logic computations, which relies
on assertion-based trace slicing and improves the diagnosis of erroneous Maude programs.
The correctness of our dynamic analysis is proved by Proposition and Theorem
(. A refinement of the basic technique for inferring the slicing criteria is provided in
Section

4. An implementation of the (optimized) analysis methodology in the assertion-based, dy-
namic trace analyzer ABETS that is available at [19] (§6]) and includes an experimental
analysis of the system, followed by some conclusions and directions for future work (

Unlike most other related work on dynamic assertion checking, the ABETS analyzer targets
programs that may include sorts and subsorts, rules, equations, and equational axioms (i.e.,
algebraic laws such as commutativity, associativity, and unity). Furthermore, an important
novel feature of ABETS is that it applies to Full Maude [4], which is a powerful extension
of Maude that is written in Maude itself and that gives support for object-oriented specifi-
cation and advanced module operations. Full Maude not only complements Maude, but it
can also be seen as an experimentation framework that allows new language features to be
developed at the maturity level required to port it to Maude. Following the discussion above,
this work can be seen as the first framework that exploits the synergies between runtime
assertion checking and automated (program and program trace) transformations for improv-
ing the diagnosis of any program (or program tool) that is implemented in (Full) Maude.
Moreover, the underlying foundation of ABETS developed in this article can be applied with
little effort to other expressive rule-based languages like CafeOBJ, OBJ, ASF+SDF, and
ELAN, which support: 1) rich type structures with sorts, subsorts and overloading; and 2)
equational rewriting modulo axioms such as commutativity, associativity—commutativity, and
associativity—commutativity—identity. Also, it is potentially applicable to any language whose
operational semantics can be specified in Maude.

This article is a revised, improved, and extended version of [20].

1.2. Related work

Tools that are useful for mechanically checking that annotated programs meet their spec-
ifications fall into two main, complementary categories: runtime assertion checking (i.e., the
testing of specifications during program execution, with any violation resulting in special er-
rors being reported) and static verification (where logical techniques are used to prove, before



runtime, that no violations of specifications will take place at runtime). It was by the mid '70s
when researchers realized that monitoring assertions during program execution offers a simple
and practical counterpart to formal proofs of correction. Assertion checking cannot prove
that a program is correct but it does support a greater degree of automation than deductive
verification, i.e., static verification of the assertions using a theorem prover, which furthermore
requires the user to have broad mathematical skills and provide fairly precise and complete
specifications [21]. Runtime assertion checking does not face the same difficult challenges as,
say, model-checking and theorem proving and is likely closer to becoming part of mainstream
software development environments. The gist of runtime verification and its convenience as a
partner of model-checking, theorem proving, and program testing is discussed in, e.g., [22], 23].

Initially developed as a means of stating expected or desired program properties as a
necessary step in constructing formal, deductive proofs of program correctness, the key role
of assertions in software engineering applications has witnessed the growth of assertion nota-
tions, such as JML, OCL, Spect, and Z, and assertion capabilities in widely used programming
languages such as Cf, C++, Eiffel, and Java (see [I} 24) 25] and further references therein).
In general, assertions are supported in programming languages in one of two ways —either
incorporating assertion constructs into the design of the language, or by using an external
assertion language that is injected into the target programming language through suitable
software wrappers. Assertions are embedded in the type systems of many programming lan-
guages that support strong typing via type declarations, where a type restriction on arguments
can be considered a precondition. Some languages support even stronger typing and subtyping
assertions (e.g., Maude’s membership axioms, which are used to automatically ‘narrow’ the
type T of a value into a subtype of T"). Assertions may be used statically to support program
analysis and also for secondary purposes, such as documentation and to provide information
to an optimizer during code generation. The most obvious way to dynamically use assertions
is to test them at runtime and report any detected violations. Yet assertions may be applied
for automated error detection during any activity in which a program is executed, including
debugging, testing, and operation.

Runtime verification (RV) is a light-weight formal technique that allows checking whether
a run of a system under scrutiny satisfies or violates a given property [23], or more precisely,
a(n) (informative) finite prefiz of a run, i.e., a finite execution trace. Common properties
include state-based properties such as preconditions, normal and exceptional post-conditions,
invariants, and history constraints. One prominent feature of RV is its being performed
at runtime, which opens up the possibility to act whenever incorrect software behavior is
detected. Its distinguishing research effort lies in synthesizing (on-line/off-line) monitors from
high-level specifications, where a monitor is a device that reads a finite trace and efliciently
yields a certain verdict, typically a truth value from some truth domain. On-line monitors
incrementally check the current execution of the system, while off-line monitors work on a
(finite set of) recorded execution(s). The problem of generating monitors can be compared to
the generation of automata in model-checking, where it finds its origins.

The use of contracts or assertions to obtain more reliable programs has been proposed
for many programming languages and paradigms. This is a field that has a great amount of
related work; here we can only summarize a small part that is most closely related to our
work. A runtime checker written in Maude for the executable modeling language ABS is
described in [21]. In functional programming, a semantics for dynamically checking contracts



was first formalized in [26]. Hybrid (mixed static/dynamic) contract checking for functional
languages has received increasing research attention, as recently discussed in [27]. The no-
tion of specifications and contracts for lazy functional (logic) programs is introduced in [2§],
where Curry is used as a single language for efficient implementations, executable specifica-
tions (describing the intended meaning of an operation as required for program verification),
and contracts (run-time checked assertions consisting of both a pre- and a post-condition given
as Boolean functions that can be weaker than a precise specification). In [28], post-conditions
can be derived from existing program specifications in order to (hopefully) detect incorrect
implementations. In contrast to our work, dynamic assertion checking is achieved by inte-
grating the contract into the implementation, that is, all existing pre- and post-conditions are
translated into correlated function conditions. Also different from our work, any result that
a function produces must satisfy the function’s (Boolean) post-condition, while we are able
to discriminate among cases by specifying different state templates I and conditions ;, in
functional assertions I{pin} = O{@out}-

The Maude Formal Environment (MFE) is a recent effort to integrate and interoperate
most of the available Maude analysis and verification tools [12]. It includes several program
analyzers and theorem provers, which are all accessible in [29]. Other available tools in [29]
are not yet integrated, such as the declarative debugger of Maude [30] and Maude’s model
checkers [4,[7]. The declarative debugger is based on Shapiro’s algorithmic debugging technique
[31] and supports the debugging of wrong results (erroneous reductions, sort inferences, and
rewrites) and incomplete results (not completely reduced normal forms, greater than expected
least sorts, and incomplete sets of reachable terms) in object-oriented, parameterized modules
written in (Full) Maude. The declarative debugging process starts from a computation that is
considered incorrect by the user (unexpected outcome) and tries to locate a program fragment
that is responsible for that error symptom. The tool builds a debugging tree that represents
the anomalous computation and guides the user while he/she explores the tree to find the
bug. Moreover, the debugger offers the user several options to prune and traverse the tree.
During the process, the system asks questions to an external oracle (typically the user) until
a so-called buggy node is found (i.e., a node that contains an erroneous result but whose
children have all correct results). Since a buggy node produces an erroneous output from
correct inputs, it corresponds to an erroneous fragment of code that is pointed out as an
error. Typical questions to the user have the form “Is it correct that term ¢ rewrites (or
fully reduces) to t'?” When the debugging tree is large, a main drawback is the frequency,
size, and complexity of the questions to the oracle; hence, the tool allows some statements
(and even whole modules) to simply be trusted in order to alleviate the process. We believe
the slicing capabilities described in this article could be of great help to further shorten the
declarative debugging process, avoiding unnecessary questions to the user while allowing the
user to identify the very buggy components within relatively large nodes.

To the best of our knowledge, no general built-in support is provided in the MFE for
runtime assertion checking or related disciplines such as contract enforcement in order to
monitor contract fulfillment or enforce some penalty when a contract violation is observed.
Related to our work, a generic strategy is defined in [32] to guarantee in Maude that a set
of invariants (that can be expressed in different logics) are satisfied at every computed state.
This is achieved by avoiding the execution of actions that otherwise would conduct the system
to states that do not satisfy the constraints. This is in contrast to our approach in two ways.



On the one hand, our assertions are external and evaluated at runtime, whereas driving the
system’s execution in such a way that every computation state complies with the constraints
makes the assertions internal to the programmed strategy. On the other hand, the strategy
of [32] never results in violated assertions, which is essential in our approach for automatic
trace slicing to be fired. As another difference, we are able to check assertions that regard
the normalizations carried out by using the equational part of the rewriting theory. In [33],
a dynamic validator of OCL constraints (class invariants and method pre/post-conditions)
is proposed that evaluates Maude prototypes of UML models where both, UML models and
OCL expressions, are represented as Maude specifications. OCL is specially tailored to specify
constraints or queries over UML model objects; that is, the constraints are used to give an
exact description of the information contained in the UML models and the queries are used to
analyze these models and to validate them. Although OCL is not specific to any programming
language, it explicitly targets UML in the same way that JML is tied to Java. In contrast,
our notation is independent from the target programming language or modeling language so
that, by keeping our syntax close to Maude, assertions can be easily specified by any Maude
developer who wants to analyze a Maude representation of any programs or models of interest.

Finally, a parametric trace slicing and monitoring methodology is formalized in [34]. This
technique allows parametric execution traces (i.e., traces which contain events with parameter
bindings) to be sliced and subsequently checked online with respect to parametric properties.
It is worth noting that both the notion of execution trace of [34] and the accompanying slicing
algorithm differ from ours. In our framework, an execution trace is a Maude computation
consisting of a rich combination of rule, equation, membership and axiom applications that
is sliced by tracking backwards the relevant symbols of an automatically synthesized slicing
criterion, whereas [34] defines traces as sequences of parametric events that are distributed
into the corresponding trace slices by analyzing their associated parameter values.

2. Rewriting Logic and Maude

Let us recall some important notions that are relevant to this work (for deeper details, we
refer to [4]).

We assume some basic knowledge of term rewriting [35] and rewriting logic [5], which
is a logical framework that is particularly suitable for dealing with highly non-deterministic
concurrent systems and computations. Some familiarity with the Maude language [36] is also
required. Maude is a rewriting logic specification and verification system whose operational
engine is mainly based on a very efficient implementation of rewriting. Maude’s basic pro-
gramming statements are equations and rules. Equations are used to express deterministic
computations that lead to a unique final result, while rules naturally express concurrent, non-
deterministic, and possibly non-terminating computations. Throughout the paper, Maude
notation will be introduced “on the fly” as required.



2.1. Preliminaries

Let ¥ be a signature that allows operators to be specified together with their type structure
by means of suitable sets of sorts and kinds. The kinds allow equivalent sortsﬂ to be grouped
together and, intuitively, can be considered as an error supersort. Therefore, terms (built over
¥) that have a kind but not a sort are understood to be undefined or error terms. By 7 (2),
we specify the term algebra that includes all the ground terms built over 3, while 7(3,V) is
the usual non-ground term algebra built over ¥ and the set of variables V. Each operator in
) is defined along with its sort and axiom declaration using the Maude syntax:

op opname: Sg...S, — S |axiom declaration] .

where s;, i = 0,...,n, and s are sorts, and aziom declaration is a (possibly empty) list of
equational attributes (e.g., assoc for associativity, comm for commutativity, id for identity)
that denote the algebraic laws that the operator opname must obey. By default, declared
operators adopt the prefix notation; however, the user can also specify mixfix operators,
which is done by using underscores as place fillers for the input arguments. So, for instance,
the declaration

op _+_ : Int Int -> Int [assoc comm id: O]

defines + as a binary mixfix operator that takes two integer numbers and returns an integer
number. The operator + is also declared associative and commutative and its identity is the
constant 0.

A position w in a term t is represented by a sequence of natural numbers that addresses
a subterm of ¢ (A denotes the empty sequence, i.e., the root position). Given a term ¢, we let
Pos(t) denote the set of positions of t. By VPos(t), we denote the set of variable positions
of a term ¢. By notation w;.wy, we denote the concatenation of positions (sequences) w; and
wa. By t|y, we denote the subterm of t at position w, and by t[s],, we denote the result of
replacing the subterm t|,, by the term s in t.

A substitution o = {x1/t1,x2/ta, ...,y /ty} is a mapping from the set of variables V to
the set of terms T (X,V), which is equal to the identity except for a finite set of variables
{z1,...,2,}. By {}, we denote the identity substitution. The application of a substitution o
to a term ¢, denoted to, is defined by induction on the structure of terms [37]:

’ To ift=z,z€V
o =
f(tio, ... tho) ift= f(t1,...,ty),n >0

Given two terms t and ¢', we say that t is more general than t’ iff there exists a substitution
o such that to = t/. We also say that t’ is an instance of t.

Given a term t, by Var(t), we denote the set of variables that occur in ¢t. Given a binary
relation ~, we define the usual transitive (resp., transitive and reflexive) closure of ~» by ~»T
(resp., ~*).

!Two sorts are in the same equivalence class if and only if they belong to the same connected component.
Sorts are user-defined and explicitly declared in ¥, while kinds are implicitly associated with equivalence classes
of sorts.



2.2. Rewrite Theories and Maude Modules

The static state structure as well as the dynamic behavior of a concurrent system can be
formalized as a RWL specification that encodes a conditional rewrite theory. More specifically,
a conditional rewrite theory (or simply rewrite theory) is a triple R = (X, E, R), where:

(i) (¥, E) is a membership equational theory that allows us to define the system data types
via equations, as well as equational and membership axioms. X is a signature that
specifies the operators of R, while F = A U B is the disjoint union of the set A, which
contains conditional equations and conditional membership axioms, and the set B, which
contains equational axioms associated with binary operators in ¥. The general Maude
syntax of conditional equations and membership axioms is the following;:

ceq Ul : A =p if C . cmb [ : XA : s if C .

where [ is a label (i.e., a name that identifies the equation or membership axiom),
A p €T(X,V), sis asort and C is an equational condition, that is, a (possibly empty)
conjunction of equations t = t/, matching equations p := t, and memberships t : s’ that
is built using the binary conjunction connective /\, which is assumed to be associative
as stated in the standard prelude of Maude. When C is empty, the syntax for equations
and memberships is simplified as follows:

eq 1 : A=p . mb [I] : A : s .

A membership equational theory (X, F) is encoded in Maude through a functional module
that is syntactically delimited by the keywords fmod and endfm. Functional modules
provide executable models for the specified equational theories.

(ii) R is a set of conditional labeled rules whose Maude syntax is the following:
crl [I1 : A => p if C .

where [ is a label, A\,p € T(X,V), and C is a rule condition, that is, an equational
condition that may also contain rewrite expressions of the form t => t’. When a rule
has no condition, we simply write r1 [I] : A => p .

A rewrite theory R = (3, E, R) is specified in Maude by means of a system module, which
is introduced by the syntax mod...endm. A system module may include both a functional
representation of the equational theory (3, E') and the specification of the rewrite rules in R.

Intuitively, (X, F) allows system states to be formalized as terms, while rules in R specify
general patterns that are used to model state transitions and allow the dynamics of the system
to be specified. More specifically, the system evolves by applying the rules of the rewrite
theory R to the system states by means of rewriting modulo E. An in-depth explanation of
the operational semantics underlying RWL and Maude is summarized in Section

Concurrent object-oriented systems can be defined in Full Maude by means of object-
oriented modules, which are delimited by the keywords omod and endom. Object-oriented
modules implicitly define sorts (i) 0id (for object identifier); (ii) Cid (for class identifier); (iii)
Object; and (iv) Msg for messages (declared by using the keyword msg), which are used to
model object message-passing.



Objects are represented as terms of the following form:
<0 :C | aj:v1y ., Gp: vy >

where 0 is a term of sort 0id, C is a term of sort Cid, and aq : v1,...,a, : v, is a list of
attributes of sort Attribute that consist of an identifier a; followed by its respective value v;.
Concurrent states of object-oriented systems are represented as a multiset (i.e., an associative
and commutative list) of objects and messages.

Classes are defined by using the keyword class, followed by the name of the class, a bar,
and a list of attribute declarations separated by commas:

class C | a1 : {Sort1), ..., an, : {Sorty)

Class names are considered to be a particular case of sort names. Therefore, class inheritance
is directly supported by Maude’s order-sorted type structure. A subclass declaration is an
expression of the form subclass C < C’ where C and C’ are the names of the classes. Multiple
inheritance is also supported, allowing a class C to be defined as a subclass of several classes.

As for the object-oriented rules, they are similar to standard Maude rules, except that it is
possible not to mention irrelevant object attributes (that is, attributes that play no role in the
rule transition). Moreover, attributes on the left-hand side of the rule that are not mentioned
on the corresponding right-hand side are assumed to be unchanged.

Example 2.1
The following Full Maude object system models the logic of a (faulty) distributed, object-
oriented, online car-rental store, which is inspired by a specification in [36].

(omod RENT-A-CAR-ONLINE-STORE is
pr CONVERSION .
pr QID .

subsort Qid < 0id .

class Register | date : Nat , rentals : Nat .

class Customer | credit : Int , suspended : Bool .

class Car | available : Bool , rate : Nat .

class Rental | deposit : Nat , dueDate : Nat , pickUpDate : Nat , customer : 0id , car : 0id .

class PreferredCustomer .
subclass PreferredCustomer < Customer .

class EconomyCar .
class MidSizeCar .
class FullSizeCar .
subclasses EconomyCar MidSizeCar FullSizeCar < Car .

vars U C R RG : 0id .
vars CREDIT AMNT : Int .
vars TODAY PDATE DDATE RATE DPST RNTLS : Nat .

rl [new-day] : < RG : Register | date : TODAY > => < RG : Register | date : TODAY + 1 > .

10



crl [3-day-rental]
--- Faulty rule: customer’s credit is not checked before renting.
< U : Customer | credit : CREDIT , suspended : false >
< C : Car | available : true , rate : RATE >
< RG : Register | date : TODAY , rentals : RNTLS >
=>
< U : Customer | credit : CREDIT - AMNT >
< C : Car | available : false >
< RG : Register | rentals : RNTLS + 1 >

< qid("R" + string(RNTLS,10)) : Rental | pickUpDate : TODAY , dueDate : TODAY + 3 , car :

deposit : AMNT , customer : U , rate : RATE >
if AMNT := 3 * RATE .

crl [on-date-return]
< U : Customer | credit : CREDIT >
< C : Car | rate : RATE >

< R : Rental | customer : U , car : C , pickUpDate : PDATE , dueDate : DDATE , deposit
< R

G : Register | date : TODAY >
=>
< U : Customer | credit : (CREDIT + DPST) - AMNT >
< C : Car | available : true >
< RG : Register | >
if (TODAY <= DDATE) /\ AMNT := RATE * (TODAY - PDATE)

crl [late-return]
< U : Customer | credit : CREDIT >
< C : Car | rate : RATE >

< R : Rental | customer : U , car : C , pickUpDate : PDATE , dueDate : DDATE , deposit

< RG : Register | date : TODAY >
=>

updateSuspension(< U : Customer | credit : (CREDIT - AMNT) + DPST >)

< C : Car | available : true >

< RG : Register | >

if DDATE < TODAY /\ AMNT := RATE * (DDATE - PDATE) +
(120 * RATE * (TODAY - DDATE)) quo 100 .

op updateSuspension : Object -> Object
ceq [suspend]

--- Faulty equation: preferred customers in debt can be suspended, which is not intended.
updateSuspension(< U : Customer | credit : CREDIT , suspended :

< U : Customer | credit : CREDIT , suspended : true >
if (CREDIT < 0)

eq [maintainSuspension]
updateSuspension(< U : Customer | suspended : B:Bool >) =
< U : Customer | suspended : B:Bool > [owise]
endom)

Here, each state of the system is modeled as a multiset of objects e1 eq

false >) =

Cc,

: DPST >

: DPST >

. en, where each

e; is one of the following: (i) a customer (who is registered at the store with a certain
credit); (ii) a (rented or available) car; (iii) a renting contract; or (iv) the register, that
models time elapsing and records the number of active car rentals. We consider two kinds
of customers: standard customers and preferred customers (who are allowed to rent even if
they run out of credit). Basic operations of the store (i.e., rental and return of cars) are
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implemented via three rewrite rules: 3-day-rental, on-date-return, and late-return.
The 3-day-rental rule enables car rental only if the chosen car is available and, at the
time when the contract is signed, the customer makes a deposit (that is subtracted from his
credit) aimed to cover the estimated charge depending on the daily rental rate of the car.
Note that the 3-day-rental rule is flawed because it does not check if the current credit
of the customer is sufficient to cover the requested deposit, which could lead to erroneous
system behaviors. When a rented car is returned before the due date, the on-date-return
rule is applied. In this case, the customer is reimbursed for the payment of the initial deposit
and is only charged for the number of days he used the car. If the car is returned past the
due date, the late-return rule is instead applied and the customer is charged an additional
sanction that amounts to 20% of the established fee (for each day past the due date). Non-
preferred customers are suspended when they reach a negative credit, i.e., if they have a
debt. Defaulter (non-preferred) customer suspension is modeled by the equations suspend
and maintainSuspension, which applies when the defaulter customer repeats infringement
while already suspended. Note late-return rightly admits negative credit and deals with the
issue by triggering the function updateStatus that suspends the debtor customers who are
non-preferred. However, the equations for modeling suspension are erroneous because they
cause preferred customers to be suspended as well, which is not what is intended.

Despite offering a more convenient syntax and conceptual advantages, object-oriented mod-
ules are just syntactic sugar and they are internally transformed into system modules for ex-
ecution purposes. However, a side effect of this translation is that positions in object terms
can be easily misinterpreted since each attribute attrName of sort AttrSort is automatically
translated into a term of sort Attribute by dynamically introducing ad-hoc unary operators
attrName™:_ : AttrSort -> Attribute (one per attribute), as illustrated in the following
example.

Example 2.2
Consider the object-oriented, Full Maude specification of Example together with the
following object:

< ’A1 : EconomyCar | available : true , rate : 30 >

that represents a car with identifier >A1, class EconomyCar, and the attributes available and
rate (with values true and 30, respectively).

Since object-oriented modules are automatically translated into system modules, the fol-
lowing source-level declarations of unary operators ’available’: and ’rate’: are dynami-
cally created by Full Maude:

op ’available’:_ : ’Bool -> ’Attribute [ gather(’&) ]
op ’rate’:_ : ’Nat -> ’Attribute [ gather(’&) 1]

A graphical, meta—leve]E] representation of the transformed term is depicted in Figure

2By using the meta-level notation, we can easily and unequivocally identify the arity of each operator, with
the underscores indicating the exact place of its arguments in the mixfix notation.
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Note that the value true of the attribute available is addressed by position 3.1.1, which is
not obvious by only looking to the source-level representation of the original term.

''Al.Qid 'EconomyCar .EconomyCar T
1 2 3
'available™:_ 'rate”:_
341 3.2
'true.Bool 's_"30

3.1.41 3.21
'0.zZero

3.21.1

Figure 1: Positions of object < A1 : EconomyCar | available : true , rate : 30 >.

Applying our techniques to Full Maude is thus quite simple, but implementing them in
ABETS in a way that is easy to use in practice was much trickier than we expected, as we
briefly mention in Section [6] where we describe the graphical analyzer ABETS, which totally
relieves users from the burden of textuallly dealing with positions.

A thorough description of Full Maude object-based programming can be found in [4].

2.3. Rewriting and Generalization modulo Equational Theories

Let us consider a conditional rewrite theory (3, E, R), with £ = AU B, where A is a set of
conditional equations and membership axioms, and B is a set of equational axioms associated
with some binary operators in ¥. The conditional rewriting modulo E relation (in symbols,
—gr/p) can be defined by lifting the usual conditional rewrite relation on terms [38] to the
E-congruence classes [t|g on the term algebra 7 (X, V) that are induced by =g [39]. In other
words, [t]g is the class of all terms that are equal to t modulo E. Unfortunately, —r/p is,
in general, undecidable since a rewrite step t =g/ t' involves searching through the possibly
infinite equivalence classes [t]g and [t']g.

For a conditional rewrite theory to be executable, its equations A should be Church-
Rosser and terminating modulo the given axioms B, and their rules R should be (ground)
coherent with A modulo B. This allows the Maude interpreter to implement conditional
rewriting — /g with R modulo E by means of two much simpler relations, namely —a p
and — g B, that allow rules, equations and memberships to be intermixed in the rewriting
process by simply using an algorithm of matching modulo B. The relation —rua, B is defined
as —gpB U —a,B. Roughly speaking, the relation —a p uses the equations of A (oriented
from left to right) as simplification rules. Thus, by repeatedly applying the equations as
simplification rules from a given term ¢, we eventually reach a term ¢ | A p to which no further
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equations can be applied. The term t | p is called a canonical (or normal) form of ¢ with
respect to A modulo B. An equational simplification of a term ¢ in A modulo B is a rewrite
sequence of the form ¢t =4 5 t la g. Informally, the relation —r p implements rewriting with
the rules of R, which migﬁt be non-terminating and non-confluent, whereas A is required to
be Church-Rosser and terminating modulo B in order to guarantee the existence and unicity
(modulo B) of a canonical form with respect to A for any term [36]. Terms are rewritten
into canonical forms according to their sort structure, which is induced by the signature X
and the membership axioms specified in A. In particular, through membership axioms of

the form cmb [1] : A : s if C, we can assert that any term B-matching A has a specific
sort s whenever a condition C holds. Equational simplification of terms is naturally lifted
to substitutions as follows: given o = {x1/t1,x2/ta,...,zy/tn}, we define the normalized

substitution o la p= {zi/(tila.B)} ;-

Formally, — g g and — p are defined as follows. Given a rewriterule crl [r]: A => pif C
€ R (resp., an equation ceq [e] : A= p if C € A), a substitution o, a term ¢, and a position
woft t r’i&wR,B t' (resp., t e’i&wAB t') iff Ao =p t|w, t' = t[polw, and Co evaluates to true.
When no confusion arises, we simply write ¢ —p g t' (resp. t—a pt’) instead of ¢ r’iﬁwm gt
(resp. t "IN g t').

Roughly speaking, a conditional rewrite step on the term ¢ applies a rewrite rule/equation
to t by replacing a reducible (sub-)ezpression of ¢ (namely t|,,), called the redex, by its con-
tracted version po, called the contractum, whenever the condition Co is fulfilled. Note that
the evaluation of a condition C is typically a recursive process since it may involve further
(conditional) rewrites in order to normalize C to true.

Specifically, an equation t = ¢’ evaluates to true if tla p=p t'la p; a matching equation
p =t evaluates to true if p =p tla B; a rewrite expression t = p evaluates to true if there
exists a rewrite sequence t —7p A,p usuch that u =g p E|; and, finally, a membership t : s
evaluates to true if t has sort s.

Under appropriate coherence conditions [40] on the rewrite theory, a rewrite step s — 5 /Bt
modulo E on a term s can be implemented without loss of completeness by applying a rewrite
strategy that involves the repeated application of the two following basic steps [40]:

1. Equational simplification of s in A modulo B, that is, reduce s using —a p until
the canonical form with respect to A modulo B (s |a p) is reached;
2. Rewrite (s |a,g) in R modulo B to t’' using —pg g, where t' € [t]E.

An ezecution trace (or computation) C for sg in the conditional rewrite theory (X, AU B, R)
is then deployed as the (possibly infinite) rewrite sequence

80 —A.B S04AB —RB S1 A p SUABRE -

that interleaves — A p rewrite steps and — g p rewrite steps following the strategy mentioned
above. After each conditional rewriting step using —g p, in general, the resulting term s;,

3Technically, to properly evaluate a rewrite expression t = p or a matching condition p := t, the term p
must be a A-pattern modulo B (i.e., a term p such that, for every substitution o, if 2o is a canonical form with
respect to A modulo B for every x € Dom(co), then po is also a canonical form with respect to A modulo B).

14



i=1,...,n,is not in canonical normal form. Therefore, it is normalized before the subsequent
rewrite step with — g p is performed. Also, in the precise strategy adopted by Maude, the
last term of a finite computation is finally normalized before the result is delivered. By ¢, we
denote the empty computation. Therefore, any computation can be interpreted as a sequence
of juxtaposed — g p and — A p transitions, with an additional equational simplification —} B
(if needed) at the beginning of the computation as depicted below.

* * *
S0 _>A,B SO\LA7B —R,B S1 _>A,B SlJfA,B —R,B 52 _>A,B 32\LA7B .

By coercion, any term in canonical form that cannot be further rewritten via —pg g is also
considered to be a computation.

We define a Maude step from a given term s as any of the sequences s =\ 5 sla,B —R,B
t —>*A’ g tla,p that head the non-deterministic Maude computations for s. Note that, for a
canonical form s, a Maude step for s boils down to s —pr gt =4 5 tla,p. We define mS(s)
as the set of all possible Maude steps stemming from s in R. Finélly, by length(C) we define
the number of Maude steps that are contained in the computation C.

A generalization of a pair of terms t1,te is a triple (g,61,602) such that g = ¢; and
g0a = to. The triple (g, ¢1, ¢2) is the least general generalization (lgg) of the pair of terms
t1,to, written lgg(t1,t2), if (1) (g, ¢1, ¢2) is a generalization of ¢1,te and (2) for every other
generalization (¢, 11, 12) of t1,t2, ¢’ is more general than g. For the free theory, the lgg of a
pair of terms is unique up to variable renaming [41].

In [42]143] [18], the notion of least general generalization is extended to work modulo order-
sorted equational theories, where function symbols can obey any combination of associativity,
commutativity, and identity axioms (including the empty set of such axioms). Unlike the
untyped case, for a pair of terms t1,to there is generally no single lgg, due to order-sortedness
or to the equational axioms. Instead, there is a finite, minimal, and complete set of lggs
(denoted by lgg(t1,t2)) so that any other equational generalization has at least one of them as
an instance. Given any element g of the set lgg;(t1, t2), we define the function 7 from VPos(g)
to Pos(t1) that provides an injective correspondence between (the position of) any variable in
g and (the position of) the corresponding term in ¢;; we need this because computing modulo
equational axioms may cause the term structure of g to be different from both ¢; and t,.
For instance, consider an associative and commutative symbol f and the terms t; = £(b, c, a)
and to = f(d,a,b). Then, a possible lgg modulo the associativity and commutativity of f is
(f(a,b,X),{X/c},{X/a}) € lggp(ti,ta), where X is a variable. Note that both ¢; and ty are
syntactically different from f(a,b,X), and the value 7(3) = 2 indicates the subterm c of ¢;
that is responsible for the mismatch with t5. By lg/\gE(tl, t2), we denote the pair (G, ) where
G = (g, ¢1, ¢2) is arbitrarily chosen among those lggs in the set lggp(t1,t2) that have fewer
variables, and 7 is the corresponding position mapping from positions of g’s variables to the
relative subterms of ¢;.

One of the main motivations of our work is to help automate as much as possible the
validation and debugging of programs with respect to properties that are outside of Maude’s
typing system (i.e., Maude’s typing and subtyping assertions given by the membership ax-
ioms). Some of the properties we consider can arguably be expressed by means of sorts and
memberships in Maude. Nevertheless, in the following section we deal with properties that
these facilities cannot handle.
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3. The Assertion Language

Assertions are linguistic constructions that formally express properties of a software sys-
tem. Assertions act as an oracle, giving a pass/fail indication to program runs. Through-
out this section, we consider a software system that is specified by a rewrite theory R =
(X,A U B, R). Without loss of generality, we assume that ¥ includes at least the sort State.
Terms of sort State are called system states (or simply states). A state s is simplified into its
canonical form s |a p by using equations and equational/membership axioms in A U B.

In our specification language, assertions are not mere Boolean expressions but truly ez-
ecutable formulas that are built on user-defined functions and specialized by means of state
patterns. Our framework supports two kinds of assertions: functional assertions and system
assertions. Functional assertions allow properties to be logically defined on the equational
component of the rewrite theory R while system assertions specify formal constraints on the
possibly non-deterministic rule component of R. The benefit of the logic framework being
integrated into our Maude specification and analysis environment is that the definition and
checking of all asserted properties can be performed in a uniform and familiar setting.

3.1. The Assertion Logic

The core of our assertion language is based on order-sorted (membership) predicate logic,
where first order formulas are built over the signature Y of the rewrite theory R enriched
with a set of user-defined Boolean function symbols (predicates). The truth values are given
by the formulas true and false. The usual conjunction (and), disjunction (or), exclusive or
(xor), negation (not), and implication (implies) logic operators are used to express composite
properties. Variables in the formulas are not quantified.

Logic formulas can be defined in Maude by means of the predefined functional module
BOOL [36], which specifies the built-in sort Bool, the truth values, the logic operators, and the

built-in operators for membership predicates _: : 8 for each sort S, and term equality _==_ and
inequality _=/=_.

The built-in Boolean functions _==_and _=/=_ have a straightforward operational meaning:
given an expression u == v, then both u and v are simplified by the equations in the module

(which are assumed to be Church-Rosser and terminating) to their canonical forms (modulo
the equational axioms) and these canonical forms are compared for equality. If they are equal,
the value of u == v is true; if they are different, it is false. The predicate u =/= v is just
the negation of u == v. In the module BOOL, valid formulas are reduced to the constant
true, invalid formulas are reduced to the constant false, and all the others are reduced to a
canonical form (modulo axioms) consisting of an ezclusive or of conjunctions. By default, the
BOOL module is implicitly imported as a submodule of any other user-defined module.

Predicates that are not specified in BOOL are module-dependent and can be equationally
defined as total Boolean functions over the system entities (e.g., states, function calls) for-
malized within R. In the same spirit of Maude’s equational theories, where a single result is
expected to be delivered for each input term, we require the user to ensure that the evaluation
(i.e., the equational simplification) of any property terminates for any possible initial state
and that the resulting verdict is unique.

In the proposed framework, basic properties on a given rewrite theory R are defined by
means of a system module PRED(R) that
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mod RENT-A-CAR-PRED is
inc RENT-A-CAR-ONLINE-STORE .
op isPreferredCustomer : Cid -> Bool .
eq isPreferredCustomer (PreferredCustomer) = true .
eq isPreferredCustomer(U:Cid) = false [owise]
op isFullSize : Object -> Bool .
eq isFullSize(< C:0id : FullSizeCar | available : B:Bool ,
rate : RATE:Nat >) = true .
eq isFullSize(< C:0id : Car | available : B:Bool ,
rate : RATE:Nat >) = false [owise]
endm

Figure 2: System properties specified by the RENT-A-CAR-PRED module.

e imports the (Maude encoding of the) rewrite theory R; and

e specifies a set P of predicates via user-defined operators that are associated with termi-
nating and Church-Rosser definitions of some total Boolean function.

Note that, the system module PRED(R) must fulfill the same properties of R, that is, its
rewrite rules must be coherent with respect to its equations (modulo the equational axioms),
and its embedded, extended equational theory, which includes the equational definition of P,
must be terminating and Church-Rosser (modulo the equational axioms). In this scenario, a
well-formed formula is any term of sort Bool built using the operators and variables declared
in the system module PRED(R).

We say that a formula ¢ holds in R, iff ¢ can be reduced to true in PRED(R) (in symbols,

R E ).

Example 3.1

Consider the RENT-A-CAR-ONLINE-STORE object module of Example and the new pred-
icate isFullSize given in the RENT-A-CAR-PRED module of Figure Then, we can specify
the formula

isFullSize(< 0:0id : C:Cid | available : true , rate : RATE:Nat >)
implies RATE:Nat >= 70

which is true for every FullSizeCar object with an available attribute set to true and a
rate attribute greater than or equal to 70.

3.2. System and Functional Assertions

System assertions formalize invariant properties over (portions of ) system states. We define
a system assertion as a constrained term S{p} [44], where ¢ is an order-sorted, quantifier-free
Boolean formula that is specialized to a (possibly non—ground) term S in 7(%,V) of sort
State, with Var(¢) C Var(S), which we call state template.

System assertions are checked against states of the system specified by R. Roughly speak-
ing, a system assertion S{¢} allows us to validate all system states s that match (modulo the
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equational theory E) the state template S with respect to the formula ¢. More formally, we
define the satisfaction of a system assertion in a system state as follows.

Definition 3.2 (system assertion satisfaction) Let R = (X, E,R) be a rewrite theory.
Let S{p} be a system assertion for R and s be a state in T(X,V). Then, S{p} is satisfied
in s (in symbols, s = S{¢}) iff for each w € Pos(s), for each substitution o if s|, =g
So then po holds in R.

Note that, if there is no subterm s|,, of s that matches S (modulo E), we trivially have
s = S{p}. This implies that S{p} is not satisfied in s (in symbols, s = S{¢}) only in the case
when there exist w and o such that s|, =g So, and the formula ¢o does not hold in R. We
call w a system error symptom. Roughly speaking, a system error symptom is the position of
a subterm of the state s that is responsible for the violation of the considered assertion in s.

Definition 3.3 (system error symptoms) The set of all system error symptoms for a
state s and a system assertion S{p} is defined as follows:

Eoys (s, 9{p}) = {w | Jo. s|w =g So,w € Pos(s), and R = ¢o}.
Observe that &sys(s, S{p}) = 0, whenever s = S{p}.

Example 3.4
Consider the extended rewrite theory of Example together with the system assertion

© = < 0:0id : C:Cid | credit : B:Int , suspended : S:Bool >
{ not(isPreferredCustomer(C:Cid)) implies B:Int >= 0 }

Then, O is satisfied in the state

< ’A5 : FullSizeCar | available : true , rate : 70 >
< ’Cl : Customer | credit : 50 , suspended : false >
< ’RG : Register | date : O , rentals : 0 >

but it is not satisfied in

Serp = < ’Ab5 : FullSizeCar | available : false , rate : 70 >
< ’Cl : Customer | credit : - 160 , suspended : false >
< ’RO : Rental | car : ’A5 , customer : ’Cl , deposit : 210 ,
dueDate : 3 , pickUpDate : O , rate : 70 >
< ’RG : Register | date : O , rentals : 1 >

since non-preferred customer ’C1 has a negative credit. The computed error symptom is the
position 2 that refers to the subterm

< °C1l : Customer | credit : - 160 , suspended : false >

of the anomalous state sep..
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The second type of assertions that we consider are functional assertions. Roughly speak-
ing, functional assertions are implicative formulas between two constrained terms I {y;,} and
O {pout} that specify the general pattern O of the canonical form for any input term ¢ that
matches the given template I, while allowing pre- and post-conditions @, , @t Over the equa-
tional simplification to also be declared. Formally, their general form is I {@in} — O {@ou}
where 1,0 € T(X,V), @in, pout are well-formed formulas, Var(pq,) C Var(I) and Var(veu) C
Var(I) U Var(O).

Intuitively, functional assertions allow us to specify the I/O behaviour of the equational
simplification of a term ¢ by providing two ingredients:

Input: an input template I that ¢ can match and a pre-condition ¢, that t can meet;

Output: an output template O that the canonical form of ¢ has to match and a post-condition
©Yout that the computed canonical form of ¢ has to meet (whenever the input term ¢
matching I meets ;).

Note that, while system assertions S{¢} resemble Matching Logic (ML) formulas 7 A ¢
(called ML patterns), where 7 is a configuration term and ¢ is a first order logic formula,
functional assertions I {¢i,} — O {@ou:} remind Reachability Logic (RL) formulas ¢ = ¢/,
where ¢, ¢ are ML patterns (for a survey on ML/RL, see [45]). In contrast to our functional
assertions, which predicate on equational simplifications, RL formulas are evaluated on system
computations: the semantics of a RL formula ¢ = ¢’ is that any state satisfying ¢ transits (in
zero or more steps) into a state satisfying ¢, while ML formulas are used to express (and rea-
son about) static state properties, similarly to our system assertions. Nevertheless, we would
like to recall that our assertions are quantifier-free and can be efficiently evaluated by rely-
ing on Maude standard infrastructure (such as metaReduce, metaMatch, and metaNormalize
commands).

The notion of satisfaction for a functional assertion is given with respect to the equational
simplification p =t —>*A7 g tla p of term ¢ into its canonical form ¢ | A B.

Definition 3.5 (functional assertion satisfaction) Let R = (X, E, R) be a rewrite theory,
with E = AUB. Let I {pin} = O {pout} be a functional assertion for R, and p be the
equational simplification of the term t in T (3,V) into its canonical form t | A p with respect to
A modulo B. Then, I{pin} — O{pou} is satisfied in p (in symbols, u = I{pin} = O{vou})
iff for each substitution o, such that t =p Ioi,, if Pinoin holds in R, then there exists ooy
such that t Jao, =B O(0in {a,B)Tout and @out(Tin da,B)0out holds in R.

The satisfaction of functional assertions could be equivalently defined on the call term ¢
(rather than on its equational simplification pu : ¢ —>*A’ gt a,B) since the normal form ¢ | g
is uniquely defined in a canonical equational theory. Nonetheless, we prefer to define the
satisfaction with respect to u since we believe that this notion is much closer to the intuitive
meaning of functional assertions (whose satisfiability depends on both the input term ¢ and
the reduced term ¢ |a p of p). Therefore, using p greatly simplifies our description. Given
the set P of new user-defined predicates and their equational definition (), we could split the
set of all functions defined in the extended equational theory F U @ into two disjoint sets,
U®T, where U are the untrusted functions of E (those to be debugged) and T is the extension
of P with the set of all trusted functions defined in E. Now, requiring that 7' includes all
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functions allowed in admissible functional assertions plus the functions they depend on (which
can be easily approximated by analyzing the graph of functional dependencies of the extended
theory), we do not even need the canonicity of the whole equational theory F U @; we only
need the canonicity of the sub-theory that defines the trusted set T. We do not formalize this
generalization in order to keep our description simple.

Note that I {¢in} — O {@out} is (trivially) satisfied in p when either ¢ does not match
I (modulo B), or t =g Ioy, and @04, does not hold in R. Intuitively, a functional error
occurs in an equational simplification p where the computed canonical form fails to match the
structure or meet the properties of the output template O. In other words, ® = I {¢i,} —
O {pout} is not satisfied in p only in the case when there exists an input substitution oy, (i.e.,
a substitution that matches ¢ within the input template I modulo B; in symbols, t =p [o,)
such that

® 0y holds in R;

o t lABF#B O(0in 4A,B)0out OF out(Tin LA,B)0out does not hold in R, for any substitution
Oout-

Definition 3.6 (functional error symptoms) Let R = (X, E, R) be a rewrite theory, with
E=AUB. Let ® = I {pimn} — O {pou} be a functional assertion for R. Let =1t =} g
t la.p be an equational simplification such that p = ® with input substitution oy, Then,, a
functional error symptom for p with respect to ® is any position in Pos(t La g) that belongs
to the following set:

{r(w) | ((9,01,02),7) = lggp(tLa5, O(0in La.5)) and w € VPos(g)} (1)
é.fun(,ua (I)) = if Aoout s.t. tiA,B:B O(Um iA,B)Uout
{A} Zf Vo out 8-t tJ/A,B:B O(Uin\J/A,B)O-OUUR l?g ‘P(Uin \LA,B)Uout (2)

Roughly speaking, &g (11, ®) is computed by distinguishing two cases.

Case (1) If no matching substitution o, exists that allows the canonical form ¢t A g to be
matched within the instance O(ojy, la ) of the output template O by the (normalized)
substitution o;, A, B, we “compare” t A p with O(oi, la p) by using a least general
generalization algorithm modulo equational theories. More specifically, an arbitrarily-
selected least general generalization (g,01,02) (modulo A U B) between t | A p and

O(0in 4 B) is chosen via lgg g, and erroneous subterms of tia, B are detected by selecting
every position m(w) € Pos(tla p) in correspondence with a position w € VPos(g). The
intuition behind this method is that variables in g reflect the discrepancies between the
computed canonical form and the instantiated output template, and therefore subterms
(tla,B)|r(w) represent anomalies in t|A p.

Case (2) If for every matcher (modulo B) o, of the computed canonical form ¢ A p in
O(oinda,B), the (instantiated) formula ¢(oi, LA B)oout does not hold in R, then t A p
does not meet the property ¢ and its root position (which identifies the whole erroneous
term) is signalled as a functional error symptom. Note that, in this case, the detection of
the error source could be only roughly approximated, since the whole computed canonical
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form is considered faulty, even though only some parts could be responsible for the error.
A more practical, and refined symptom detection algorithm is provided in Section
that allows error sources to be located more precisely.

Example 3.7
Consider again the extended rewrite theory of Example Then, the functional assertion

® = updateSuspension(< U:0id : PreferredCustomer | credit : B:Int ,
suspended : false >) { B:Int < 0 }
— < U:0id : PreferredCustomer | credit : B:Int ,
suspended : false > { true }

states that, for preferred customers, the suspended flag (and other customer attributes) remain
unchanged after updateSuspension is invoked. Roughly speaking, preferred customers are
never suspended, even if they were slow payers. Thus, ® is not satisfied in the following
equational simplification

updateSuspension(< ’Cl : PreferredCustomer | credit : - 25 ,

suspended : false >)
suspend
—

< ’Cl1 : PreferredCustomer | credit : - 25 , suspended : true >

with input substitution o, = { U/’C1, B/- 25}. The violation of ® corresponds to case (1)
of Definition since the computed canonical form for the updateSuspension function call
does not match the instantiation of the output template ® with o4, LA p (Which is equal to
o in this case).

Hence, we compute the only (actually syntatical) least general generalization

i§§3(< ’C1 : PreferredCustomer | credit : - 25, suspended : true >,
< U:0id : PreferredCustomer | credit : B:Int, suspended : false >(J”1¢AJ3ﬁ
= ((< °C1 : PreferredCustomer | credit : - 25, suspended : X:Bool >,
{X/true},{X/false}),{3.2.1 — 3.2.1})

where &g (11, ) = {3.2.1} is the set of functional error symptoms that pinpoint the anomalous
suspended flag value in ’C1’s data structure, that is,

< ’Cl : PreferredCustomer | credit : - 25 , suspended : true >‘32J = true.

Now, consider this slight mutation of the assertion ®

®’ = updateSuspension(< U:0id : PreferredCustomer | credit : B:Int ,
suspended : S:Bool >) { B:Int < O }
— < U:0id : PreferredCustomer | credit : B:Int ,
suspended : S’:Bool >{ S:Bool == S’:Bool }

whose post-condition explicitly states that updateSuspension calls cannot change the value
of the suspended flag. Also @’ is not satisfied in the equational simplification above, but,
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in this case, the reason of the violation stands in the refutation of the (instantiated) post-
condition, which corresponds to case (2) of Deﬁnition Therefore, our methodology delivers
Efun (11, ') = {A}, thereby providing a less precise error detection analysis that marks the
whole computed canonical form

< °Cl : PreferredCustomer | credit : - 25 , suspended : true >

as incorrect.

Remarkably, in Section [5.3] we introduce an optimization technique that allows the same,
more refined error symptom set {3.2.1} to be also computed for Case 2 with the modified
functional assertion ®’.

It is worth noting that the use of lg/\g g is generally preferable to the adoption of a pure
syntactic lgg algorithm since it minimizes the number of variables in g (and, hence, the points of
discrepancy between t A p and O(oi, A, B), which facilitates isolating erroneous information.
Let us see an example.

Example 3.8
Let us consider the equational simplification £(0,0) —X 5 c(1,3) with respect to an equa-

tional theory (X, A U B) in which the operator c is declared commutative.
Let ® = £(X,Y) {true} — c(Z,1) {even(Z)} be a functional assertion, where predicate even(Z)
checks whether Z is an even number.

Then, (£(0,0),c(1,3)) = ® (with input substitution o, = {X/0,Y/0}), since variable Z
in the output template c(Z, 1) is bound to 3 and even(3) is false. Then, @B(c(l, 3),c(Z,1))
returns a pair ((g,01,02),7) such that g contains the minimum number of variables. For
instance, [gg5(c(1,3),(Z.1)) = ((c(2,1),{Z/3}, {}). {1 — 2}) and &un (1, ®) = {2}, which
precisely detects that the term c(1,3)|> = 3 is what causes the violation of ®.

By contrast, the computation of a purely syntactic least general generalization would have
delivered the more general result (c(Z,W),{Z/1,W/3},{W/1}) and the larger functional error
symptom set {1,2} (which represents the positions of both arguments of the canonical form
c(1,3)), thereby hindering the isolation of the erroneous subterm of c(1, 3).

Finally, an assertional specification A for a rewrite theory R = (X, E, R) is a set of func-
tional and system assertions for R. By F(A), we denote the set of functional assertions in A,
while S(A) denotes the set of system assertions in A. By s = S(A) (resp. u = F(A)), we
denote that s satisfies all assertions in S(.A) (resp. p satisfies all assertions in F(.A)).

In the following section, we outline our previous work on trace slicing for RWL theories.

4. Enhancing Trace Slicing

Trace slicing [13], [46], [47], [48] is a transformation technique for RWL theories that can
drastically reduce the size and complexity of entangled, textually-large execution traces by
focusing on selected computation aspects. This is done by uncovering data dependences
among related parts of the trace with respect to a user-defined slicing criterion (i.e., a set
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of symbols that the user wants to observe). This technique aims to improve the analysis,
comprehension, and debugging of sophisticated rewrite theories by helping the user inspect
involved traces in an easier way. By step-wisely reducing the amount of information in the
simplified trace, it is easier for the user to locate program faults because pointless information
or unwanted rewrite steps have been automatically removed. Roughly speaking, in our slices,
the irrelevant subterms of a term are omitted, leaving “holes” that are denoted by special
variable symbols e.

A term slice of the term s is a term s® that hides part of the information in s; that is, the
irrelevant data in s that we are not interested in are simply replaced by (fresh) e-variables of
appropriate sort, denoted by e;, with ¢ =0,1,2,....

The next auxiliary definition formalizes the function T'slice(t, P), which allows a term slice
of t to be constructed with respect to a set of positions P of t. The function Tslice relies on
the function fresh® whose invocation returns a (fresh) variable e; of appropriate sort that is
distinct from any previously generated variable ;.

Definition 4.1 (Term Slice) Lett € T(X,V) be a term and let P be a set of positions such
that P C Pos(t). Then, the term slice Tslice(t, P) of t with respect to P is computed as
follows.

Tslice(t, P) = recslice(t, P, \), where

f(recslice(ty, P,p.1), ..., recslice(t,, P,p.n))
ift=f(t1,...,tn),n >0, and p € P
iftecV andpc P

fresh® otherwise

recslice(t, P,p) =

and P = {u | u < pAp € P} is the prefix closure of P. Note that the inductive case (n =0)
includes the case when fis a 0-ary function symbol; hence, f(recslice(d,P,p)) = f.

Roughly speaking, the function Tslice(t, P) yields a term slice of ¢ with respect to a set
of positions P that includes all (and only the) symbols of ¢ occurring within the access paths
from the root of ¢ to each position in P, while the remaining information of ¢ is abstracted by
means of e-variables.

Example 4.2
Consider the specification of Example 2.1 and the state

< Al : EconomyCar | available : true , rate : 20 > < ’RG : Register | rentals : O ,
date : 0 >

Consider the set P = {1.1, 1.2, 1.3.1, 1.3.2} of positions in ¢. Then,

Tslice(t,P) = < ’Al : EconomyCar | available : e; , rate : ey > e3
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Trace slicing can be carried out forwards or backwards. While the forward trace slicing
results in a form of impact analysis that identifies the scope and potential consequences of
changing the program input, backward trace slicing allows provenance analysis to be per-
formed; i.e., it shows how (parts of) a program output depend(s) on (parts of) its input and
helps estimate which input data need to be modified to accomplish a change in the outcome.
While dependency provenance provides information about the origins of (or influences upon)
a given result, the notion of descendants is the key for impact evaluation. In the sequel, we
focus on backward trace slicing.

Throughout this paper, we assume the existence of a backwardSlicing(so —A_ g Sn,Sn)
function as defined in [13] that yields the backward trace slice s§e—* s? of the computation
trace so —a g Sn With respect to a term slice s}, of s,, which is called the slicing criterion.
This function relies on an instrumentation technique for Maude steps that allows the relevant
information of the step, such as the selected redex and the contractum produced by the step,
to be traced explicitly despite the fact that terms are rewritten modulo a set B of equational
axioms (which may cause the components of the terms to be implicitly reordered in the original
trace). Also, the dynamic dependencies exposed by backward trace slicing are exploited in
[13] to provide a (preliminary) program slicing capability that can identify those parts of a
Maude theory that can potentially affect the values computed at some point of interest.

Let us illustrate by means of an example how it can help the user think backwards (i.e., to
deduce the conditions under which a program produces some observed data).

Example 4.3
Consider the RENT-A-CAR-ONLINE-STORE object module of Example [2.1| and the compu-

. 3-day-rental 3-day-rental . .
tation trace Crens = So — S1 — S9 that starts in the initial state

Sg = < ’Al : EconomyCar | available : true , rate : 30 >
A5 : FullSizeCar | available : true , rate : 70 >
’C1 : Customer | credit : 50 , suspended : false >

A

’C2 : PreferredCustomer | credit : 100 , suspended : false >
’RG : Register | date : 0 , rentals : 0 >

AN AN A

and ends in the state

Sg = < ’Al : EconomyCar | available : false , rate : 30 >

< ’A5 : FullSizeCar | available : false , rate : 70 >

< °Cl : Customer | credit : - 160 , suspended : false >

< ’C2 : PreferredCustomer | credit : 10 , suspended : false >

< ’RO : Rental | car : ’Al , customer : ’C2 , deposit : 90 ,
dueDate : 3 , pickUpDate : O , rate : 30 >

< ’R1 : Rental | car : ’A5 , customer : ’Cl , deposit : 210 ,
dueDate : 3 , pickUpDate : O , rate : 70 >

< ’RG : Register | date : 0 , rentals : 2 >

Roughly speaking, C,en: models the following actionsE] : (i) customer ’C2 subscribes a 3-day
rental contract (rule 3-day-rental) to rent an economy car whose rate is 30 and his/her credit

4For the sake of clarity, we have intentionally omitted, from Crent, all of the built-in equational simplifications
that are needed to simplify arithmetic expressions.
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is reduced by 90, (ii) customer ’C1 subscribes a 3-day rental contract (rule 3-day-rental) to
rent a full size car whose rate is 70 and his/her credit is reduced by 210.

Let us assume we manually define as the slicing criterion the negative credit - 160 for cus-
tomer ’C1, which indicates a possible malfunction of the RENT-A-CAR-ONLINE-STORE specifi-
cation since the regular client credit must be non-negative according to the semantics intended
by the programmer. Therefore, we execute trace slicing on the trace C,.,; with respect to the
slicing criterion e; ey < e3 : e4 | credit : - 160 , e5 > eg e; eg eg that allows for
the observation of >C1’s negative credit.

By applying the backward trace slicing technique to Cyen¢ with respect to s§, we get the
output trace slice C?

rent-
®3 < e : ey | available : true , rate : 70 >
< o3 : @4 | credit : 50 , suspended : false > ey @5
3-day-rental
>
e < o : ey | available : true , rate : 70 >
< o3 : ®4 | credit : 50 , suspended : false > o5 o7 @19
3-day-rental
>
o o < o3 : e, | credit : - 160 , e5 > e e7 eg eg

which greatly simplifies the trace Crent by showing the origins of the observed negative credit
while excluding all the objects and attributes that are not related to ’C1’s credit.

Indeed, by observing the first sliced state in C;,,,;, we can easily verify that the conditions
for the rental are met by customer ’C1 and car ’A5. In particular, >A5 is available and (non-
preferred) customer ’C1 is not suspended. However, the car should not be rented because the
credit 50 does not cover the charge 210 (70 for each day), which causes the negative credit

-160 of customer ’C1.

The main idea of this work is to enhance backward trace slicing by using runtime assertion
checking to automatically identify the relevant symbols to be traced back from the erroneous
states of the trace, that is, those states where an assertion is falsified. In conventional pro-
gram development environments, when a given assertion check fails, the programmer must
thoughtfully identify which program statements impacted on the value(s) causing the asser-
tion failure. An additional advantage of blending trace slicing and runtime checking together
is that the runtime checking not only helps automate the trace slicing, but trace slicing also
helps answer the question that immediately arises when an assertion is violated. This ques-
tion is “What caused it?”. By using our enhanced, backward trace slicing methodology, error
diagnosis is greatly simplified because accurate criteria for slicing are automatically inferred
from the computed error symptoms that immediately initiate the slicing process so that much
of the irrelevant data that does not influence the falsified assertions is automatically cut off.

5. Integrating Assertion-Checking and Trace Slicing

Dynamic assertion-checking and trace slicing can be smoothly combined together to facil-
itate the debugging of ill-defined rewrite theories. In this section, we formulate an assertion-
checking methodology to verify whether a given computation trace C meets the requirements

25



formalized by an assertional specification A. In the case when a functional or system assertion
A € A fails to be satisfied over C, a fragment of C (that exhibits the anomalous behaviour
with respect to A) is returned together with the corresponding set of system/functional error
symptoms. Then, we show how backward trace slicing can take advantage of the computed
error symptoms to produce small, easy-to-inspect computation slices of all those fragments
that have been proven to be erroneous by the assertion-checking methodology.

5.1. Dynamic Assertion-Checking

We first extend the notion of satisfaction of the functional assertions to state equational
simplifications (i.e., equational simplifications that reduce a state into its canonical form),
where the state may contain an arbitrary number of function calls that might eventually be
simplified. For this purpose, we introduce the following auxiliary definitions. Given R =
(X, E, R), with E = AU B, the term t is an equational redex in R if there is (A = p if C') € A
and substitution o such that ¢ =g Ao. Given R and a system state s in 7(X,V), Top(s) is
the set of minimal positions w € Pos(s) such that s|, is an equational redex in R.

Formally,

Top(s) = {w € Pos(s) |s|y is an equational redex and

#uw' < w such that S|y is an equational redex}.

Roughly speaking, Top(s) selects all the positions in Pos(s) that identify those outermost
subterms of s to be equationally simplified into their canonical form in order to compute
sla,p- In other words, given the equational simplification of the state s, S : s _>Z,B sla,B,
each subterm s, with w € Top(s), is reduced to (s|wda,g) in S. This allows functional
assertions to be effectively checked over each equational simplification sl —>X7 5 (Slwla,B)
such that w € Top(s).

Definition 5.1 (extended functional assertion satisfaction) Let R = (X,E,R) be a
rewrite theory, with E = AUB, and let s be a system state in T (X, V) such that Top(s) # {A}.
Let s —>XB s la,p be an equational simplification for the state s in T(3,V). Let A be an

assertional specification for R. We say that F(A) is satisfied in s —>X7B s la,p (in symbols,
s —>Z}B sla,pylE F(A)), iff for each w € Top(s), s|w —>Z,B (sda,B)|lw = F(A).

System and functional error symptoms (whose definitions have been given in Section |3| for
a single system/functional assertion) can be naturally extended to assertional specifications
in the following way.

Definition 5.2 (state error symptoms) Let R = (X, E, R), with E = AU B, be a rewrite
theory. Let A be an assertional specification for R. Let s be a state in T (X,V). Then,

581/5(5’ A) = U fsys(S, @)

0eS(A)

En(s =4 sbam A = (J {6l =8 (5488w Eun (sl = (518,5) > )}

P e F(A),
w € Top(s)
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Example 5.3
Consider the rewrite theory R of Example together with the assertional specification
A composed of the system assertion

©® = < 0:0id : C:Cid | credit : B:Int , suspended : S:Bool >
{ not(isPreferredCustomer(C:Cid)) implies B:Int >= 0 }

and the functional assertion

® = updateSuspension(< U:0id : PreferredCustomer | credit : B:Int ,
suspended : false >) { B:Int < 0 }
— < U:0id : PreferredCustomer | credit : B:Int ,
suspended : false > { true }

Let prent be the state equational simplification issuing from

§= < ’Al : EconomyCar | available : true , rate : 30 >
< ’Cl : Customer | credit : - 160 , suspended : false >
updateSuspension(< ’C2 : PreferredCustomer | credit : - 120 ,

suspended : false >)
< ’RG : Register | date : 0 , rentals : 1 >

that ends into the canonical form

SiA,B: < Al : EconomyCar | available : true , rate : 30 >
< ’Cl : Customer | credit : - 160 , suspended : false >
< ’C2 : PreferredCustomer | credit : - 120 ,
suspended : true >
< ’RG : Register | date : O , rentals : 1 >

Note that pirent includes the following equational simplification

Moo = updateSuspension(< ’C2 : PreferredCustomer | credit : - 120 ,
suspended : false >) _>XB
< ’C2 : PreferredCustomer | credit : - 120 , suspended : true >

for the outermost equational redex of s that is rooted at position 3 € Top(s).
Then,

Eoys (s, A) = {2}
which signals the system error symptom associated with the negative credit of non-preferred

customer ’C1.
Moreover,

gfun(ﬂrenm A) = {(M’CQ) {321})}

since ® is not satisfied in fiyent (and hence in pgy). The computed functional error symptom
allows us to isolate the anomalous suspended flag value in >C2’s data structure, that is,

< ’C2 : PreferredCustomer | credit : - 120 , suspended : true >\3.2_1 = true.
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The notion of satisfaction for an assertional specification in a given computation is then
formalized as follows.

Definition 5.4 (satisfaction of an assertional specification) Let R = (X, E,R), with
E = AU B, be a rewrite theory and C be a computation in R. Let A be an assertional
specification for R. Then the specification A is satisfied in C (in symbols C = A) iff

e for each state s in C that is a canonical form with respect to A modulo B, s = S(A);

e for each state s in C that is not a canonical form with respect to A modulo B, s —>Z B

sha,p)E F(A).

To check an assertional specification A in a given computation C, we can simply traverse
C and progressively evaluate system assertions over states and functional assertions over state
equational simplifications, respectively. Definition formalizes this methodology into the
function check(C, A) that takes as input a computation C and an assertional specification A
and delivers a triple (P, Err, flag) where P is a prefix of C, Err is a set of functional or system
error symptoms with respect to A, and flag € {none, sys, fun}.

Roughly speaking, function check(C,.A) returns (P, Err, flag) as soon as it encounters
either a state or a state equational simplification in which A is not satisfied: P represents a
prefix of C that reaches a state in which a system /functional assertion is violated, Err specifies
the associated error symptom set, and flag declares the nature of the computed symptoms
(fun stands for functional error symptoms, sys for system error symptoms, and the keyword
none indicates that no symptom has been identified).

Definition 5.5 (assertion checking) Let R = (3,E,R), with E = AU B, be a rewrite
theory and C be a computation in R. Let A be an assertional specification for R.

(s L(a,B),0, none) ifC=slap andslapES(A)
(s L(a,B) Esys(5,S(A)), sys)  if C =5 l(ap) and sl B S(A)
(=R C", Brr, flag) ifC=p—kpC and p = F(A)
and (C", Err, flag) = check(Can(u) —% g C', A)
check(C, A) = < (i, Epun (11, F(A)), fun) ifC=p—ppC and plE F(A)
(s »r,B C", Err, flag) ifC=s—=rpC,s=s5lp and
s E S(A) and (C", Err, flag) = check(C', A)
(Safsys (378(-’4))’ SyS) ch =S _>R,B C/7 §=S \L(A,B)
and s = S(A)

where = s —>X 5 S La.B is a non-empty equational simplification for s and Can(p) = s La B.

Example 5.6

Consider the rewrite theory R of Example together with the assertional specification
A and the state equational simplification pirent = S —>z7 5 5 4a,B of Example ﬁ Recall that
Wrent €rroneously suspends the preferred customer ’C2 through the equational simplification
teo included in pireng. This error is pinpointed by the refutation of the functional assertion

d e A.
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Now, by Definition [5.5

CheCk(Mrenta -A) = (Mrenta {(:U’C27 {3.2.1})},fun),

since firent = F(A) where F(A) = {®}, and Epun (trent, F(A)) = {(wee, {3.2.1})}.

The following proposition states that function check can be effectively used to dynamically
check assertional specifications in given computations.

Proposition 5.7 Let R = (X, E, R) be a rewrite theory and C be a computation in R. Let A
be an assertional specification for R. Then, C = A iff check(C,A) = (C, 0, none).

Proof. Let R = (X, E, R) be a rewrite theory and C be a computation in R. Let A be an
assertional specification for K.

(=) We assume that A is satisfied in C, that is, C = A. Hence, by Definition [5.4] for
each state s in C that is a canonical form with respect to A modulo B, s = S(A);
and for each state s in C that is not a canonical form with respect to A modulo B,
s —>Z, B $+a,B)FE F(A). We now proceed by induction on the length of the computation
C.

Base case: C = sy la,p. In this case C consists of the single initial state so | A p, which
is a canonical form with respect to A modulo B. Since A is satisfied in C, we have
so A= S(A). Hence, by Definition we trivially have

check(C, A) = check(so Ia B, A) = (50 4a,B,0, none) = (C, 0, none).

Inductive case 1: C = (sg —>X7B s04AB7 R p C"). In this case, C is a non-empty com-
putation that initially simplifies the non-normalized input term sy by means of the
equational state simplification p = (s —>Z’ 5 S0 4a,B). By inductive hypothesis,
we have that

check(so la,p—pp C', A) = (¢,0, none).

Furthermore, p = F(A) since A is satisfied in C (and hence in p). Therefore,
check(C, A) = check(n =% 5 C', A) = (n =% 5 C', 0, none) = (C,0, none).

Inductive case 2: C = s —p p C'. Since the first rewrite step in C is a rule application,
this implies that s is already in canonical form, that is, s = s | g. Since A is
satisfied in C we have that s = S(A), which implies

slia.BFE S(A). (1)
Also, by inductive hypothesis, it holds that
check(C', A) = (&,0, none). (2)
By combining Claims [1] and [2] we get

check(C, A) = check(s —pp C', A) = (s =g C',0, none) = (C,0, none).
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(<) By contradiction, we assume that check(C,.A) = (C,0, none) and C £~ A. Since A is
not satisfied in C, there exists either a state s in canonical form such that s = S(.A) or
an equational state simplification p such that p & F(A). Thus, by Definition the
function call check(C,.A) delivers a triple (C”, Err, flag) with Err # (). This leads to a
contradiction since we have assumed check(C,A) = (C, 0, none).

The runtime checking methodology formalized in Definition [5.5] can be interpreted either
as an asynchronous (and trace-storing) technique or as a synchronous one (by considering that
the input trace C is lazily generated as successive Maude steps are incrementally consumed
by the calculus). In the following section, we formalize a truly synchronous methodology
where traces, or rather whole search trees, can be stepwisely examined in a forward direction,
reporting a violation at the exact step where it occurs.

5.2. Runtime Assertion-Based Backward Trace Slicing

Given a conditional rewrite theory R = (X, FE, R), with F = A U B, the transition space
of all computations in R from the initial state sp can be represented as a computation treeE
Tr(so). RWL computation trees are typically large and complex objects that represent the
highly-concurrent, non-deterministic nature of rewrite theories.

Our methodology checks rewrite theories with respect to an assertional specification A at
runtime by incrementally generating and checking the computation tree T’z (sg) until a fixed
depth. In fact, the complete generation of TR (sp) is generally not feasible since some of its
branches may be infinite as they encode non-terminating computations. The general analysis
algorithm, which is specified by the routine analyze(sg, R, A, depth), is given in Figure
We use the following auxiliary notation: given a position w of a term t, Pos,(t) = {w.w' |
w.w' € Pos(t)}. The computation tree is constructed breadth-first, starting from a tree T
that consists of a single root node sg. At each expansion stage, the leaf nodes of the current
T are computed by the function frontier(T). Expansion of an arbitrary node s is done by
deploying all the possible Maude computation steps stemming from s that are given by mS(s).
Whenever a Maude step M is produced, it is also checked with respect to the specification A
by calling check(M, A) that computes the triple (P, Err, flag). According to the computed
flag value, the algorithm distinguishes the following cases:

flag = none. No error symptoms have been computed; hence, A is satisfied in the Maude step
M, and M can safely expand the node s by replacing s with the path represented by
M (via the invocation of expand(T, s, M)), thereby augmenting T.

flag = sys. In this case, check returns a set of system error symptoms FErr together with a
computation P (which is a prefix of the Maude step M) that violates a system assertion
of A. The computation so —} ap Pis then generated and backward sliced with respect
to a term slice [*® of the last state of P. This term slice conveys all the relevant information

®In order to facilitate trace inspection, computations are visualized as trees, although they are internally
represented by means of more efficient graph-like data structures that allow common subexpressions to be
shared.
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function analyze(sg, (X, AU B, R), A, depth)

1. T= S0

2. d=0

3. while (d < depth) do

4. F = frontier(T)

5. for each s e F

6. for each M € mS(s)

7. (P, Err, flag) = check(M, A)

8. case flag of

9. none :

10. T = expand(T, s, M)

11. SYs :

12 w = selectSysSymptom(Err)

13 I* = TSlice(last(P), Posy (last(P))

14. return backwardSlice(so —p,a g Ps1*)

15. fun:

16. (t —>X7B tia, B, L) = selectFunSymptom(Err)
17. (tla,B)® = TSlice(tia B,U,cr, Posw(tia, B))
18. return backwardSlice(t =X 5 tia B, (tla B)*)
19. end case

20. end for

21. end for

22. d=d+1

23. end while

24. return T

end

Figure 3: The analyze function.

that we automatically retrieve by using Definition from the (system) error symptom
w selected by the function selectSysSymptom(Err), while all other symbols in [ are
considered meaningless and simply pruned away. This way, the algorithm delivers a
trace slice sje—* P*® that removes from the computation all the information that does
not affect the production of the chosen error symptom.

flag = fun. Some functional assertions have been violated by the considered Maude step M.
Hence, the algorithm selects a functional error symptom (¢ —>Z 5 tla,B, L) and returns

the backward trace slicing of ¢ —>Z g tla,p with respect to a term slice of ¢t |A p that
includes all the subterms of ¢ [ p that are rooted at positions in L. As explained in
Section these subterms indicate possible causes of the assertion violation.

It is worth noting that, in our framework, we do not attach any specific semantics to
selectSysSymptom and selectFunSymptom functions since many selection strategies can be
specified with different degrees of automation and associated tradeoffs. For instance, we can
simply obtain a fully automatic selection strategy (which is the strategy followed by the ABETS
tool) by selecting the first symptom in Err. On the other hand, an interactive strategy can
be implemented by asking the user to choose a symptom at runtime.

Finally, if the analyze function terminates without detecting any assertion violation, then
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a (verified) tree T is delivered that encodes the first depth levels of the computation tree
Tr(so); otherwise, the trace slice of the first computation that is found to violate an assertion
is delivered. When multiple assertions are violated, analyze can be invoked iteratively: i.e.,
we can (manually) run analyze on a sequence of mutations of the original program that fix
(if possible) the violations progressively encountered. The automatization of this strategy is
a forthcoming work.

An example of our methodology at work is shown in Section

Theorem 5.8 (Correctness) Let R = (X, E, R) be a rewrite theory, Tr(so) be the compu-
tation tree for initial state sy € T (3, Var) in R, and A be an assertional specification for R.
Let depth be a natural number. Then, analyze(so, R, A, depth) terminates and

1. if there exists a computation C in Tr(sop) such that C |~ A and length(C) < depth, then
analyze(so, R, A, depth) delivers a backward trace slice Cy,, of a fragment Cpe of C that
violates either a functional or a system assertion in A. Cp,. is computed with respect to
the term slice of the last state of Cpre that includes all subterms correlated to a chosen

error symptom;

2. otherwise, analyze(so, R, A, depth) delivers a tree T that corresponds to the expansion
of the first depth levels of Tr(so).

Proof. Termination of analyze(sg,R,.A, depth) is trivial since the main while-loop is per-
formed at most depth times, and at each iteration it invokes: 1) the terminating backward
slicing algorithm of [I3], and 2) the function check, which is terminating because the execution
in R of the assertional specification is also terminating.

Now, let us prove Claim 1. Function analyze implements a breadth-first visit of the Maude
steps in TR (sp) until an assertion violation occurs or the depth bound has been reached. Since
we assume that there exists C in Tg(so) such that C = A and length(C) < depth, there exists
a (minimum) prefix Cpr of C such that either Cpre = S(A) or Cpre = F(A) that is detected
by analyze. Let us assume that Cpy. = S(A) (the proof of the case Cp = F(A) follows an
analogous argument). Hence, Cpre = 50 =4 g5 P where P is obtained by checking the last
expanded Maude step M, that is, check(M,A) = (P, Err,sys). Let | be the last state in
Cpre- Now, the state [ is a canonical form such that [ = © for some © € S(A). Therefore,
Eoys(1,0) C Err. Let w € &4ys(1,0©) C Err be a selected system error symptom. By Definition
[* = TSlice(l, Posy(l)) computes a term slice {* that includes all of the symbols in the
subterm [|,,. Thus,

backwardSlice(Cpre,1*) = backwardSlice(so —xruap P1°)

is a backward trace slice of Cp. that is computed with respect to a state [ that includes the
subterm [|,, that is univocally correlated to the chosen system error symptom w.

Note that, in the case when there is no computation C in Tr(sp) such that C = A and
length(C) < depth, Claim 2 is trivially proved by construction of the analyze function. In this
case, there is no assertion violation, and thus the algorithm generates a tree 7' by unraveling
all of the Maude steps of Tr(sp) until the bound depth is reached. ]
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The assertion-based trace slicing methodology described in this section is a synchronous
procedure that incrementally executes, checks, and possibly slices Maude computations at
runtime. However, note that an offline, asynchronous procedure (that works on pre-calculated
computations) can be easily derived from our synchronous algorithm with little effort. Actu-
ally, it suffices to provide the whole computation C to be analyzed as input and to stepwisely
check its Maude steps by using the check function in search of assertion failures. When an
assertion violation is detected on a prefix Cp,. of the input computation that reaches the er-
roneous state e, a slicing criterion is then inferred by exploiting the error symptoms that are
associated with the violation, as happened in the synchronous case; finally, a backward trace
slice of Cpr is computed with respect to the considered slicing criterion. Synchronous and
asynchronous modalities have been implemented in a prototypical trace analysis system that
we describe in Section [6l

In the following subsection, we improve our basic methodology by providing a practical
strategy that delivers finer slicing criteria by reducing the number of positions that are worth
tracking to those that appear in selected subformulas of the (post)conditions.

5.8. Improving the inference of the slicing criteria

Without loss of generality, we assume that any logic formula ¢ in a system assertion
S{p} or in a functional assertion I {@w;} — O {pout} is written in conjunctive normal form
©1 A ...\ @n, where A does not occur in any ¢;, ¢ = 1,...,n. Then, a refined strategy for
inferring accurate slicing criteria for an erroneous state e can be formulated as follows:

1. When a system assertion S{¢} with ¢ = p1A...Ag, is refuted, this is because e matches
S (modulo the enriched equational theory) with matching substitution o, while ¢o is
not satisfied. Hence, we sequentially examine the conjuncts ¢;, ¢ = 1,...,n, and for the
first failing conjunct ;, a slicing criterion is synthesized by instantiating the pattern S
With o1ar(p;), Where opyg,(,;) is the restriction of o to the variables that occur in ¢;.

2. In the case when a functional assertion I {p;,} — O {@ou} is violated, an instance [,
of the input template I reduces to a canonical form O, in e, and one of the following
two cases occurs:

(a) O, does not equationally match the associated instance O(0,0,yt) of the output
template O; in this case, the slicing criterion is computed by applying the mod-
ular order-sorted least general generalization algorithm of [I3] to gather up all of
the mismatches (modulo the considered equational theory) between the erroneous
canonical form O, and O(0i,00ut) (see [20] for full details).

(b) O, does equationally match O(c,0 4t ), but all of the corresponding matchers falsify
the formula ¢,,; in this case, the methodology proceeds analogously to case 1
(system assertions) and synthesizes the slicing criterion by examining the failing
conjuncts of ¢,,+ systematically.

In the following section, we describe the assertion-based, dynamic analyzer ABETS that
implements the slicing methodology for (Full) Maude theories proposed in this article.
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6. Implementation

Our assertion-based, dynamic trace analysis methodology has been implemented in the
prototype tool ABETS (Assertion-BasEd Trace Slicer), which is publicly available at http:
//safe-tools.dsic.upv.es/abets. For implementing the exploration capabilities of ABETS,
we reused (part of) the inspection machinery of the dynamic exploration framework ANIMA
[49] that was developed in previous work [I5]. Likewise, the slicing-based analysis capabilities
of ABETS (and ANIMA) are rooted in the trace (and program) slicing procedures developed
in [13| [48], which were first implemented in the dynamic slicing tool iJULIENNE [50]. One
of the main novelties of ABETS with respect to previous (ANIMA and ¢JULIENNE) systems
is that it has been implemented to run at the Core Maude and Full Maude levels, while the
need to invoke Full Maude is automatically inferred so that high-performance analyses can be
achieved for theories that do not require Full Maude capabilities.

The architecture of ABETS is depicted in Fig-
ure [] and consists of the following components:  Rewriting Logic Trace Slice
(i) a Maude-based slicer and constraint-checker Specification  Initial State
core that consists of about 400 Maude function Assertions Bound
definitions (approximately 3500 lines of source i i
code) that can run at both Core Maude and
Full Maude levels interchangeably; (ii) a scalable, ABETS Client
high-performance NoSQL database powered by I
MongoDB that endows the tool with memoiza-
tion capabilities in order to improve the response . _]’f‘z(:[_{ip:l:_)l_ _______
time for complex and recurrent executions; (iii) a .
RESTful Web service written in Java that is ex- ABETS Web Service
ecuted by means of the Jersey JAX-RS API; and I
(iv) an intuitive user interface that is based on ABETS Core
AJAX technology and written in HTML5 canvas

and Javascript.

Gi.ven' a rewrite theory R, runtime assert%on Figure 4: ABETS architecture.
checking is performed in ABETS by first wrapping
R, via inclusion, in a system module PRED(R) that
also contains the extra predicates the user may need to define new formulas. Functional and
system assertions are given sorts in the functional module ASSERTION

MongoDB

fmod ASSERTION is
sorts sAssertion fAssertion Assertion .
subsorts sAssertion fAssertion < Assertion .

op _/\_ : Bool Bool -> Bool [ ctor assoc prec 125 gather (e e) ]
op _‘{_‘} : Universal Bool -> sAssertion [ ctor poly (1) ]
op _‘{_F>_‘{_‘} : Universal Bool Universal Bool -> fAssertion
[ ctor poly (1 3) ]
endfm

which is also included in PRED(R). This hierarchical setup allows assertions specifications in
PRED(R) to be directly parsed by means of Maude’s metaParse command, resulting in a list
A of (system and functional) assertions.
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Given a computation C in R, for asynchronous checking ABETS proceeds by incrementally
consuming Maude steps (of C) while checking the assertions in A that are relevant to the
step. In contrast, for the synchronous case, we distinguish two operation modes, depending
on how computations are dynamically generated. The first mode consists of a step-by-step
generation of a computation C that follows Maude’s internal strategy. Each time a Maude
step is generated, the satisfaction of A is checked, which is similar to the asynchronous case.
The second mode allows a fragment of the whole computation tree to be deployed up to a
given depth d that is measured in Maude steps. Also in this case, the satisfaction of A is
checked at each Maude step.

In the event that an assertion is falsified at state s,, the dynamic checking is immediately
stopped and ABETS delivers a (simplified) counter-example trace. As explained in Section
for system assertions the simplified trace is computed as the backward slicing of the trace from
the initial state sg to s, (with respect to a slicing criterion that is automatically inferred by
matching the discordant subterm of s,, with the state pattern of the falsified assertion). As for
functional assertions, the delivered counter-examples consist of the equational simplification
trace for the outermost term that is responsible for the falsification. In this case, the slicing
criteria is automatically obtained as the discrepancy between the normal form that is expected
and the normal form that is actually computed. This discrepancy is calculated by using the
least general generalization algorithm of [18] that was first implemented in ACUOS [51], which
has been coupled into the ABETS core.

The asynchronous mode is preferable for the debugging of previously-identified faulty ex-
ecutions. Since this mode avoids having to reexecute the program, it is the lightest of the
three checking modes. While the synchronous tree-checking mode is useful for analyzing all
the non-deterministic paths of a non-confluent program execution at the same time, the syn-
chronous trace-checking mode is the best to debug deterministic executions or (arbitrarily
chosen) non-deterministic computations of non-confluent programs. An upper bound is nec-
essary to finitize the analyses in the synchronous checking modes, which is typically based on
counting the elapsed time or the number of rewrite steps. For the synchronous trace-checking
mode, we have set 250 rewrite steps as the upper bound, mainly because trace formatting is
rather time-consuming (the instrumentation of a trace with 250 rewrite steps can result in
thousands of instrumented rewrite steps that also need to be properly formatted to be out-
put). Nevertheless, offline (console) checking can deal with much higher bounds, especially
when formatting is dispensed. As for the synchronous tree-checking mode, we have set two
different bounds: the first one limits the depth of the deployed computation trees to 10, while
the second one limits the number of nodes that can be checked to 100K.

Finally, as we mentioned in Section [2 object-oriented modules are just syntactic sugar
in Maude and are internally transformed into system modules for execution purposes. In
object notation, object attributes do not need to be explicitly written in the rules when they
remain unchanged, which overcomes the classical annoyance of expressing invariance or frame
properties in algebraic specifications (i.e., that those parts of a state that are not affected by
a change remain unchanged). However, these attributes do appear in (desugared) program
states and computation traces. In order to simplify object trace slices to the fullest and to
deal effectively with frame properties by mimicking attribute hiding, ABETS is endowed with
refined matching and filtering procedures that are automatically activated when dealing with
object modules and are transparent to the user.

35



6.1. ABETS Features
These are the main features provided by ABETS:

1. Constraint checking. ABETS implements the analysis technique in this paper in both the
asynchronous modality and the two synchronous modes, previously described. Whenever
an assertion fails to be satisfied, in all cases, the user is given an automatically generated
counterexample trace slice that he/she can fully inspect, query, and slice further.

2. Automatic slicing. The tool is endowed with a (forward and backward) incremental,
interactive trace slicer, which allows the user to greatly simplify any execution trace
that falsifies at least one of the constraints. In order to incrementally unmask the bugs
that are responsible for the errors, at each run, the slicing criterion is automatically
inferred with respect to the first non-satisfied constraint.

3. Interactive navigation. Computations and computation slices can be easily and thor-
oughly inspected by navigating the traces and by accessing all of their available informa-
tion, which includes the details of the instrumentation of each Maude step. Specifically,
for each instrumented Maude step M, ABETS shows the rule and (possible) equations
applied in M together with their computed matching substitutions, redexes, and con-
tractums.

All this information is accessible in both source and meta-level representations. More-
over, for conditional rewrite steps, an in-depth analysis of the condition proofs can be
accessed through the inspect condition option of the context menu.

4. Program slicing. In addition to the simplification achieved by slicing execution traces,
ABETS offers the user the possibility to compute a dynamic program slice that only
contains the potentially faulty rules or equations [I3]. This feature is particularly useful
in the case when a functional assertion fails, since the relevant equations are isolated
from a presumably large, complex program that consists of many modules.

6.2. ABETS in action

Maude programs can be uploaded in ABETS as simple .maude or .fm files. Some prede-
fined specifications are provided with the tool for demonstration purposes, including the car
rental system of Example and an assertional specification Ayent that contains the system
assertion © of Example [3.4] and the functional assertion ® of Example Let us consider
the synchronous checking modality that non-deterministically expands all Maude steps that
originate from the initial state:

’Al : EconomyCar | available : true , rate : 30 >

A3 : MidSizeCar | available : true , rate : 45 >

A5 : FullSizeCar | available : true , rate : 70 >

’C1 : Customer | credit : 50 , suspended : false >

’C2 : PreferredCustomer | credit : 100 , suspended : false >
’RG : Register | date : 0 , rentals : 0 >

So —

AN N AN AN AN A

This is achieved in ABETS by calling analyze(Rrent, Arent, 1), where Ryent is the rewrite
theory specified by the RENT-A-CAR-ONLINE-STORE object module. The screenshots shown in
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PROVIDE THE MAUDE INPUT PROGRAM AND INPUT STATE OR TRACE

(omod RENT-A-CAR-ONLINE-STORE is
pr CONVERSION .
pr QID .

1

2

3

4

5 subsort Qid < 0id .

6

7 class Register | rentals : Nat , date : Nat .
8

class Customer | credit : Int, suspended : Bool .

9 class Car | available : Bool, rate : Nat .

10 class Rental | deposit : Nat, dueDate : Nat, pickUpDate : Nat, customer : 0id, c§
11 class PreferredCustomer .

12 subclass PreferredCustomer < Customer .

13

14 class EconomyCar .

15 class MidSizeCar .

16 class FullSizeCar .

17 subclasses EconomyCar MidSizeCar FullSizeCar < Car .

18

19 vars U C R RG : 0id .
20 vars CREDIT AMNT : Int .
21 vars TODAY PDATE DDATE RATE DPST RNTLS : Nat .

22

23 rl [new-day] : < RG : Register | date : TODAY >

24 => < RG : Register | date : TODAY + 1 > .
25

26 crl [3-day-rental] :

chronous checking v Generate

< 'Al : EconomyCar | available : true , rate : 30 > < 'A3 : MidSizeCar | available
true , rate : 45 > < 'A5 : FullSizeCar | available : true , rate : 70 > < 'Cl : Cust

omer | credit : 50 , suspended : false > < 'C2 : PreferredCustomer | credit : 100 ,

suspended : false > < 'RG : Register | rentals : 0 , date : 0 >

Figure 5: Input Phase I.
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PROVIDE THE EXTRA PREDICATES AND SET OF ASSERTIONS TO CHECK

Add the extra predicates used in your assertions:
(mod RENT-A-CAR-ONLINE-STORE-PRED is
inc RENT-A-CAR-ONLINE-STORE .
sorts sAssertion fAssertion Assertion
subsorts sAssertion fAssertion < Assertion .
op /\_ : Bool Bool -> Bool [ ctor assoc prec 125 gather (e e) ]
op "{ "} : Universal Bool -> sAssertion [ ctor poly (1) ]
op "{ "}-> "{ "} : Universal Bool Universal Bool -> fAssertion [ ctor poly (1 3) ]

op isPreferredCustomer : Cid -> Bool .
eq isPreferredCustomer (PreferredCustomer) = true .
eq isPreferredCustomer(U:Cid) = false [owise] .

endm)

Based on your program and predicates, specify your assertions:

< 0:0id : C:Cid | credit : B:Int , suspended : S:Bool > { not(isPreferredCustome
r(C:Cid)) implies B:Int >= 0 }

updateSuspension(< U:0id : PreferredCustomer | credit : B:Int , suspended : false >)
{ B:Int < 0 } -> < U:0id : PreferredCustomer | credit : B:Int

{ true }

, suspended : false >

Starting from the provided input state, check your assertions in the dynamically computed:

execution tree, up to the following tree depth (in Maude steps): v 10
=

Figure 6: Input Phase II.

Figure [f] and Figure [6] illustrate the initial, input phase for the parameters Ryent and Arent,
respectively.

By pressing the CHECK button, the assertion checking algorithm starts and immediately
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discovers that © is not satisfied in the following Maude step M

3—day—rental
So —

’Al : EconomyCar | available : false , rate : 30 >

A3 : MidSizeCar | available : true , rate : 45 >

A5 : FullSizeCar | available : true , rate : 70 >

’C1 : Customer | credit : - 40 , suspended : false >

’C2 : PreferredCustomer | credit : 100 , suspended : false >
RO : Rental | car : Al , customer : ’Cl , deposit : 90 ,
dueDate : 3 , pickUpDate : O , rate : 30 >

< ’RG : Register | date : O , rentals : 1 >

AN N AN AN AN A

since ’C1’s credit becomes negative after the application of the 3-day-rental rule in s that
allows ’C1 to rent car ’Al.

Then, a system error symptom is automatically computed by the tool, which unambigu-
ously signals the anomalous subterm

< °Cl : Customer | credit : - 40 , suspended : false >
of the last state of M, and produces the associated term slice

[*= e o) @3 < o4 : @5 | credit : - 40 , o5 > o7 eg e

Finally, the algorithm automatically generates the backward trace slice of M with respect
to [°®, that is,

< o9 : @11 | available : true , rate : 30 > o5 o4 < o4 : e5 | credit : 50 ,
suspended : false > ®13 @79

-

e o) e3 < o4 : e5 | credit : - 40 , eg > e7 eg eg

which suggests an erroneous implementation of the 3-day-rental rule. Indeed,

3-day-rental authorizes any car rental to all customers, even when the requested deposit
exceeds the residual customer credit, which contradicts the property asserted by the system
constraint ©.

If we re-execute the analysis after correcting the buggy 3-day-rental rule in the
RENT-A-CAR-ONLINE-STORE module, we can also discover a violation of the functional assertion
® that detects an anomalous behaviour of function updateSuspension: in fact, updateSuspension
suspends every customer with debts (i.e., a negative credit), while preferred customers should
never be suspended. Details of the refuted assertion are attained by selecting the falsified
assertion option from the tool menu, as shown in Figure[7, The delivered trace slice is shown
in Figure 8| which displays a tabular view of the trace (also provided by our tool), where
the achieved reduction is shown (97%). In order to simplify the displayed view of the trace,
we note that subindices of e-variables are hidden in our implementation; they can be shown
by selecting the detailed trace view. After the diagnosis, runtime checks can be turned off to
avoid any execution overheads.

Finally, by running the program slice option of ABETS, all program statements that can
(potentially) cause the erroneous program behavior are automatically identified (see Figure[9)).
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Falsified assertion information X

Assertion

updateSuspension(< U : PreferredCustomer | credit : B , suspended :
false >) { B < 0 } -> < U : PreferredCustomer | credit : B , suspen
ded : false > { true }

Type

Functional

Input Substitution (as obtained from input/pre)

B/ 90 + 10 - 126
U/ 'c2

Input Substitution (normalized, as applied to output/post)

B/ - 26
U/ 'c2

Figure 7: Description of the falsified assertion ®.

6.3. FExperimental evaluation

To evaluate the performance of the ABETS system, we benchmarked the system on the
following collection of (Core and Full) Maude programs, which are all available within the
ABETS Web platform (each program has been coupled with a suitable assertional specification,
which is also available at the system’s website):

e Bank model, a conditional Maude specification that models a faulty, distributed banking
System.

e Blocks World, the typical Al planning problem, which consists of producing one or more
vertical stacks of blocks (placed on a table) that can be moved by means of a robot arm.

e BRP, the Bounded Retransmission Protocol (BRP) [52], which is a data link protocol
developed and used by Philips Electronics that can be thought of as a variant of the
alternating bit protocol.

e Dekker, a Maude specification that models a faulty version of Dekker’s algorithm, one
of the earliest solutions to the mutual exclusion problem which appeared in [53].

e Maze, a non-deterministic Maude specification that defines a maze game in which multi-
ple players must reach a given exit point by walking or jumping, where colliding players
are eliminated from the game [15].
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Trace information

State Label Trace Trace Slice

< 'Al : EconomyCar | available: true , rate: 30 > < 'A3 : MidSize
Car | available: true , rate: 45 > < 'A5 : FullSizeCar | available: t
1 'Start rue , rate: 70 > < 'C1l: Customer | credit: 50 , suspended: fals

e > < 'C2: PreferredCustomer | credit: 100 , suspended: fals

e > < 'RG: Register | rentals: 0 , date: 0 >

< 'A3 : MidSizeCar | available: true , rate: 45 > < 'A5 : FullSizeC
ar | available: true , rate: 70 > < 'C1 : Customer | credit: 50 , s
uspended: false > < 'C2 : PreferredCustomer | credit: 100 - 9

0 , suspended: false , none > < 'Al : EconomyCar | available: fa
Ise , rate: 30 , none > < 'RG : Register | rentals: 0 + 1 , dat

e: 0 ,none > < qid( "R" + string(0,10) ) : Rental | pickUpDat

e: 0 , dueDate: 0 + 3 , car: 'Al , deposit: 90 , customer: 'C2 , r
ate: 30 >

4 3-day-rental

< 'Al : EconomyCar | available: false , rate: 30 > < 'A3: MidSiz
eCar | available: true , rate: 45 > < 'A5 : FullSizeCar | availabl
e: true , rate: 70 > < 'C1 : Customer | credit: 50 , suspended: f
19 new-day alse > < 'C2: PreferredCustomer | credit: 10 , suspended: fals
e > < 'RO : Rental | car: 'Al , customer: 'C2 , deposit: 90 , due
Date: 3 , pickUpDate: 0 , rate: 30 > < 'RG : Register | dat
e:0+ 1 ,rentals: 1 , none >

< 'Al : EconomyCar | available: false , rate: 30 > < 'A3 : MidSiz
eCar | available: true , rate: 45 > < 'A5 : FullSizeCar | availabl
e: true , rate: 70 > < 'Cl: Customer | credit: 50 , suspended: f
23 new-day alse > < 'C2: PreferredCustomer | credit: 10 , suspended: fals
e > < 'RO: Rental | car: 'Al , customer: 'C2 , deposit: 90 , due
Date: 3 , pickUpDate: 0 , rate: 30 > < 'RG : Register | dat
e:1+1 ,rentals: 1 , none >

< 'Al : EconomyCar | available: false , rate: 30 > < 'A3: MidSiz
eCar | available: true , rate: 45 > < 'A5 : FullSizeCar | availabl
e: true , rate: 70 > < 'C1: Customer | credit: 50 , suspended: f
27 new-day alse > < 'C2: PreferredCustomer | credit: 10 , suspended: fals
e > < 'RO: Rental | car: 'Al , customer: 'C2 , deposit: 90 , due
Date: 3 , pickUpDate: 0 , rate: 30 > < 'RG : Register | dat
e:2+1 ,rentals: 1 , none >

< 'Al : EconomyCar | available: false , rate: 30 > < 'A3: MidSiz
eCar | available: true , rate: 45 > < 'A5 : FullSizeCar | availabl
e: true , rate: 70 > < 'Cl : Customer | credit: 50 , suspended: f
33 new-day alse > < 'C2: PreferredCustomer | credit: 10 , suspended: fals
e > < 'RO: Rental | car: 'Al , customer: 'C2 , deposit: 90 , due
Date: 3 , pickUpDate: 0 , rate: 30 > < 'RG : Register | dat

e: 3+ 1 ,rentals: 1 , none >

< 'A3 : MidSizeCar | available: true , rate: 45 > < 'A5: FullSizeC
ar | available: true , rate: 70 > < 'C1 : Customer | credit: 50 , s
uspended: false > updateSuspension(< 'C2 : PreferredCustome updateSuspension(< ¢ : « | credit: 10 - 126 + 90 , suspe
r | credit: 10 - 126 + 90 , suspended: false , none >) < 'Al:E |nded: false , * >)

conomyCar | available: true , rate: 30 , none > < 'RG : Registe
r | date: 4 , rentals: 1 , none >

39 late-return

< 'A3 : MidSizeCar | available: true , rate: 45 > < 'A5 : FullSizeC
ar | available: true , rate: 70 > < 'C1: Customer | credit: 50 , s
44 suspend uspended: false > < 'C2 : PreferredCustomer | credit: - 26 , non <e:e]|e+,+,suspended: true >
e, suspended: true > < 'Al : EconomyCar | available: true , rat
e: 30 , none > < 'RG: Register | date: 4 , rentals: 1 , none >

Total size: 2410 76

Reduction Rate: 97%

Figure 8: Compact view of the computed Trace Slice after refuting the functional assertion ®.

e Philosophers, the classical Dijkstra dining philosophers concurrency example that deals
with resource access synchronization.

e Rent-a-car (fm), the leading example of this article, a Full Maude object-oriented system
that models the logic of the faulty, distributed, object-oriented, online car-rental store

of Example
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Program slice

op updateSuspension : Object -> Object .

ceq [suspend] : updateSuspension(
< U : Customer | credit : CREDIT , suspended : false >) =
< U : Customer | credit : CREDIT , suspended : true >
if (CREDIT < 0)

endom)

Figure 9: Computed Program Slice.

e Stock Erxchange, a rewrite theory that specifies a simplified stock exchange concurrent
system in which traders operate on stocks via limit orders that are used to set a trading
threshold (price limit).

e Stock Exchange (fm), a Full Maude, object-oriented version of the Stock Exchange ex-
ample.

o Webmail, a Maude specification borrowed from [54] that models a webmail application
that provides typical login/logout functionality, email management, system administra-
tion capabilities, etc.

In this section, we focus on evaluating the performance of the assertion-checking capabili-
ties of ABETS, since the empirical evaluation of the underlying trace slicing process has been
already described in [I3]. Table |l summarizes the preliminary results that we achieved.

Experiments have been conducted on a 3.3GHz Intel Xeon E5-1660 with 64GB ROM by

applying the following modus operands.

1. For each program, by using the metaRewrite command we force (Full or Core) Maude
to generate four execution traces of increasing length (k = 10, 50, 100, 500 rewrite steps)
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using its internal, default rewrite strategy, and we record the corresponding computation
times.

2. For each execution trace, we record the number of assertion checks performed by the
ABETS assertion-checking engine when synchronously checking the assertional specifi-
cation of the corresponding program (the column checks in Table .

3. We compute the average slowdown (in seconds) of five independent measurements of the
execution time (in seconds) required for Point 2 with respect to Maude’s computation
times of Point 1.

Trace length £ = 10 Trace length k£ = 50 Trace length k£ = 100 Trace length k£ = 500
checks | slowdown (in s) | checks | slowdown (in s) | checks | slowdown (in s) | checks | slowdown (in s)
Bank model 44 0.004 204 0.018 404 0.03 2004 0.098
Blocks World 19 0.001 59 0.002 109 0.004 509 0.041
BRP 22 0.001 102 0.003 202 0.006 1002 0.023
Dekker 22 0.002 102 0.01 202 0.021 1002 0.1
Maze 88 0.003 687 0.034 1437 0.073 7437 0.384
Philosophers 22 0.001 102 0.004 202 0.008 811 0.035
Rent-a-car (fm) 33 0.004 153 0.011 303 0.024 1503 0.11
Stock Ex. 33 0.002 153 0.01 303 0.019 1503 0.093
Stock Ex. (fm) 44 0.004 204 0.027 404 0.071 2004 1.248
Webmail App 22 0.006 102 0.027 202 0.056 1002 0.275

Table 1: ABETS synchronous assertion-checking performance analysis.

Our experimental results indicate that the overhead due to assertion checking is reasonably
low. Actually, our figures reveal very small slowdowns (0.1 ms/checking on average). However,
the incurred overhead obviously depends on the number of assertions that are contained in the
specification and, specially, the degree of instantiation of their associated patterns: patterns
that are too general can result in a large number of (often) unprofitable evaluations of the
formula since the number of possible B-matchings with the system’s states can grow very
quickly. This is evident in the Maze example of Table [l where one of the assertions contains a
very general pattern that matches a term that commonly appears in the trace, thus reaching
up to 7,437 evaluations of the corresponding formula. Of course, the more instantiated the
assertions, the better the performance.

7. Conclusions and Further Work

Checking logical assertions is a popular approach to error discovery. We have formalized
a framework that integrates dynamic slicing and runtime assertion checking to help diagnose
programming errors in rewriting logic theories. Our methodology smoothly blends in with the
general framework for the analysis and exploration of rewriting logic computations that we
developed in previous research [I5]. The main improvement obtained is that no error symptom
must be separately identified because the assertions (or more precisely, their runtime checks)
are used to synthesize deft slicing criteria. In other words, false assertions not only flag error
symptoms, but, more importantly, they are used as the starting point for automated backward
slicing.
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The proposed methodology has been implemented in the ABETS prototype tool, which
provides a skillful and highly dynamic environment for the runtime assertion-checking of RWL
theories. Our preliminary experience has shown that the synergistic capabilities of ABETS
can provide a very powerful Swiss Army knife in error diagnosis and debugging by abetting
the analyst’s attention to suspicious (but otherwise possibly overlooked) aspects of the code.

The techniques we have developed are adequately fast and usable, with a performance
that is comparable to Maude itself when applied to programs of several hundred lines, yet
there are certainly several ways that our prototype implementation can be improved. For
instance, two issues of interest would be to refine the inferred slicing criteria by enhancing the
processing of postconditions to reduce the number of variables that are worth observing and
also to add further flexibility to the selection of the violated assertion(s) to consider. Actually,
our methodology can be straightforwardly adapted to infer all slicing criteria for all failing
assertions; however, from our own experience, we find it is overwhelming for the user to receive
all (alternative) criteria together at once. Instead, we are thinking of a kind of ‘best fit’ notion
that allows us to prioritize the criterion(a) that will most likely lead to fixing a given error
with less effort.
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