

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 This is the author’s version of a work that was accepted for publication in Computer Physics
Communications. Changes resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently published in Computer
Physics Communications, vol. 209, (2016). DOI 10.1016/j.cpc.2016.08.014.

http://dx.doi.org/10.1016/j.cpc.2016.08.014

http://hdl.handle.net/10251/81255

Elsevier

Lamas Daviña, A.; Ramos Peinado, E.; Román Moltó, JE. (2016). Optimized analysis of
isotropic high-nuclearity spin clusters with GPU acceleration. Computer Physics
Communications. 209:70-78. doi:10.1016/j.cpc.2016.08.014.

Optimized analysis of isotropic high-nuclearity spin

clusters with GPU accelerationI

A. Lamas Daviña, E. Ramos, J. E. Roman∗

D. Sistemes Informàtics i Computació, Universitat Politècnica de València, Camı́ de
Vera s/n, 46022 València, Spain

Abstract

The numerical simulation of molecular clusters formed by a finite number
of exchange-coupled paramagnetic centers is very relevant for many appli-
cations, modeling systems between molecules and extended solids. In the
context of realistic scenarios, many centers need to be considered, and thus
the required computational effort grows very fast. In a previous work [E.
Ramos et al., Comput. Phys. Commun. 181 (2010)], a set of parallel pro-
grams were presented with standard message-passing parallelization (MPI)
for both anisotropic and isotropic systems. In this work, we have further de-
veloped the code for isotropic models. On one hand, the computational cost
has been significantly reduced by avoiding some of the matrix diagonaliza-
tions, corresponding to blocks with negligible contribution for the particular
configuration. On the other hand, we have extended the parallelization in
order to exploit available graphics processing units (GPUs). The new MPI-
GPU paradigm reduces the computational time by at least one additional
order of magnitude and enables the resolution of larger problems.

Keywords: Molecular magnetism, High-nuclearity spin clusters,
Large-scale eigenvalue problem, Graphics processing units (GPUs)

IThis work was partially supported by the Spanish Ministry of Economy and Com-
petitiveness under grant TIN2013-41049-P. Alejandro Lamas Daviña was supported by
the Spanish Ministry of Education, Culture and Sport through a grant with reference
FPU13-06655.

∗Corresponding author.
Email addresses: alejandro.lamas@dsic.upv.es (A. Lamas Daviña),

ramos@dsic.upv.es (E. Ramos), jroman@dsic.upv.es (J. E. Roman)

Preprint submitted to Computer Physics Communications October 18, 2016

1. Introduction

This work is concerned with numerical simulation in the context of molec-
ular magnetism, where the goal is to analyze molecule-based magnetic mate-
rials with interesting properties that are becoming important in applications
such as high-density information storage. In particular, we focus on magnetic
clusters, that is, molecular assemblies of a finite number of exchanged-coupled
paramagnetic centers. These assemblies are midway between small molecu-
lar systems and the bulk state, being possible to model them as the former,
with quantum mechanical principles, rather that with the simplifications re-
quired for the latter. This allows for deeper understanding of the magnetic
exchange interaction. However, when analyzing clusters with a growing num-
ber of exchanged-coupled centers, the complexity soon becomes prohibitive
due to the lack of translational symmetry within the cluster.

A flexible methodology for studying high nuclearity spin clusters is based
on the use of the technique of irreducible tensor operators [1, 2]. This ap-
proach enables the evaluation of eigenvalues and eigenvectors of the system,
then deriving from them the magnetic susceptibility, the magnetization, as
well as the inelastic neutron scattering spectra. This functionality is provided
by the Magpack package [3], covering both anisotropic exchange interac-
tions as well as the simpler isotropic case. Magpack is a set of serial Fortran
codes, whose scope of applicability is limited to very small number of cen-
ters, due to the high computational cost associated with the creation of the
Hamiltonian matrices followed by their diagonalization. The dimension of
these matrices grows rapidly with the number of spin cluster basis functions.

In a previous work [4], we reworked the Magpack codes in order to be
able to cope with large-scale problems, with many spins. The newly devel-
oped codes are parallel, hence enabling the use of large supercomputers, and
are based on carrying out a partial diagonalization of the system matrices
by means of SLEPc, the Scalable Library for Eigenvalue Problem Compu-
tations [5]. In this way, the computational load is shared across the various
processors participating in the parallel computation, and on the other hand,
only a modest percentage of the eigenvalues and eigenvectors is obtained,
thus avoiding many superfluous calculations. Still, the computational re-
quirements can be huge and in this work we present further developments to
improve the efficiency as much as possible.

This work focuses on ParIso, the parallel code for coping with isotropic
spin clusters (although the developments of section 4 could be easily ex-

2

tended to the anisotropic case). We have made two major improvements
in this code. On one hand, we have added a preprocessing step aiming at
reducing the number of partial diagonalizations required during the compu-
tation. This step computes bounds for the spectrum of the submatrices in
which the main Hamiltonian matrix decomposes, and estimates the number
of eigenvalues to compute in each submatrix. With this strategy, the com-
putation provides equally satisfactory results with a considerable decrease
of the time of calculation, although we will discuss that the way in which
the number of eigenvalues is estimated may not work in all cases. On the
other hand, we have extended the parallelization paradigm in order to ex-
ploit available graphics processing units (GPUs) that are available in many
supercomputers nowadays. This represents a finer level of parallelism, to be
added to the already mentioned coarse-grain parallelism, that provides an
additional speedup factor that can significantly reduce the turnaround time
of the computation.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of the ParIso code. In section 3 we describe how to preprocess
the Hamiltonian blocks and avoid some of the diagonalizations, based on the
population value indicated by the user. In section 4 we discuss the main issues
related to parallelization of the codes, with GPU as well as with a hybrid
GPU-MPI parallelization, and show results concerning the performance of
the developed programs. We wrap up with some concluding remarks.

2. The ParIso code

Consider a spin cluster composed of an arbitrary number of magnetic
sites, N , with local spins. In order to obtain the set of spin cluster basis
functions, the local spins are successively coupled,∣∣∣S1S2

(
S̃2

)
S3

(
S̃3

)
....SN−1

(
S̃N−1

)
St

〉
=
∣∣∣(S̃)St

〉
(1)

where S̃i refers to the intermediate spin values S1 + S2 = S̃2, S̃2 + S3 = S̃3,
etc., (S̃) is the full set of S̃i (N − 1 intermediate spin states) and St is the
total spin [1]. The system matrix can be evaluated by applying the Hamil-
tonian to the created basis set, by means of the irreducible tensor operators
(ITO) technique. The advantage of this methodology is that it allows us to
completely take into consideration all kinds of magnetic exchange interac-
tions between the metal ions comprised in clusters of arbitrary size. This

3

is done by expressing the contributions to the spin Hamiltonian (expressed
in terms of the conventional spin operators) as a function of the generalized
Hamiltonian (written in terms of ITO’s).

In this paper we focus on the ParIso code [4], that computes the quan-
tities mentioned above for isotropic systems, that is, it generates the spin
functions of the system, calculates the energy matrix and obtains its eigen-
values and eigenvectors, all this in parallel. Isotropic systems are a special
case where only the isotropic and biquadratic exchange terms are present in
the spin Hamiltonian. These terms have the property of not mixing func-
tions with different quantum number S and not breaking the degeneracy of
levels with the same S and different M . This decouples the energy matrix
into several submatrices, one per each different S quantum number. Taking
into account the ITO technique it is possible to eliminate this M quantum
number and reduce the size of each S submatrix by a factor of 2S + 1. No
Zeeman terms are present in this case, during the diagonalization, but would
be included after it.

Thus, in the case of isotropic systems, the energy matrix can be written
as a block diagonal matrix,

A =


A1

A2

. . .

Ab

 , (2)

where each of the b blocks is a symmetric sparse matrix of different dimension.
Finding the leftmost eigenvalues of A amounts to computing the leftmost
eigenvalues of each of the blocks, Ai. Thus, the structure of the program
ParIso is geared to this block structure, where one partial diagonalization
is carried out per block.

The main steps of the computation are the following:

1. Setup of data containing the information of the cluster.

2. For each diagonal block, i = 1, . . . , b, do:
(2.1) Generation of starting spin functions.
(2.2) Evaluation of energy submatrix, Ai. All nonzero elements are

computed and assembled into the matrix.
(2.3) Partial diagonalization of Ai. Given the eigenvalue relation Aix =

λx, a subset of the spectrum is computed, corresponding to the
leftmost eigenvalues.

4

3. Generation of final results.

The partial diagonalization of each matrix block Ai is carried out by
the thick-restart Lanczos method, as detailed in [4]. In particular we use
the implementation provided by SLEPc, the Scalable Library for Eigenvalue
Problem Computations [5], a software package for the solution of large-scale
eigenvalue problems on parallel computers. SLEPc provides a collection of
eigensolvers for different kinds of eigenvalue problems. For computing ex-
treme eigenvalues of symmetric matrices, one of the most effective methods
is thick-restarted Lanczos [6]. In SLEPc, this solver includes the possibil-
ity of specifying the mpd parameter (maximum dimension of the projected
problem), described in [4], that enables the computation of a large number
of eigenpairs in chunks, by locking eigenpairs converged at each restart. This
feature is missing in other software such as ARPACK [7].

SLEPc is built on top of PETSc, the Portable, Extensible Toolkit for
Scientific Computation [8]. From the software engineering perspective, both
PETSc and SLEPc have a modern design, that allows the application pro-
grammer to work with abstract data objects and solvers, without knowing
the details of internal data structures. This confers the software interesting
properties such as scalability to a large number of processors and portability
to a wide range of parallel platforms, including those having GPU devices.
This latter feature will be exploited in section 4.

3. Optimization of spin eigenanalysis

In the ParIso code, the individual blocks of matrix A in (2) are treated
separately. The dimensions of these blocks vary widely, ranging from 1 to a
hundred thousand or even more, and the percentage of nonzero elements of
each (large) block is about 1–2%. The generation of the matrix is made sub-
matrix by submatrix (each submatrix is a spin energy). Not all submatrices
need to be in memory simultaneously, since after generating one submatrix
it is possible to compute its partial diagonalization and then the matrix is
no longer needed and can be destroyed. For all these reasons, we are able to
calculate much larger systems than in the anisotropic case.

The optimization in ParIso that we introduce in this section tries to
avoid the computation associated with those blocks that are not going to
contribute significantly to the aggregated result. This allows a drastic re-
duction of the time necessary for the overall execution. The rationale is that

5

Lanczos methods can provide robust bounds for the spectrum of each of the
submatrices with a relatively small cost. Based on the location of the first
and last eigenvalues of each block, we can discard some of the blocks if they
lie outside the range of interest specified by the user.

The resulting algorithm performs the following steps:

1. In a first pass, the program traverses all the submatrices and, for each
of them, it calculates the first and last eigenvalue, filling a table with
the information obtained for all blocks.

2. From the table of minimum and maximum eigenvalues, the program de-
termines a point of energetic cut depending on the value of population
to be considered (provided as a user input parameter).

3. With the cut point and the dimension of each submatrix, the code de-
termines how many eigenvalues are required in each of them. A number
of zero implies that the corresponding submatrix can be discarded, since
its energetic levels are outside the requested range.

4. Finally, a second pass computes the wanted eigenvalues, traversing only
the submatrices that are going to provide useful information.

This process is illustrated in Figure 1 with an example. The horizontal
lines represent the span of the spectrum of each of the matrix blocks (18 in
this case). The dimensions of the blocks range from 1 (the last one) to 3150.
The vertical line represents the energetic cut to be considered. In the plot we
can easily see that this energetic cut leaves out 8 of the submatrices, which
are the largest ones in this particular example. The vertical red marks on the
horizontal lines represent those eigenvalues that must actually be computed.
Note that the plot does not show real eigenvalues, but an estimation based
on the size of the submatrix and assuming a roughly uniform distribution
of eigenvalues. This approximation is only valid for those systems with one
spin state overstabilized from the rest, e.g., completely ferromagnetic systems
with very high magnetic coupling which stabilize the high spin ground state
or completely antiferromagnetic clusters with a very stabilized intermediate
spin state. In this paper, for validation we use the simple systems with
this property shown in Table 1, the first one with ferromagnetic and anti-
ferromagnetic interactions and the rest with only ferromagnetic interactions.
It remains as a future work to try to extend this procedure to cover more
general systems.

We remark that in our code it is also possible to specify an upper bound
(maxev) for the number of eigenvalues to compute in any submatrix. This is

6

Table 1: Systems used.

System Size Largest submatrix size
7Mn2+ 24017 3150
8Mn2+ 135954 16576
9Mn2+ 767394 88900
9Mn2+ + 1Cu2+ 1534788 177100

useful for large problems where a given threshold would imply computing too
many eigenvalues. As an example, in the problem of Figure 1 the maximum
number of requested eigenvalues is 33, and setting maxev=25, for instance,
would imply in practice shifting the vertical line a certain amount to the left.

The above procedure avoids lots of unnecessary computations, with the
corresponding gain in the overall simulation time. The only drawback is that
the submatrices that participate in the second pass must be regenerated since
it is not possible to keep all blocks in memory simultaneously. Still, the new
methodology is much faster than the former one, as will be shown below.

Apart from modifying the algorithm, we have also optimized the mem-
ory usage by (1) adjusting the dimension of the various arrays to fit the
maximum submatrix size, and (2) converting real variables to integer ones
whenever possible. These two actions have allowed a significant reduction of
the memory footprint per MPI process, up to one third of the previous values.
All in all, these improvements enable to cope with larger, more challenging
problems.

3.1. Code validation

We have carried out a number of numerical experiments in order to val-
idate the correctness of the parallel code, and to evaluate its performance.
The computer system used for the computational experiments in this section
is Tirant, an IBM cluster consisting of 4096 JS20 blade computing nodes,
each of them with two 64-bit PowerPC 970FX processors running at 2.2
GHz, interconnected with a low latency Myrinet network.

For the validation of the code, we have used a small system (7Mn2+) as
a test case whose submatrices have the following dimensions: 1050, 1974,
2666, 3060, 3150, 2975, 2604, 2121, 1610, 1140, 750, 455, 252, 126, 56, 21, 6
and 1. This is the system used in Figure 1 to illustrate the algorithm, and

7

Figure 1: Example of energetic cut for a test problem with 18 submatrices. Only eigenval-
ues located to the left of the vertical line need to be computed. The number of eigenvalues
to compute depends on the dimension of the submatrix. A zoom of the region of interest
is shown on the right.

8

Figure 2: Full representation of the 7Mn2+ system, showing the energetic cut and the
computed eigenvalues.

9

Table 2: Value of energetic cut for different values of the population parameter in the
7Mn2+ system, and the corresponding computation time (in seconds) with one processor.

pobla Energetic cut (cm−1) Computation time (s)
10−1 480.11 120
10−2 960.23 133
10−3 1440.35 217
10−4 1920.47 313

its real data can be seen in Figure 2. The largest block is of size 3150 and
the susceptibility was computed for a range of temperatures up to 300K. In
this case, the cut value varies as a function of the population (pobla, a user
input parameter), as shown in Table 2, and we have not considered setting
the maxev parameter because the number of required eigenvalues is small.
The vertical line depicted in Figure 2 corresponds to the energetic cut of
pobla=10−2. The total number of eigenvalues per spin of this system and
the amount of them selected to compute after the energetic cut has been
determined are shown on the left side of Table 3.

The computation time with one processor is also shown in Table 2. As
a reference, the total time required in the case of computing all eigenval-
ues of all submatrices is 1917 seconds (this will be referred to as the full
computation).

Figure 3 shows the susceptibility results (product χT against the temper-
ature) for the different values of the population, compared to the case of the
full computation. For low temperatures, all lines match, while for higher tem-
peratures the graphs diverge from the full computation, being more accurate
for smaller values of pobla, as expected.

3.2. Performance analysis

In order to assess the performance of the code, both serially and in par-
allel, we have used a larger system (8Mn2+), whose submatrices have dimen-
sions: 2666, 7700, 11900, 14875, 16429, 16576, 15520, 13600, 11200, 8680,
6328, 4333, 2779, 1660, 916, 462, 210, 84, 28, 7 and 1. The largest block
is of order 16576 and the temperature range of the simulation is 300K. In
this case, the number of eigenvalues that are needed for a given energetic
cut may be quite large, so we are interested in studying the influence of the

10

Table 3: Total number of eigenvalues (n) for each of the spins and the selected values to
be computed (k), for the systems 7Mn2+ (left) and 8Mn2+ (right) using maxev=1000 and
pobla=10−2.

Eigenvalues
Spin n k

0 1050 0
1 1974 0
2 2666 0
3 3060 0
4 3150 0
5 2975 0
6 2604 0
7 2121 0
8 1610 14
9 1140 28

10 750 33
11 455 30
12 252 24
13 126 18
14 56 12
15 21 8
16 6 5
17 1 1

Eigenvalues
Spin n k

0 2666 125
1 7700 372
2 11900 608
3 14875 807
4 16429 1000
5 16576 1000
6 15520 981
7 13600 896
8 11200 766
9 8680 614

10 6328 462
11 4333 86
12 2779 0
13 1660 0
14 916 0
15 462 0
16 210 0
17 84 0
18 28 0
19 7 0
20 1 0

11

0 50 100 150 200 250 300

130

140

150

160

TEMP(cm−1)

χ
T

pobla=10−1

pobla=10−2

pobla=10−3

Full

Figure 3: Susceptibility for different values of the population in the 7Mn2+ system.

Table 4: Value of energetic cut for different values of the maxev parameter in the 8Mn2+

system.

maxev Energetic cut (K)
1000 1312.39
3000 3936.93
5000 6561.56

maxev parameter. We have set this value to 1000, 3000 and 5000 eigenvalues,
and it is the parameter that determines the energetic cut, see Table 4. The
total and computed eigenvalues for a value of maxev=1000 can be seen on
the right side of Table 3. If we set different values of pobla (10−1, 10−2, and
10−3 as in the previous example), we will hardly appreciate any noticeable
differences in the results.

The sequential execution time corresponding to the full computation is
403000 seconds. Table 5 shows execution times in parallel for the three
values of maxev. Even computing as many as 5000 eigenvalues, the sequential
time has been reduced to one fourth of the original one. And with parallel
computing we reduce the times even further, with a speedup factor of around
10 with 16 processors.

In order to assess the accuracy of the computed susceptibility, in Figure
4 we compare the plot obtained with the full computation against the results

12

Table 5: Parallel execution time (in seconds) for the 8Mn2+ system with different values
of maxev and increasing number of MPI processes.

Processes
maxev 1 2 4 8 16
1000 27351 17020 9543 5167 2810
3000 80172 51217 26932 14476 7926
5000 106384 62590 32909 17655 9690

0 50 100 150 200 250 300

20

30

40

50

TEMP(K)

χ
T

maxev=1000
maxev=3000
maxev=5000

Full

Figure 4: Susceptibility for different values of the maxev parameter in the 8Mn2+ system.

for the three values of maxev used. As expected, the larger the value of
maxev, the closer to the full computation, but any of the values used provide
a quite accurate susceptibility curve. Even for maxev=1000 the susceptibility
curve only diverges at the end of the range used, and it would be necessary to
double the temperature to appreciate the divergence. The plots correspond
to a value of pobla=10−1, but as mentioned before the graphs are essentially
the same for 10−2 and 10−3.

4. Acceleration with graphics processors

The inherent parallelism of computer graphics has motivated the develop-
ment of the GPUs in recent years, enabling the simultaneous use of multiple
computational cores. With the CUDA API released to the public, it is possi-

13

ble to exploit the many-core architecture with the single instruction multiple
thread (SIMT) execution model used by NVIDIA GPUs in an affordable way
[9]. Parallel computations executed on the GPU can be launched by sequen-
tial programs running on the CPU and, depending on the problem, run-time
improvements can go up to two orders of magnitude. Although such excep-
tional performance can only be achieved with specific problems, its relatively
easy programming makes it worth giving it a try, as good speedups can be
achieved even with non-optimized kernels by simply migrating the functions
to run on the GPU. In recent times, we are seeing many authors that are
using GPUs in many contexts, including sparse computations similar to the
one we are concerned with, see e.g. [10].

Furthermore, more and more computational libraries are beginning to
provide functionality to exploit the power of GPUs without requiring ma-
jor modifications of application code. In its development version, PETSc
incorporates support for NVIDIA GPUs by means of Thrust and CUSP1,
performing vector operations and matrix-vector products through cusp and
aijcusp, special vector and matrix classes whose arrays are mirrored in the
GPU, and whose data is transparently synchronized between the host and
the device as needed to guarantee coherence of the mirrored data-structures.
The GPU model considered in PETSc uses MPI for communication between
different processes, each of them having access to a single GPU [11]. Since
only vector and matrix operations are performed on the GPU, the implemen-
tation of solvers in PETSc and SLEPc follows a hybrid CPU-GPU approach,
as the algorithms use different calls to CUDA kernels to speed up some parts
of the computation, but their main logic remains on the CPU.

In this section, we present a GPU-enabled implementation of ParIso
that can operate also with multiple GPUs (one per MPI process). We remark
that these new developments are independent of the optimization discussed in
section 3, and could also be integrated in the original ParIso code. ParIso
can benefit from GPU computation mainly in two ways: when computing
matrix coefficients and when solving the eigenproblems with SLEPc. The
former is very appropriate for GPU computing, since matrix coefficients can
be evaluated independently from each other. Regarding the latter, expected

1Thrust is a C++ template library included in the CUDA software development toolkit
that makes common CUDA operations concise and readable. CUSP is an open source
library based on Thrust that targets sparse linear algebra.

14

Table 6: Different versions of ParIso with GPU support.

Version Matrix created on Eigencomputation on
CPU-sbaij CPU CPU
CPU-aijcusp CPU GPU
GPU-sbaij GPU CPU
GPU-aijcusp GPU GPU

gains are modest since it corresponds to a sparse linear algebra computation.
Implementing sparse linear algebra operations on GPUs efficiently is diffi-

cult, and still a topic of active research. Usually, the most relevant operation
is the sparse matrix-vector multiplication, that can be approached in differ-
ent ways [12, 13]. In our case, we tried all different sparse storage formats
available in CUSP and CUSPARSE, and the difference among them is not
noticeable in our application, since the percentage of time devoted to this
operation is just about 3–4% of the total computation.

4.1. Details of GPU implementation

Even though it is possible to use CUDA from Fortran with a non-free
compiler, or by means of calling CUDA-C wrapper functions, in order to
make use of the GPU computing power, we have ported the original Fortran
code to C, as it enables a simpler development. The code uses CUDA in
two ways, one by migrating parts of the application to run on the GPU as
CUDA kernels, and another one by means of SLEPc, as it allows us to do
the computation exclusively on the CPU or with the help of the GPU. We
call ‘GPU version’ the one that uses CUDA kernels for the generation of the
matrix (independently of the storage type used), even when the original CPU
version can be instructed to use the GPU by means of the aijcusp matrix
storage type.

With both versions and the different storage types it is possible to run the
software in four main ways: CPU and GPU, each one with a matrix storage
type that replicates the data into the GPU (aijcusp) or not (sbaij). Table
6 summarizes the four combinations. Note that the user can select one of
them at run time by means of command-line arguments.

One of the benefits of working with symmetric matrices is that the storage
can make use of that symmetry to halve the memory usage, as it is done in

15

the code that runs exclusively on the CPU by means of the sbaij matrix
storage type. In the case of the GPU, the type of matrix used by PETSc to
store the data (aijcusp) does not take into account the symmetry and needs
to allocate and fill both triangular parts (upper and lower) of the matrix.

The resulting code can be compiled to work with single and double pre-
cision arithmetic, but due to several values exceeding by far the single preci-
sion limits, some of the variables have been explicitly declared as double even
when working with single precision. This mixed-precision approach allows
us to reduce the memory requirements by sacrificing some accuracy in the
results. There is also a reduction of computation time, but as will be shown
later, the benefits of the single precision arithmetic in terms of performance
are quite limited.

The migration has been done by selecting the most computationally de-
manding functions and moving them to run on the GPU. The selected func-
tions are those related with the generation of the submatrices, and one of
the functions that compute the final thermodynamic results. The cost of the
generation of the magnetic susceptibility is negligible, but the time needed to
compute the magnetization depends on the number of samples of the mag-
netic field intensity used. Even though this step is not very computationally
demanding, as it is done exclusively by a single process, its relative time
within the whole computation increases when increasing the number of pro-
cesses and the total computation time is reduced. That is why porting it to
the GPU was highly recommended.

In order to avoid heavy performance issues during the sparse matrices
assembly it is necessary that every process preallocates the memory corre-
sponding to the part of the matrix that has been assigned to it [8]. For the
preallocation to be done, it is necessary to specify how many diagonal and
off-diagonal nonzero elements per row the matrix has (here, diagonal ele-
ments refer to matrix entries located in column indices matching the range
of rows assigned to the current process, see red blocks on Figure 5). Once
the preallocation has been done, the process continues by setting the values
of the elements and finally assembling the matrix. The matrix is ready to
use once the assembly is finished.

Two functions are in charge of the generation and, in the GPU version,
both compute all the elements of the matrix (not only the upper half), so we
double the work to be done with respect to the previous CPU implementa-
tion. The first one counts the number of nonzero elements on the diagonal
blocks and outside them, to do the preallocation, and the second one stores

16

the values of these nonzero elements in memory. Both functions do almost
the same work, but the amount of memory used by them differ significantly,
as the counting of the elements needs only a small bi-dimensional array of
integers to store the sum (with one row for each one of the matrix rows, and
two columns, one for the nonzero diagonal elements and other for the nonzero
off-diagonal), and the function that fills the matrix in with its values needs
two bi-dimensional arrays of the full size of the matrix, one of floating point
numbers and another one of integers where it records the column indices of
the nonzero elements. The accounting of the elements is only done on the
first pass, and stored to avoid repeating the computation on the second pass.

Each one of these two generation functions have been split in two, the
main part runs as a CUDA kernel making use of a series of auxiliary functions
that run as device functions, and the remaining work is done as a host
wrapper function that allocates the memory on both CPU and GPU, calls the
kernel with the appropriate arguments and copies the results to host memory.
The function that computes the final results follows the same scheme of
wrapper and kernel split, but it makes use of two kernels that need to be
called serially.

The host memory used by the wrapper function is allocated with the
cudaHostAlloc instruction. The difference between this and a traditional
malloc is that the malloc instruction allocates standard pageable memory,
and cudaHostAlloc allocates page-locked memory. The CPU implements a
virtual memory system that allows programs to use more memory than the
available in the system by swapping out unused pages and swapping them
in again when needed. A transfer from this virtual memory to the memory
of the GPU would imply two copies: a copy to a page-locked intermediate
buffer and another copy from this buffer to the GPU memory by means of
DMA (Direct Memory Access). The page-locked memory is guaranteed to
live in the main physical memory without ever being swapped out, so its use
eliminates the intermediate buffer and the copies to/from it, saving time.
The copy of the values of the matrix and their accounting from the GPU is
done with asynchronous instructions, but as the data is used immediately
after it, the transfer can be considered synchronous with no concurrency of
these data transfers and arithmetic operations.

Inside the GPU there are several memory types available, with different
sizes, latency accesses, scopes and lifetimes. Within the generation functions,
application lifetime data is copied once at the beginning of the program to
constant memory, and block dependent data is copied to global

17

memory in advance to the submatrix computation (of which a small array is
accessed through texture cache).

The amount of memory in the device limits the registers a thread can
make use of, and the functions that need a large amount of registers limit the
number of concurrent threads running on the device. The matrix generation
functions result in computation bound kernels due to the high register use.
Their launch can not fully populate the symmetric multiprocessors of the
GPU, so they are infra utilized and the performance obtained is far from
optimal.

Having said that, the computation of each different matrix element has
no dependencies with the others, and this allows us to populate the GPU
with any possible distribution of the grid and block dimensions and size.
The launch of the kernels takes into account two different things, on one
hand, the size of the CUDA grid and blocks (number of blocks and number
of threads per block respectively) per dimension, and on the other, the tile
size (amount of work, measured in number of matrix elements, that a single
thread has to compute) per dimension.

The work distribution scheme within the GPU device is the same for all
the kernels. For the generation functions, for each of the dimensions of the
matrix, two constants are defined, BLOCK SIZE and TILE SIZE, that are used
to obtain the kernel call arguments. The calculus of these arguments begins
by setting the number of blocks to one, and the number of threads per block
to BLOCK SIZE. Next, it is checked if the number of rows (or columns) is
greater than the BLOCK SIZE multiplied by the TILE SIZE. If it is greater,
the grid dimension (number of blocks) is increased to

dimGrid->x = (rows + ((BLOCK SIZE X * TILE SIZE X) - 1)) /

(BLOCK SIZE X * TILE SIZE X),

if not, the block size is decreased to

dimBlock->x = (rows + (TILE SIZE X - 1)) / TILE SIZE X.

In CUDA, all the threads in a block are grouped in warps, being 32 the warp
size since the beginning of CUDA. All threads in a warp fetch and execute
a single instruction per clock cycle. In the latter case, when the block size
is reduced, it ends up not necessarily being a multiple of the warp size, and
that means that we are working with a very small matrix so the performance
obtained from the use of the GPU is not going to be good.

18

A Ai

P0

P1

P2

P3

P4

Figure 5: Example of an isotropic system expressed as a block diagonal matrix (left) and
the partitioning of one of their symmetric sparse blocks between five MPI processes Pi

(right).

Once the grid dimension is set, it is necessary to check that it does not
exceed the limits of the device, and in that case, reduce its size to the max-
imum allowed value, and establish a counter in order to do several calls to
the kernel. This is necessary in the case of very large matrices.

The current scheme creates blocks of one thread for the rows axis, and
64 threads for the columns axis, with tile sizes of one. Other work distribu-
tions have been tested with no better performance obtained. An analogous
procedure is used for the kernels that compute the magnetization.

4.2. Hybrid MPI-GPU approach for multi-GPU support

The partitioning of the work between the different MPI processes done
by PETSc uses a block-row distribution. Figure 5 shows an example of how
each of the sparse blocks that form the block diagonal matrix are partitioned.
The horizontal dashed blue lines delimit the Pi MPI process partition and the
red squares show the diagonal block of each process, formed by the columns
whose indices correspond to the rows assigned to it.

The execution of the kernels is independent of MPI. Since the MPI version
of the code evenly distributes the problem matrices across the processes,
several CUDA devices can be used to individually accelerate the execution at
each process, provided that the code is run on a cluster with GPUs available
in all nodes. If one node has more than one GPU, the processes select

19

the CUDA device to be used based on their MPI rank, in the same way
as PETSc does. This way, each process will use a different CUDA device
(when available). To maximize the performance and to avoid overloading
the devices, the MPI launch should take into account the problem size, the
number of available nodes, and the number of devices per node.

4.3. Performance evaluation

In this section we analyze the performance obtained with the GPU ver-
sion of the software and compare it with the CPU-only version. For this
purpose, several runs have been done in the cluster Minotauro, where each
node has two Intel Xeon E5649 processors at 2.53 GHz, 24 GB of main mem-
ory, and two NVIDIA Tesla M2090 GPU with 512 cores at 1.3 MHz and 6
GB of GDDR5. The nodes are interconnected with a low latency Infiniband
network, and their operating system is RHEL 6.0 with GCC 4.6.1, MKL 11.1
and CUDA 7.0.

The value of the pobla and maxev parameters used in these runs has been
set to 10−2 and 1000, respectively, and SLEPc’s parameter mpd has been set
to 50.

Three different cases have been used to evaluate the performance. We
have started using the 8Mn2+ system of subsection 3.2 to have a connection
with the executions in the cluster Tirant. The matrix in this case has a size
of 135954 and its largest block is of size 16576. The other two systems that
we have used to complete the evaluation are 9Mn2+ and 9Mn2+ + 1Cu2+

with a size of 767394 and 1534788, and with their largest blocks being of size
88900 and 177100, respectively.

The 8Mn2+ system has been run with the CPU and with the GPU version
in single and double precision arithmetic. At the same time, the GPU version
has been run with two different matrix storage types: sbaij and aijcusp.
The two largest systems have been run exclusively with the GPU version,
with the aijcusp and sbaij matrix storage types, and with single and double
precision arithmetic.

Figure 6 shows the execution times obtained with the 8Mn2+ system. In
the figure we can see how the normal performance of the CPU-only version
is improved by the two GPU runs. We can see that for a single process, both
GPU runs reduce the time more than one order of magnitude with respect
to CPU. For the multi-process runs, the GPU-sbaij run shows a similar
speedup to the one obtained by the CPU version, maintaining the curves
in parallel (up to 32 processes), while the aijcusp run does not reduce the

20

time with the same rate or even increases it while increasing the number of
processes. This kind of behaviour, where the performance decreases when
the number of processes is increased, is due to the small size of the sub-
matrices. The GPU-sbaij run shows clearly the great benefit provided by
the kernels that generate the matrix with respect to its CPU counterpart,
as both versions use a symmetric aware storage that reduces the memory
and arithmetic operations (on the CPU). In the same curve it is possible
to appreciate that the speedup is reduced when increasing the number of
processes due to the higher cost of the inter-process communications and the
infra utilization of the GPU devices due to the reduction of the workload.
The GPU-aijcusp run is even more affected by the problem size, as the
overall performance decreases drastically compared with the sbaij versions
due to two main drawbacks, it uses twice the memory needed by sbaij and
it has to synchronize the data between the GPU and CPU besides between
the processes, during the computation. As the SLEPc GPU implementation
uses vector operations, the performance is directly dependent of the size of
the problem. We can appreciate such dependency if we compare the results
of the different test cases. While in Figure 6 we see that GPU-aijcusp
starts with the smallest run times and quickly drops the performance, as we
increase the size of the problem (Figures 7 and 8), we can see how it behaves
much better and only reduces the performance with 128 processes. It is also
noticeable how also the sbaij run improves with the increment of the size as
its performance does not decrease so quickly when the number of processes
is increased.

The figures show that the more the GPU devices are used, the better is the
performance obtained. Both GPU runs clearly improve the CPU-sbaij run
times, maintaining a similar performance and a good scalability and being
able to solve a large system of 1.5 million elements in less than 230 seconds,
with 128 GPUs and using double precision arithmetic. For such improvement
to be possible it is necessary to maximize the use of the GPUs, as we can
see how the performance decreases in all GPU runs when the processes do
not have enough workload. The work done by the GPU needs to be enough
to fully populate and use the device, as the performance depends directly on
the usage of the device. The behaviour is the same for the kernel executions
and for the eigenvalue computation.

21

1 2 4 8 16 32 64 128
101

102

103

104

processes

se
co

n
d
s

CPU sbaij

GPU aijcusp

GPU sbaij

1 2 4 8 16 32 64 128
101

102

103

104

processes

CPU sbaij

GPU aijcusp

GPU sbaij

Figure 6: Total problem solve time for the 8Mn2+ system with single (left) and double
precision arithmetic (right).

1 2 4 8 16 32 64 128

102

103

processes

se
co

n
d
s

GPU aijcusp

GPU sbaij

1 2 4 8 16 32 64 128

102

103

104

processes

GPU aijcusp

GPU sbaij

Figure 7: Total problem solve time for the 9Mn2+ system with single (left) and double
precision arithmetic (right).

22

1 2 4 8 16 32 64 128

103

104

processes

se
co

n
d
s

GPU aijcusp

GPU sbaij

1 2 4 8 16 32 64 128

103

104

processes

GPU aijcusp

GPU sbaij

Figure 8: Total problem solve time for the 9Mn2+ + 1Cu2+ system with single (left) and
double precision arithmetic (right).

5. Conclusions and future work

In this paper we have presented two main optimizations to ParIso, a
program for simulation of isotropic molecular clusters with the ITO compu-
tational technique.

The first optimization consists in avoiding the computation that does
not contribute significantly to the aggregate results. In our tests, this has
allowed a drastic reduction of the execution time without losing validity in
the results. However, our heuristics for determining the energetic cut (as
well as to estimate the number of eigenvalues required in each block of the
Hamiltonian matrix) assumes a uniform distribution of eigenvalues. This
assumption is valid only for systems with specific properties, as discussed in
section 3, so the method may not be appropriate for general systems. As a
future work, we plan to extend the code in such a way that not only the first
and last eigenvalue of each block is computed in the first phase, but also a
rough approximation of how all eigenvalues are distributed within that range.
This information, usually known as density of states (DOS), is difficult to
obtain, but recent efforts are trying to do this cost effectively [14].

The second major optimization is the implementation of a GPU-enabled
version that can perform either the computation of matrix coefficients or the
computation of the partial diagonalizations, or both, on a high-performance
graphics processor. The performance gain is very significant, especially as-
sociated to the computation of the matrices. Regarding the efficiency of
diagonalization on the GPU, this step relies on the efficiency achieved by

23

the SLEPc library. There is still room for improving this in SLEPc, and our
code will automatically benefit from these improvements as they are made
available in future versions of the library.

With the multi-GPU version we are able to reduce the computation one
order of magnitude with respect to the parallel MPI version running on
CPUs. This will make it possible to solve much larger problems, those with
real scientific interest, that would otherwise be impossible to address due to
memory limitations or lack of computational power.

Acknowledgements. We are indebted to J. M. Clemente-Juan and S. Cardona-
Serra, with whom we collaborated to develop the MPI version of ParIso,
the starting point of the current work. We also thank them for valuable ad-
vise related to the developments of section 3. The simulations corresponding
to section 3 were carried out on the supercomputer Tirant at Universitat
de València. The simulations corresponding to section 4 were carried out
on the supercomputer Minotauro, belonging to the Spanish Supercomputing
Network (RES).

References

[1] J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S.
Tsukerblat, Inorg. Chem. 38 (1999) 6081–6088.

[2] B. L. Silver, Irreducible Tensor Methods. An Introduction for Chemists,
Academic Press, London, 1988.

[3] J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S.
Tsukerblat, J. Comput. Chem. 22 (2001) 985–991.

[4] E. Ramos, J. E. Roman, S. Cardona-Serra, J. M. Clemente-Juan, Com-
put. Phys. Commun. 181 (2010) 1929–1940.

[5] V. Hernandez, J. E. Roman, V. Vidal, ACM Trans. Math. Software 31
(2005) 351–362.

[6] K. Wu, H. Simon, SIAM J. Matrix Anal. Appl. 22 (2000) 602–616.

[7] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK Users’ Guide, Solu-
tion of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi
Methods, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1998.

24

[8] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschel-
man, L. Dalcin, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C.
McInnes, K. Rupp, B. Smith, S. Zampini, H. Zhang, PETSc Users Man-
ual, Technical Report ANL-95/11 - Revision 3.6, Argonne National Lab-
oratory, 2015.

[9] J. Cohen, M. Garland, Comput. Sci. Eng. 11 (2009) 58–63.

[10] W. Rodrigues, A. Pecchia, M. Lopez, M. A. der Maur, A. D. Carlo,
Comput. Phys. Commun. 185 (2014) 2510–2518.

[11] V. Minden, B. Smith, M. G. Knepley, in: GPU Solutions to Multi-scale
Problems in Science and Engineering, Springer, 2013, pp. 1–9.

[12] R. Li, Y. Saad, J. Supercomput. 63 (2013) 443–466.

[13] I. Reguly, M. Giles, in: Innovative Parallel Computing (InPar), pp. 1–12.

[14] L. Lin, arXiv:1504.07690 : retrieved 18 Nov 2015 (2015).

25

