Document downloaded from:

http://hdl.handle.net/10251/81399
This paper must be cited as:

Sahuquillo Borras, J.; Hassan Mohamed, H.; Petit Marti, SV.; March Cabrelles, JL.; Duato
Marin, JF. (2016). A dynamic execution time estimation model to save energy in
heterogeneous multicores running periodic tasks. Future Generation Computer Systems.
56:211-219. doi:10.1016/j.future.2015.06.011.

The final publication is available at

http://dx.doi.org/10.1016/j.future.2015.06.011

Copyright E|sevier

Additional Information

this is the author’s version of a work that was accepted for publication in Future Generation
Computer Systems. Changes resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently published in Future
Generation Computer Systems, vol. 56 (2016). DOI 10.1016/j.future.2015.06.011.

A Dynamic Execution Time Estimation Model to Save
Energy in Heterogeneous Multicores
Running Periodic Tasks

Julio Sahuquillo, Houcine Hassan, Salvador Petit
José Luis March, and José Duato
Department of Computer Engineering (DISCA)
Universitat Politecnica de Valencia
Valencia, Spain
{jsahuqui,husein spetit,jomarcab,jduato} @Qdisca.upv.es

Abstract

Nowadays, real-time embedded applications have to cope with an increas-
ing demand of functionalities, which require increasing processing capabili-
ties. With this aim real-time systems are being implemented on top of high-
performance multicore processors that run multithreaded periodic workloads
by allocating threads to individual cores. In addition, to improve both perfor-
mance and energy savings, the industry is introducing new multicore designs
such as ARM’s big.LITTLE that include heterogeneous cores in the same
package.

A key issue to improve energy savings in multicore embedded real-time
systems and reduce the number of deadline misses is to accurately estimate
the execution time of the tasks considering the supported processor frequen-
cies. Two main aspects difficult this estimation. First, the running threads
compete among them for shared resources. Second, almost all current mi-
croprocessors implement Dynamic Voltage and Frequency Scaling (DVFES)
regulators to dynamically adjust the voltage/frequency at run-time accord-
ing to the workload behavior. Existing execution time estimation models rely
on off-line analysis or on the assumption that the task execution time scales
linearly with the processor frequency, which can bring important deviations
since the memory system uses a different power supply.

In contrast, this paper proposes the Processor-Memory (Proc-Mem) model,
which dynamically predicts the distinct task execution times depending on

Preprint submitted to Future Generation Computer Systems April 12, 2017

the implemented processor frequencies. A power-aware EDF(Earliest Dead-
line First)-based scheduler using the Proc-Mem approach has been evaluated
and compared against the same scheduler using a typical Constant Memory
Access Time model, namely CMAT. Results on a heterogeneous multicore
processor show that the average deviation of Proc-Mem is only by 5.55% with
respect to the actual measured execution time, while the average deviation of
the CMAT model is 36.42%. These results turn in important energy savings,
by 18% on average and up to 31% in some mixes, in comparison to CMAT
for a similar number of deadline misses.

Keywords: Heterogeneous multicore architectures, time predictable
multicore architectures, time aware energy efficiency, energy savings,
real-time embedded systems

1. Introduction

Nowadays, real-time systems are implemented of top of high-performance
multicore processors due to the growing functionality demands of the applica-
tions. These processors support the execution of multithreaded workloads by
allocating each thread to a specific core. Current multicores present resources
that are private to cores and resources that are shared among cores. Which
resources are designed private and which ones shared vary among commercial
machines. Typical resources implemented as private to individual cores are
the register file and the first-level caches, and examples of shared resources
are the interconnection network and the main memory.

The schedulability problem has been widely studied [1, 2], in distinct
types of applications. However, real-time systems require an estimation of
the Worst Case Execution Time (WCET) of applications in order to ensure
the schedulability. The WCET must be estimated with the highest accuracy
in order to provide either a high quality of service in Soft Real-Time (SRT)
systems (e.g. multimedia or video-streaming) or to prevent possible damages
(e.g., automotive or avionics) due to deadline misses in Hard Real-Time
(HRT) systems running periodic tasks. On the other hand, a high estimation
accuracy allows the system to save power, improve schedulability, or both.

Two main characteristics of multicore architectures difficult the estima-
tion of the task execution time. First, the running threads compete among
them for shared resources. Second, almost all current multicores implement
Dynamic Voltage and Frequency Scaling (DVFS) regulators that permit ad-

justing the voltage and frequency at run-time according to the dynamic work-
load behavior. This technique allows the system to manage power consump-
tion more efficiently.

Some research works assume that the memory access time (quantified in
processor cycles) is constant regardless of the processor frequency. From now
on, we refer to this model as Constant Memory Access Time (CMAT). This
model assumes that all of the processor components scale their speed at the
same pace, which can bring important deviations in the estimation of the
execution time since main memory devices have their own power supply and
work independently of the DVF'S regulator. Despite this fact, this model is
implicitly assumed in important research work like [3, 4, 5]. For instance,
in [3], an example is shown where the processor takes 20s (or 1000Mcycles)
at 50MHz (i.e. 20ns processor clock) to run a given program, and 25s (i.e.
25ns processor clock) when working at 40MHz. In other words, although
not explicitly said, it can be observed that the execution time grows in the
same factor as the processor cycle time. To deal with this shortcoming,
other researchers have devised alternative models [6, 7] to achieve better
estimations. These models, however, are static and rely on either analyzing
the workload source code [6] or performing off-line characterization of the
architectural parameters [7].

In contrast to previous work, this paper proposes a model that predicts at
run-time the execution time of real-time applications running periodic tasks
on heterogeneous multicores supporting different frequency domains (i. e.,
local DVFS), without the need of analyzing any source code or hardware
platform. Periodic tasks have been used in a wide segment of real-time con-
trol applications, ranging from automotive, robotics or avionics [8]. In spite
that experimental evaluation section focuses on periodic tasks, the proposed
model would also work with aperiodic tasks, since aperiodic servers [9, 10] can
process aperiodic workloads without compromising the execution of periodic
tasks. We show that the proposed model is highly accurate even when applied
to an heterogeneous multicore. The studied system implements cores with
different ranges of DVF'S levels. This type of designs are being introduced in
the embedded market since they can improve performance of both parallel
and sequential applications while providing a high energy-efficiency. This is
the reason why some recent Samsung smartphone models such as the Galaxy
S5 or the Note 4 implement processors based on the ARM big. LITTLE [11]
heterogeneous processor architecture.

The proposed model uses the first hyperperiod of the execution of the

Task
Power-Aware End of Period Exit

Scheduler
Task | J DRAM
gl Core 0 Controller
EDF .
Task
Arrival Fl'eqi T
emory

. M
4> chucstsl—> EEEEE PRAM

Freq,

qJ

EDF

> Core 1
Task

Power-Aware

Scheduler End of Period

Task
Exit

Figure 1: System model.

tasks to investigate the workload characteristics. Then, this information is
used by the power-aware EDF-based scheduler to choose the most suitable
frequency for the following hyperperiods. In this way, not only important
energy savings are achieved but also system schedulability is improved. For
instance, if the system utilization decreases and more slack time is available,
this extra time could be used to reduce the frequency for energy savings or
introduce additional tasks in the system.

This paper proposes the Processor-Memory (Proc-Mem) model, which
predicts the execution time for each individual task and frequency level.
To this end, Proc-Mem uses performance monitoring counters to measure
the time that each core spends performing computation (CPU), waiting for
memory (MEM), and overlapping time (OVERLAP) between computation
and memory access. Since the overlapping time of a given task depends not
only of itself but also on the co-running tasks, the input values of the model
must be taken at run-time. The proposed model uses the first hyperperiod
to gather the required values. Then, the scheduler uses the model estimates
to choose the most suitable working frequency in each active period of the
following hyperperiods to address both energy and deadline misses (only soft
real-time tasks are considered).

A power-aware scheduler using the Proc-Mem approach has been eval-
uated against the same scheduler using a typical Constant Memory Access
Time model, namely CMAT. Results on a heterogeneous multicore processor
show that the average deviation of Proc-Mem is by 5.55% with respect to the
measured execution time, while the average deviation of the CMAT model is
36.42%. These results turn in important energy savings, 18% on average and

4

up to 31% in some mixes, for a similar number of deadline misses. Finally,
we would like to remark that the devised frequency selection policy is or-
thogonal to the implemented scheduling algorithm so it can be implemented
for energy savings in any other scheduler.

The rest of the paper is organized as follows. Section 2 presents the
baseline system. Sections 3 and 4 propose and validate, respectively, the
Proc-Mem execution model. Section 5 explains the frequency selection pol-
icy. Section 6 describes the related work. Finally, Section 7 presents some
concluding remarks.

2. System Architecture

The modeled system, as shown in Figure 1 consists of a heterogeneous
superscalar multicore. Heterogeneity comes from the fact that cores can
work at a different range of frequency levels, as adopted in recent embedded
systems [12].

Table 1 shows the machine parameters. Each core can issue to execu-
tion up to two instructions every cycle. Besides, due to important energy
constraints in a wide segment of embedded systems, an in-order issue logic
has been assumed, as deployed in some embedded processors like the Intel
Atom [13]. Nevertheless, to reduce pipeline stalls due to memory latencies,
the processor is allowed to dispatch instructions while a memory access is
being performed. The working frequency of each core is controlled by a lo-
cal DVFS regulator [14], that is, cores can run at different speeds. Cores
have been assumed to work at the same frequency levels of a Pentium M [15]
as depicted in Table 2. The considered DVFS local regulators implement 7
and 4 frequency levels for core 0 and core 1, respectively. The 7L configura-
tion allows the system to work at all the frequencies indicated in the table,
whereas the 4L (Low-Power) mode permits running tasks at the four lowest
frequencies (1.4, 1.3, 1.2 and 1.1 GHz).

The system executes multiple soft real-time tasks. A soft real-time task is
executed during each of its active periods, and it should finish its execution
before reaching its deadline. The end of the period and the deadline of a task
are assumed to be equal for a more tractable scheduling process. There are
also some periods where a task is not active (i.e., inactive periods), so it is
not executed. In short, a task arrives to the system, executes during several
active periods, leaves the system, remains out of the system for some inactive

Table 1: Machine Parameters.
MlCI‘OpI’OCGSSOI‘ core

I[ssue policy In order

Branch Prediction Two-level global history
256 entries BTB, 4096 2-bit
saturating counters GHB
Issue width 2 instructions/cycle

Int ALUs, mult/div | 2,1

FP ALUs, mult/div | 2,1

Memory access latency | 10 cycles

periods, and then it enters the system again. This sequence of alternative
active and inactive periods allows modeling real systems with mode changes.

2.1. Partitioning and Scheduling

The system implements a partitioner module (labeled as partitioner in
Figure 1) that is in charge of distributing tasks among cores. In this regard,
Worst Fit (WF) algorithm is considered as one of the best choices to balance
the workload [16]. This algorithm requires task utilization values which are
obtained as the quotient between the WCET of the task to its period as shown
in Equation 1. To obtain the utilization, the WCET is typically estimated
for each task in a stand-alone execution.

o 0
ertod
The WF algorithm balances the workload by assigning each incoming
task to the least loaded core. If more than one task arrives to the system at
the same time, WF arranges the incoming tasks in a decreasing utilization
order and assigns them to the cores starting with the task with the highest
utilization.

Table 2: Frequency (F) vs power (P).
F[GHz] | 1.7 | 16 | 1.5 | 14|13 |12 1.1

P[Watts] | 24.5 | 24.5 | 24.5 | 22 | 22 | 12 | 12

Since in the modeled system each core works with a different set of fre-
quency levels, the WF policy must be properly adjusted. For this purpose,
the following extension has been adopted. In case that the partitioner detects
that core 1 is fully loaded (100% utilization) when working at its maximum
working frequency (1.4 GHz), then the new incoming tasks are allocated to
core 0, even if this action introduces imbalance into de system, since core 0
can work at higher frequencies than core 1.

To simplify the implementation, the system assumes that once a task is
allocated to a given core, it is inserted into the task queue of that core, where
incoming tasks are ordered according to the EDF scheduling algorithm, which
prioritizes the execution of tasks with the closest deadlines.

The devised schedulers are also in charge of calculating the required target
speed of each core according to its utilization. In this sense, the power-aware
EDF scheduler implemented in each core chooses the minimum frequency
that fulfills the temporal constraints of its task set in order to minimize
power consumption.

2.2. Memory System

Regarding the memory system, all cores send their memory requests to a
common memory controller that handles the accesses to a shared scratchpad
memory. The memory controller handles its internal request queues accord-
ing to the FCFS-RR (First-Come First-Served, Round-Robin) policy [17].

The scratchpad memory is composed of eight banks. Bank conflicts are
taken into account so that if a bank is being accessed, and a younger request
demands the same bank, this request waits at the memory controller until
the previous access finishes. Otherwise, the new request can proceed.

-4—— Execution Time (processor cycles) —————————»

Frequency i 7

o «— CPU-+—»
> Overlap |

Frequency j

<+ MEMJ_ EEEm—

Figure 2: Execution time model.

3. Processor-Memory Model

The execution time of a task can be considered as composed by two main
components, (CPU) time and the memory (MEM) time. The former can
vary according to data, structural and control hazards presented by the ap-
plication at the core side, while the latter grows with the number of memory
accesses. Both times can overlap since the core can dispatch instructions
while the memory is being accessed. This time, from now on referred to as
OVERLAP, is defined as the time the processor is executing non-dependent
instructions while a memory request is being served.

Figure 2 depicts a simplified overview of the execution time components.
The model assumes that performance monitoring counters (PMC) [18] typi-
cally implemented in most current processors, are available in the multicore
system. These registers allow the processor to gather multiple variables. This
paper assumes that the variables required by the scheduler can be gathered
in the target processor.

Since the MEM value is gathered in processor cycles, the smaller the
processor cycle time (i.e., the higher the processor frequency) the higher the
MEM value gathered in the corresponding performance counter. Therefore,
the MEM value for a target frequency j can be estimated from the MEM
value collected for the current frequency ¢ as given by Equation 2. This effect
can be appreciated in Figure 2. It also can be appreciated that if the elapsed
time is quantified in processor cycles, the CPU value remains constant.

F .
MEM,; = MEM; x —%

(2)

On the other hand, in-order processors write the results to the corre-
sponding destination register in program order at the writeback (WB) stage.
This means that after a long latency event (e.g. a memory access), the exe-
cution (EX) stages of subsequent instructions are delayed to perform the WB
stage in program order. The memory latency in current systems, regardless
of the working frequency, is typically much longer than that of arithmetic
operators; thus, the number of instructions that can be executed while a pre-
vious memory request is being processed remains constant to comply with
the WB order. In other words, the OVERLAP time, measured in processor
cycles, can be assumed to be constant.

Figure 3 illustrates this behavior. It depicts, a possible instructions-time
diagram corresponding to the execution of five instructions (one memory ref-

Freg;

-« MEM

Ll L we
LOAD =TT TT |

ADD }ﬂ{ EX | EX | EX |WB

requency i
ADD }1{ #EX EX |WB
SUB }1{ #EX EX |WB

i>j

DI EX | EX | EX | WB
w0 |- i
DI EX | EX | EX | WB .
SUB 474‘_{ Frequency j
DI EX | EX | EX | WB

| | |

ADD ‘ ‘ ‘
DI EX | EX | EX | WB

| | |

SuB ‘ ‘ ‘

Figure 3: Execution overlap between processor and memory for two different frequencies
in a superscalar architecture.

erence and four arithmetics) that overlap their execution in a 2-instruction
issue width superscalar processor working at two different frequencies i (up-
per side) and j (lower side). This example assumes 3-cycle latency for arith-
metic operations. The number of overlapped cycles is exactly the same in
both frequencies due to the part of CPU time overlapping with the memory
access is fixed (all stages DI, two stages EX of the two first arithmetic in-
structions and one EX stage of the two latter arithmetic instructions). This
fact is taken into account in Equation 3, which estimates the total execution
time in cycles for a given working frequency j. Note that both CPU and
OVERLAP values do not depend on the working frequency.

Texe; = CPU — OV ERLAP + MEM,; (3)

Substituting M EM; from Equation 2 in Equation 3, we can derive Equa-
tion 4, which estimates the overall execution time for any working frequency
j as a function of the inputs of the model gathered during the program exe-
cution at a different working frequency 7. Note that the computational cost
of the equation is negligible. Besides, the overhead caused by the libraries to
access the hardware counters required as input for the equation is also very
low.

F .
Tewe; = CPU — OVERLAP + MEM; x —

(4)

Finally, it is important to note that in multicore processors, where dif-
ferent cores compete among them for shared resources, new interferences
appear. These interferences mainly rise when memory requests from differ-
ent cores reach the memory controller, where they are scheduled for main
memory access. Consequently, the individual execution time (measured ei-
ther in cycles or in temporal units) of each task increases with respect to
stand-alone execution in a single-core system. In spite of this fact, as shown
in the next section, the proposed model remains mostly valid in this scenario
since the extra time waiting at the memory controller is already included in
the MEM component.

Freg;

4. Model Validation

Simulators are a commonly used tool to validate and evaluate novel ap-
proaches in many research fields [19, 20]. In this particular case, to evaluate
the goodness of the model the Multi2Sim [21] simulation framework has been
used, which is a detailed cycle-by-cycle execution driven simulator of multi-
core and multithreaded processor architectures. Multi2Sim is being used by
companies like AMD or NVIDIA. It has been extensively extended to model
the real-time system and power related characteristics, including the power-
aware scheduler, the DVFS regulators, and the memory controller (see [22]
for more details).

Experiments have been conducted with 20 different benchmarks from
WCET Malardalen Project [23], although for illustrative purposes, only the
results of two representative benchmarks (fir and sqrt) are presented. These
benchmarks are executed in 2-way superscalar cores that include multicycle
operators whose latencies range from 1 cycle to 3 cycles.

Figure 4 compares the execution time estimates provided by the Proc-
Mem and the CMAT models for fir (upper side) and sqrt (lower side) bench-
marks. The latter assumes a constant number of processor cycles for each
memory access (i.e. the memory speed depends on the DVFS frequency).
The stand-alone execution time (labeled as Fze Time) of both benchmarks
in a single-core superscalar architecture is also represented. Model inputs
were taken when running the processor at the highest frequency, that is,
at 1.7 GHz. The remaining points of the plot (from 1.6 GHz down to 1.1

10

GHz) were estimated with the studied models. For comparison purposes, the
three main components (CPU, OVERLAP and MEM) of the execution time
are represented. As observed, CPU and OVERLAP values keep constant for
both benchmarks, while MEM increases with the frequency, which illustrates
that Proc-Mem is suitably designed to model the target system.

Proc-Mem estimates closely follow the execution time regardless the tar-
get frequency; in contrast, the error introduced by the CMAT model grows

——Exe Time =»=CMAT Proc-Mem
——CPU OVERLAP =&—MEM
70
60
o = £ £ £ £ o
50 \.\._i\-‘
40 e

KCycles
w
o

1.7 16 15 14 13 12 11
Freq (GHz)

(a) Fir

—-Exe Time =»=—CMAT Proc-Mem

——CPU OVERLAP =4 MEM
25

20

[> >

E— >
15 —Z

KCycles
=
o
2 2
L 4
L 4 A
L 4
L 2
L 3)
|
4

1.7 16 15 14 13 1.2 11
Freq (GHz)

(b) Sqrt

Figure 4: Estimates of the Proc-Mem model in stand-alone execution in the single-core
superscalar architecture.

11

I OCMAT BEProc-Mem

MAX Deviation (%)

Figure 5: Maximum deviation in processor cycles in a single-core superscalar architecture.

45

— OCMAT
§40 B Proc-Mem
‘8’35
S 30
2 25
D
0 20
2
§15
s 10
o
Q s
>
< |
0
) & % 5 $ S © S S S 2 Q 3 5 2 > & '
S & S N & S IS
§ OFS0 T F gy E TS
S £ & > S S
g Q° < <

Figure 6: Average of maximum deviations in a multicore superscalar architecture.

as the frequency moves away from 1.7 Ghz. Proc-Mem deviation is on aver-
age around 2.5% and 1.5% depending on the benchmark, and never exceeds
5.5%. In contrast, the CMAT approach incurs in a noticeable higher error,
which is already around 7% for both benchmarks in the first 100MHz away
from 1.7 GHz. Moreover, this deviation worsens as the frequency decreases,
exceeding 30% in both benchmarks at 1.1 GHz.

The maximum deviation for Proc-Mem and CMAT accross a relatively
wide set of 20 evaluated benchmarks is shown in Figure 5. Proc-Mem error
is always around 5%, while that incurred by CMAT is always over 30%.

Once it has been proven that the proposal provides good estimates for
single-core execution, Proc-Mem results are explored in a two-core architec-
ture. To this end, we have performed an exhaustive study with multiple

12

experiments by concurrently executing all the possible pairs of benchmarks
for the different working frequencies. In these experiments we assume that
both cores work at the same frequency. Figure 6 shows the average of the
maximum deviations incurred by CMAT and Proc-Mem for each benchmark
across all the experiments. The deviation of Proc-Mem for all benchmarks
is, on average, 5.55% with respect to the measured execution time, while the
deviation of the CMAT model is, on average, 36.42%.

For illustrative purposes, Figure 7 presents the results of the previously
studied benchmarks (fir and sqrt) when executing concurrently for the dif-
ferent frequencies. In this case, the maximum deviation of the CMAT model
is 39.8% for fir and 32.7% for sqrt, whereas in the Proc-Mem model the max-
imum deviation is 6.9% and 7.3% for fir and sqrt respectively. Moreover, the
plots confirm the robustness of the proposed model even in the presence of
interferences due concurrent execution across all the experiments.

5. Frequency Selection Policy based on the Proc-Mem Model
5.1. Scheduler Working Behavior

The Proc-Mem model provides estimates of the execution time for the
different instances of the tasks for each target frequency. These estimates
can be used for several purposes by the scheduler such as to predict the task
utilization or to choose the target frequency. This section illustrates how
the estimates provided by the model can help the power-aware scheduler to
choose the most suitable DVFS levels to both save energy or address deadline
misses. This component of the scheduler will be referred to as frequency
selection policy. Next, the proposed policy is presented.

The actions performed by the scheduler at run-time using the devised
frequency selection policy are depicted in Figure 8 for the studied two-core
processor. Actions mainly differ depending on the considered hyperperiod;
the first one, namely HO, is used as a sampling period to obtain the workload
characteristics to be used by the model in the following hyperperiods.

In hyperperiod HO, performance monitoring counters (PMC) are used to
gather the main components of the execution time (CPU, OVERLAP, and
MEM). This is done for each active period of the different tasks. Each core
of the bi-core system is assumed to work at a single frequency during the
whole hyperperiod. This initial frequency can be any of the available in
the DVFS regulators that ensures meeting all task deadlines, although this

13

example assumes that each core works at its maximum frequency (i.e. core
0 works at 1.7 GHz and core 1 at 1.4 GHz.)

When hyperperiod HO expires, the inputs required by the Proc-Mem
model (i.e., CPU, OVERLAP, and MEM) have already been gathered for
each active period. Then, the proposed frequency selection policy is applied
to select the target core frequencies to be used in subsequent active periods
of the following hyperperiods. The devised policy uses the model to estimate
the execution time at each frequency for each task and period. Taking into

——Exe Time =»=CMAT Proc-Mem
——CPU OVERLAP =d&— MEM
70
60 {\i\;‘i »>- »>- >
50 T
— =

KCycles
w
o

17 16 15 14 13 12 11

Freq (GHz)
(a) Fir
——-Exe Time =»=—CMAT Proc-Mem
——CPU OVERLAP =&— MEM
25
20 > 2 = 5 5 5
‘\.‘J\ _
w 15 ——
Q@
S
O 10
~

17 16 15 14 13 12 11
Freq (GHz)

(b) Sqrt

Figure 7: Estimates of the Proc-Mem model in a multicore processor.

14

account these estimates, the policy chooses the lowest frequency for each pe-
riod that fulfills its deadline while maximizing energy savings. In addition,
the obtained estimates are also used by the power-aware scheduler to correct
possible deviations in the WCET that affect tasks utilizations, which are
required to perform partitioning and scheduling actions (see Section 2.1).

Notice that a frequency change will affect all subsequent tasks’ finish
time, so the algorithm is not designed to guarantee that deadlines will not
be missed for other tasks. That requirement implies additional analyses that
are out of the scope of this work.

5.2. Ezxperimental Results

To evaluate the proposed scheduler, it has been compared to a variant
using the CMAT model in terms of energy and deadline misses. To this end,
we have designed eight mixes consisting of benchmarks that are executed
multiple times in different active periods across the hyperperiod. Table 3
presents the mix composition and the number of instances of each individual
benchmark in one hyperperiod. Benchmarks were randomly selected to build
the mixes. We designed mixes with different number of tasks (2, 4, and 5
tasks) and different number of active periods per task (varying from 1 up to
90 active periods) to explore the behavior of the proposal in a wide range of
scenarios.

Figure 9 shows the normalized energy consumption during hyperperiod
H1 of both proposals with respect to a system working always at the maxi-
mum speed for eigth different mixes of benchmarks. To calculate the energy
consumption, we measured the number of cycles that each core spends at

HO H1 Hn

e

-Partitioning -Partitioning -Partitioning
-Scheduling -Scheduling -Scheduling
-PMC

Core 0 — 1.7 GHz Core 0 — FSP Core 0 — FSP
Core 1 > 1.4 GHz Core 1 — FSP Core 1 — FSP

Figure 8: Power-aware scheduler actions of the system across the hyperperiods. Legend:
FSP - frequency selection policy.

15

Table 3: Mix composition: benchmarks and instances of each benchmark.
Mix Benchmark (instances)
Mix 1 | Bsort100 (1)
Mix 2 | Bsort100 (1) (
Mix 3 | Bsort100 (1) Cnt (6) Compress (
Mix 4 | Bsort100 (1) (10) Compress (
Mix 5 | Bsort100 (1) (6) Compress (
)
)
)

3) Cover (3)
10) Cover (10)
10) Cover (16)

3

3
1
1
)
4)
2)

Mix 6 | Duff (5) Edn (1) Expint (13 Fac (1 Fdct (3)
Mix 7 | Duff (12) Edn (1) Expint (15 Fac (2 Fdct (15)
Mix 8 | Duff (12) Edn (1) Expint (16 Fac (3 Fdct (15)

each working frequency and multiplied these values by the energy consumed
per cycle at the corresponding frequency. Compared to the CMAT model,
Proc-Mem significantly reduces power consumption across all the mixes. The
reason is that Proc-Mem provides estimates of the execution time that are
much shorter than those provided by the CMAT model, which allows the
scheduler to select lower frequencies. Energy reduction is as high as 31% in
some cases, and around 18% on average. Notice that in mixes 1, 3 and 4,
Proc-Mem consumes half the energy of the system working at the maximum
speed. The reason is that when executing these mixes with the Proc-Mem
based scheduler, the system runs all the time at the minimum speed available
in both local DVFS regulators, whereas when using CMAT higher frequen-
cies are used due to longer execution time estimates. We found that CMAT
estimate values grow with the weight of the memory access time over the
execution time.

As mentioned above, this work focuses on soft real-time systems, where
deadline misses are allowed. In these systems, the implemented schedulers
must tradeoff energy to deadline misses; that is, energy saving must be
achieved but guaranteeing a minimum quality of service (quantified in dead-
line misses). Table 4 presents the number of misses in the experiments of the
Proc-Mem and CMAT models for each mix. The number of active periods of
the tasks of a mix during a hyperperiod is also included. As observed, in four
mixes there is not any deadline miss neither in Proc-Mem nor in CMAT. Nev-
ertheless, in three of them (i.e., Mix 1, Mix 3 and Mix 4) Proc-Mem model
energy savings are higher (i.e. by 22%) than when using CMAT.

Some deadline misses appear in the remaining mixes, where two cases

16

80
OCMAT ®Proc-Mem
70
60
50
40

30

Energy Consumption (%)

20

10

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 AVG

Figure 9: Normalized energy consumption of Proc-Mem and CMAT with respect to a
system working at the maximum speed.

can be distinguished. On the one hand, the same number of misses rises in
mixes 5, 7 and 8. However, in this case, Proc-Mem is more energy efficient
(by 10%) than CMAT. On the other hand, in mix 2, Proc-Mem misses two
deadlines while no deadline is missed with CMAT. Comparing the latter re-
sult to performance, Proc-Mem misses by 2% of the active periods’ deadlines,
while savings in energy consumption are by 15%. Therefore, we can conclude
that estimating tight execution times can incur in a limited amount of addi-
tional deadline misses. However, in this case, important energy savings can
be brought.

Table 4: Deadline misses in the CMAT and Proc-Mem models and active periods of the
mixes.

Mix Cl\]?{zaghn;rll/[;s;im # Active Periods
Mix 1 0 0 17
Mix 2 0 2 91
Mix 3 0 0 13
Mix 4 0 0 31
Mix 5 1 1 33
Mix 6 0 0 35
Mix 7 5 5 67
Mix 8 1 1 76

17

6. Related Work

A number of static execution time analysis methods have been designed in
the last two decades, mainly for monoprocessors [24]. These research works
use execution time estimates in order to choose the optimal DVFS level to
enhance power savings and reduce deadline misses. Seth et al. [6] study the
effects of DVF'S on static timing analysis taking into account power consump-
tion. They calculate the WCET in any frequency range using a parametric
model that depends on the number of cache misses. However, their approach
is static and needs the source files of the applications. Another model is pro-
posed by Snowdon et al. [7]. They perform an on-line evaluation of applica-
tion characteristics using performance counters, nevertheless, it is combined
with an off-line characterization of the hardware platform. Miftakhutdinov
et al [25] propose a DVFS performance predictor for memory systems with a
streaming prefetcher. They also take into account that memory latencies (as
measured in seconds) are not affected by chip frequency scaling. However,
their proposal is static, without real-time constraints and does not consider
multiple cores. Unlike these works, our proposal estimates dynamically the
execution time and focuses on heterogenous multicore processors.

Execution time estimation for multicore platforms has been the subject
of rather few studies. Most of them focused on cache-aware methods. Hardy
et al. [26] present a WCET estimation method for multicore platforms with
shared instruction caches. The proposed method provides estimates through
the control of the contents of the shared instructions cache, more precisely
by caching only the blocks statically known to be reused and bypassing from
shared caches the other blocks. Predictability becomes harder when consid-
ering the effect of caches embedded in the NoC, like the ones described in
[27]. More advanced CMP solutions like the presented in [28, 29] or how
feedback driven restructuring techniques can be utilized to improve power
savings jointly with the approach proposed in this paper, and are planned to
be addressed as for future work.

There are some works that study the effect of the main memory in the es-
timation of the execution time for multithreaded and multicore architectures
but do not address energy savings. Shah et al. [30] make use of bank interleav-
ing and applying Priority based Budget Scheduling (PBS) to share SDRAM
among multiple masters. This technique permits to bound the WCET of an
application accessing a shared SDRAM using the worst case access pattern.
They implemented the memory system in an FPGA. Their proposal produces

18

safe and low WCET bounds. Ungerer et al. [31] build a predictable multi-
core architecture for mixed critical applications. Predictability is achieved
by giving the highest priority to the hard real-time task while on the shared
bus access latency is bounded by a round robin (RR) arbiter. The memory
is accessed through an analyzable memory controller (AMC), which imple-
ments bank interleaving. Through theoretical analysis, latency parameters
are extracted to calculate the WCET. The AMC applies the maximum of
Read/Write and Write/Read switching latencies as a constant worst case la-
tency on every access. Such assumption, while making the analysis simple,
cannot produce precise bounds. Moreover, the RR policy with one request
per master cannot satisfy the need of different bandwidth requirements. If

more than one request per master is assigned, the WCET is severely de-
graded [30].

7. Conclusions

Accurately estimating task execution time in a real-time multicore embed-
ded system supporting DVF'S is a critical issue for enhancing the schedula-
bility of the system and improving energy savings. Since this kind of systems
support multiple core speeds, different execution times should be estimated,
one for each speed. This paper has proposed the Proc-Mem model that es-
timates the execution times, for each instance of a real-time task, at the
available frequencies in the multicore. These estimates are used by a power-
aware scheduler to choose the most suitable working frequency to address
both energy and deadline misses.

To provide accurate execution times, Proc-Mem uses performance moni-
toring counters to measure the time that each core spends performing com-
putation (CPU), waiting for memory (MEM), and overlapping time (OVER-
LAP) between computation and memory access. Based on this information,
Proc-Mem estimates the execution times for each task and frequency level.

We have devised a frequency selection policy that uses the Proc-Mem
model to reduce energy consumption while incurring in scarce deadline misses.
Compared to the Constant Memory Access Time model used in recent works,
the use of Proc-Mem allows the Power-Aware EDF scheduler to significantly
improve energy savings without significantly increasing the number of dead-
line misses. Experiments show that the accuracy of the proposed model
allows the system to reach energy savings by 18% on average, and up to
31% in some workloads. As for future work we plan to explore the use of

19

the Proc-Mem model considering the influence of a Network on Chip in the
schedulability and power savings.

Acknowledgement

This work was supported by the Spanish Ministerio de Economia y Com-

petitividad (MINECO) and by FEDER funds under Grant TIN2012-38341-
C04-01, and by the Intel Early Career Faculty Honor Program Award.

References

1]

J. Daz, S. Reyes, A. Nio, C. Muoz-Caro, Derivation of self-scheduling
algorithms for heterogeneous distributed computer systems: Applica-
tion to internet-based grids of computers, Future Generation Computer

Systems 25 (6) (2009) 617 — 626.

A. Burkimsher, I. Bate, L. S. Indrusiak, A survey of scheduling metrics
and an improved ordering policy for list schedulers operating on work-
loads with dependencies and a wide variation in execution times, Future
Generation Computer Systems 29 (8) (2013) 2009 — 2025.

T. Ishihara, H. Yasuura, Voltage scheduling problem for dynamically
variable voltage processors, in: Low Power Electronics and Design, 1998.
Proceedings. 1998 International Symposium on, IEEE, 1998, pp. 197—
202.

W.-C. Kwon, T. Kim, Optimal voltage allocation techniques for dy-
namically variable voltage processors, ACM Transactions on Embedded
Computing Systems (TECS) 4 (1) (2005) 211-230.

M. E. T. Gerards, J. Kuper, Optimal DPM and DVFS for Frame-based
Real-Time Systems, ACM Transactions on Architecture and Code Op-
timization 9 (4) (2013) 41:1-41:23.

K. Seth, A. Anantaraman, F. Mueller, E. Rotenberg, FAST: Frequency-
Aware Static Timing Analysis, in: Proceedings of the 24th International
Real-Time Systems Symposium, IEEE Computer Society, Cancun, Mex-
ico, 2003, pp. 40-51.

20

[7]

[10]

[11]

[12]

[13]

[14]

D. C. Snowdon, G. V. D. Linden, S. M. Petters, Accurate Run-Time
Prediction of Performance Degradation under Frequency Scaling, in:
Proceedings of the Workshop on Operating Systems Platforms for Em-
bedded Real-Time Applications, Pisa, Italy, 2007.

G. Buttazzo, E. Bini, D. Buttle, Rate-adaptive tasks: Model, analysis,
and design issues, in: Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE), 2014, Dresden, Germany, 2014, pp. 1-6.

G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd Edition, Springer Pub-
lishing Company, Incorporated, 2011.

P. Marwedel, Embedded System Design: Embedded Systems Founda-
tions of Cyber-Physical Systems, Springer Publishing Company, Incor-
porated, 2011.

A. Peter Greenhalgh, Big. little processing with arm cortex-alb &
cortex-a7 (2011).

ARM big.LITTLE Processing, [Online]. Available: http://www.arm.
com/products/processors/technologies/biglittleprocessing.

php (ARM Holdings).

T. R. Halthill, Intel’s Tiny Atom: New Low-power Microarchitecture
Rejuvenates the Embedded x86, Micro Report 22 (4) (2008) 1.

J. Donald, M. Martonosi, Techniques for Multicore Thermal Manage-
ment: Classification and New Exploration, in: Proceedings of the 33rd

International Symposium on Computer Architecture, IEEE Computer
Society, Boston, MA, USA, 2006, pp. 78-88.

INTEL Corp., Santa Clara, CA, USA, Intel Pentium M Proces-
sor Datasheet, [Online]. Available: http://download.intel.com/
support/processors/mobile/pm/sb/25261203.pdf (2004).

T. A. AlEnawy, H. Aydin, Energy-Aware Task Allocation for Rate
Monotonic Scheduling, in: Proceedings of the 11th Real Time and Em-
bedded Technology and Applications Symposium, IEEE Computer So-
ciety, San Francisco, CA, USA, 2005, pp. 213-223.

21

[17]

[18]

[19]

[20]

[22]

23]

[24]

E. Ipek, O. Mutlu, J. Martinez, R. Caruana, Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach, in: 35th International
Symposium on Computer Architecture, ISCA, 2008, pp. 39-50.

S. Eranian, What Can Performance Counters Do for Memory Subsystem
Analysis?, in: Proceedings of ACM SIGPLAN workshop on memory
systems performance and correctness (ASPLOS’08), ACM, 2008, pp.
26-30.

M. Bux, U. Leser, Dynamiccloudsim: Simulating heterogeneity in com-
putational clouds, in: Proceedings of the 2nd ACM SIGMOD Workshop
on Scalable Workflow Execution Engines and Technologies, SWEET 13,
ACM, New York, NY, USA, 2013, pp. 1:1-1:12.

S. Camarasu-Pop, T. Glatard, R. F. da Silva, P. Gueth, D. Sarrut,
H. Benoit-Cattin, Monte carlo simulation on heterogeneous distributed
systems: A computing framework with parallel merging and checkpoint-
ing strategies, Future Generation Computer Systems 29 (3) (2013) 728
— 738, special Section: Recent Developments in High Performance Com-
puting and Security.

R. Ubal, J. Sahuquillo, S. Petit, P. Lopez, Multi2Sim: A Simulation
Framework to Evaluate Multicore-Multithreaded Processors, in: Pro-
ceedings of the 19th International Symposium on Computer Architec-
ture and High Performance Computing, IEEE Computer Society, Gra-

mado, RS, Brazil, 2007, pp. 62—-68.

J. March, J. Sahuquillo, H. Hassan, S. Petit, J. Duato, Extending a
Multicore Multithread Simulator to Model Power-Aware Hard Real-
Time Systems, in: Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing, Springer-Verlag,

Berlin, Busan, Korea, 2010, pp. 444-453.

Maélardalen Real-Time Research Center, Vasteras, Sweden, WCET
Analysis Project. WCET Benchmark Programs, [Online]. Available:
http://www.mrtc.mdh.se/projects/wcet (2006).

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, P. Stenstrém, The Worst-Case

22

[25]

[26]

[27]

28]

[29]

Execution Time Problem - Overview of Methods and Survey of Tools,
ACM Trans. Embed. Comput. Syst. 7 (3) (2008) 36:1-36:53.

R. Miftakhutdinov, E. Ebrahimi, Y. N. Patt, Predicting Performance
Impact of DVFS for Realistic Memory Systems, in: Proceedings of the
45th International Symposium on Microarchitecture, 2012, pp. 155-165.

D. Hardy, T. Piquet, I. Puaut, Using Bypass to Tighten WCET FEs-
timates for Multi-Core Processors with Shared Instruction Caches, in:
30th IEEE Real-Time Systems Symposium, 2009, 2009, pp. 68-77.

C. Kim, D. Burger, S. W. Keckler, An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches, SIGARCH Comput.
Archit. News 30 (5) (2002) 211-222.

P. Foglia, M. Solinas, Exploiting replication to improve performances of
nuca-based cmp systems, ACM Trans. Embed. Comput. Syst. 13 (3s)
(2014) 117:1-117:23.

S. Bartolini, P. Foglia, M. Solinas, C. A. Prete, Feedback-Driven Re-
structuring of Multi-threaded Applications for NUCA Cache Perfor-
mance in CMPs, in: Proceedings of the 22nd International Symposium
on Computer Architecture and High Performance Computing, IEEE
Computer Society, 2010, pp. 87-94.

H. Shah, A. Raabe, A. Knoll, Bounding WCET of applications using
SDRAM with Priority Based Budget Scheduling in MPSoCs, in: Design,
Automation Test in Europe Conference Exhibition, 2012, pp. 665-670.

T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quiones, M. Gerdes, M. Paolieri, J. Wolf, H. Cass, S. Uhrig, I. Gu-
liashvili, M. Houston, F. Kluge, S. Metzlaff, J. Mische, Merasa: Multi-
core Execution of Hard Real-Time Applications Supporting Analyzabil-
ity, Micro, IEEE 30 (5) (2010) 66-75.

23

