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aUniversitat Politècnica de València, Camino de Vera s/n, 46011, Valencia, Spain
bDepartment of Mathematics, Faculty of Informatics, Universidade da Coruña, Campus

Elviña s/n, 15071-A Coruña, Spain

Abstract

American put option pricing under regime switching is modelled by a system

of coupled partial differential equations. The proposed model combines better

the reality of the market by incorporating the regime switching jointly with

the emotional behaviour of traders using the rationality parameter approach

recently introduced by T̊agholt Gad and Lund Petersen to cope with possible

irrational exercise policy. The classical rational exercise is recovered as a limit

case of the rational parameter. The resulting nonlinear system of PDEs is

solved by a weighted finite difference method, also known as θ-method✳ ✑✒

order to avoid the need of an iterative method for the ✒♥✒✓✔✒✕✖✗ ✘✙✘✚✕✛✜ ✚✢✕

term with rationality parameter and the coupling term are treated explicitly.

Next, the resulting linear system is solved by Thomas algorithm. Stability

conditions for the numerical scheme are studied by using the ✈♥✒ ✣✕✤✛✖✒✒

approach. Numerical examples illustrate the efficiency and accuracy of the

proposed method.
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✶✥ ✦✧★✩✪✫✬✭★✮✪✧

In financial derivatives pricing problems, when the stochastic process for the

underlying asset is too simple, as when assuming constant parameters [3], the

model does not replicate the market price. This drawback has been overcome

in the literature by introducing stochastic volatility, jump-diffusion and regime5

switching models for the underlying price evolution.

Since the paper of Buffington and Elliot [5] the switching model has at-

tracted much attention, mainly due to its ability to model ✒♥✒✯✰♥✒✘✚✖✒✚ ✗✕✖✓

scenarios when market switches from time to time among different regimes. It

is well known that regime switching models are computationally inexpensive10

when compared to stochastic volatility jump-diffusion models and provide ver-

satile applications in other fields, like electricity markets [2], valuation of stock

loans [34], forestry valuation [6], natural gas [7] and insurance [17].

In this paper we consider a continuous time Markov chain αt taking values

among different regimes, where I is the total number of regimes considered in15

the market. Thus, each regime is labelled by an integer i with 1 ≤ i ≤ I.

Hence, the regime space of αt is Ω = {1, 2, ..., I}. Let Q = (qi,j)I×I be the given

generator matrix of αt. Following [32], the entries qi,j satisfy:

qi,j ≥ 0, if i 6= j; qi,i = −
∑

j 6=i

qi,j , 1 ≤ i ≤ I. (1)

Under the risk-neutral measure, see Elliot et al. [14] for details, the stochastic

process for the underlying asset St satisfies the following stochastic differential✷✱

equation:

❞✲t

St
= rαt

dt+ σαt
dB̃t, t ≤ 0, (2)

where σαt
is the volatility of the asset St, rαt

is the risk-free interest rate ,

both depending on the Markov chain αt, and B̃t is a standard Brownian motion

defined on some given risk-neutral probability space, independent on the Markov

chain αt✳25
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❍✕✗✕ ✴✕ ✰♥✒✘✔✵✕✗ ✚✢✕ ✸✛✕✗✔✰✖✒ ✹✤✚ ♥✹✚✔♥✒ ♥✒ ✚✢✕ ✖✘✘✕✚ St = S with strike

price E and maturity T < ∞. For 1 ≤ i ≤ I, let Vi(S, τ) denote the option

price functions (i.e.

(Vi)τ = Vi(Sτ , τ)

is the option price process in regime i), where τ = T − t denotes the time to

maturity and the regime αt = i. Then, Vi(S.τ), 1 ≤ i ≤ I, satisfy the free

boundary value problem for 0 < τ ≤ T , see [22]✿















∂Vi

∂τ
=

σ2
i

2
S2 ∂

2Vi

∂S2
+ riS

∂Vi

∂S
− riVi +

∑

l 6=i

qi,l(Vl − Vi), S > S∗i (τ),

Vi(S, τ) = E − S, 0 ≤ S ≤ S∗i (τ),

(3)

where S∗i (τ) denotes the ♥✹✚✔✛✖✓ ✘✚♥✹✹✔✒♦ ✺♥✤✒✵✖✗✙ ♥✻ ✚✢✕ ♥✹✚✔♥✒ under regime

i✳ ✑✒✔✚✔✖✓ ✰♥✒✵✔✚✔♥✒✘ ✖✗✕

Vi(S, 0) = max(E − S, 0), S∗i (0) = E, i = 1, ..., I. (4)

Boundary conditions for i = 1, .., I are as follows

lim
S→∞

Vi(S, τ) = 0, (5)

Vi(S
∗
i (τ), τ) = E − S∗i (τ), (6)

∂Vi

∂S
(S∗i (τ), τ) = −1. (7)

Several different numerical methods for solving problem (3) have been pro-30

posed. Lattice methods [19, 25] are popular for practitioners because they are

easy to implement. The penalty method [23, 22, 33] adds a penalty term into

each equation of the coupled system. After considering American options pric-

ing under regime switching model as a Hamilton Jacobi Bellman problem, in

[1] iterated optimal stopping [24] and local policy iteration [27] methods are35

compared.

Recently, in [13] the front-fixing method (see [9]) has been employed for

valuation of American option under regime switching model, by incorporating

3



✻✗✕✕ ✺♥✤✒✵✖✗✙ ✔✒✚♥ ✚✢✕ ❢✼✽ ✖✘ ✖ ✒✕✴ ✤✒✾✒♥✴✒ ✈✖✗✔✖✺✓✕✳ ✑✒ ✘✤✰✢ ✹✖✹✕✗ ✕❀✰✔✕✒✚

explicit finite difference methods are shown.40

Unlike the direct approach of a European option pricing problem where

the price is given by the solution of a partial differential equation (PDE), it is

well known that the price of an American option is described by the solution of

partial differential inequality (see [31]). Once the inequality has been discretized,

a linear complementarity problem (LCP) arises with the additional algebraic45

complexity. Although the LCPs are satisfactory addressed (see [15] and the

references therein), the possibility of computing an American option pricing

problem by solving a PDE problems could be interesting not only from the

computational point of view, but also from the reliability of the computed price.

On the other hand✜ ✈✕✗✙ ✗✕✰✕✒✚✓✙ ✚✢✕ ✗✖✚✔♥✒✖✓✔✚✙ ✹✖✗✖✛✕✚✕✗ ✖✹✹✗♥✖✰✢ ✹✗♥✯50

posed by T̊agholt Gad and Lund Pedersen in [30] allows to incorporate the

possibility of an irrational exercise policy in the American option. In this set-

ting, ✚✢✕ ✰♥✛✹✤✚✖✚✔♥✒ ♥✻ ✚✢✕ ✹✗✔✰✕ ✰✖✒ ✺✕ ♥✺✚✖✔✒✕✵ ✺✙ ✘♥✓✈✔✒♦ ✖ ❢✼✽ ✹✗♥✺✓✕✛

with an additional nonlinear term in the corresponding European option pricing

formulation. Moreover, when the rationality parameter in the previous model55

tends to infinity, the formulation tends to the one of the classical American

option pricing problem with rational exercise. Therefore, by addressing the

solution of the model for large enough values of the rationality parameter pro-

vides an approximation of the classical American option price. In the absence

of regime switching, the numerical solution of American option pricing models❁✱

with irrational exercise has been recently addressed [10].

❚✢✕ main ✖✔✛ ♥✻ ✚✢✔✘ ✹✖✹✕✗ ✔✘ ✚♥ propose a new model that simultaneously

incorporates ✚✢✕ ✖✵✈✖✒✚✖♦✕✘ ♥✻ ✚✢✕ ✗✕♦✔✛✕ ✘✴✔✚✰✢✔✒♦ jointly with those of ✚✢✕

rationality parameter approach. Additionally, we propose and develop the nu-

merical analysis of a suitable family of weighted finite differences schemes to❁❂

solve numerically this nonlinear model✳

The plan of the work is as follows. In Section 2, the new model that takes

into account the irrational behaviour under regime switching is described and a

suitable change of variables and unknown transforms the original PDE problem

❃



into an equivalent one with constant coefficients in the differential part. Section70

3 deals with the construction of a one parameter family of finite difference

methods, also known as weighted schemes [28]. Next, relevant numerical analysis

issues as positivity, stability and consistency are studied in Section 4. Numerical

simulations are included in Section 5, paying special attention to the limit case of

classical American options with rational exercise, also the order of convergence75

and the comparison with other methods is presented. Section 6 contains the

concluding remarks.

2. Regime switching model with rationality parameter

❋♥✗ ✚✢✕ ✘✖✾✕ ♥✻ ✘✔✛✹✓✔✰✔✚✙, ✴✕ ✘✤✛✛✖✗✔✇✕ ✚✢✕ ✗✖✚✔♥✒✖✓✔✚✙ ✹✖✗✖✛✕✚✕✗ ✖✹✹✗♥✖✰✢

in the incorporation of the irrational behaviour of the option ✚✗✖✵✕✗ ✔✒✚♥ ✚✢✕80

mathematical formulation of the model throughout the intensity function (see

Theorem 2 in [30]). Then, Feynman-Kac theorem gives the option ✹✗✔✰✕ ✖✘ ✚✢✕

solution of a nonlinear ❢✼✽ ✹✗♥✺✓✕✛✳ ❚✢✕ ✗✖✚✔♥✒✖✓✔✚✙ ✹✖✗✖✛✕✚✕✗ λ involved

in the intensity functions plays the role of a ✤✒✔✻✙✔✒♦ ✛♥✵✕✓✓✔✒♦ ✚♥♥✓ ✔✒ ✘✤✰✢

way that for λ = 0 provides the European style and for large values of λ one85

approximates to the classical ✸✛✕✗✔✰✖✒ ♥✹✚✔♥✒ ✹✗✔✰✕ with rational exercise✳

For an intensity function f : [−E,E] → [0,∞), in the regime switching

setting ✴✕ ✖✘✘✤✛✕ ✚✢✖✚ ✚✢✕ ✗✕✓✖✚✔♥✒ ✺✕✚✴✕✕✒ ✚✢✕ ✹✗♥❄✚✖✺✔✓✔✚✙ ✖✒✵ ✚✢✕ ✘✚♥✰✢✖✘✚✔✰

exercise intensity is f((E−S)+−Vi(S, τ)) for each regime. After incorporating

this term to the system of PDEs satisfied by the call option price in ✚✢✕ ✗✕♦✔✛✕90

switching model, we obtain

❅❆i
∂τ

=
σ2
i

2
S2 ∂

2Vi

∂S2
+ riS

∂Vi

∂S
− riVi + f

(

(E − S)+ − Vi

) (

(E − S)+ − Vi

)

+
∑

l 6=i

qi,l(Vl − Vi), S > 0, 0 < τ ≤ T,
(8)

for i = 1, . . . , I, jointly ✴✔✚✢ the ✔✒✔✚✔✖✓ ✖✒✵ ✺♥✤✒✵✖✗✙ ✰♥✒✵✔✚✔♥✒✘✿
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❆i(S, 0) = max(E − S, 0), (9)

lim
S→∞

Vi(S, τ) = 0, (10)

∂Vi

∂τ
(0, τ) = −riVi(0, τ) + f (E − Vi(0, τ)) (E − Vi(0, τ))

+
∑

l 6=i

qi,l(Vl(0, τ)− Vi(0, τ)), i = 1, .., I. (11)

Note that since the spatial domain is S > 0 in rationality parameter model,

an ✖✵✵✔✚✔♥✒✖✓ ✺♥✤✒✵✖✗✙ ✰♥✒✵✔✚✔♥✒ ✖✚ ✚✢✕ ✹♥✔✒✚ S = 0 has to be included to treat

the problem numerically. We assume that the PDE (8) holds at S = 0, so that❇❂

equation (11) is established.

In the previous framework, the family of intensity functions f depends on

some parameter λ, that has to satisfy ✚✢✕ ✰♥✒✵✔✚✔♥✒ ♥✻ ✗✖✚✔♥✒✖✓✔✚✙ ✹✖✗✖✛✕✚✕✗✳ ✑✒

this paper we consider the parameter dependent intensity functions ✹✗♥✹♥✘✕✵ ✔✒

[30]

f1(x) =











λ, for x ≥ 0,

0, for x < 0,

(12)

as well as the two following intensity functions introduced in [10]✜ ✚✢✖✚ ✖✗✕ ✚✢✕

smooth analogue of stepwise function (12):

f2(x) =
2λ

1 + e−λ2x
, (13)

f3(x) = λ

(

1 +
2

π
arctanλ2x

)

. (14)

Since a closed form solution is not available for the nonlinear system of

equations (8)-(11), the solution has to be computed numerically.

In order to construct an effective finite difference scheme with constant coef-

ficients in the differential part, ✓✕✚ ✤✘ firstly ✔✒✚✗♥✵✤✰✕ ✚✢✕ ✻♥✓✓♥✴✔✒♦ ✒♥✗✛✖✓✔✇✕✵100

6



✚✗✖✒✘✻♥✗✛✖✚✔♥✒

x = ln
S

E
, ui =

Vi(S, τ)

E
, i = 1, .., I. (15)

Then, problem (8)-(11) takes the following equivalent ✻♥✗✛✿

∂ui

∂τ
=

σ2
i

2

∂2u

∂x2
+

(

ri −
σ2
i

2

)

∂ui

∂x
− riui +

∑

l 6=i

qi,l(ul − ui)

+ f
(

E(1− ex)+ − Eui

) (

(1− ex)+ − ui

)

, i = 1, . . . , I,

(16)

with the new initial and boundary conditions

ui(x, 0) = (1− ex)+, (17)

lim
x→∞

ui(x, τ) = 0, (18)

lim
x→−∞

∂ui

∂τ
(x, τ) = lim

x→−∞
−riui(x, τ)

+f (E(1− ui(x, τ))) (1− ui(0, τ)) (19)

+
∑

l 6=i

qi,l(ul(x, τ)− ui(x, τ)).

In next sections we propose and analyze the numerical solution of the prob-

lem (16)-(19) by using the one parameter family of a weighted finite differences105

scheme, also called θ-method.

3. Weighted finite difference scheme (θ-method) for PDE problem

❚✢✕ ✺♥✤✒✵✕✵ ✰♥✛✹✤✚✖✚✔♥✒✖✓ ✵♥✛✖✔✒ ✔✘ ✰✢♥✘✕✒ ✖✘ ❉xmin, xmax]× [0, T ], where

xmin = −3, xmax = 3, that is sufficiently large to translate limit conditions (18)

and (19) into boundary conditions at x = xmin and x = xmax, respectively. A110

uniform grid of M + 1 spatial nodes and N + 1 temporal nodes is introduced

with step sizes h = xmax−xmin

M and k = T
N , respectively✳ ❚✢✕ ✒♥✵✕✘ ✖✗✕ ✵✕✒♥✚✕✵

as follows

xj = xmin + jh, j = 0, ..,M, τn = nk, n = 0, .., N. (20)

7



❋♥✗ ✕✖✰✢ ✗✕♦✔✛✕ i = 1, .., I, the finite differences approximation of the solu-

tion at the node (xj , τ
n) is denoted by un

i,j . Then, the weighted finite difference115

scheme with parameter θ ∈ [0, 1], by using central differences in space and

forward difference in time takes the following form

−θaiu
n+1
i,j−1 + biu

n+1
i,j − θciu

n+1
i,j+1 = (1− θ)aiu

n
i,j−1 + b̃iu

n
i,j + (1− θ)ciu

n
i,j+1

+kfn
i,j

(

u0
i,j − un

i,j

)

+ k
∑

l 6=i

qi,l(u
n
l,j − un

i,j), j = 1, ..,M − 1, n = 0, ..., N − 1,

(21)

where the involved ✰♥✕❀✰✔✕✒✚✘ are

❛i =
σ2
i

2

k

h2
−

(

ri −
σ2
i

2

)

k

2h
,

bi = 1 + θ

(

σ2
i

k

h2
+ rik

)

,

b̃i = 1− (1− θ)

(

σ2
i

k

h2
+ rik

)

, (22)

ci =
σ2
i

2

k

h2
+

(

ri −
σ2
i

2

)

k

2h
,

and the rationality function term is denoted by fn
i,j = f

(

E(u0
i,j − un

i,j)
)

. Note

that the ❊-method is used for the differential part while the other ✚✕✗✛✘ ✖✗✕120

treated explicitly for the computational convenience [23]. Note that case θ = 0,

θ = 1/2 and θ = 1 ✰♥✗✗✕✘✹♥✒✵✘ ✚♥ ✚✢✕ ✘♥ ✰✖✓✓✕✵ ✻✤✓✓✙ ✕❝✹✓✔✰✔✚ , Crank-Nicolson

and fully implicit schemes, respectively.

❚✢✕ ✔✒✔✚✔✖✓ ✰♥✒✵✔✚✔♥✒ ✔✘ ✵✔✘✰✗✕✚✔✇✕✵ ✖✘ ✻♥✓✓♥✴✘

u0
i,j = (1− exj )+, j = 0, ...,M, i = 1, .., I. (23)

For each regime i = 1, .., I and each time level n = 0, ..., N − 1, the d✔✘✰✗✕✚✕

form of the ✺♥✤✒✵✖✗✙ ✰♥✒✵✔✚✔♥✒ ✖✚ ✚✢✕ ✹♥✔✒✚ x0 = xmin is obtained by using a●✷❂

forward in time explicit finite difference scheme, thus leading to

✉n+1
i,0 = (1− rik)u

n
i,0 + kfn

i,0

(

1− un
i,0

)

+ k
∑

l 6=i

qi,l(u
n
l,0 − un

i,0). (24)

8



Also for each regime i = 1, .., I and each time level n = 0, ..., N − 1 ✜ ✖✚ ✚✢✕

boundary point xM = xmax the boundary condition un+1
i,M = 0 is imposed✳

Since the nonlinear terms in (21) are taken at the previous time level, the

system of equations (21) is linear with tridiagonal matrix, so that it can be130

solved by Thomas algorithm.

4. Qualitative properties of the scheme

In this section, some &✤✖✓✔✚✖✚✔✈✕ ✹✗♥✹✕✗✚✔✕✘ ♥✻ ✚✢✕ ✹✗♥✹♥✘✕✵ ✒✤✛✕✗✔✰✖✓ ✛✕✚✢♥✵

(positivity, stability and consistency) are studied. First, we start with the ap-

proximation at x = xmin = x0. Since the value at this left boundary is described135

by a differential equation, one has to guarantee that solution is stable and os-

cillations do not occur at this point. The following Lemma provides conditions

for boundedness of the numerical solution at the point xmin.

Lemma 4.1. With the previous notation, if

k < min
1≤i≤I

1

ri + Cλ− qi,i
, (25)

then we have

■ ≤ un
i,0 ≤ 1, i = 1, .., I, n = 0, .., N, (26)

where the constant ❏ appearing in 25 ✐❑ ▲▼◆❖▼▲ <❑

C = lim
λ→∞

fλ(x)

λ
, (27)

so that C = 1 for f1 and ❏ = 2 for f2 and f3.

Proof. Let us consider boundary condition (24). Note that u0
i,0 ∈ [0, 1]. Next,140

assume that un
i,0 ∈ [0, 1] for each regime i = 1, .., I and fixed n. Then

un+1
i,0 ≤ (1− kri)u

n
i,0 + kfn

i,0(1− un
i,0)− kqi,i(1− un

i,0)

≤
(

1− kri − kfn
i,0 + kqi,i

)

un
i,0 + k

(

fn
i,0 − qi,i

)

≤ 1, (28)

provided that

1− k
(

ri + fn
i,0 − qi,i

)

≥ 0. (29)

9



✑✒ ✚✢✖✚ ✰✖✘✕✜ ✘✔✒✰✕ un
i,0 ≤ 1, (28) holds true if

1− kri − kfn
i,0 + kqi,i ≤ 1− k

(

fn
i,0 − qi,i

)

, (30)

that is obvious for any k, such that (29) holds. Therefore, for (26) it is

necessary to choose k satisfying

k ≤
1

ri + fn
i,0 − qi,i

. (31)

Since (31) has to be fulfilled for any fixed n, fn
i,0 can be bounded by the

✓✔✛✔✚ ✈✖✓✤✕✘✿ λ for f1 and 2λ for f2 and f3. Therefore, condition (25) is proved.

Note, that the non-negativity of un
i,0 follows from (24). once ✗✕✴✗✔✚✚✕✒ ✔✒ ✚✢✕145

following form

un+1
i,0 = (1− k(ri − qi,i))u

n
i,0 + kfn

i,0

(

1− un
i,0

)

+ k
∑

l 6=i

qi,lu
n
l,0, (32)

since each term in (32) is non-negative.

All the forthcoming ✗✕✘✤✓✚✘ ✖✗✕ ✈✖✓✔✵ ✤✒✵✕✗ ✰♥✒✵✔✚✔♥✒ 3◗❘❙✳ ✑✒ ✚✢✕ ✻♥✓✓♥✴✔✒♦

subsection the positivity of the proposed method is studied.150

4.1. Positivity

For the sake of clarity, let us recall some results in matrix analysis.

A matrix B = (bij) ∈ R
m×n is a non-negative matrix, if bij ≥ 0 for 1 ≤ i ≤

m, 1 ≤ j ≤ n.

For any square matrix B ∈ R
n×n the maximum of the moduli of its eigen-155

values is called spectral radius ρ(B). The n × n identity matrix is denoted by

I.

A n × n matrix B is called an M-matrix if it can be expressed in the form

B = sI − B̃, where B̃ = (b̃ij) with b̃ij ≥ 0, and s ≥ ρ(B̃). A matrix B is

a non-singular M-matrix if and only if it is inverse-positive, that is B−1 ≥ 0160

(see statement F15 in [26]). Matrix B having all positive diagonal elements is a

10



❯✯✛✖✚✗✔❝ ✔✻ ✚✢✕✗✕ ✕❝✔✘✚✘ ✖ ✹♥✘✔✚✔✈✕ ✵✔✖♦♥✒✖✓ ✛✖✚✗✔❝ D, such that BD is strictly

diagonally dominant (see statement N39 in [26]).

Next result guarantees the positivity of the numerical solution {un
i,j} under

certain conditions on the step sizes.165

Theorem 4.1. With the previous notation, the finite difference scheme (21)

preserves the non-negativity of the numerical solution under the following con-

ditions

h < min {h1, h2} , k < min
i=1,..,I

h2

σ2
i + (ri + qi,i − 2λ)h2

, (33)

where

h1 = min
i=1,..,I

σ2
i

∣

∣

∣
ri −

σ2
i

2

∣

∣

∣

, h2 = min
i=1,..,I

σi
√

|ri + qi,i − 2λ|
. (34)

In the case that the denominators of h1 and h2 vanish, only the second inequality

of (33) is needed for all h > 0.●❱✱

Proof. First, let us consider θ = 0. In this case, the scheme (21) can be rewritten

in following form

un+1
i,j = aiu

n
i,j−1 + (b̃i + qi,ik − fn

i,jk)u
n
i,j + ciu

n
i,j+1 + kfn

i,ju
0
i,j + k

∑

l 6=i

qi,lu
n
l,j ,

(35)

where ai, b̃i and ci are defined by (22). Under conditions (33) the coefficients ai,

(b̃i + qi,ik − fn
i,jk) and ci in (35) ✖✗✕ ✹♥✘✔✚✔✈✕. Moreover, note that the value of

the intensity function fn
i,j ✔✘ ✒♥✒✯✒✕♦✖✚✔✈✕ ✺✙ ✚✢✕ ✵✕❄✒✔✚✔♥✒ ✖✒✵ ✚✢✕ ✓✖✘✚ ✚✕✗✛ ✔✘

a linear combination of non-negative elements at the previous time level. Thus,

providing positive solution
{

un
i,j

}

at the time level n, non-negativity of
{

un+1
i,j

}

●❱❂

is established.

❋♥✗ ✚✢✕ ✗✕✛✖✔✒✔✒♦ ✈✖✓✤✕✘ ♥✻ θ, let us consider the vector form of scheme (21)

Aiu
n+1
i = βn

i , (36)

11



✴✢✕✗✕ un+1
i =

[

un+1
i,1 un+1

i,2 ... un+1
i,M−1

]T

, Ai is the ✚✗✔✵✔✖♦♥✒✖✓ ✰♥✒✘✚✖✒✚ ✛✖✚✗✔❝

Ai =























bi −θci 0 0 . . . 0

−θai bi −θci 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 . . . −θai bi −θci

0 0 . . . 0 −θai bi























, (37)

and βn
i is a vector of M − 1 components βn

i,j , such that

βn
i,j = (1−θ)aiu

n
i,j−1+b̃iu

n
i,j+(1−θ)ciu

n
i,j+1+kfn

i,j

(

u0
i,j − un

i,j

)

+k
∑

l 6=i

qi,l(u
n
l,j−u

n
i,j)

(38)

for j = 2, ..,M − 1 ✖✒✵

βn
i,1 = (1− θ)aiu

n
i,0 + b̃iu

n
i,1 + (1− θ)ciu

n
i,2 + kfn

i,1

(

u0
i,1 − un

i,1

)

+k
∑

l 6=i

qi,l(u
n
l,1 − un

i,1) + θaiu
n+1
i,0 . (39)

Note that from (22), if conditions (33) hold, then the coefficients the coeffi-

cients ai and ci are non-negative and also we have

■ ≤ θ(ai + ci) < bi. (40)

Consequently Ai is a strictly diagonally dominant matrix, and then a non-●❲✱

singular M-matrix✳ ❚✢✕✗✕✻♥✗✕✜ ✚✢✕ ✔✒✈✕✗✘✕ ✛✖✚✗✔❝ A−1
i does not contain negative

elements [26]. As it has been shown for θ = 0, if conditions (33) are fulfilled

then βn
i is a non-negative vector✳ ❚✢✕✗✕✻♥✗✕✜ ✚✢✕ ✘♥✓✤✚✔♥✒

un+1
i = A−1

i βn
i . (41)

is non-negative for all θ ∈ [0, 1].

185

Under condition (25)✜ ✔✒ ✒✕❝✚ ✘✤✺✘✕✰✚✔♥✒ ✴✕ ✹✗♥✈✕ ✚✢✖✚ ✰♥✒✘✚✗✖✔✒✚✘ <❳❳❙ ✖✗✕

sufficient to obtain ✚✢✕ ✘✚✖✺✔✓✔✚✙ ♥✻ ✚✢✕ ✕❝✹✓✔✰✔✚ ✘✰✢✕✛✕✜ ✴✢✔✓✕ ✚✢✕ ✘✚✖✺✔✓✔✚✙ ♥✻

scheme (21) for θ ≥ 1
2 does not require any ✕❝✚✗✖ ✰♥✒✵✔✚✔♥✒✘✳

12



❨❩❬❩ ❭❪%❫✐❴✐❪❵

Following the stability criteria given in [11], p. 94 and in [8], p. 5, let us190

introduce the following definition of stability for the proposed problem.

Definition 4.1. The numerical scheme (21) is said to be || · ||∞-stable in the

domain [xmin, xmax] × [0, T ], if for every partition with k = ∆τ , h = ∆x,

Nk = T and Mh = xmax − xmin and for every regime i = 1, .., I,

||un+1
i ||∞ ≤ C||un

i ||∞, (42)

where C is independent on ❤, k .

Stability analysis is provided following von Neumann method. This approach

is usually applied to schemes for linear equations. However, such method has

been used also for the variable coefficients case by freezing at each level (see195

[12], [16], [29], p. 59).

Theorem 4.2. With the previous notation, explicit finite difference scheme (21)

with θ = 0 is conditionally stable with stability conditions (33).

Proof. In order to avoid notational misunderstanding among the imaginary unit

with the regime index i used in previous section, only inside this proof we denote200

the regime index by R.

An initial error vector for every regime g0R, R = 1, .., I, is expressed as a

finite complex Fourier series, so that at xj the solution un
i,j can be rewritten as

follows

un
R,j = gnRe

ijφ, j = 1, ..,M − 1, R = 1, .., I, (43)

where i = (−1)1/2 is the imaginary unit and φ is a phase angle. Then, the scheme

is stable if for every regime R = 1, .., I the amplification factor GR =
gn+1

R

gn
R

satisfies the relation

|GR| ≤ 1 +Kk = 1 +O(k), (44)

where the positive number K is independent on ❤, k and φ (see [28], p. 68, [29],205

p. 50).

13



❋♥✗ ✚✢✕ ✘✖✾✕ ♥✻ ✘✔✛✹✓✔✰✔✚✙ ♥✻ ✚✢✕ ✒♥✚✖✚✔♥✒✜ ✚✢✕ ✔✒✵✕❝ ♥✻ ✚✢✕ ✗✕♦✔✛✕ R is skipped

in the unknowns, the coefficients and the parameters, understanding that the

calculations are done for each regime. The numerical scheme (35) is rewritten

in the following way:210

gn+1eijφ = agnei(j−1)φ + (b̃i + qi,ik)g
neijφ + cgnei(j+1)φ

+kf
(

E(g0 − gn)eijφ
) (

(g0 − gn)eijφ
)

+ k
∑

l 6=R

qR,lg
n
l e

ijφ.

Next, dividing both parts by gneijφ and denoting

A1 = ae−iφ + b̃i + qi,ik + ceiφ, (45)

A2 = f
(

E(g0 − gn)eijφ
)

(

g0

gn
− 1

)

, (46)

A3 =
∑

l 6=R

qR,l
gnl
gn

, (47)

then expression (45) takes the following form:

G = A1 + k(A2 +A3). (48)

Next, if |A1| ≤ 1, |A2 +A3| ≤ K then expression (48) satisfies (44). Thus,

|A1|
2

=

(

1− 2
σ2k sin2 φ

2

h2
− (r − q)k

)2

+
k2

h2

(

r −
σ2

2

)2

sin2 φ. (49)

Moreover, when positivity conditions (33) are fulfilled then











k
(

σ2

h2 + (r − q)
)

≤ 1,

k
(

r − σ2

2 + σ2(r − q)
)

≤ σ2,

(50)

so that |A1| ≤ 1 .

Now, the coupling term A3 can be bounded as follows

|A3| =
∑

l 6=R

qR,l

∣

∣

∣

∣

gnl
gn

∣

∣

∣

∣

≤ max
l 6=R

∣

∣

∣

∣

gnl
gn

∣

∣

∣

∣

|qR,R| =

∣

∣

∣

∣

gnl0(n)

gn

∣

∣

∣

∣

|qR,R| = C(n), (51)

where C(n) is independent on ❜, h and k and depends only on the frozen index

n.215

14



❡✔✒✰✕ ✔✒✚✕✒✘✔✚✙ ✻✤✒✰✚✔♥✒✘ +❣◗❙✯+❣❃❙ ✖✗✕ ✺♥✤✒✵✕✵✜ ♥✒✕ ✰✖✒ ✰♥✒✰✓✤✵✕ ✚✢✖✚ A2 is

also bounded by some constant independent on h, k and φ.

Analogous approach is used to study stability of the scheme (21) with θ > 0.

Theorem 4.3. With the previous notation the scheme (21) is stable for θ ≥ 1
2 .220

Proof. The procedure of von Neumann method is retaken (see [28], p. 68, [29],

p.50) and the solution is presented in the form (43). Then, after dividing both

sides of the identity by gneijφ, the numerical scheme (21) takes the following

form:

gn+1

gn

[

1 + kθ

(

σ2

h2
+ r −

σ2

2h2

(

e−iφ + eiφ
)

+
r − σ2

2

2h

(

e−iφ − eiφ
)

)]

= 1 + k(1− θ)

[

−
σ2

h2
− r +

σ2

2h2

(

e−iφ + eiφ
)

−
r − σ2

2

2h

(

e−iφ − eiφ
)

]

+ k



fn
i,j

(

g0

gn
− 1

)

+
∑

l 6=R

qR,l

(

gnl
gn
− 1

)



 .

(52)

Let us denote225

A1 = 1 + kθ

(

σ2

h2
+ r −

σ2

2h2

(

e−iφ + eiφ
)

+
r − σ2

2

2h

(

e−iφ − eiφ
)

)

, (53)

A2 = 1− k(1− θ)

[

σ2

h2
+ r −

σ2

2h2

(

e−iφ + eiφ
)

+
r − σ2

2

2h

(

e−iφ − eiφ
)

]

.(54)

Note that

|A1|
2 =1 + θ2

(

2σ2 k

h2
sin2

φ

2
+ rk

)2

+ 2θ

(

2σ2 k

h2
sin2

φ

2
+ rk

)

+

(

θ
k

h

(

r −
σ2

2

)

sinφ

)2

> 1.

(55)

Next, taking into account that the rationality term is bounded and (51),

expression (52) is bounded as follows

|A1||G| ≤ |A2|+ C(n)k. (56)

15



❡✔✒✰✕ ✓✖✘✚ ✚✕✗✛ ✔✒ +❘◗❙ ✔✘ ♥✗✵✕✗ O(k) and |A1| > 1, due to the condition (44),

for stability it is sufficient to guarantee that

|A2|

|A1|
≤ 1. (57)

Next, note that ✔✒✕1✤✖✓✔✚✙ +❘❥❙ ✔✘ ✕1✤✔✈✖✓✕✒✚ ✚♥

(1− 2θ)

[

4σ2 k
2

h2
sin2

φ

2

(

σ2

h2
sin2

φ

2
+ r

)

+ r2k2 +

(

r −
σ2

2

)2
k2

h2
sin2 φ

]

−4σ2 k

h2
sin2

φ

2
− 2rk < 0,

(58)

that holds true for any θ ≥ 1
2 . Therefore, for θ ≥ 1

2 the scheme is stable in

accordance with the known property of the weighted scheme for linear equations230

(see [28], p. 29).

Remark. For 0 ≤ θ < 1
2 conditions (33) are sufficient for stability.

4.3. Consistency

In this subsection we study consistency of the finite difference scheme (21)

with PDE (16). Following the definition given in [28], consistency of a numerical235

scheme with respect to a partial differential equation means that the exact

solution of the PDE approximates well the exact theoretical solution of the

finite difference scheme as the temporal and spatial discretization steps size

tend ✚♥ ✇✕✗♥✳

Let us rewrite the finite difference scheme (21) with parameter θ ∈ [0, 1], for240

every fixed regime i = 1, .., I, 1 ≤ j ≤M − 1, 0 ≤ n ≤ N − 1, as follows

F (un+θ
i,j ) =

un+1
i,j − un

i,j

k
− θ

σ2
i

2h2

(

un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

)

− (1− θ)
σ2
i

2h2

(

un
i,j−1 − 2un

i,j + un
i,j+1

)

−

(

ri −
σ2
i

2

)

θ

2h

(

un+1
i,j+1 − un+1

i,j−1

)

−

(

ri −
σ2
i

2

)

1− θ

2h

(

un+1
i,j+1 − un+1

i,j−1

)

+ riθu
n+1
i,j + ri(1− θ)un

i,j

− fn
i,j

(

u0
i,j − un

i,j

)

−
∑

l 6=i

qi,l(u
n
l,j − un

l,j) = 0.

(59)
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❋✤✗✚✢✕✗✛♥✗✕✜ ✓✕✚ ✤✘ ✗✕✴✗✔✚✕ ✚✢✕ ❢✼✽ system (16) as follows

❦(ui) =
∂ui

∂τ
−

σ2
i

2

∂2ui

∂x2
−

(

ri −
σ2
i

2

)

∂ui

∂x
+ (ri − qi,i)ui

− f
(

(1− ex)+ − ui

)

−
∑

l 6=i

qi,lul = 0, i = 1, .., I.
1❧■❙

Next, by d✕✒♥✚✔✒♦ ✚✢✕ ✈✖✓✤✕ ♥✻ ✚✢✕ ✕❝✖✰✚ ✘♥✓✤✚✔♥✒ ♥✻ ✚✢✕ ❢✼✽ ✖✚ ✚✢✕ ✛✕✘✢

point (xj , τ
n) by ũn

i,j = ui(xj , τ
n), the local truncation error Tn

i,j is

Tn
i,j(ũi) = F (ũn

i,j)− L(ũn
i,j). (61)

Note that if Tn
i,j tends to zero as h → 0 and k → 0, then the consistency

of the scheme ✔✘ ♦✤✖✗✖✒✚✕✕✵✜ ✸✘✘✤✛✔✒♦ ✚✢✖✚ ui(x, τ), i = 1, .., I, is continuously

differentiable four times with respect to x and three times with respect to τ [28]245

and using the Taylor’s expansion around the point (xj , τ
n+θ), one gets

ui(xj , τ
n) = ui(xj , τ

n+θ)− kθ
∂ui

∂τ
(xj , τ

n+θ)

+
k2θ2

2

∂2ui

∂τ2
(xj , τ

n+θ) +O(k3), (62)

ui(xj , τ
n+1) = ui(xj , τ

n+θ) + k(1− θ)
∂ui

∂τ
(xj , τ

n+θ)

+
k2(1− θ)2

2

∂2ui

∂τ2
(xj , τ

n+θ) +O(k3). (63)

Thus, we have

❅✉i
∂τ

(xj , τ
n+θ) =

ũn+1
i,j − ũn

i,j

k
+ (1− 2θ)k

∂2ui

∂τ2
(xj , τ

n+θ) +O(k2). (64)

Note that the choice θ = 1
2 removes the term O(k), so that only in this case

we get a second order in time approximation.

✸✒✖✓♥♦♥✤✘✓✙✜ ♥✒✕ ♥✺✚✖✔✒✘ ✚✢✖✚

∂ui

∂x
(xj , τ

n+θ) = θ
ũn+1
j+1 − ũn+1

j−1

2h
+ (1− θ)

ũn
j+1 − ũn

j−1

2h
+O(h2), (65)

∂2ui

∂x2
(xj , τ

n+θ) = θ
ũn+1
j+1 − 2ũn+1

j + ũn+1
j−1

h2

+(1− θ)
ũn
j+1 − 2ũn+1

j + ũn
j−1

h2
+O(h2). (66)
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Next, by replacing  ❧❃❙✜  ❧❘❙ ✖✒✵  ❧❧❙ ✔✒✚♥  ❧■❙✜ ✚✢✕ ✰♥✒✘✔✘✚✕✒✰✙ ♥✻ ✚✢✕ ✘✰✢✕✛✕250

(59) for ✚✢✕ ❢✼✽ system  ❧■❙ ✔✘ ✕✘✚✖✺✓✔✘✢✕✵ ✖✒✵ ✚✢✕ ✚✗✤✒✰✖✚✔♥✒ ✕✗✗♥✗  ❧❣❙ ✚✖✾✕✘

the following form

Tn
j (ũi) = (1− 2θ)k

∂2ui

∂τ2
(xj , τ

n+θ) +O(k2) +O(h2) ∀i = 1, .., I. (67)

From the previous equation it follows the order of convergence in k and h of

the methods for θ = 0, 1/2, 1. These orders of convergence will be illustrated in

the forthcoming section of numerical results.255

5. Numerical examples

In this section the numerical solution of the more classical American option

pricing problem under regime switching model and rational exercise is found by

using a large enough value of the rationality parameter. Also, the dependence

on value of rationality parameter is shown, as well as the convergence rates of✷❁✱

the proposed θ-method for various θ and the stability conditions. ✑✒ Example 1

✴✕ ✘✢♥✴ ✚✢✖✚ ✻♥✗ ✘✤❀✰✔✕✒✚✓✙ ✓✖✗♦✕ ✈✖✓✤✕✘ ♥✻ ✗✖✚✔♥✒✖✓✔✚✙ ✹✖✗✖✛✕✚✕✗ ✚✢✕ ✘♥✓✤✚✔♥✒

of the problem (8) tends to American option under regime switching and ratio-

nal exercise✜ ✖✘ ✔✚ ✴✖✘ ✘✢♥✴✒ ✔✒ ❉❳■♠ ✻♥✗ ✸✛✕✗✔✰✖✒ ✹✤✚ ♥✹✚✔♥✒ ✴✔✚✢♥✤✚ ✗✕♦✔✛✕

switching.265

5.1. Example 1.

Let us consider a ✚✴♥ ✗✕♦✔✛✕✘ ✛♥✵✕✓ ✴✔✚✢ ✚✢✕ ✻♥✓✓♥✴✔✒♦ ✹✖✗✖✛✕✚✕✗✘ ?✘✕✕

Example 1 in [22]):

r =

(

r1
r2

)

=

(

0.1

0.05

)

, σ =

(

σ1

σ2

)

=

(

0.8

0.3

)

, Q =





−6 6

9 −9



 , T = 1, E = 9.

(68)

In Table 5.1 the results of numerical solution by the ✹✗♥✹♥✘✕✵ ✕❝✹✓✔✰✔✚ ✘✰✢✕✛✕

at the point S = E with various intensity functions are collected for rational-

ity parameter λ from 1 to 1000. The results show that the solution tends to
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♣1 f2 f3

λ Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

1 1.9060 1.8229 1.6472 1.5407 1.6592 1.5532

10 1.9545 1.8656 1.9596 1.8705 1.9150 1.8240

100 1.9700 1.8805 1.9710 1.8815 1.9661 1.8765

1000 1.9718 1.8819 1.9719 1.8819 1.9714 1.8819

10000 1.9720 1.8820 1.9721 1.8820 1.9720 1.8820

FF 1.9713 1.8817 1.9713 1.8817 1.9713 1.8817

Tree 1.9722 1.8819 1.9722 1.8819 1.9722 1.8819

Table 1: Convergence of the solution for various intensity functions f1, f2, f3 to American

option price and comparison with front-fixing (FF) and Tree methods. The tests are done

with explicit scheme (θ = 0), h = 10−2 and time step k = 10−4.

American option price as λ → ∞. We compare the ✗✕✘✤✓✚✘ ✴✔✚✢ ♥✚✢✕✗ ✾✒♥✴✒270

techniques, such as front-fixing method, proposed for regime switching model

in [13] and the tree ✛✕✚✢♥✵ ✹✗♥✹♥✘✕✵ ✔✒ ❉◗❘♠✳ ❚✢✕ ♥✺✚✖✔✒✕✵ ✗✕✘✤✓✚✘ ✻♥✗ ✚✢✕ ✻✤✓✓✙

implicit scheme (θ = 1) and Crank-Nicolson method (θ = 1
2 ) have not been

shown in Table 5.1, because they are very close to the those obtained with the

explicit scheme✳ As one can see in this Table, the difference between the results✷❱❂

of applying various intensity functions vanishes for the large enough rationality

parameter. The intensity function family f1 that corresponds to the penalty

method, as well as its smooth analogue f3 are convenient for the American

option pricing problem due to their stability properties shown in [10].

✑✒ ❋✔♦✤✗✕ ❣ ✚✢✕ ♥✹✚✔♥✒ ✹✗✔✰✕ ✖✚ τ = T is presented for the a two regimes280

model when using the proposed explicit (θ = 0) method. The intensity function

is taken in the ✻♥✗✛ B❣❳❙ ✴✔✚✢ ✗✖✚✔♥✒✖✓✔✚✙ ✹✖✗✖✛✕✚✕✗ λ = 103. In this example,

the step sizes h = 10−2, k = 10−4 have been chosen✳ ✑✒ ❋✔♦✤✗✕ ◗ ✴✕ ✹✗✕✘✕✒✚ ✚✢✕
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✘♥✓✤✚✔♥✒ ♥✻ ✚✢✕ ✹✗♥✺✓✕✛ ✴✔✚✢ the set of ✹✖✗✖✛✕✚✕✗✘ 0❧2❙ ✖✒✵ the ✛✖✚✗✔❝ Q given

by285

Q =





−1 1

1 −1



6 (69)
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with parameters (68) by the proposed explicit

FDM.
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with parameters (68) with matrix (69) by the

proposed explicit FDM.

In Figures 3 and 4 the numerical solutions with two different values of ra-

tionality parameter λ = 1 and λ = 103 are presented.

In Example 2 ✚✢✕ ✒✤✛✕✗✔✰✖✓ ✰♥✒✈✕✗♦✕✒✰✕ ✗✖✚✕✘ ♥✻ ✚✢✕ ✹✗♥✹♥✘✕✵ ✛✕✚✢♥✵ ✻♥✗

various families of intensity functions and rationality parameters are presented.

Thus, numerical results ✻♥✗ ✚✢✕ ✻✤✓✓✙ ✔✛✹✓✔✰✔✚ 0θ = 1), Crank-Nicolson (θ = 1/2)290

and explicit (θ = 0) schemes in the differential part of the PDE are shown✳

5.2. Example 2: Convergence rate

Let us consider the problem (16) with parameters (68). Since the exact

solution of the problem is not analytically available, the following formula can

be used for the estimation of the convergence rate in space, γh:

γh = log2
‖Uh/2 − Uh‖

‖Uh/4 − Uh/2‖
. (70)
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with parameters (68) by the proposed explicit

FDM with various rationality parameters λ

(Regime 1).
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λ=10
3

⑨⑩❶❷❸❹ ➋❻ ❼❷❽❹❸⑩❾❿➀ ➁➂➀❷➃⑩➂➄ ➂➅ ➃➆❹ ➇❸➂➈➀❹❽

with parameters (68) by the proposed explicit

FDM with various rationality parameters λ

(Regime 2).

Regime 1 Regime 2

θ 0 0.5 1 0 0.5 1

f1 2.0084 2.0003 2.0007 2.0143 2.0004 2.0015

f2 2.0083 2.0003 2.0005 2.0142 2.0007 2.0013

f3 2.0079 2.0002 2.0001 2.0156 2.0005 2.0004

Table 2: Convergence rate in space of the proposed θ-scheme for λ = 103.

For this purpose, we have obtained ✖ ✘✕✗✔✕✘ ♥✻ ✒✤✛✕✗✔✰✖✓ ✗✕✘✤✓✚✘ ✴✔✚✢ ❄❝✕✵

time step ➌ = 2 · 10−5 and the spatial steps ❤ = 2 · 10−2, h/2 = 10−2 and

h/4 = 5 · 10−3. The convergence rate γh has been calculated by formula (70)295

for the proposed scheme with θ = 0, 0.5, 1. The results are collected in Table

2 showing the expected orders for the approximation with λ = 103 and various

intensity function families.

Analogous formula can be used in order to estimate the convergence rate in

time, γk, for a fixed space step h:

γk = log2
‖Uk/2 − Uk‖

‖Uk/4 − Uk/2‖
. (71)
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➍✕♦✔✛✕ ❣ Regime 2

θ 0 0.5 1 0 0.5 1

f1 1.0013 1.7795 1.0007 1.0013 1.8889 1.0010

f2 1.0009 1.7802 1.0007 1.0009 1.9017 1.0007

f3 1.0010 1.8543 1.0001 1.0010 1.8943 1.0000

Table 3: Convergence rate in time of the proposed θ-scheme for λ = 103.

In this case, the spatial step has been fixed to ❤ = 5 · 10−3, while the chosen

✚✔✛✕ ✘✚✕✹✘ ✖✗✕ k = 2 · 10−5, k/2 = 10−5 and k/4 = 5 · 10−6. The convergence300

rates γk of the proposed method for various intensity function families (12)-(13)

are presented in Table 3. The numerical convergence rates are in agreement

with the theoretical study of consistency developed in Section 3.3.

In the ✹✗✕✈✔♥✤✘ ✘✕✰✚✔♥✒ ✚✢✕ ✘✚✖✺✔✓✔✚✙ ✰♥✒✵✔✚✔♥✒✘ ✻♥✗ ✚✢✕ ✹✗♥✹♥✘✕✵ ✴✕✔♦✢✚✕✵

scheme have been found. The forthcoming Example 3 ✘✢♥✴✘ ✚✢✖✚ ✚✢✕ ✘✚✖✺✔✓✔✚✙305

condition is crucial.

5.3. Example 3: Stability

Let us consider the explicit finite difference scheme (21) for the problem with

parameters (68). Figures 5 - 6 show the numerical solution for regime 1 and

2, respectively. More precisely, by ✚✖✾✔✒♦ ✖ ❄❝✕✵ ✈✖✓✤✕ h = 10−2, the ✵✖✘✢✕✵310

lines show that the numerical solution is stable for k = 10−4, when the step size

✰♥✒✵✔✚✔♥✒✘ ;❳❳❙ ✖✗✕ ✘✖✚✔✘❄✕✵✳ ❍♥✴✕✈✕✗✜ ✴✢✕✒ k = 1.56 · 10−4, conditions (33)

are not fulfilled and stability is not guaranteed, so that ✘✹✤✗✔♥✤✘ ♥✘✰✔✓✓✖✚✔♥✒✘ can

♥✰✰✤✗✜ ✚✢✤✘ ✓✕✖✵✔✒♦ ✚♥ ✔✒✖✰✰✤✗✖✚✕ ✒✤✛✕✗✔✰✖✓ ✖✹✹✗♥❝✔✛✖✚✔♥✒✘ ✚✢✖✚ ✖✗✕ ✘✢♥✴✒ ✔✒

the solid line.315

6. Conclusion

The main result of this paper is to combine simultaneously two recent mod-

els of American option pricing. On one hand, the regime switching approach
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