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ABSTRACT   

Poly(lactic acid)-PLA is a polyester that can be produced from lactic acid derived 

from renewable resources. This polymer offers attracting uses in packaging industry due 

to its biodegradability and high tensile strength. However, PLA is quite brittle, which 

limits its applications. To overcome this drawback, PLA was plasticized with epoxy-type 

plasticizer derived from a fatty acid, octyl epoxy stearate (OES) at different loading (1, 

3, 5, 10, 15 and 20 phr). The addition of OES decreases the glass transition temperature 

and provides a remarkable increase in elongation at break and impact absorbed energy. 

Plasticizer saturation occurs at relatively low concentrations of about 5 phr OES; higher 

concentration leads to phase separation as observed by field emission scanning electron 

microscopy (FESEM). Optimum balanced mechanical properties are obtained at 

relatively low concentrations of OES (5 phr) thus indicating the usefulness of this material 

as environmentally friendly plasticizer for PLA industrial formulations. 
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1. Introduction. 

Poly(lactic acid), PLA is a linear aliphatic polyester that is produced from lactic acid 

derived from renewable resources through a fermentation process of corn starch, wheat 

starch, sugar bagasse and other starch-rich products. This biobased polymer possesses 

attracting properties such as biodegradability, biocompatibility, easy processing and 

overall good mechanical properties. For these reasons, it is the selected candidate for a 

wide variety of applications as, in addition, it is shiny and transparent, moisture and fat 

resistant and offers similar flavor and odor barrier properties to poly(ethylene 

terephthalate), PET. All these features makes PLA highly useful for food packaging [1,2]. 

Furthermore, due to its high UV stability and low flammability it is widely used in non-

discoloring textiles and fabrics for uses in agricultural applications [3,4]. PLA is also 

biocompatible and resorbable so that it finds increasing applications in the medical sector 

for controlled drug delivery [5] and tissue engineering [6-10]. 

Nevertheless, its high stiffness and brittleness restrict some uses in engineering 

applications. To overcome this, several environmentally friendly approaches have been 

proposed. One of this approaches is blending PLA with other polymers such as 

poly(hydroxy butyrate), PHB [11,2,12,13], poly(caprolactone), PCL [14], acetylated 

thermoplastic starch [15], etc. which can lead to tailored properties in terms of mechanical 

response, biodegradation rate, etc. Another interesting approach is the use of 

environmentally friendly and non-toxic plasticizers such as poly(ethylene glycol), PEG 

[16-18], poly(propylene glycol), PPG [19], oligomeric lactic acid, OLA [20], citrates such 

as  acetyl tributyl citrate (ATBC) [21-23] or tributyl citrate (TBC) [22,24-26]. 

Vegetable oils are cost effective products (or in some cases, by-products) 

characterized by high availability; in addition, they can be chemically modified to 

improve some properties or attach selected functionalities. Raw or modified vegetable 
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oils find new and attracting uses as plasticizers or raw materials for polymer synthesis. 

Vegetable oils can be converted into epoxidized oils (EVOs) by conventional epoxidation 

processes. These epoxidized vegetable oils can be successfully used as high 

environmentally friendly epoxy resins [27-30] as well as plasticizers for poly(vinyl 

chloride), PVC industrial formulations due to its high compatibility with PVC resins [31-

35]. Epoxidized vegetable oils also have been used as plasticizers for PLA. Chieng B.W 

et al. used epoxidized palm oil (EPO) and a mixture of epoxidized oils (palm-EPO and 

soybean-ESBO) as plasticizers for PLA and both plasticizers systems contributed to a 

remarkable increase in elongation at break and a parallel decrease in stiffness [36]. 

Prempeh N. et al. compared the effectiveness of epoxidized sunflower oil (ESFO) with 

regard to epoxidized soybean oil (ESBO) as plasticizers for PLA formulations. ESFO 

gave a remarkable increase in elongation at break. In addition, the glass transition 

temperature (Tg) was decreased by 3 ºC and the overall thermal stability of PLA was 

improved [37]. The results reported by Santos E.F. et al. showed a remarkable increase 

in mechanical ductile properties of PLA together with a decrease in Tg, by using 20% 

plasticizer coming from biodiesel derived from sunflower oil. This was attributed to an 

increase in polymer chain mobility due to the internal lubricating effect provided by the 

plasticizer [38]. Finally, Alam J. et al. studied the effect of epoxidized linseed oil (ELO) 

on mechanical performance of PLA with addition of carbon nanotubes; addition of ELO 

led to an increase in elongation at break, a reduction of the Tg and a thermal stabilization 

effect [1]. 

The aim of this work is to improve the ductile properties of PLA by using an epoxy 

plasticizer derived from a fatty acid, octyl epoxy stearate (OES). The work has focused 

on the effect of this plasticizer on thermal and mechanical performance of PLA with 
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different amounts of OES to obtain balanced properties and overcome the intrinsic 

fragility of PLA polymers. 

 

2. Materials and Methods. 

2.1. Materials. 

Poly(lactic acid) resin commercial grade, IngeoTM Biopolymer 6201D was 

supplied by NatureWorks LLC (Minnetonka, USA). Its density is 1.24 g cm-3 and 

contains about 1.5% D-isomer. The selected plasticizer was an octyl epoxy stearate (OES) 

with tradename “plasticizer 201”, supplied by Traquisa S.L. (Barcelona, Spain). It is 

characterized by an epoxide oxygen content in the 3.1%-3-3% range, a viscosity of 20-

30 cP at 20 ºC and a molecular weight of 408 g mol-1. A schematic representation of the 

chemical structure of OES is shown in Fig. 1 and presence of one epoxide ring per 

molecule can be observed. 

 

Figure 1 
 

2.2. Processing of OES plasticized PLA. 

Initially, PLA pellets were dried at 60 ºC for 24 h for further processing operations. 

After this, PLA pellets and the corresponding amounts of OES plasticizer were 

mechanically mixed in a zipper bag. Table 1 summarizes all the compositions tested in 

this work as well as their labelling. PLA-OES mixtures were melt blended in a twin screw 

co-rotating extruder at a rotating speed of 60 rpm and temperature profile in the 172 ºC 

(hopper) – 180 ºC (die) range and subsequently pelletized. After this, plasticized PLA 

pellets were molded by injection molding in a Meteor 270/75 from Mateu & Solé 

(Barcelona, Spain) at an injection temperature of 180 ºC and standard samples for tensile 

tests and rectangular samples sizing 80 x 10 x 4 mm3 were obtained. The formulation 

 4 



with best-balanced properties was selected for film formation by using a cast film 

equipment from EuroTech S.A.S (San Martino in Riu, Italy). The extrusion temperature 

was set to 210 ºC and film 200 mm wide and 200 µm thick were obtained.  

 

Table 1 

 

2.3. Mechanical characterization of OES plasticized PLA. 

 Mechanical characterization was carried out with tensile and impact tests. Tensile 

tests were done in a universal test machine ELIB 30 from S.A.E. Ibertest (Madrid, Spain) 

at room temperature according to the ISO 527 standard. A 5 kN load cell and a crosshead 

speed of 10 mm min-1 were used. At least five different samples were tested and average 

values were calculated. In addition, an axial extensometer from Ibertest was coupled to 

the longitudinal section to obtain the Young’s modulus in a more accurate way. 

To evaluate the ability of the PLA-OES materials to absorb energy, the Charpy 

impact test was carried out in a Charpy pendulum (6 J) from Metrotec S.A. (San 

Sebastián, Spain) following the guidelines of the ISO 197:1993. At least five different 

specimens of each sample were tested and average values were calculated. 

Surface characterization of the fractured samples from impact tests was carried 

out by field emission scanning electron microscopy (FESEM) in a Zeiss ULTRA 

microscope at an accelerating voltage of 2 kV. Samples were previously covered with a 

thin platinum layer in a high vacuum sputter EM MED020 from Leica Microsystems. 

 

2.4. Thermo-mechanical characterization of OES plasticized PLA. 

 The effect of temperature on mechanical properties was studied by conventional 

heat deflection temperature (HDT) and Vicat softening temperature (VST) tests. In 
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addition, dynamic mechanical thermal analysis (DMTA) was carried on PLA-OES 

materials. 

Dynamic-mechanical thermal analysis (DMTA) was carried out in rectangular 

torsion mode in an oscillatory rheometer AR G2 from TA Instruments (New Castle, 

USA), equipped with a torsion clamp system for rectangular solid samples. Samples 

sizing 40x10x4 mm3 were subjected to a temperature sweep program from 20 ºC up to 

130 ºC at a constant heating rate of 2 ºC min-1 in air atmosphere. The selected frequency 

was 1 Hz and the maximum deformation (γ) was set to 0.1%. 

The heat deflection temperature (HDT) was determined by the A method 

according to ISO 75 which recommends a load of 1.8 MPa and a heating rate of 120 ºC 

h-1. Vicat softening temperature (VST) was done using the B method as recommended by 

the ISO 306 with a load of 50 N and a heating rate of 50 ºC h-1. Both tests were carried 

out in a VICAT/HDT station DEFLEX 687-A2 from Metrotec S.A. (San Sebastián, 

Spain). 

 

2.5.Thermal characterization of OES plasticized PLA. 

 Thermal properties of PLA and PLA plasticized with octyl epoxy stearate (OES) 

were obtained by differential scanning calorimetry (DSC) and thermogravimetric analysis 

(TGA). Thermogravimetric (TGA) tests were carried out in a TGA/SDTA 851 

thermobalance from Mettler-Toledo Inc. (Schwerzenbach, Switzerland) with a heating 

program from 30 ºC to 500 ºC at a heating rate of 20 ºC min-1 in nitrogen atmosphere (66 

mL min-1). Differential scanning calorimetry (DSC) was conducted in a Mettler-Toledo 

821 calorimeter (Schwerzenbach, Switzerland) in nitrogen atmosphere (66 mL min-1); the 

heating program was from 30 ºC to 190 ºC at a heating rate of 10 ºC min-1. 
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2.6.Oxygen permeability measurement of OES plasticized PLA. 

Oxygen transmission rate (OTR) measurements were carried out using an oxygen 

permeation analyzer from Systech Instruments-Model 8500 (Metrotec S.A, Spain) at a 

pressure of 2.5 atm. Measurements were conducted at room temperature. Films were 

clamped in the diffusion chamber and pure oxygen (99.9% purity) was flowed through 

the upper half of the sample chamber, while nitrogen was flowed through the lower half 

of the chamber. Three measurements were made to obtain an average value and the results 

were expressed as oxygen transmission rate per film thickness (OTR.e). Thickness was 

accurately measured at 25ºC using a Digimatic Micrometer Series 293 MDC-Lite 

(Mitutoyo, Japan) with an error of 0.001 mm. Ten readings were taken at random 

positions over the 14 cm diameter circle films. 

 

2.7.Wettability of OES plasticized PLA. 

The wetting properties of the film surface were measured by water contact angle at 

room temperature with an Easy Drop Standard goniometer FM140 (KRÜSS GmbH, 

Hamburg, Germany). It is equipped with a stroboscopic camera and an analyzer program 

(Drop Shape Analysis SW21; DSA1). Ten contact angles were measured randomly using 

distilled water as contact liquid onto the surface film with a micro syringe. Five 

measurements were carried out for each drop an average values were calculated. 

 

3. Results and discussion. 

3.1. Mechanical properties of OES plasticized PLA. 

 Mechanical properties are very sensitive to presence of plasticizers. Fig. 2 shows 

the evolution of the tensile strength and Young’s modulus. We can see a clear 

plasticization effect as the tensile strength of unplasticized PLA (64.0 MPa) is reduced 
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up to values of 61.3 MPa, 55,2 MPa and 43 MPa (a percentage decrease of 33%) for PLA-

OES compositions containing 1, 3 and 5 phr OES respectively. With regard to the 

maximum OES content, the tensile strength is reduced up to 40.5 MPa (percentage 

decrease of 37%). This could be related to formation of a separated phase structure. 

Regarding to the Young’s modulus, no significant changes are observed. The modulus of 

unplasticized PLA is close to 3600 MPa. Low amounts of OES plasticizer leads to a slight 

increase up to values of 3829 MPa and 3729 MPa for OES plasticized PLA containing 1 

and 3 phr respectively. However, an increase of OES plasticizer leads to a decrease in 

Young’s modulus to values of 3473 MPa and 3445 MPa for samples containing 5 and 10 

phr OES respectively. Higher OES contents leads to slightly increased modulus in the 5-

7% range (probably due to a decrease in elongation at break). 

 

Figure 2 
 

 Regarding mechanical ductile properties, Fig. 3 shows the plot evolution of the 

elongation at break from tensile tests and the impact absorbed energy from Charpy’s tests. 

We can see that for low OES plasticizer content (1 and 3 phr OES), both elongation at 

break and impact absorbed energy are slightly increased. However, an increase in the 

plasticizer content up to 5 phr OES clearly enhances both properties. The elongation at 

break of unplasticized PLA is close to 8.6% and this is increased up to values of 40.6% 

(a percentage increase of almost 300%) for PLA-OES formulations containing 5 phr OES. 

Similar tendency can be found for impact absorbed energy as unplasticized PLA is 

characterized by a relatively low value around 30.9 kJ m-2 and this is increased up to  

(54.2 kJ m-2) which represents a percentage increase of about 75%. OES contents higher 

than 5 phr, leads to a decrease in both ductile properties to constant values of about 15% 

for elongation at break and 38 kJ m-2 for impact absorbed energy. This fact could be 
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related to a plasticizer saturation close to 5 phr OES. Higher OES plasticizer content can 

lead to a phase separation that is responsible for a decrease in ductile properties. 

 

Figure 3 

 

 Surface analysis of fractured samples from impact tests was carried out by field 

emission scanning electron microscopy (FESEM). Fig. 4a shows the fracture surface of 

unplasticized PLA, which is mainly smooth and homogeneous with some voids related 

to porosity. In general, this is the typical surface appearance of a fractured brittle material. 

If we observe Fig. 4b, the appearance is different; this corresponds to OES plasticized 

PLA with 1 phr OES. We can see typical fracture surface of a ductile material 

characterized by a rough surface, presence of filaments due to plastic deformation and 

presence of voids (probably due to phase separation between the base polymer and excess 

plasticizer). Figs. 4c, 4d, 4e, 4f and 4g correspond to fractured surfaces of OES plasticized 

PLA with 3, 5, 10, 15 and 20 phr OES respectively. As the amount of OES increases, we 

can clearly see increased presence of voids in the surface, especially over 5 phr OES. This 

indicates that PLA is saturated with the plasticizer and phase separation occurs. The 

excess plasticizer appears in the form of spherical shapes and this has a negative effect 

on overall mechanical properties as described previously (mainly in ductile properties). 

 

Figure 4 

 

3.2.  Thermo-mechanical properties of OES plasticized PLA. 

Fig. 5 shows the plot evolution of the storage modulus (G’) and the phase angle 

(δ) as a function of temperature for unplasticized PLA and OES plasticized PLA with 
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different plasticizer content. PLA is a semicrystalline polymer and as it can be observed 

in Fig. 5b, it shows relatively high G’ values around 1.3 GPa. In the glass transition 

temperature range the storage modulus is remarkably reduced up to values of about 1.4 

MPa and at about 84 ºC the storage modulus increases again (up to 60 MPa) due to the 

cold crystallization process. OES plasticized materials show similar behavior but both the 

glass transition temperature (Tg) and the cold crystallization (Tcc) are moved to lower 

temperatures as the plasticizer enables chain mobility. The storage modulus (G’) of the 

OES plasticized PLA samples starts at about 1.2 GPa and after the glass transition (a few 

degrees lower than in unplasticized PLA) decreases to 2 MPa. The cold crystallization in 

OES plasticized PLA samples starts before than unplasticized PLA; in particular, the cold 

crystallization process for samples containing 1 and 3 phr OES start at about 82 ºC but 

when the OES content increases (samples with 5, 10, 15 and 20 phr of OES) the cold 

crystallization starts at lower temperatures of about 73-74 ºC. The glass transition was 

estimated as the phase angle peak (or tan δ peak). As we can see in Fig. 5a the Tg changes 

from 65.9 ºC for unplasticized PLA up to slightly lower values of 65.2 ºC (1 phr OES),  

62.4 ºC (3 phr OES). As the OES content increases the Tg is still lower with values of 

60.4 ºC (5 phr OES), 60.1 ºC (10-15 phr OES) and 59.7 ºC (20 phr OES). This decrease 

in Tg is a clear evidence of the plasticizing effect that OES provides; nevertheless, no 

important changes are observed with increasing OES content over 5 phr thus indicating 

that PLA gets saturated with relatively low plasticizer contents. 

 

Figure 5 

 

 Octyl epoxy stearate plasticizer has also effects on thermo-mechanical properties 

as observed in Table 2 that summarizes the values of the heat deflection temperature 
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(HDT) and Vicat softening temperature (VST). The VST of unplasticized PLA (52.8 ºC) 

decreases up to values of 47.2 ºC for a plasticizer content of 1 phr and minimum values 

of 46 ºC are obtained for a plasticizer content of 20 phr. Variation of HDT is less 

accentuated with values of 47.6 ºC for unplasticized PLA and values in the 46.0 – 46.8 

ºC for OES plasticized PLA. 

 

Table 2 

 

3.3.  Thermal properties of OES plasticized PLA. 

 Differential scanning calorimetry (DSC) thermograms show three different 

thermal transitions as expected. The glass transition temperature (Tg) located between 55 

ºC and 65 ºC; the exothermic peak located between 80 ºC and 100 ºC corresponds to the 

cold crystallization process and finally, the endothermic peak located at 170 ºC – 175 ºC 

which corresponds to PLA melting. The decrease in Tg is a clear evidence of the 

plasticization effect. OES plasticizers allows chain mobility due to the free volume and 

reduced chain interactions [39]. In good agreement with previously described DMTA 

behavior, DSC shows a clear decrease in Tg with OES plasticizer. The glass transition 

temperature of the unplasticized PLA is close to 64.2 ºC as obtained by DSC. This value 

decreases up to values of 55.5 ºC for OES plasticized PLA with 5 phr OES which is in 

total accordance with previous results. This also indicates that plasticizer saturation 

occurs for relatively low plasticizer content. Regarding the cold crystallization process, 

we observe a decrease in its typical temperatures (onset, peak and endset). This indicates 

that OES plasticizer allows chain motion, which has a positive effect on cold 

crystallization [38]; these results are in total agreement with DMTA results which show 

a decrease of about 10 ºC in the cold crystallization process. In addition, if we compare 
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the cold crystallization enthalpy (∆Hcc) and the melt enthalpy (∆Hm) we observe that ∆Hm 

is much higher than ∆Hcc thus indicating the semicrystalline nature of PLA at room 

temperature. Presence of OES plasticizer leads to increased enthalpy difference (∆Hm-

∆Hcc) thus indicating higher crystallinity.  

Thermal stability of raw PLA and OES plasticized PLA was evaluated by means 

of thermogravimetric analysis (TGA). Table 3 also shows some parameters related to the 

thermal degradation. In particular, the temperature at which a 5% weight loss occurs (T5%) 

and the maximum degradation rate temperature (Tmax), are summarized. Although slight 

decrease in T5% can be detected, in general, the thermal stability is not highly affected by 

presence of OES plasticizer. In fact, as we can observe, a slight increase in Tmax is detected 

but in both cases, the change is not significative. 

 

Table 3 

 

3.4. Oxygen permeability measurement of OES plasticized PLA films. 

As optimum balanced properties were obtained for an OES content of 5 phr, this 

formulations was selected for an in depth study in the film form. The oxygen transmission 

rate (OTR) of neat is around 44.4 ± 0.9 cm3·mm·m-2·d-1 [40,41] while the OTR for the 

OES plasticized PLA film is 23.2 ± 0.2 cm3·mm·m-2·d-1. The lower oxygen transmission 

rate is due to increased crystallinity. As we have previously observed by dynamic 

mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC), 

presence of plasticizer leads to increased polymer chain mobility and this leads to 

increased crystallinity. In general, the addition of plasticizers to polymers leads to an 

increase in gas permeability due to the free volume they provide. However, in this case, 
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this phenomenon is overlapped with the decreased gas permeability effect because of the 

increased crystallinity being the overall result a decrease in gas permeation properties.  

 

3.5. Surface wettability of OES plasticized PLA films. 

The surface wetting properties of 5 OES plasticized PLA films containing 5 phr 

OES was investigated by water contact angle measurement. By adding 5 phr OES into 

the PLA matrix, the water contact angle increased from 58º to approximately 66º showing 

an increase in hydrophobicity. It is evident that the contact angle of plasticized PLA is 

higher than neat PLA as the plasticizer is an oil type with remarked hydrophobicity. 

Therefore, PLA films containing 5 phr OES are also expected to have higher resistance 

to water adsorption than neat PLA film. For these reasons PLA films plasticized with 

OES can offer attracting uses in the packaging industry. 

 

4. Conclusions. 

In the present work, thermal and mechanical properties of PLA plasticized with 

octyl epoxy stearate (OES) were evaluated. Samples with 5 phr of octyl epoxy stearate 

showed the best results in terms of ductile properties such as elongation and impact 

properties. If compared to unplasticized PLA, OES addition leads to a percentage increase 

in elongation at break of about 300% and 75% regarding impact-absorbed energy. This 

behavior validated by surface analysis of fractured samples by FESEM images with clear 

evidences of plastic deformation in OES plasticized PLA materials. Moreover, DSC 

results showed that OES causes a decrease in the Tg of the PLA; in particular, the sample 

containing 5 phr of OES showed a Tg of 55.5 ºC while unplasticized PLA shows a Tg 

located at 64.2 ºC. Additionally, the cold crystallization process moves to lower 

temperatures when OES is added to PLA, more than 10 ºC for the plasticized samples 
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with 5 phr OES. From DMTA results, a decrease in Tg and cold crystallization is also 

observed, which is consistent with the DSC results. Furthermore, oxygen permeability 

and wettability tests on PLA films plasticized with 5 phr OES showed attracting 

properties for the packaging industry as the oxygen transmission rate (OTR) changed 

from 44.4 cm3·mm·m-2·d-1  for neat PLA to 23.2 cm3·mm·m-2·d-1  for sample of PLA 

plasticized  with 5 phr OES. In addition, OES plasticized PLA is more hydrophobic than 

neat PLA which has a positive effect on water resistance. 

We can conclude that octyl epoxy stearate (OES) can be used as an effective 

plasticizer for PLA and good results are obtained for relatively low OES load of about 5 

phr. This fact could be related to a plasticizer saturation close to 5 phr OES. Higher OES 

plasticizer content can lead to a phase separation that is responsible for a decrease in 

ductile properties due to an antiplasticization process. Octyl epoxy stearate represents an 

environmentally friendly material that can positively contribute to obtain high 

environmental efficient PLA formulations for industrial applications. 
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Table legends 

Table 1.- Summary of the compositions and coding of poly(lactic acid), PLA with 

different amounts of octyl epoxy stearate (OES) plasticizer. 

Code Plasticizer amount 
(phr – per hundred PLA resin) 

PLA - 

PLA-1 OES 1 

PLA-3 OES 3 

PLA-5 OES 5 

PLA-10 OES 10 

PLA-15 OES 15 

PLA-20 OES 20 
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Table 2.- Results of the heat deflection temperature (HDT) and Vicat softening 

temperature (VST) of OES plasticized PLA with different OES loads. 

Sample VST (ºC) HDT (ºC) 

PLA 52.8 47.6 

PLA-1 OES 47.2 46.8 

PLA-3 OES 47.6 46.6 

PLA-5 OES 47.8 46.4 

PLA-10 OES 47.0 46.0 

PLA-15 OES 46.6 46.6 

PLA-20 OES 46.0 46.6 
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Table 3. Thermal parameters of unplasticized PLA and OES plasticized PLA obtained 

by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) in 

terms of the plasticizer content. 

OES 

(phr) 

DSC       TGA  

Tg (ºC) Tcc (ºC) ∆Hcc (Jg-1) Tm (ºC) ∆Hm (Jg-1) ∆Hm-∆Hcc (Jg-1)  T5% (ºC) Tmax (ºC) 

0 64.2 98.4 18.2 175.0 40.8 22.6  336.9 363.5 

1 64.5 98.5 15.9 174.3 40.2 24.3  338.3 373.4 

3 61.9 94.0 22.6 174.3 47.9 25.3  336.7 373.3 

5 55.5 85.9 14.2 173.6 41.5 27.3  329.2 368.4 

10 57.0 83.9 11.1 171.2 37.9 26.8  333.2 371.7 

15 57.5 83.8 9.2 173.6 37.7 28.5  327.5 366.6 

20 56.4 81.5 10.7 170.4 41.9 31.2  331.9 368.3 
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Figure legends 

Figure 1.- Schematic representation of the chemical structure of octyl epoxy stearate 

(OES) plasticizer. 
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Figure 2.- Variation of tensile strength and Young’s modulus of OES plasticized PLA. 
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Figure 3.- Variation of elongation at break and impact absorbed energy of OES 

plasticized PLA. 
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Figure 4.- FESEM images at 5000x of fractured samples from impact tests corresponding 

to a) unplasticized PLA, b) OES plasticized PLA with 1 phr OES, c) OES plasticized 

PLA with 3 phr OES, d) OES plasticized PLA with 5 phr OES e) OES plasticized PLA 

with 10 phr OES, f) OES plasticized PLA with 15 phr OES and g) OES plasticized PLA 

with 20 phr OES. 
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Figure 5.- Plot evolution of a) the phase angle (δ) and b) storage modulus (G’) in terms 

of temperature for unplasticized PLA and OES plasticized PLA with different OES load. 
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