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The model reaction of photoinduced donor–acceptor interaction in linked systems 

(dyads) has been used to study the comparative reactivity of a well-known anti-

inflammatory drug, (S)-naproxen (NPX) and its (R)-isomer. (R)- or (S)-NPX in these 

dyads is linked to (S)-N-methylpyrrolidine (Pyr) using a linear or cyclic amino acid 

bridge (AA or CyAA), to give (R)-/(S)-NPX–AA–(S)-Pyr flexible and (R)-/(S)-NPX–

CyAA–(S)-Pyr rigid dyads. The donor–acceptor interaction is reminiscent of the 

binding (partial charge transfer, CT) and electron transfer (ET) processes involved in 

the extensively studied inhibition of the cyclooxygenase enzymes (COXs) by the NPX 

enantiomers. Besides that, both optical isomers undergo oxidative metabolism by 

enzymes from the P450 family, which also includes ET. The scheme proposed for the 

excitation quenching of the (R)- and (S)-NPX excited state in these dyads is based on 

the joint analysis of the chemically induced dynamic nuclear polarization (CIDNP) and 

fluorescence data. The 1H CIDNP effects in this system appear in the back electron 

transfer in the biradical–zwitterion (BZ), which is formed via dyad photoirradiation. 

The rate constants of individual steps in the proposed scheme and the fluorescence 

quantum yields of the local excited (LE) states and exciplexes show stereoselectivity. It 

depends on the bridge's length, structure and solvent polarity. The CIDNP effects 

(experimental and calculated) also demonstrate stereodifferentiation. The exciplex 

quantum yields and the rates of formation are larger for the dyads containing (R)-NPX, 

which let us suggest a higher contribution from the CT processes with the (R)-optical 

isomer. 

 

Introduction 

http://pubs.rsc.org/en/content/articlehtml/2016/cp/c5cp07305g#fn1
mailto:khramtsovaea@gmail.com


The difference in activity of drug chiral isomers is currently in scientific focus.1–4 A 

good example is the class of non-steroidal anti-inflammatory drugs (NSAIDs), since, 

despite a great variety of chemical structures of NSAIDs, many of them demonstrate 

different therapeutic activity exactly between optical isomers.5  

The basic activity of NSAIDs is the inhibition of the cyclooxygenase enzymes (COXs)6 

which perform the oxygenation of arachidonic acid, a precursor of several 

prostaglandins, potentiating an activity of inflammatory mediators. In recent years 

NSAID analgesic7 and anti-cancer8 activity has also drawn attention. For that, their 

analgesic effect is associated with the inhibition of endocannabinoid (natural analgesic 

agents) oxidation by COX 2.7 Furthermore, it has been recently observed that the CoA 

esters of NSAIDs are the substrates of another enzyme, α-methylacyl CoA racemase 

(AMACR).8 AMACR levels and activity are associated with certain types of cancer 

(prostate, colon and others).9 Today the chiral inversion of optically active NSAIDs by 

AMACR is considered as a novel mechanism of their anti-cancer activity; it is believed 

that the enzymatically activated conversion of NSAIDs blocks the other harmful effects 

of an entire group of enzymes (transferases).8,10–15 It is worth emphasizing that this 

activity of NSAIDs also shows high stereoselectivity.11,12,14 

The stereoselectivity of NSAIDs in biological chemistry is investigated, specifically 

with respect to their main function of the inhibition of COX 2.16 The COX 2 enzyme 

has several active sites: one catalytic site provides cyclization, and another one performs 

oxidation (involving electron transfer (ET)). 

Of special interest now is one representative of NSAIDs, naproxen (NPX, 6-methoxy-α-

methyl-2-naphthaleneacetic acid), because only the (S)-isomer has anti-inflammatory 

activity,17 and it is actually sold as an enantiopure drug. Only the (S)-isomer inhibits 

prostaglandin's synthesis, however, both the (R)- and (S)-optical isomers prevent the 

oxygenation of cannabinoids by COX 2.7 On the other hand, (R)-NPX is more active in 

the processes of metabolic inversion, in particular, by cytochrome P45018 (which also 

involves ET).8 For that, according to the results of biochemical research, there is no 

complete understanding, for example about what kind of physicochemical interactions 

are responsible for the difference in the action of (S)- and (R)-NPX.7,16 

Taking into consideration the above-mentioned possible involvement of NPX optical 

isomers in charge transfer processes, it seems promising to use a model one-electron 

transfer process for studying the chemical nature of the difference between (S)- and (R)-

isomers. In this connection, the comparison of (S)- and (R)-NPX reactivity in one of the 

most universal elementary processes, electron transfer, may have not only of a 

fundamental but also of a practical interest. 

The stereoselectivity of the photoinduced partial (exciplex) and full charge transfer 

(biradical–zwitterion, BZ) in the linked system of (R,S)- and (S,S)-NPX–N-

methylpyrrolidine has been recently reported.19–24 

Since the days of Jabotinsky’s works, the photochemical generation of a pair of 

paramagnetic particles has been used for the modeling of biological processes such as 

the elementary steps of enzymatic oxygenation and drug–transport protein binding.25–27 

This approach is promising in several aspects. Firstly, it can be expected that the 

reactivity of paramagnetic particles, in a first approximation, does not depend 
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significantly on the method of their generation. Secondly, a higher concentration of 

short-lived intermediates in comparison with that in an enzymatic process can be 

achieved by photogeneration. It allows the use of a variety of physical methods. 

In this regard, we are planning to study the chirality impact on the photoinduced 

processes in (R,S)- and (S,S)-NPX–pyrrolidine dyads, where NPX and a donor are 

connected by two kind of bridges: flexible and rigid. By the variation of the lengths and 

structure of the bridges, we suppose to change the spatial donor–acceptor interaction in 

the dyad diastereomers, since this interaction is believed to determine 

stereodifferentiation. 

We have chosen to use a combination of techniques: fluorescence and chemically-

induced dynamic nuclear polarization (CIDNP) methods, which have previously been 

used individually in the study of naproxen dyads.22–24 It should be noted that CIDNP is 

considered to be one of the most informative methods to identify short-lived 

paramagnetic particles,28 and its use together with the fluorescence data can let one 

perform quantitative analysis of a process. 

As a goal, it is planned to establish the main factors affecting the donor–acceptor 

interaction in (R,S)- and (S,S)-NPX-containing dyads with different bridges. In 

particular, this could allow us to trace differences in the reactivity of (R)- and (S)-NPX 

in processes with partial and full charge transfer. 

Results and discussion 

Systems under study 

Two pairs of NPX–pyrrolidine dyads, with a flexible (R)-/(S)-NPX–AA–(S)-Pyr 2(a,b) 

or rigid (R)-/(S)-NPX–CyAA–(S)-Pyr 3(a,b) bridge between the donor and acceptor 

units, were designed and synthesized (Chart 1, synthesis details are presented in the 

ESI†). Thus, (R)- or (S)-NPX 1(a,b) was reacted with 4-aminobutyric acid or (1S,3R)-

3-aminocyclopentanecarboxylic acid to give the corresponding NPX–amino acids that 

upon esterification using (S)-N-methyl-2-pyrrolidinemethanol resulted in the final 

dyads (R)-/(S)-NPX–AA–(S)-Pyr 2(a,b) or (R)-/(S)-NPX–CyAA–(S)-Pyr 3(a,b). 

Directly linked (short) (R)-/(S)-NPX–(S)-Pyr dyads 4(a,b) to be used as controls were 

prepared as described previously.20,21  
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 Chart 1 Chemical structure of the synthesized dyads.  

Fluorescence quenching of (R,S)- and (S,S)-dyads 

The absorption spectra of both stereoisomers 2(a,b) and 3(a,b) demonstrate the same 

bands as the parent NPX 1b; specifically they display two typical fine-structured UV 

absorption bands with maxima at 262 and 332 nm (the spectra are presented 

previously,19–21 and for both isomers the spectra are identical), which are ascribed to π–

π*-type transitions. The fluorescence spectra of 2(a,b) and 3(a,b) dyads in acetonitrile 

are presented in Fig. 1.  

 

 
Fig. 1 Fluorescence spectra of 1, 2(a,b) and 3(a,b) in acetonitrile (λex = 320 nm), 

concentration ∼10−5 M. The inset shows magnified emission spectra in the long 

wavelength range (>425 nm). 

 

These spectra are similar to that of the parent NPX but contain an exciplex band in the 

red region. Thus, in addition to a local excited (LE) state, an exciplex is also formed 

under UV irradiation. Its concentration in solution and the position of the band's 

maximum in the fluorescence spectra depend on permittivity. It is worth noting that the 

fluorescence quantum yield of the 2(a,b) LE state is higher than that of 3(a,b). 

Moreover the exciplex band of 2(a,b) is much weaker than that of 3(a,b). 
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Typical kinetics curves of the LE state and exciplex are shown in Fig. 2. The two 

diastereoisomers of 2(a,b) and 3(a,b) dyads show biexponential kinetics both for the LE 

states and for the exciplexes. The LE state's kinetics correspond to two decay times 

(τshort, τlong), and the exciplex kinetics have growth and decay times (τrise, τfall). The 

dependence of fluorescence lifetimes on solvent polarity is shown in Fig. 3 for 2(a,b) 

and 3(a,b). These curves have been obtained from the experimental data of fluorescence 

kinetics for dyads in acetonitrile–benzene mixtures (εacetonitrile = 36.8,29εbenzene = 2.28,30 and 

the permittivity for the mixtures has been taken from the literature31). Fig. 3 shows a 

certain correspondence, on the one hand, between the values of exciplex decay time 

(τfall) and LE state long decay time (τlong) and, on the other hand, between the exciplex 

growth time (τrise) and LE state short decay time (τshort). This accordance clearly shows 

the feedback between the processes of the formation and decay of the exciplex and local 

excited state. This consideration underlies Scheme 1 showing the proposed quenching 

mechanism. 

 

 

 
Fig. 2 Fluorescence decay traces of dyad (S)-NPX–AA–(S)-Pyr (2b, top) and (S)-

NPX–CyAA–(S)-Pyr (3b, bottom) at 351 and 500 nm (λex = 320 nm) in acetonitrile–

benzene mixture (ε = 21.55). IRF: instrument response function. 

 

 

http://pubs.rsc.org/en/content/articlehtml/2016/cp/c5cp07305g#imgfig2
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c5cp07305g#imgfig3
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c5cp07305g#cit29
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c5cp07305g#cit30
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c5cp07305g#cit31
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c5cp07305g#imgfig3
http://pubs.rsc.org/en/content/articlehtml/2016/cp/c5cp07305g#imgsch1
http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/CP/c5cp07305g/c5cp07305g-f2_hi-res.gif


 

 

Fig. 3 Dependence on solvent polarity of the fluorescence lifetimes for (R)-/(S)-

NPX–AA–(S)-Pyr (2(a,b), (top)) and (R)-/(S)-NPX–CyAA–(S)-Pyr (3(a,b), 

(bottom)). Local excited state: squares (τshort, τlong) and exciplex: circles (τrise, τfall). 

Lifetime values are given in the ESI.† 
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 Scheme 1 Quenching mechanism of the NPX chromophore in dyads NPX–AA–Pyr 

2(a,b) and NPX–CyAA–Pyr 3(a,b). 
 

This scheme summarizes all the processes taking place in the quenching of the dyad 

chromophore excitation in the presence of an electron donor. Here, k1 and k2 represent 

pathways through which different dyad conformations (expanded and folded) transfer 

into the excited states. The first path (k1) is the formation of the LE state from an 

expanded conformation, whereas the exciplex, in its turn, is generated from a folded 

conformation (k2). So, in rate constant calculations k1 and k2 reflect the amount of 

different conformations participating in the reaction (about 0.8 and 0.2, 

correspondingly). Note that Scheme 1 differs from the scheme proposed earlier for the 

short 4(a,b) dyad.23,24 In that scheme an exciplex is formed only from the local excited 

state but in our case, for 2(a,b) and 3(a,b), the leading edge of the exciplex's kinetic 

curves is satisfactorily fitted only if we assume the simultaneous formation of both the 

exciplex and local excited state. This forced us to assume the existence of at least two 

geometrical conformations of dyad molecules with quite different energies.32–34 

An exciplex is in rapid dynamic equilibrium with the local excited state (k4, k5) and with 

the biradical–zwitterion (k7, k8). The LE state and exciplex emission are presented as k3 

and k6 constants, correspondingly. BZ can be in a singlet or triplet isoenergetic spin 

state. Spin conversion (kS–T) is taking place under the influence of magnetic interactions 

in the paramagnetic centers of BZ. Back ET from both the spin states of BZ leads to the 

formation of the parent dyads in the singlet ground and excited triplet state with the rate 

constants kS and kT. Both pathways lead to CIDNP of the dyads in the ground state. 

They can be separated since the triplet contribution appears delayed by the triplet state 

lifetime (kR). The exciplex, in its turn, also undergoes internal conversion with the 

constant kisc(exc). Dotted lines are intended to reflect the dependence of the exciplex and 

BZ energy level positions on the dielectric constant of the medium (this relationship is 

shown in Fig. 6 and discussed in detail in the next part). 

BZ has been included in the scheme by the analogy with the NPX–Pyr 4(a,b) dyad 

studied previously.23,24 The conclusion about the equilibrium between the exciplex and 

BZ has been made on the basis of CIDNP analysis. Kinetic curves for 2(a,b) and 3(a,b) 

dyads have been analyzed by the numerical solution of the system of differential 

equations using the Runge–Kutta method in the framework of Scheme 1.35 When 

solving the differential equation system for all processes in the systems under study, the 

adequacy of the obtained values could be checked only by comparison with the 

available kinetic curves (given that we cannot observe the biradical–zwitterion in these 

experiments). 

It is worth emphasizing that the previously studied dyad 4(a,b) can also be described by 

this sequence of steps, outlined in Scheme 1. 

Rate constants related to the processes of dyad quenching (Scheme 1) for the 2(a,b) and 

3(a,b) dyads are shown in Table 1. The analysis of the data from Table 1 allows us to 

trace the differences between the diastereomers of the studied dyads and compare the 

results with those for dyad 4(a,b). Thus, the largest difference is obtained for the rate 

constants related to the charge transfer: k4 and k7, with the latter showing an effect only 

in polar media. The constant k4 is higher for the (a)-isomers of all three dyads (Fig. 4), 

whereas in the case of k5 no systematic dependence is observed. The rate constant k7, 
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corresponding to the process of the exciplex transformation into BZ, shows more 

pronounced dependence on solvent polarity than on the optical configuration (Fig. 4). 

Table 1 Calculated rate constants (ki × 10−8 s−1) for the pathways outlined in Scheme 1 

at different permittivities for the NPX–AA–Pyr 2(a,b) and NPX–CyAA–Pyr 3(a,b) 

dyads  

(R)-NPX–AA–(S)-Pyr, 2a (R)-NPX–CyAA–(S)-Pyr, 3a 

ε  k 3  k 4  k 5  k 6  k 7  ε  k 3  k 4  k 5  k 6  k 7  

8.08 0.15 1.5 0.68 0.4 0.9 8.08 0.13 2 0.93 0.67 0.53 

14.5 0.15 1.5 0.1 0.4 1.05 14.5 0.13 2.65 0.45 0.3 0.53 

21.55 0.15 1.52 0.07 0.4 1.1 21.55 0.13 2.9 0.29 0.3 0.54 

29.6 0.15 1.55 0.03 0.4 1.6 29.6 0.13 3 0.15 0.3 0.7 

36.8 0.15 1.6 0.03 0.4 2.5 36.8 0.13 3.1 0.12 0.3 0.92 

 
(S)-NPX–AA–(S)-Pyr, 2b (S)-NPX–CyAA–(S)-Pyr, 3b 

ε  k 3  k 4  k 5  k 6  k 7  ε  k 3  k 4  k 5  k 6  k 7  

8.08 0.15 1.2 0.42 0.63 1.0 8.08 0.13 1.5 0.9 0.95 0.58 

14.5 0.15 1.37 0.25 0.4 1.0 14.5 0.13 1.8 0.4 0.3 0.58 

21.55 0.15 1.38 0.1 0.4 1.2 21.55 0.13 1.9 0.22 0.3 0.58 

29.6 0.15 1.42 0.03 0.4 1.75 29.6 0.13 2 0.17 0.3 0.7 

36.8 0.15 1.49 0.03 0.4 2.5 36.8 0.13 2.1 0.15 0.3 1.55 

 
 

 

 
Fig. 4 Correlation between the rate constants k4 (LE state to exciplex transition), and 

k7 (exciplex to BZ transition) and solvent polarity (Scheme 1 and Table 1) for 2(a,b), 

3(a,b) and 4(a,b). 

 

The dependence of the fluorescence quantum yields of the local excited state (ΦLE) and 

exciplex (Φexc) on solvent polarity for both (a)- and (b)-diastereomers is shown in Fig. 5. 

The analysis of these curves let us conclude that (a)-diastereomers of the dyads 

comprising (R)-NPX and (S)-N-methylpyrrolidine are more inclined to charge transfer 

(CT) because the rate constants of exciplex formation and the quantum yields are larger 
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than those for (b)-isomers. As for (S)-NPX, the combined analysis of the exciplex 

fluorescence quantum yield as well as the corresponding rate constant indicates that in 

this case the exciplex should form slightly slower and decompose quickly. The latter is 

reflected in the lower Φexc and larger ΦLE of the dyads consisting of (S)-NPX. The 

comparison of fluorescence quantum yields for all three dyads demonstrates that the 

stereodifferentiation degree depends on both the bridge's length and its structure. Thus, 

Φexc for (a)- and (b)-diastereomers differ the most for the short dyad 4, and much less 

for dyad 2 with a flexible bridge. The rigid dyad 3 shows stereodifferentiation of Φexc 

and ΦLE. The difference in values for the (a)- and (b)-isomers depends on the 

permittivity less than in other cases. It can be supposed that the contribution of the CT 

states in the quenching process is determined to a larger extent by the mutual donor–

acceptor position than by environment effects. 

 

 

 

Fig. 5 Fluorescence quantum yield (local excited state, LE: top, exciplex: bottom) 

dependence on solvent polarity for 2(a,b), 3(a,b) and 4(a,b). These values have been 

estimated using NPX in acetonitrile as a standard (ΦNPX = 0.4721), and numerical 

values are given in the ESI.† 

 

CIDNP effects in (R,S)- and (S,S)-dyads and their relationship with the 

exciplex–biradical–zwitterion balance 
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The high sensitivity of the spin effects in the processes with partial and full CT to polar 

environments is well-known.34,37–40 This impact of polarity on CIDNP efficiency has 

been shown earlier for the photoinduced ET in the short dyad NPX–Pyr 4(a,b).22,24 

Dyads NPX–AA–Pyr 2(a,b) and NPX–CyAA–Pyr 3(a,b) also demonstrate the 

dependence of 1H CIDNP effects at N-methylpyrrolidine fragments, obtained with the 

help of a pseudo-steady state pulses sequence,41 on the solvent permittivity (Fig. 6, only 

(b)-diastereomers are shown). For these dyads the appearance of negative integral 

polarization of the protons of the N-methylpyrrolidine fragments of dyads 2(a,b) and 

3(a,b), according to the Kaptein rule,28 corresponds to the back electron transfer in the 

singlet spin state of BZ. BZ is in turn obtained from the dyad's singlet excited state.  

 

 

Fig. 6 Dependence of the free energies of the radical ion pair (RIP) of the N-

methylpyrrolidine22 radical cation, and the methoxynaphthalene radical anion, and the 

exciplex in this system, calculated using the Rehm–Weller equation36 (top). 

Dependence of the CIDNP effect on solvent permittivity for (S)-NPX–AA–(S)-Pyr 

2b, (S)-NPX–CyAA–(S)-Pyr 3b and (S)-NPX–(S)-Pyr 4b (bottom). 

 

The position of the dependence extremum (Fig. 6) indicates that in the dyads with long 

bridges 2(a,b) and 3(a,b) maximal CIDNP is generated at higher polarities where the 

extremum corresponds to the intersection point of the exciplex and BZ terms. Thus, for 

dyad 4(a,b) the equilibrium is shifted toward the exciplex, whereas for dyads 2(a,b) and 

3(a,b) it is shifted in the direction of the BZ. Indeed, for both the 2(a,b) and 3(a,b) 

dyads the exciplex quantum yields are significantly lower than those for the 4(a,b) 

dyads (Fig. 5). This observation supports the above-mentioned concept that the exciplex 

is formed in the region of the closest approach of the donor and acceptor.34 In essence, 

there is a certain correlation between the donor–acceptor distance and the biradical–

zwitterion–exciplex balance. To confirm this hypothesis, as well as to probe the 

difference between the CIDNP polarity dependence for (a)- and (b)-diastereomers, 

CIDNP effect calculations in media with different permittivity have been performed. It 

has been done in the framework of radical pair theory28 according to Scheme 1, using 

the rate constants from Table 1. The other parameters used for the calculation are given 

in the ESI.† 

The curves in Fig. 7 show satisfactory agreement between theory and experiment. The 

greatest discrepancies are observed at high polarities. There are several reasons for this: 

first, the theory has been developed for the motion of the paramagnetic centers of the 

dyads in the Coulomb field, but it is known that in highly polar media charged particles 
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act as neutrals.28 The second reason is a change in the ratio of the recombination rates 

from the singlet and triplet BZ spin states: kS and kT, whose values are a function of 

polarity.22 These changes are not considered in our calculations. 

 

 

 
Fig. 7 Dependence of CIDNP effects on solvent polarity for 2(a,b) (top) and 3(a,b) 

(bottom). The solid lines are calculated using the solution of spin chemistry master 

equation.28,42,43 

 

Thus, simultaneous analysis of CIDNP and fluorescence data allows us to trace all 

short-lived intermediates involved in the excitation quenching of dyads 2(a,b) and 

3(a,b): the LE state, exciplex, and BZ. All of them in any manner depend on the solvent 

polarity. However, only in the case of CIDNP is the source of its dependence 

completely understood; it can be explained by a shift of the exciplex–biradical–

zwitterion equilibrium towards the latter with increasing polarity. 

It is interesting to look at how the fluorescence quantum yields of the exciplex (Φexc) 

and local excited state (ΦLE) are related to CIDNP efficiency at different polarities. The 

analysis of these relations can help to identify the main factors that affect the quantum 

yields Φexc and ΦLE. The relation between CIDNP efficiency for the diastereoisomers of 

both dyads and the fluorescence quantum yields Φexc in the media of different 

permittivities is shown in Fig. 8. 
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 Fig. 8 Correlation between CIDNP effects and the exciplex's fluorescence quantum 

yields for 2(a,b) (left), 3(a,b) (middle), and 4(a,b) (right). 
 

As can be seen from Fig. 8, the dependence is almost linear, especially for the (a)-

diastereomers. This fully confirms the previously mentioned conclusion, that increasing 

the solvent permittivity shifts the equilibrium towards BZ. This correlation allows us to 

specify the difference between the properties of the (a)- and (b)-diastereomer 

exciplexes. Because Φexc for the (a)-isomers depends on the CIDNP efficiency almost 

linearly, it means that the states with charge transfer have a major contribution to the 

processes of the exciplex formation and decay. Obviously, Φexc of the (b)-diastereomers, 

which does not show a linear relationship, depends not only on processes 4 and 7 but 

also on process 5. 

On the other hand, the analysis of the biexponential kinetics of the LE state’s 

fluorescence quenching demonstrates that the exciplex contributes in this process as 

well: one exciplex decay channel is its back transformation into a LE state (Scheme 1). 

The relation between ΦLE and CIDNP (not shown), which is not linear, indicates that 

besides the exciplex back transformation into the LE state, there are other processes 

which are less sensitive to the change in polarity. 

To summarize the results of this section we can conclude that additional confirmation of 

the reactional Scheme 1 by an independent method (CIDNP analysis) has been 

obtained. The CIDNP calculation also confirms the existence of the difference between 

the CIDNP effects of (a)- and (b)-diastereomers in solvents with different permittivities. 

Theoretical DFT conformational analysis of (R,S)- and (S,S)-dyads 

Because chiral isomers differ in the mutual arrangement of the substituents at a chiral 

center, one can expect that quantum chemical (QC) conformational analysis of 

enantiomers and diastereomers can help to understand the source of differences in their 

properties. The majority of work performed in this area is devoted to the conformational 

analysis of epimers, as well as computational modeling and materials design based on 

molecular chirality.44–47  

QC calculations in this work were performed using GAUSSIAN-09 Revision C.1.48 The 

most popular DFT method (B3LYP49,50) with the basis set 6-31G(d)51 was used for 

potential energy surface (PES) scanning and was followed by geometry optimization of 

the stable conformers found during PES scanning. The structures determined as global 

minima of the conformational PES were re-optimized using the extended basis set 6-
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311G(d,p).52 Calculations of vibrational frequencies, enthalpies and Gibbs free energies 

were performed in the same approximation. Thermodynamic parameters were 

calculated for the standard conditions (gas phase, 298.15 K and 1 atm) both in the gas 

phase and in the acetonitrile–benzene binary solvent. The solvent effect was described 

using the IEFPCM polarized continuum model of Tomasi.53 Careful conformational 

analysis was carried out in dyads 4a and 4b (Chart 1). The conformational PES was 

scanned sequentially on five rotation axes of the corresponding single bonds between 

the cyclic moieties of the compounds (technical details are given in the ESI†). As a 

result, a set of stable compounds were obtained. It was found that the global minima (4a 

and 4b) on the PES correspond to nearly similar spatial structures, which differ only in 

the asymmetric C atom of NPX (Fig. 9). The Maxwell–Boltzmann distribution of the 

stable conformers was estimated from the Gibbs free energy. It was found that the 

populations of the most stable conformations for both epimers are similar (28% and 

26% for 4a and 4b respectively). It may be concluded from our theoretical estimations 

that the chirality of the structures does not impact significantly the energy state 

distribution of the conformers. 

 

 

 
Fig. 9 The structure of epimers 4a (left) and 4b (right) correspond to the global 

minima on the conformational PES of the molecules (B3LYP/6-311G(d,p) 

optimization). 

 

Conformational analysis of 4a and 4b around 1, 2 and 5 axes allows us to localize stable 

conformers of the dyads with a flexible (2a, 2b) and rigid (3a, 3b) bridge at the 

B3LYP/6-311G(d,p) level of theory. As it was mentioned above for 4a and 4b, the 

equilibrium structures of the epimers are similar and differ only in the asymmetric 

center of naproxen. The thermodynamic parameters (enthalpy and Gibbs free energies) 

of the epimers were calculated, and the relative values of thermodynamic potentials 

with a relative energy of 2–4a,b are shown in Table 2. The difference in the values of 

H° and G° for each epimer pair does not exceed 2 kJ mol−1 and, apparently, lies within 

the error of the theoretical estimation. 

Table 2 Enthalpies (ΔH°) and Gibbs free energies (ΔG°) of dyads 2–4 relative to the 

R,S-epimer (a) (kJ mol−1)  

Structure ID 

Without solvent MeCN : PhH (60 : 40 v : v) 

ΔH° ΔG° ΔH° ΔG° 

2a  +0.4 +1.5 +0.3 +1.5 

2b  
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Structure ID 

Without solvent MeCN : PhH (60 : 40 v : v) 

ΔH° ΔG° ΔH° ΔG° 

3a  −1.7 −0.4 −0.1 −0.4 

3b  

4a  −0.2 −0.4 −0.4 −0.9 

4b  

 
 

Based on these results, we can conclude that there is no significant difference in the 

energy parameters of the dyads, which could reliably explain the experimentally 

observed differences in the photoinduced processes in diastereomers 2–4(a,b). 

Conclusions 

Remarks concerning features of the behaviour of dyads with (S)- and (R)-

naproxen 

It is interesting to compare the peculiar properties of the (R,S)- and (S,S)-NPX–AA–

Pyr, NPX–CyAA–Pyr, NPX–Pyr dyad reactivity in the model charge transfer (CT) 

processes with the difference between the activity of (R)- and (S)-NPX in biological 

systems. Namely, only (S)-NPX is a real inhibitor of arachidonic acid oxygenation16 

(anti-inflammatory effect) but all 2-aryl propionyl derivatives are potent inhibitors of 

endocannabinoid oxygenation7 (analgetic effect) and (R)-NPX more actively undergoes 

chiral metabolism.8 Our results show the prevailing of the (R,S)-dyad exciplex 

fluorescence quantum yields (Φexc, up to two times) and the rate constants of the 

exciplex formation (k4, in half times), as well as the different CIDNP effects of the 

optical isomers.  

The difference between Φexc and k4 lets us suggest that the contribution of the CT 

processes is larger for dyads comprising (R)-NPX. This suggestion is also confirmed by 

the linear relation between Φexc of the (R,S)-dyad isomers and the CIDNP efficiency, 

which is completely determined by the equilibrium exciplex–biradical–zwitterion. 

According to these results, it can be assumed that (R)-NPX should be more active in the 

processes of chiral metabolism by the action of cytochrome P450, which involves 

electron transfer.18 Indeed, in the oxidative metabolism of (R)-/(S)-NPX by the 

microsomal fraction of P450, the vmax/Km ratio is bigger at 1.3 times that for the (R)-

isomer.54 However, in the case of the chiral inversion of NPX–CoA esters by non-P450 

pathways (AMACR and other transferases), the (R)-isomer demonstrates a many times 

higher activity than that of the (S)-isomers.8,12,13,55 

For (S)-NPX, it is known that it acts as a weak reversible inhibitor of COX 2.7 Since we 

believe that our model charge transfer reaction might be reminiscent of donor–acceptor 

binding, the smaller Φexc of the (S,S)-dyads and the larger ΦLE support the idea of higher 

(S)-NPX binding reversibility. Note that this conclusion is in agreement with the results 

of biochemical research.7 
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Altogether, the obtained results have demonstrated that the stereodifferentiation of 

diastereomeric (R,S)- and (S,S)-dyads depends on the length of the bridge and on its 

structure. The relative proximity of the donor and the acceptor results in the largest 

difference in the reactivity of the diastereomers. This indicates that differences in the 

reactivity of the optical isomers can be sensitive to the relative position of partners, for 

example, in active sites. 
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