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Abstract. One of the main development resources for website engineers
are Web templates. Templates allow them to increase productivity by
plugin content into already formatted and prepared pagelets. For the fi-
nal user templates are also useful, because they provide uniformity and a
common look and feel for all webpages. However, from the point of view
of crawlers and indexers, templates are an important problem, because
templates usually contain irrelevant information such as advertisements,
menus, and banners. Processing and storing this information leads to
a waste of resources (storage space, bandwidth, etc.). It has been mea-
sured that templates represent between 40% and 50% of data on the
Web. Therefore, identifying templates is essential for indexing tasks. In
this work we propose a novel method for automatic web template ex-
traction that is based on similarity analysis between the DOM trees of
a collection of webpages that are detected using an hyperlink analysis.
Our implementation and experiments demonstrate the usefulness of the
technique.
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1 Introduction

A web template (in the following just template) is a prepared HTML page where
formatting is already implemented and visual components are ready to insert
content into them. Templates are an essential component of nowadays websites,
and they are important for web developers, users, and also for indexers and
crawlers:
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ported by the Spanish Ministerio de Eduación under FPU grant AP2010-4415.
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– Web developers use templates as a basis for composing new webpages that
share a common look and feel. This also allows them to automate many tasks
thanks to the reuse of components. In fact, many websites are maintained
automatically by code generators that generate webpages using templates.

– Users can benefit from intuitive and uniform designs with a common vocab-
ulary of colored and formatted visual elements.

– Crawlers and indexers usually judge the relevance of a webpage according
to the frequency and distribution of terms and hyperlinks. Since templates
contain a considerable number of common terms and hyperlinks that are
replicated in a large number of webpages, relevance may turn out to be inac-
curate, leading to incorrect results (see, e.g., [3, 21, 19]). Moreover, in general,
templates do not contain relevant content, they usually contain one or more
pagelets [7, 3] (i.e., self-contained logical regions with a well defined topic or
functionality) where the main content must be inserted. Therefore, detecting
templates helps indexers to identify the main content of the webpage. Gib-
son et al. [10] determined that templates represent between 40% and 50% of
data on the Web and that around 30% of the visible terms and hyperlinks
appear in templates. This justifies the importance of template removal [21,
19] for web mining and search.

Our approach to template extraction is based on the DOM [8] structures that
represent webpages. Roughly, given a webpage in a website, (1) we first identify
a set of webpages that are likely to share a template with it, and then, (2) we
analyze these webpages to identify the part of their DOM trees that is common
with the original webpage. (3) This slice of the DOM tree is returned as the
template.

Some of the ideas in this paper were previously discussed in their earlier
version in [1, 2]. Herein we further develop them, we put them all together, we add
new technical results and algorithms, and finally, we describe our implementation
of the whole system.

The rest of the paper has been structured as follows: In Section 2 we discuss
the state of the art and show some problems of current techniques that can be
solved with our approach. In Section 3, we present our technique with examples
and explain the algorithms used. In Section 4 we give some details about the
implementation and show the results obtained from a collection of benchmarks.
Finally, Section 5 concludes.

2 Related Work

Template detection and extraction are hot topics due to their direct application
to web mining, searching, indexing, and web development. For this reason, there
are many approaches that try to face this problem. Some of them have been pre-
sented in the CleanEval competition [4], which periodically proposes a collection
of examples to be analyzed with a gold standard. The examples proposed are
especially thought for boilerplate removal and content extraction.
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Content Extraction is a discipline very close to template extraction. Content
extraction tries to isolate the pagelet with the main content of the webpage. It
is an instance of a more general discipline called Block Detection that tries to
isolate every pagelet in a webpage. There are many works in these fields (see,
e.g., [11, 20, 6, 12]), and all of them are directly related to template extraction.

In the area of template extraction, there are three main different ways to solve
the problem, namely, (i) using the textual information of the webpage (i.e., the
HTML code), (ii) using the rendered image of the webpage in the browser, and
(iii) using the DOM tree of the webpage.

The first approach is based on the idea that the main content of the webpage
has more density of text with less labels. For instance, the main content can
be identified selecting the largest contiguous text area with the least amount of
HTML tags [9]. This has been measured directly on the HTML code by counting
the number of characters inside text and the number of labels. This measure
produces a ratio called CETR [20] used to discriminate the main content. Other
approaches exploit densitometric features based on the observation that some
specific terms are more common in templates [16, 14]. The distribution of the
code between the lines of a webpage is not necessarily the one expected by the
user. The format of the HTML code can be completely unbalanced (i.e., without
tabulations, spaces or even carriage returns), specially when it is generated by
a non-human directed system. As a common example, the reader can see the
source code of the main Google’s webpage. At the time of writing these lines,
all the code of the webpage is distributed in only a few lines without any legible
structure. In this kind of webpages CETR is useless.

The second approach assumes that the main content of a webpage is often
located in the central part and (at least partially) visible without scrolling [5].
This approach has been less studied because rendering webpages for classification
is a computational expensive operation [15].

The third approach is where our technique falls. While some works try to
identify pagelets analyzing the DOM tree with heuristics [3], others try to find
common subtrees in the DOM trees of a collection of webpages in the website
[21, 19]. Our technique is similar to these last two works.

Even though [21] uses a method for template extraction, its main goal is
to remove redundant parts of a website. For this, they use the Site Style Tree
(SST), a data structure that is constructed by analyzing a set of DOM trees
and recording every node found, so that repeated nodes are identified by using
counters in the SST nodes. Hence, an SST summarizes a set of DOM trees. After
the SST is built, they have information about the repetition of nodes. The most
repeated nodes are more likely to belong to a noisy part that is removed from
the webpages.

In [19], the approach is based on discovering optimal mappings between DOM
trees. This mapping relates nodes that are considered redundant. Their technique
uses the RTDM-TD algorithm to compute a special kind of mapping called re-
stricted top-down mapping [18]. Their objective, as ours, is template extraction,
but there are two important differences. First, we compute another kind of map-
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ping to identify redundant nodes. Our mapping is more restrictive because it
forces all nodes that form pairs in the mapping to be equal. Second, in order
to select the webpages of the website that should be mapped to identify the
template, they pick random webpages until a threshold is reached. In their ex-
periments, they approximated this threshold as a few dozens of webpages. In
our technique, we do not select the webpages randomly, we use a new method to
identify the webpages linked by the main menu of the website. We only need to
explore a few webpages to identify the webpages that implement the template.
Moreover, contrarily to us, they assume that all webpages in the website share
the same template, and this is a strong limitation for many websites.

3 Template extraction

Our technique inputs a webpage (called key page) and it outputs its template.
To infer the template, we identify what concrete other webpages in the same
website should be analyzed. Our approach introduces three new ideas to solve
the following three problems:

1. Minimize the number of webpages to be analyzed from the (usually huge)
universe of directly or indirectly linked webpages. For this, starting from the
key page, we identify a complete subdigraph in the website topology.

2. Solve conflicts between those webpages that implement different templates.
For this, we establish a voting system between the webpages.

3. Extract the template by comparing the set of webpages analyzed. For this, we
calculate a new mapping called equal top-down mapping (ETDM) between
the DOM tree of the key page and the DOM trees of the webpages in the
complete subdigraph.

The three processes are explained in the following sections.

3.1 Finding webpage candidates to extract the template

The first phase of our technique identifies a set of webpages that share their
template with the key page. This phase was proposed and described in [1] as
an independent process that can be used by any template extraction technique.
In fact, this phase is orthogonal to the other phases that extract the template.
Roughly, we detect the template’s menu and analyze the hyperlinks of the menu
to identify a set of mutually linked webpages. One of the main functions of a
template is in aiding navigation, thus almost all templates provide a large number
of hyperlinks, shared by all webpages implementing the template. Locating the
menu allows us to identify in the topology of the website the main webpages of
each category or section. These webpages very likely share the same template.

Given a website topology, a complete subdigraph (CS) represents a collection
of webpages that are pairwise mutually linked. A n-complete subdigraph (n-CS)
is formed by n nodes. Our interest in complete subdigraphs comes from the
observation that the webpages linked by the items in a menu usually form a CS.
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Fig. 1. Webpages of Innopolis University sharing a template

This is a new way of identifying the webpages that contain the menu. At the
same time, these webpages are the roots of the sections linked by the menu, and
thus they very likely share a common template.

Example 1. In Figure 1, we see two webpages of Innopolis University that share
the same template. The left webpage is reached from the menu option “Educa-
tion”. The right webpage is reached from the menu option “Research”. In both
pages the main content is at the bottom right. They both share the same header,
menu, and general structure, and they form a 2-CS. Similarly, the 6 webpages
linked by the menu at the top form a 6-CS, and they all implement the whole
template. Our technique uses these webpages as candidates.

This simple idea is so powerful that it significantly increases the quality of
the webpage candidates (main webpages of a category normally maximize the
amount of template implemented), and at the same time it increases perfor-
mance: contrarily to other approaches, we only need to investigate a reduced
set of webpages linked by the key page, because they will for sure contain a
CS that represents the menu. Contrarily to our approach, with independence
of the approach followed to compare the candidates, the most extended way of
selecting them is manually. For instance, the ContentExtractor algorithm and
its improved version, the FastContentExtractor algorithm [17], take as input a
set of webpages that are given by the programmer. The same happens in the
methodology proposed in [13].

Other approaches select the candidates randomly. For instance, in [21], SSTs
are built from a collection of webpages. They do not have a methodology to
select the webpages, and they do not propose a number of webpages needed. In
their experiments, they randomly sample 500 webpages, and the time taken to
build a SST is always below 20 seconds. Similarly, in [19], in order to select the
webpages of the website that should be mapped to identify the template, they
pick random webpages until a threshold is reached. In their experiments, they
approximated this threshold as a few dozen of webpages. They need 25 webpages
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to reach a 0.95 F1 measure using a collection of product description webpages
that share the same template. Therefore, contrarily to us, they assume that all
webpages in the website share the same template, and this is too restrictive for
many websites.

By analyzing the hyperlinks (in the following, links) in the key page, it is
possible to select those links that most likely produce a CS. This is essential to
avoid analyzing all links and thus significantly increasing the performance. Our
strategy to identify the links that should be analyzed is based on the structure
of the website, and the structure of the website can be inferred from the own
links. In particular, by analyzing the links in the key page, we can establish an
order of relevance (i.e., an order that states what links should be analyzed first).
For this, we use the hyperlink distance and the DOM distance:

Hyperlink distance. It represents the distance in the file system between the
directories pointed by two links. This can be observed in Figure 2 (left),
which represents a tree of directories that contain webpages. There, we can
see the distance of the webpage in the gray directory to the rest of webpages.
Note that the hyperlink distance can be negative and it is asymmetric. This
can be also observed in Figure 2 (right) where hyperlink distance is repre-
sented with hDistance.

DOM distance. It is just the standard tree nodes distance in the DOM tree
between two link nodes. Hence, two hyperlink nodes have zero DOM dis-
tance if and only if they are exactly the same node. Contrarily, two different
hyperlink nodes (even if they have the same URL, and thus the same hy-
perlink distance) necessarily have a positive DOM distance. An example of
DOM distance can be observed in Figure 2 (right) where DOM distance is
represented with dDistance.

Fig. 2. Hyperlink distance (left). A DOM tree T (center) with its information (right).

There exists a clear relation between hyperlink distance and the probability
of the linked webpages to share the template. Another observation is that we
want the candidates that share the template to be as different as possible to en-
sure representativity of the website (e.g., avoiding to select all webpages about
the same sport in a sports website). Therefore, the process of obtaining web-
pages that share the same template tries to identify webpages with an hyperlink
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distance as close to zero as possible, but at the same time maximizing the DOM
distance (to ensure that the webpages are as different as possible), and giving
priority to the hyperlink distance.

Concretely, to compute the n-CS, we sort the links of the key page, and
iteratively explore them until they form a n-CS. The order of the links is created
using both the hyperlink distance and the DOM distance. The order is the
following: First, those links with zero hyperlink distance, then, those links that
are closer to the key page with a positive distance, and finally those links that
are closer to the key page with a negative distance. In the three cases, if a draw
occurs, then, the draw is broken using the DOM distance: those links that are
farer to the already selected links are collected. A formalization together with
the algorithms used to compute a n-CS can be found in [1].

3.2 Solving conflicts between webpages with different templates

One problem that we detected in previous techniques is the general assumption
that the website has a unique template. Contrarily, a single webpage can imple-
ment various templates, or even subsets of different templates. This is illustrated
in the following example.

Example 2. In Figure 3 we see the key page and two webpages used to extract
its template. The two webpages implement a different template, and they are
disjoint except for the root node. If we assume that all webpages implement the
same template, then, the template extracted would be only the root node (it is
the only one shared by the three webpages). Contrarily, it is possible that the
key page implements a part of the template of one webpage, and a part of the
other webpage, being the template the gray nodes. Thus, even if the webpage
candidates are disjoint, they can contribute to the template.

Fig. 3. Template extracted from webpages with different template

Example 2 shows that not all webpages must share a node to consider this
node as template. But, how many of them are necessary? The answer is: it
depends on the size of the CS. We experimented with a benchmark suite and
measured the recall and precision obtained with all combinations of CS size and
number of votes needed. The results are summarized in the first two columns of
Table 2. For instance, with a CS of size 6, 3 votes are enough to get the best F1.
As a result, our algorithm implements a voting system to extract the template
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from a set of candidates, and it uses a parameter that represents the number of
votes needed for a node to be considered template. This algorithm is presented
in the next section in such a way that it is parametric so that it can be used for
any size of the CS and for any number of votes needed.

3.3 Template extraction from a complete subdigraph

In the following, given a DOM tree T = (N,E), parent(n) represents node n′ ∈ N
such that (n′, n) ∈ E. Similarly, subtree(n) denotes the subtree of T whose root
is n ∈ N .

In order to identify the part of the DOM tree that is common in a set of
webpages, our technique uses an algorithm that is based on the notion of map-
ping. A mapping establishes a correspondence between the nodes of two trees.
In order to identify templates, we define a very specific kind of mapping that we
call equal top-down mapping (ETDM) (see Figure 4).

Fig. 4. Equal top-down mapping between DOM trees

Definition 1 (equal top-down mapping). A mapping from a tree T = (N,E)
to a tree T ′ = (N ′, E′) is any set M of pairs of nodes (n, n′) ∈M , n ∈ N,n′ ∈ N ′

such that, for any two pairs (n1, n
′
1) and (n2, n

′
2) in M , n1 = n2 iff n′

1 = n′
2.

Given an equality relation , between tree nodes, a mapping M between two trees
T and T ′ is said to be equal top-down if and only if

– equal: for every pair (n, n′) ∈M , n , n′.
– top-down: for every pair (n, n′) ∈ M , with n 6= root(T ) and n′ 6= root(T ′),

there is also a pair (parent(n), parent(n′)) ∈M .

Note that this definition is parametric with respect to the equality relation ,.
We could simply use the standard equality (=), but we left this relation open,
to be general enough as to cover any possible implementation. In particular,
other techniques consider that two nodes n1 and n2 are equal if they have the
same label. However, in our implementation we use a notion of node equality
much more complex that compares two nodes considering their HTML id, CSS
classes, their number of children, their relative position in the DOM tree, and
their HTML attributes. We refer the interested reader to our open and free
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implementation (http://www.dsic.upv.es/~jsilva/retrieval/templates/)
where relation , is specified.

This definition of mapping allows us to be more restrictive than other map-
pings such as, e.g., the restricted top-down mapping (RTDM) introduced in [18].
While RTDM permits the mapping of different nodes (e.g., a node labelled with
table with a node labelled with div), ETDM can force all pairwise mapped nodes
to have the same label. Figure 4 shows an example of an ETDM using: n , n′

if and only if n and n′ have the same label.

After we have found the webpage candidates (the CS), we identify an ETDM
between the key page and a set of webpages in the CS. For this, initially, the
template is considered to be empty. Then, we iteratively compute an ETDM
between the template and v webpages in the set, being v the number of votes
needed for a node to be considered template. The result is a template with all
those nodes of the key page appearing in at least v other webpages of the CS. This
process is formalized in Algorithm 1, which uses function ETDM to compute
the biggest ETDM between a set of trees. Algorithm 1 uses a loop (foreach
({p1 . . . pv} in P)) that iterates over all possible partitions of P formed with
v pages (because v votes are needed). Then, an ETDM is computed between
these webpages and the key page. Observe that function ETDM is recursive. It
traverses the trees top-down collecting all those nodes that are equal modulo ,.
Note that function ETDM assumes that, given two webpages p1 = (N1, E1), p2 =
(N2, E2), only one node n1 ∈ N1 satisfies n1 , n2 for a given n2 ∈ N2. Of course,
this strictly depends on the definition of ,. In the case that ∃ n1, n

′
1 ∈ N1, n2 ∈

N2 . n1 , n2 ∧ n′
1 , n2, then, the algorithm should be augmented with a

mechanism to select only one node (either n1 or n′
1).

Algorithm 1 Extract a template from a set of webpages

Input: A key page pk = (N,E), a set P of n webpages, and the number of votes v needed for a
node to be considered template.
Output: A template for pk with respect to P and v.

begin
template = (Nt, Et) = (∅, ∅);
foreach ({p1 . . . pv} in P )

if root(pk) , root(p1) , . . . , root(pv)
(N ′, E′) = ETDM (pk, p1, . . . , pv);
(Nt, Et) = (Nt ∪ N ′, Et ∪ E′);
template = (Nt, Et);

return template;
end

function ETDM (tree T0 = (N0, E0), tree T1 = (N1, E1), . . . , tree Tv = (Nv, Ev))
r0 = root(T0); r1 = root(T1); . . . ; rv = root(Tv);
nodes = {r0};
edges = ∅;
foreach n0 ∈ N0, . . ., nv ∈ Nv . n0 , . . . , nv, (r0, n0) ∈ E0, . . ., (rv, nv) ∈ Ev

(nodes st, edges st) = ETDM (subtree(n0), . . . , subtree(nv));
nodes = nodes ∪ nodes st;
edges = edges ∪ edges st ∪ {(r0, n0)};

return (nodes, edges);

end function
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As in Definition 1, we left the algorithm parametric with respect to equality
relation ,. This is done on purpose, because this relation is the only parameter
that is subjective and thus, it is a good design decision to leave it open. For
instance, a researcher can decide that two DOM nodes are equal if they have the
same label and attributes. Another researcher can relax this restriction ignoring
some attributes (i.e, the template can be the same, even if there are differences in
colors, sizes, or even positions of elements. It usually depends on the particular
use of the extracted template). Additionally, this design decision gives us control
over the recall and precision of the technique. Because the more restrictive , is,
the more precision (and less recall).

4 Implementation

The technique presented in this paper, including all the algorithms, has been
implemented as a Firefox’s extension accepted by Mozilla as an official add-on
(https://addons.mozilla.org/en-US/firefox/addon/template-extractor/).
In this tool, the user can browse on the Internet as usual. Then, when he/she
wants to extract the template of a webpage, he/she only needs to press the
“Extract Template” button and the tool automatically (internally) loads the
appropriate linked webpages to form a CS, analyzes them, and extracts the
template. The template is then displayed in the browser as any other webpage.

4.1 Empirical evaluation

Initially, we wanted to use a public standard collection of benchmarks to evaluate
our tool, but we are not aware of any public dataset for template extraction. In
particular, the standard CleanEval suite [4] contains a gold standard prepared
for content extraction (each part of the webpages is labelled as main-content or
non-content), but it is not prepared for template extraction. We tried to use the
same benchmark set as the authors of other template extraction papers. However,
due to privacy restrictions, copyright, or unavailability3 of the benchmarks we
could not use a previous dataset. It is surprising, and quite disappointing, to
see how few systems are open-source, or even otherwise (freely) available. In
many papers, it is stated that a prototype was developed but we were not able
to find the tool. In some cases, a system might be mentioned to be open source
but you need to contact the authors to get it. This is the cause why we are
reinventing the wheel, implementing similar systems once and again. Moreover,
not providing the dataset makes impossible to validate or replicate experiments.
For this reason, we made our system, open-source and publicly available, so that
other researchers can reuse it or join efforts to further developing it. And we
decided to create a new suite of benchmarks that is also publicly accessible,
both the dataset and the gold standard. This is one of the main contributions of

3 Some authors answered that their benchmarks were not stored for future use, or that
they did not save the gold standard.
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our work. Any interested researcher can freely access and download our dataset
from: http://www.dsic.upv.es/~jsilva/retrieval/teco/.

The dataset is composed of a collection of web domains with different lay-
outs and page structures. This allows us to study the performance of the tech-
niques in different contexts (e.g., company websites, news articles, forums, etc.).
To measure our technique, we randomly selected an evaluation subset. Table 1
summarizes the results of the performed experiments. First column contains the
URLs of the evaluated website domains. For each benchmark, column DOM shows
the number of nodes in the key page’s DOM tree; column Template shows the
number of nodes in the gold standard template; column Retrieved shows the
number of nodes that were identified by the tool as the template; column Recall

shows the number of correctly retrieved nodes divided by the number of nodes
in the gold standard; column Precision shows the number of correctly retrieved
nodes divided by the number of retrieved nodes; column F1 shows the F1 metric
that is computed as (2 ∗P ∗R)/(P +R) being P the precision and R the recall;
finally, column Time shows the total milliseconds used to obtain the template.

Experiments reveal an average precision of more than 96%, and an average
recall of more than 95% which, from the best of our knowledge, produce the
highest F1 in the state of the art. To produce this result, we have performed
more than half a million experiments to tune our definition of , combining
different DOM parameters such as label, class, id, children, position, etc. See
http://www.dsic.upv.es/~jsilva/retrieval/templates/ for details.

In the experiments, we also evaluated empirically what is the ideal size of
the CS computed. Results are shown in Table 2. This table summarizes many
experiments. Each row is the average of repeating all the experiments in Table 1
with a different value for n in the n-CS searched by the algorithm and for a
different value for all v < n. All possible combinations were evaluated. Column
Size represents the size of the CS that the algorithm tried to find in the websites.
And column Votes represents the best v value obtained for each CS size. In the
case that there did not exist a CS of the searched size, then the algorithm used
the biggest CS with a size under the specified size. Column Loads represents the
average number of webpages loaded to extract the template.

We determined that a subdigraph of size 3 is the best option because it keeps
almost the best F1 value, while being very efficient (only 10 webpages must be
loaded to extract the template). Therefore, the results shown in Table 1 have
been computed with a 3-CS.

5 Conclusions

This work presents a new technique for template extraction. It uses a hyperlink
analysis to identify the menu of a given webpage. With this menu, the technique
collects a set of webpages that form a CS and, thus, they probably share the
same template. The DOM structures of these webpages are then compared with
a new mapping called ETDM to identify the blocks that are common to some
of them. The exact number has been approximated empirically. Our best values
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Benchmark DOM Template Retrieved Recall Precision F1 Time

water.org 948 711 668 93,95 % 100 % 96,88 % 5661
www.jdi.org.za 626 305 305 100 % 100 % 100 % 2928
stackoverflow.com 6450 447 461 100 % 96,96 % 98,46 % 18348
www.eclipse.org 256 156 160 97,44 % 95 % 96,20 % 3382
www.history.com 1246 669 593 88,19 % 99,49 % 93,50 % 16946
www.landcoalition.org 1247 393 433 98,47 % 89,38 % 93,70 % 4901
es.fifa.com 1324 276 239 84,78 % 97,91 % 90,87 % 8171
cordis.europa.eu 959 335 327 97,01 % 99,39 % 98,19 % 5115
clotheshor.se 459 231 225 97,40 % 100 % 98,68 % 2176
www.emmaclothes.com 1080 374 368 98,40 % 100 % 99,19 % 8641
www.cleanclothes.org 1335 266 288 100 % 92,36 % 96,03 % 7725
www.mediamarkt.es 805 337 329 97,63 % 100 % 98,80 % 5903
www.ikea.com 1545 407 565 99,75 % 71,86 % 83,54 % 7326
www.swimmingpool.com 607 499 349 69,94 % 100 % 82,31 % 2514
www.skipallars.cat 1466 842 828 98,34 % 100 % 99,16 % 10042
www.tennis.com 1300 463 419 90,50 % 100 % 95,01 % 7312
www.tennischannel.com 661 303 236 77,89 % 100 % 87,57 % 3520
www.turfparadise.com 1057 726 818 99,72 % 88,51 % 93,78 % 6756
riotimesonline.com 2063 879 861 97,96 % 100 % 98,97 % 50528
www.beaches.com 1928 1306 1172 89,74 % 100 % 94,59 % 11201
users.dsic.upv.es/~jsilva 197 163 163 100 % 100 % 100 % 7419
users.dsic.upv.es/~dinsa 241 74 88 100 % 84,09 % 91,36 % 1457
www.engadget.com 1818 768 767 99,09 % 99,22 % 99,15 % 19116
www.bbc.co.uk/news 2991 364 355 97,53 % 100 % 98,75 % 13806
www.vidaextra.com 2331 1137 992 87,25 % 100 % 93,19 % 17787
www.ox.ac.uk/staff 948 525 533 99,43 % 97,94 % 98,68 % 59599
clinicaltrials.gov 543 389 394 97,17 % 95,94 % 96,55 % 4746
en.citizendium.org 1083 414 447 100 % 92,62 % 96,17 % 13414
www.filmaffinity.com 1333 351 355 100 % 98,87 % 99,43 % 5279
edition.cnn.com 3934 192 180 93,75 % 100 % 96,77 % 31076
www.lashorasperdidas.com 1822 553 536 96,93 % 100 % 98,44 % 19379
labakeryshop.com 1368 218 193 80,73 % 91,19 % 85,64 % 7893
www.felicity.co.uk 300 232 232 100 % 100 % 100 % 2217
www.thelawyer.com 3349 1293 1443 93,81 % 84,06 % 88,67 % 19998
www.us-nails.com 250 184 215 100 % 85,58 % 92,23 % 3386
www.informatik.uni-trier.de 3085 64 63 98,44 % 100 % 99,21 % 10174
www.wayfair.co.uk 1950 702 700 99,29 % 99,57 % 99,43 % 30990
catalog.atsfurniture.com 340 301 304 100 % 99,01 % 99,50 % 2862
www.glassesusa.com 1952 1708 1656 96,96 % 100 % 98,45 % 19462
www.mysmokingshop.co.uk 575 407 428 100 % 95,09 % 97,49 % 89887

Average 1444,3 499,1 492,2 95,44 % 96,35 % 95,61 % 14226,08

Table 1. Results of the experimental evaluation

Size Votes Recall Precision F1 Loads

1 1 88,56 % 94,89 % 88,69 % 2
2 1 96,34 % 90,32 % 91,93 % 5,6
3 2 95,44 % 96,35 % 95,61 % 10,13
4 3 94,61 % 96,88 % 95,27 % 16,52
5 3 94,69 % 96,96 % 95,40 % 18,68
6 3 95,21 % 96,82 % 95,69 % 23,68
7 3 95,46 % 96,31 % 95,57 % 30
8 4 95,14 % 96,57 % 95,54 % 32,08

Table 2. Determining the ideal size of the complete subdigraph

considering both F1 and performance are a size of the CS of 3, and 2 votes needed
to be considered template. To the best of our knowledge, the idea of using the
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menus to locate the template is new, and it allows us to quickly find a set of
webpages from which we can extract the template. This is especially interesting
for performance, because loading webpages to be analyzed is expensive, and this
part of the process is minimized in our technique. As an average, our technique
only loads 10 pages to extract the template (a mean of less than 15 seconds for
the overall template extraction process).

References

1. Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Automatic detec-
tion of webpages that share the same web template. In Maurice H. ter Beek and
António Ravara, editors, Proceedings of the 10th International Workshop on Au-
tomated Specification and Verification of Web Systems (WWV 14), volume 163 of
Electronic Proceedings in Theoretical Computer Science, pages 2–15. Open Pub-
lishing Association, July 2014.

2. Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Web template ex-
traction based on hyperlink analysis. In Santiago Escobar, editor, Proceedings of
the XIV Jornadas sobre Programación y Lenguajes (PROLE 15), volume 173 of
Electronic Proceedings in Theoretical Computer Science, pages 16–26. Open Pub-
lishing Association, September 2015.

3. Ziv Bar-Yossef and Sridhar Rajagopalan. Template Detection via data mining and
its applications. In Proceedings of the 11th International Conference on World
Wide Web (WWW’02), pages 580–591, New York, NY, USA, 2002. ACM.

4. Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff. Cleaneval:
a competition for cleaning web pages. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC’08), pages 638–643. European
Language Resources Association, may 2008.

5. Radek Burget and Ivana Rudolfova. Web page element classification based on
visual features. In Proceedings of the 1st Asian Conference on Intelligent Infor-
mation and Database Systems (ACIIDS’09), pages 67–72, Washington, DC, USA,
2009. IEEE Computer Society.

6. Eduardo Cardoso, Iam Jabour, Eduardo Laber, Rogério Rodrigues, and Pedro
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