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Abstract

The computation of a minimal separating automaton (MSA) for
regular languages has been studied from many different points of view,
from synthesis of automata or Grammatical Inference to the minimiza-
tion of incompletely specified machines or Compositional Verification.
In the general case, the problem is NP-complete, but this drawback
does not prevent the problem from having a real application in the
above-mentioned fields. In this paper, we propose a sufficient condi-
tion that guarantees that the computation of the MSA can be carried
out with polynomial time complexity.

Keywords: Minimal separating DFA; Minimal consistent DFA; Model
Checking; Minimization of incompletely specified automata.

1 Introduction

In this work, we study the problem of computing a minimal separating au-
tomaton (MSA) for regular languages. This problem has been studied from
many different points of view. We note that, in the general case, the deci-
sion problem is NP-complete. This complexity result can be derived from
the results on synthesis of automata by Trakhtenbrot and Barzdin [30], who
also state a (strict) condition that guarantees polynomial computation. In
the Grammatical Inference (GI) framework, Gold proves in [14] that the
decision problem of obtaining a DFA with a given number of states that
is compatible with a finite (positive and negative) sample is NP-complete.
In the same GI framework, Angluin proves in [1] that even a small modi-
fication of the condition stated by Trakhtenbrot and Barzdin implies that
the problem is NP-complete. Also, in [25], Pfleeger studies the complexity
of the minimization of incompletely specified finite state machines obtaining
the same complexity bound.
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Briefly speaking, all of these problems can be enunciated as the problem
of computing (given any two (regular) languages L+ and L−) an automaton
with the smallest number of states that accepts the strings in L+ and rejects
all the strings in L− (the behavior of the automaton with respect to the
strings not in L+∪L− is irrelevant). Despite the exponential time complexity
in the worst case of the general problem, in our work we prove a sufficient
condition that guarantees that the computation can be carried out with
polynomial time complexity.

One of the first approaches to the problem was presented by Trakht-
enbrot and Barzdin [30], where the authors study the problem of comput-
ing the minimum deterministic finite automaton (DFA) which is consistent
with respect to a finite set of strings of a target language and its comple-
ment. In their work, the authors prove that the DFA can be obtained with
polynomial complexity whenever a uniformly-complete sample is available
(a sample that exclusively contains every string over the alphabet up to a
given length).

Several authors study the computation of the minimal cover-automaton
as a compact representation of a finite set of strings over an alphabet [18,
6, 7]. Taking into account the results by Trakhtenbrot and Barzdin, the
computation of the minimal cover-automaton can be stated as the problem
of obtaining the minimumDFA such that L+ is finite and L− is the language
that contains the strings not in L+ whose length is lower than or equal to
an integer n that denotes the length of the longest string in L+. This allows
the finite set L+ to be described by using the cover-automaton obtained
together with n.

As mentioned above, another problem that is related to the computa-
tion of the MSA is the minimization of incompletely specified state machines,
where incomplete means that either the transition function or the member-
ship of some states to the set of accepting states is undefined. Thus, by
taking into account the result of the analysis of any given string using an
incompletely specified machine, it is possible to distinguish a set of strings
that are accepted, a set of strings that are rejected, and a third set of strings
that can either be accepted or rejected. Among the different approaches to
the problem, in [22], the authors address the task by enumerating the possi-
ble reductions of the input machine and selecting the minimum one. Despite
its complexity, the method has been used recently (i.e., in [8]). In the con-
text of circuit design, in [27], Rho et al. propose exact methods (based on
the computation of sets of compatible states) as well as heuristics. In [23],
in a more general approach, Pena and Oliveira propose a method that takes
into account previous GI methods. With the exception of the heuristics
proposed, none of the enumerated works bypass the exponential complexity
of the problem.

In some circumstances, the use of state machines in the modeling of al-
gorithms, sequential logic circuits and communication protocols allows the
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verification of the system to be reduced to the computation of a MSA. Com-
positional verification is one of these approaches and is considered to be a
way to scale up Model Checking [9]. Once two components M1 and M2 and
the property P (to hold) are characterized by means of regular languages, it
is possible to check that the composition of M1 and M2 (the intersection of
the component languages) fulfills the property (the intersection is a sublan-
guage of L(P )) if there is a contextual assumption A such that the following
inference rule is satisfied:

L(M1) ∩ L(A) ⊆ L(P ) L(M2) ⊆ L(A)

L(M1) ∩ L(M2) ⊆ L(P )

The main drawback of applying this assume-guarantee rule is the need for
expert knowledge in order to obtain the contextual assumptions, while the
minimality of the assumption model is important in terms of performance
[8]. When regular models are considered, this approach to Model Checking
can be reduced to the problem of finding the MSA for the languages L(M2)
(which plays the role of L+) and L(M1)−L(P ) (which plays the role of L−).

Among the results in this field, in [15], the authors address the task in the
context of the design of logic circuits and propose a heuristic that iteratively
constructs a contradicting sequence that is used to find incompatible states.
In [8], the authors use a version of the L∗ algorithm by Angluin [2] in order
to obtain an incompletely specified state machine that is then reduced by
using the algorithm proposed in [22]. In [21], Neider addresses the problem
by representing the desired properties of the DFA in terms of a logical
formula and using standard SAT or SMT solvers to find a solution.

As mentioned above, the goal of Grammatical Inference is to obtain
the MSA in the special case of two finite languages L+ and L−. Despite
the negative results related to the complexity of the problem [1, 14], recent
work in this field proves that it is possible to relax the uniformly-complete
criterion in order to compute the minimal consistent DFA with polynomial
complexity [31]. Related work in the same field of Grammatical Inference
allows to propose a heuristic to compute a small DFA that is consistent
with a finite input by inferring a team of automata using different order-
criteria on the prefix tree acceptor for the sample and selecting the smallest
DFA obtained [12].

In this paper, we study the conditions that allow the MSA with poly-
nomial complexity to be obtained. We prove a sufficient condition over the
whole set of strings that are involved in the problem that guarantees that
the process can be carried out with polynomial time complexity. Because
the condition we propose takes into account the strings in the union of the
sets L+ and L−, for the sake of simplicity (and without lack of generality),
we state this problem as the following task: given two regular languages L+

and L∪, where L+ ⊆ L∪, compute a minimal DFA that accepts the strings
in L+ and rejects the strings in L∪ − L+ with polynomial time complexity
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(i.e., the search of a DFA that separates L+ and L∪−L+). Any automaton
that fulfills these conditions is considered to be consistent with respect to L+

and L∪ − L+.

2 Notation and definitions

In this section, we summarize the main definitions used in the paper. We
recommend [16] to the reader for further notions or definitions.

Let Σ be a finite alphabet and let Σ∗ be the set of strings over Σ, where
λ denotes the empty word and |x| denotes the length of x (thus, |λ| = 0).
A language L over Σ is any subset of Σ∗. Here we recall the definition
of the canonical order over Σ∗ as being the order that first classifies the
shorter strings and considers the alphabetic order for those strings of the
same length.

A (non-deterministic) finite automaton is a 5-tuple A = (Q,Σ, δ, I, F ),
where Q is a finite set of states, Σ is an alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states and δ : Q× Σ → 2Q is the transition
function, which can also be seen as a subset of Q× Σ × Q. The transition
function can be extended in a natural way to Σ∗ as well as to 2Q. Given a
finite automaton A, we say it is accessible if, for each q ∈ Q, there exists a
string x such that q ∈ δ(p, x) for some p ∈ I. The right language of a state q
of a finite automaton A is defined as LA

q = {x ∈ Σ∗ : δ(q, x)∩F 6= ∅}. The
language accepted by the finite automaton, which we will denote as L(A),
is the union of the right languages of the initial states.

An automaton is called deterministic (DFA) if, for every state q and
every symbol a, the number of transitions is at most one, and where q0 is
the only initial state. Because of the restriction on the set of initial states,
a DFA is usually denoted as A = (Q,Σ, δ, q0, F ). A DFA is said to be
complete when the transition function is always defined.

Given a language L and a finite automaton A = (Q,Σ, δ, I, F ) such
that L = L(A), the reverse automaton for A is defined as the automaton
R(A) = (Q,Σ, δR, F, I), where q ∈ δR(p, a) if and only if p ∈ δ(q, a). Given
any language L, we will denote the reverse language as Lr.

For any finite automaton A = (Q,Σ, δ, I, F ), it is possible to obtain an
equivalent DFA A′ using the well-known subset construction, which outputs
the automaton A′ = (2Q,Σ, δ′, I, F ′), where F ′ = {P ∈ 2Q : P ∩ F 6= ∅}
and δ′(P, a) = ∪p∈P δ(p, a). Let us denote the accessible version of A′ by
D(A). For the sake of clarity, we will reduce the parentheses to denote the
composition of determinization and reverse operations; for instance, we will
use DR(A) instead of D(R(A)).

Given any language L over an alphabet Σ, we denote the quotient of L
by the string u as the language u−1L = {v ∈ Σ∗ : uv ∈ L}. We stress
that, given any state q ∈ Q of a DFA and any string u ∈ Σ∗ such that
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δ(q0, u) = q, the right language LA
q equals u−1L(A). We also recall that any

DFA A = (Q,Σ, δ, q0, F ) defines a right-invariant equivalence relation over
Σ∗, where x ≡A y if and only if δ(q0, x) = δ(q0, y).

A partition π of a set Q is a set {P1, P2, . . . , Pk} of pairwise disjoint
non-empty subsets of Q such that the union of all the Pi equals Q. We will
refer to the subsets of a partition as blocks, and we will denote the block of
π which contains p with Bπ

p . A partition π1 is refined by π2 (π1 is coarser
than π2) if each class in π2 is contained in some class in π1.

A Moore machine is a 6-tuple M = (Q,Σ,∆, δ, q0,Φ), where Σ (resp.
∆) is the input (resp. output) alphabet, δ is a partial function that maps
Q × Σ in Q, and Φ is a function that maps Q in ∆ called output function.
The behavior of M is given by the partial function tM : Σ∗ → ∆ defined as
tM (x) = Φ(δ(q0, x)), for every x ∈ Σ∗ such that δ(q0, x) is defined.

In the following, it will be useful to simulate any given DFA using a
Moore machine. In order to do this, given any DFA A = (Q,Σ, δ, q0, F ),
it is possible to construct the machine M = (Q,Σ, {0, 1}, δ, q0 ,Φ), where
Φ(q) = 1 if q ∈ F and Φ(q) = 0 otherwise. Thus, the language defined by
M is L(M) = {x ∈ Σ∗ : Φ(δ(q0, x)) = 1} = L(A).

In order to propose our method which outputs a minimal DFA that
separates two regular languages L+ and L−, we consider Moore machines
whose output alphabet is {0, 1, ?}. Thus, the analysis of words in L+ and
in L− will return 1 and 0 respectively, and where the analysis of words that
are not in L+ ∪ L− will have undefined output (represented by the symbol
?). Therefore, we say that a Moore machine M = (Q,Σ, {0, 1, ?}, δ, q0 ,Φ) is
consistent with respect to L+ and L− if, for every string x in L+ we have
that tM(x) = 1, and for every string x in L− we have tM (x) = 0. Note that
a consistent machine is allowed to return defined output (values of either 0
or 1) for some strings not in L+ ∪ L−.

3 Similarity relationships

In our work, we consider binary relations that are weaker than equivalence
relations. Definition 1 describes the properties of these relations. Fact 2
states a consequence of the definition that will be of importance in what
follows. These concepts are based on the notion of preorder, which is defined
as any reflexive and transitive relation over the domain.

Definition 1 Let ≤ be a total preorder on Σ∗. We call a relation ∼ over
Σ∗ a similarity relation, if the following properties hold:

1. x ∼ x for every x ∈ Σ∗

2. If x ∼ y, then y ∼ x for every x, y ∈ Σ∗

3. Given any x, y, z ∈ Σ∗ such that x ≤ y ≤ z, the relation ∼ holds that:
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• If x ∼ y and x ∼ z, then y ∼ z.

• If x ∼ y and y ∼ z, then x ∼ z.

Fact 2 Any equivalence relation is a similarity relation.

Previous studies that tackle the computation of the minimum cover au-
tomaton for finite languages [18, 6, 7] use a similarity relation as a relation
that generalizes Nerode’s equivalence relation for any regular language L

(x ≡L y if, for every z ∈ Σ∗, xz ∈ L if and only if yz ∈ L). The similarity
relation that is considered in these works takes into account the preorder
that is established by considering the length of the strings (i.e., for any two
strings, x ≤ y whenever |x| ≤ |y|). Thus, given a finite language L and the
maximum length of the strings in L denoted by l, the similarity relation in
[18, 6, 7] states that x ∼ y when, for any z ∈ Σ∗ such that |xz| and |yz| are
lower than or equal to l, it holds that xz ∈ L if and only if yz ∈ L.

Before defining an extension of the similarity relation used in [18, 6, 7],
which is key in the remainder of our paper, we define the preorder that will
be taken into account.

Definition 3 Given any language L ⊆ Σ∗, we define the preorder induced
by L in Σ∗ as x ≤ y if and only if x−1L ⊇ y−1L.

In other words, a string x comes before y in the ≤ preorder when all
the words that can be concatenated to y to obtain words in L can also be
concatenated to x and also obtain words in L.

Note that, regardless of the language L, Definition 3 establishes a pre-
order in Σ∗. We want the order induced by a language to be total. Definition
4 provides a sufficient condition that assures this.

Definition 4 Given any regular language L ⊆ Σ∗, we say it is well-struc-
tured if and only if, for every strings x and y over Σ, either x−1L ⊆ y−1L

or y−1L ⊆ x−1L.

Obviously the preorder induced by a well-structured regular language in
Σ∗ is total.

Now, in Definition 5, we extend the relation used in previous papers
on the computation of the minimal cover-automaton. The modification
of the relation is twofold: first, we substitute L+ (a finite set of positive
strings) with any regular language; and second, we substitute the restric-
tion to strings with a length lower than or equal to a positive integer with
a membership criterion to a (well-structured) regular language.

Definition 5 Let L∪ be a well-structured regular language over Σ and let
L+ be a regular language such that L+ ⊆ L∪. Let ≤ be the preorder induced
by L∪ in Σ∗.
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For any two strings x and y over Σ, we say that the strings are related
with respect to L+ and L∪ (denoted with x ∼L+L∪

y) if and only if, for every
string w ∈ Σ∗ such that both xw and yw are in L∪, then xw ∈ L+ if and
only if yw ∈ L+ (there is no string w such that xw and yw are conflicting
in L+).

According to the definition, it is clear that ∼L+,L∪
is reflexive and sym-

metric. In order to prove that it is a similarity relation, we prove that it is
semi-transitive. Given two strings x ≤ y, according to the ≤ preorder defi-
nition, if x ∼L+,L∪

y, then there is no string w in x−1L∪ ∩ y−1L∪ = y−1L∪

such that xw and yw are conflicting in L+.
Let us consider any three strings x, y and z such that x ≤ y ≤ z.

Note that the definition of the ≤ preorder, and the fact that L∪ is well-
structured imply that the quotients are such that z−1L∪ ⊆ y−1L∪ ⊆ x−1L∪.
We will look for a contradiction in order to show that if x ∼L+,L∪

y and
x ∼L+,L∪

z then y ∼L+,L∪
z. Let us assume that there exists v in z−1L∪

such that yv is conflicting with zv in L+. On the one hand, if xv is not
conflicting with yv (x ∼L+,L∪

y), it implies that xv is conflicting with zv

(which is a contradiction). On the other hand, if xv is not conflicting with
zv (x ∼L+,L∪

z), it implies that xv is conflicting with yv (which is again a
contradiction).

Similarly it is possible to show that if x ∼L+,L∪
y and y ∼L+,L∪

z

then x ∼L+,L∪
z. Therefore, the relation ∼L+,L∪

satisfies the conditions in
Definition 1 and it is a similarity relation. In the following, we use x ∼ y

instead of x ∼L+,L∪
y if no confusion is possible.

The relation stated in [18, 6, 7] (with respect to the definition of the
minimal cover DFA) is an instance of the relation that we define because
L+ and L∪ generalize the finite set of strings, and the set of strings whose
length is lower than a given value, respectively.

Definition 6 Let L∪ be a well-structured regular language over Σ and let
L+ be a regular language such that L+ ⊆ L∪. Also let ∼ be the similarity
relation with respect to L+ and L∪.

1. A non-empty set of strings is a similarity set if it contains only strings
that are similar to each other.

2. A similarity covering of Σ∗ according to ∼ is a set of similarity sets
whose union is Σ∗

3. A canonical-covering of Σ∗ according to ∼ is a similarity covering such
that the union of any pair of similarity sets is not a similarity set.

4. A partition of Σ∗ induced by ∼ is a partition where each block of the
partition is a similarity set.
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5. A canonical-partition induced by ∼ is a partition where there exists no
pair of blocks of the partition such that their union is a similarity set.

Proposition 7 proves that the number of blocks of a canonical-covering
is the minimum of any covering according to ∼.

Proposition 7 Let L∪ be a well-structured regular language over Σ and let
L+ be a regular sublanguage of L∪. Let ∼ be the similarity relation with
respect to L+ and L∪. A covering of Σ∗ according to ∼ is canonical if and
only if it has the minimum number of similarity sets.

Proof. First, given a covering of Σ∗, if it has the minimum number
of similarity sets, then it is not possible to unite two similarity sets and
obtain another similarity set (this means that the covering is not minimal).
Therefore, any minimal covering of Σ∗ (i.e., a covering with the minimum
number of sets) fulfills the condition of being canonical.

Second, we prove that any canonical-covering is also minimal. Here, for
any given covering of Σ∗ and any block Bi = {ui1, ui2, . . .}, we consider the
first element of the i-th block as the string ui1, assuming that it is such that
ui1 ≤ uik for any k. We recall that the ≤ preorder is total in this case
because L∪ is well-structured.

Let us consider any canonical-covering of Σ∗ according to ∼ and let ui1
and uj1 be the first elements of the blocks Bi and Bj of the covering. We
assume that ui1 ≤ uj1 without lack of generality. Because the covering is
canonical, there exist uik and ujm such that uik 6∼ ujm. Also ui1 ≤ uik and
uj1 ≤ ujm.

We consider that ui1 ∼ uj1, and we look for a contradiction. If this
is assumed, then ui1 ∼ ujm because uj1 ∼ ujm and ui1 ≤ uj1 ≤ ujm.
Furthermore (no matter if uik ≤ ujm or vice versa), ui1 ∼ uik and ui1 ∼ ujm
imply that uik ∼ ujm. Therefore, the covering is not canonical, which is a
contradiction, and thus ui1 6∼ uj1.

Finally, since the first elements of each block in a canonical-covering are
not similar to each other, the covering is also minimal.

�

We mention here that, given any covering of Σ∗ according to a similarity
relation, it is trivial to obtain a canonical-covering by substituting any pair of
similar sets in the covering by their union whenever it is possible. Similarly,
given a covering, it is trivial to obtain a partition induced by that covering
by deleting any element that is present in at least two blocks from all but
one of the blocks in which the element is contained. Corollary 8 follows
directly from these facts and Proposition 7.

Corollary 8 Let L∪ be a well-structured regular language over Σ and let
L+ be a regular language such that L+ ⊆ L∪. Also let ∼ be the similarity
relation with respect to L+ and L∪.
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A canonical-partition induced by ∼ has the minimum number of blocks
of any partition induced by ∼.

4 Minimum consistent DFA

In this section, we study the relationship between the equivalence relation
defined by a DFA A and the similarity relation with respect to L(A) and
some L such that L(A) ⊆ L.

We consider any well-structured regular language L∪ and any regular
language L+. Proposition 9 allows us to conclude in Corollary 10 that any
DFA that is consistent with respect to L+ and L∪ − L+ defines an equiva-
lence relation ≡A (described in Section 2) that refines a canonical-partition
induced by the similarity relation with respect to L+ and L∪. Example 11
exemplifies this result. Corollary 12 relates the minimum number of states
in any consistent DFA with the number of similarity sets in a canonical-
covering.

Proposition 9 Let L∪ be a well-structured regular language over Σ and
L+ be a regular language such that L+ ⊆ L∪. Let also ∼ be the similarity
relation with respect to L+ and L∪.

Let A be an automaton consistent with respect to L+ and L∪ −L+. The
equivalence relation ≡A refines the similarity relation ∼.

Proof. Given any two strings x and y such that x ≡A y, it holds that
δ(q0, x) = δ(q0, y), and, for any z ∈ Σ∗, δ(q0, xz) = δ(q0, yz).

Recall that A is consistent with respect to L+ and L∪ − L+. Therefore,
when both xz and yz are in L∪, two situations arise: on the one hand, if
δ(q0, xz) = δ(q0, yz) ∈ F , then xz and yz are in L+; on the other hand, if
δ(q0, xz) = δ(q0, yz) 6∈ F , then both xz and yz are in L∪−L+. Therefore, if
xz and yz are both in L∪, then xz ∈ L+ if and only if yz ∈ L+, and x ∼ y.

�

The result of Proposition 9 also follows from the fact that, given any
consistent DFA A with respect to L+ and L∪−L+, the equivalence relation
≡A defines a consistent partition (and therefore a covering) of Σ∗ that is also
consistent with respect to the similarity relation ∼.

Corollary 10 Let L∪ be a well-structured regular language over Σ and let
L+ be a regular language such that L+ ⊆ L∪. Let ∼ be the similarity relation
with respect to L+ and L∪.

Let A be an automaton that is consistent with respect to L+ and L∪ −
L+. The equivalence relation ≡A refines a canonical-partition induced by
the similarity relation ∼.
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Example 11 Let us consider the automata in Figure 1. The automaton on
the right accepts the language of strings over {a, b} that begin and end with
a. The automaton on the left accepts the language of strings that begin and
end with the symbol a but do not begin with aa.

1 2

3

4

5

a

b
a

b

ab

aa,b

b

A+

1 23

4

a

b

b

a

a b

a,b

A∪

1

2

4

3

5 6

a

b

a

b a

b

a,b

b a

a,b

Ac

Figure 1: Two DFA examples and an automaton Ac that is consistent with
respect to L(A+) and L(A∪)− L(A+).

Note that Ac is consistent with respect to L(A+) and L(A∪)−L(A+). Let
∼ be the similarity relation with respect to L(A+) and L(A∪). In this exam-
ple, we denote the set of strings equivalent to x according to the equivalence
relation ≡A as [x]A.

To exemplify that ≡Ac
refines ∼, we show that the strings equivalent in

[ab]Ac
(strings that begin with ab and end with the symbol b) are similar to

those in [aba]Ac
(strings that begin with ab and end with the symbol a). To

do so, and according to the definition, given any pair of strings x ∈ [ab]Ac

and y ∈ [aba]Ac
, the set of strings Z = {z ∈ {a, b}∗ : xz ∈ L(A∪) ∧ yz ∈

L(A∪)} is taken into account.
Note that any string in [ab]Ac

(resp. in [aba]Ac
) reaches state 2 in the

DFA A∪ (resp. state 1 in the DFA A∪). Therefore, the set Z is LA∪

1 ∩LA∪

2 ,
which contains the set of words that end with the symbol a.

The strings in [ab]Ac
reach the state 4 of A+, and the strings in [aba]Ac

reach the state 5 of A+. Since only the strings in Z (strings that end with
symbol a) are considered, the strings are all analyzed in the same way from
the states 1 and 2 in A+ (all of them are accepted). Therefore, the strings
in [ab]Ac

are similar to those in [aba]Ac
.
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Also, note that [b]Ac
∪[ab]Ac

∪[aba]Ac
is also a similarity set. In this case,

since the strings in [b]Ac
reach state 4 in A∪, the set Z = LA∪

1 ∩LA∪

2 ∩LA∪

4

is empty, and the similarity conclusion is reached by vacuity.

Corollary 12 Let L∪ be a well-structured regular language over Σ and let
L+ be a regular sublanguage of L∪. Let A be a DFA that is consistent with
respect to L+ and L∪ − L+.

If A is minimal (it has the minimum number of states among the con-
sistent DFAs), then it has as many states as similarity sets in a canonical-
covering induced by the similarity relation ∼.

5 Computation of the relation ∼

In this section, we propose a method to compute the similarity relation.
Once the ∼ relation is computed, it is possible to obtain every canonical-
partition that is induced by the similarity relation.

Taking into account a well-structured language L∪ and a sublanguage L+

of L∪, the method considers DFAs for both L+ and L∪ in order to obtain
a finite state machine (a Moore machine) that is consistent with respect to
L+ and L∪ − L+. From now on, we consider the automaton for L+ to be
complete.

The Moore machine that the method constructs defines an equivalence
relation over its states that allows a relation over Σ∗ to be defined. We prove
that this relation equals the similarity relation that is induced by L+ and
L∪.

Definition 13 Let L+ and L∪ be two regular languages over Σ and let
A+ = (P,Σ, δ+, p0, F+) and A∪ = (Q,Σ, δ∪, q0, F∪) be two DFAs such that
L(A+) = L+ and L(A∪) = L∪. We define the Moore machine M = (P ×
Q,Σ, {0, 1, ?}, δ, (p0 , q0),Φ), where δ((p, q), a) = (δ+(p, a), δ∪(q, a)) (when
both are defined), and the output function is defined as follows:

Φ((p, q)) =











1 if p ∈ F+ and q ∈ F∪,

0 if p 6∈ F+ and q ∈ F∪,

? if q 6∈ F∪

Example 14 depicts the construction of a Moore machine according to
Definition 13.

Example 14 Consider the automata in Figure 1. Note that L(A∪) is well-
structured and that the labeling of the states denotes their order according to
the preorder induced by L(A∪) in {a, b}∗. For instance, LA∪

1 = (a+ b)∗a+λ

and LA∪

2 = (a + b)∗a, and, therefore, LA∪

1 ⊇ LA∪

2 . For the sake of brevity,
we abuse the notation and say that 1 ≤ 2.

The Moore machine obtained from A+ and A∪ is shown in Figure 2.
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(1, 3) (2, 1) (3, 1)

(3, 4) (4, 2) (3, 2)

(5, 1)

a

b

a

b b

a

a

b

a,b

b

a

a

b

Figure 2: The Moore machine obtained from the automata shown in Figure
1. Single-circled states have output 0, double-circled states have output 1,
and dashed states have output ?.

We define the relation ≡M (which we will refer to as the indistinguisha-
bility relation) over P × Q, where (p1, q1) ≡M (p2, q2) if, for every string
z over Σ, whenever both Φ(δ((p1, q1), z)) and Φ(δ((p2, q2), z)) are in {0, 1}
(defined), then both are equal.

The indistinguishability relation ≡M allows a relation over Σ∗ to be
defined where, for any two strings, x ∼M y if and only if δ((p0, q0), x) ≡M

δ((p0, q0), y). Proposition 15 proves that the relation ∼M coincides with the
similarity relation induced by L+ and L∪.

Proposition 15 Let L∪ be a well-structured regular language over Σ, and
let L+ be a regular language such that L+ ⊆ L∪. Let A+ = (P,Σ, δ+, p0, F+)
and A∪ = (Q,Σ, δ∪, q0, F∪) be such that they accept L+ and L∪, respec-
tively. Let M be the Moore machine obtained from A+ and A∪ according to
Definition 13.

For any two strings x and y over Σ, the relation defined as x ∼M y if and
only if δ((p0, q0), x) ≡M δ((p0, q0), y) coincides with the similarity relation
∼ induced by L+ and L∪.

Proof. We first prove that, if x ∼M y and z ∈ Σ∗ is a string such that
both xz and yz are in L∪, then xz ∈ L+ if and only if yz ∈ L+ (x ∼ y).

According to the definition, x ∼M y if and only if δ((p0, q0), x) ≡M

δ((p0, q0), y), or in other words, if and only if, for every z ∈ Σ∗, when both
Φ(δ((p0, q0), xz)) and Φ(δ((p0, q0), yz)) are defined (either 0 or 1), they are
equal.

Let us suppose that both xz and yz are in L∪. Then both δ((p0, q0), x)
and δ((p0, q0), y) are in P × F∪. Note also that both are either in F+ × F∪
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or in (P − F+) × F∪ because x ∼M y. Therefore xz ∈ L+ if and only if
yz ∈ L+, and thus x ∼ y.

Second, we prove that if x ∼ y, then x ∼M y. In this case, for every
z ∈ Σ∗ such that both xz and yz are in L∪, then xz ∈ L+ if and only if yz ∈
L+. Let us consider that δ((p0, q0), xz) = (p, q) and δ((p0, q0), yz) = (p′, q′).

First, if both xz and yz are in L∪, then q and q′ are both in F∪. Second,
x ∼ y, and therefore p and p′ are either both or none in F+. In other
words, Φ((p, q)) and Φ((p′, q′)) are in {0, 1} and are equal. This implies that
δ((p0, q0), x) ≡M δ((p0, q0), y) and that x ∼M y.

�

In Example 16, we consider the automata in Figure 1 and the corre-
sponding Moore machine shown in Example 14 (Figure 2). We also depict a
preliminary method to establish the similarity between strings, which can be
seen as a variation of the Huffmann-Moore minimization method described
in [16].

Example 16 Consider the Moore machine in Figure 2. In order to state if
two states p and q are not related according to ≡M , it is sufficient to find
a word z such that Φ(δ(p, z)) and Φ(δ(q, z)) are defined but distinct. This
process can be carried out by traversing the Moore machine starting from the
states to be checked, looking for states with this defined and distinct output.
Figure 3 summarizes this process for the pair of states (1, 3) and (5, 1).

(1, 3)
(5, 1)

?/1

(2, 1)
(5, 1)

1/1

(3, 4)
(4, 2)

?/?

(3, 1)
(5, 1)

0/1

(4, 2)
(4, 2)

?/?

(3, 4)
(5, 1)

?/1

a

b

b

a

b

a

b

a

Figure 3: Analysis of the relation (1, 3) ≡M (5, 1). The small symbols
represent the output of the states in the pair.

As shown in Figure 3, the process detects that (3, 1) 6≡M (5, 1), and that
(3, 4) ≡M (4, 2) as well. Also, since (3, 4) ≡M (4, 2), every pair of strings
x and y such that δ((1, 3), x) = (3, 4) and δ((1, 3), y) = (4, 2) fulfills that
x ∼M y, and, therefore, x ∼ y.
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We have proved the relationship between ≡M and ∼ in Proposition 15
and depicted it in Example 16. This relationship allows us to extend some
definitions on strings over the alphabet in order to consider states of the
Moore machine.

Thus, the notions of canonical-covering of Σ∗ by ∼ and the canonical-
partition induced by ∼ can be extended in order to take into account the
relation ≡M and the set of states of the Moore machine M . Thus, given
a Moore machine M and the relation ≡M , we say that C (resp. π) is a
canonical-covering (resp. canonical-partition) of the set of states of M if the
union of any pair of blocks of the covering (resp. partition) implies that the
result contains at least two non-equivalent states according to ∼M .

We also extend the ≤ preorder to consider states of the defined Moore
machine M . Thus, given any pair of states p and q, we say that p ≤ q if,
given any string x over the alphabet, whenever Φ(δM (q, x)) is defined, then
Φ(δM (p, x)) is also defined. This allows us to define the first state of a set
B = {q1, q2, . . . , qm} as the state qi such that qi ≤ qj for any i 6= j.

Example 17 shows the process to obtain a canonical-covering of the set
of states as well as any canonical partition of the set of states.

Example 17 In this example, we again consider the automata in Figure 1
and the Moore machine in Figure 2. For the sake of brevity, we rename the
states of M taking into account the order induced by L(A∪) in Σ∗

6 1 2

7 5 4

3

a

b

a

b b

a

a

b

a,b

b

a

a

b

Figure 4: The Moore machine obtained from the automata shown in Figure
1. The machine is isomorphic to the one in Figure 2, where the numbering
of the states follows the order induced by L(A∪) in Σ∗.

Table 1 shows the ≡M -relations among all the states. Taking into account
the information in the table, a canonical-covering of the set of states can be
obtained by traversing the set of states according to the preorder ≤. This
assures that the states with a greater amount of information are considered
first. Thus, considering an initially empty set, whenever the state being
analyzed is not already in the set, its set of relationships is included in the set.
According to this procedure, Table 1 can be summarized with the following
set:
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2 3 4 5 6 7

1 × × × × × X

2 × X × × X

3 × X × X

4 × × X

5 × X

6 X

Table 1: The relationship of states related according to the relation ≡M .

{{1, 7}, {2, 4, 7}, {3, 5, 7}, {6, 7}}.

This set summarizes the relationships of every state. The set is a cover-
ing of the set of states of the Moore machine. Obviously, it is a canonical-
covering of the set of states of the Moore machine, and, therefore, it has the
minimum number of similarity sets. This canonical-covering has the advan-
tage of gathering all of the relationships that have the minimum number of
similarity sets (this is the coarsest canonical-covering).

This canonical-covering allows us to obtain every canonical-partition of
the set of states taking into account the different ways of distributing the
states that are present in more than one element. In this example, the
possible canonical-partitions are:

{{1, 7}, {2, 4}, {3, 5}, {6}}
{{1}, {2, 4, 7}, {3, 5}, {6}}
{{1}, {2, 4}, {3, 5, 7}, {6}}
{{1}, {2, 4}, {3, 5}, {6, 7}}

We now propose a method to construct a DFA taking into account
a partition induced by a similarity relation. We consider Proposition 15,
which proves that the similarity relation ∼ among strings equals the indis-
tinguishability relation ∼M over the states of the Moore machine that we
define.

The process takes into account a partition π of the set of states of the
Moore machine induced by the indistinguishability relation. In order to
construct a consistent DFA, it is essential to select the representant of each
block of the partition. For each block Bπ

i = {qi1, qi2, . . . , qik}, let the first
element in the block qi1 be such that qi1 ≤ qik for any k. Proposition 18
describes the construction of a consistent DFA and proves that the con-
struction is consistent with respect to L+ and L∪ − L+.

Proposition 18 Let L∪ be a well-structured regular language over Σ and let
L+ be a regular language such that L+ ⊆ L∪. Let ∼M be the indistinguisha-
bility relation defined on the Moore machine M = (QM ,Σ, {0, 1, ?}, δM , qM0 ,
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Φ) that is obtained using DFAs for the languages L+ and L∪ according to
Definition 13.

Also let π be a partition of the states of the Moore machine induced by
∼M .

The DFA Aπ = (Q,Σ, δ, q0, F ) where: Q is the set of the first elements
of π; the initial state of the automaton q0 = qj1 is the first element of the
partition block π that qM0 belongs to; the set of final states is F = {q ∈
Q : Φ(q) = 1}; and, for any q ∈ Q and a ∈ Σ, δ(q, a) is the first element
of δM (q, a) according to π.

This DFA is consistent with respect to L+ and L∪ − L+.
Proof. The definition of the DFA is similar to the one obtained from an

equivalence relation. We first prove that the transition function is consistent.
Let q1 and qi be the first element of a block of the partition and any other

state in the block respectively. Since q1 ∼M qi, for any z ∈ Σ∗ such that
Φ(δ(q1, z)) is defined, Φ(δ(qi, z)) either equals Φ(δ(q1, z)) or is undefined,
and therefore the transition function is consistent.

According to the constructions, it is possible to obtain states with unde-
fined output. If such states are present, they can either be included or not
included in the set of final states. In either case, the automaton obtained is
consistent.

�

These results allow us to prove that any canonical-partition induced by
the similarity relation that we propose defines a minimal consistent DFA.

Proposition 19 Let L∪ be a well-structured regular language over Σ and
let L+ be a regular language such that L+ ⊆ L∪. Let ∼ be the similarity
relation with respect to L+ and L∪.

A canonical-partition induced by ∼ defines a minimal consistent DFA

with respect to L+ and L∪ − L+.
Proof. Note that Proposition 18 proves the consistency of an automaton

obtained from any partition (canonical or not) induced by ∼. Corollary 10
proves that the equivalence induced by a DFA that is consistent with respect
to L+ and L∪ − L+ refines a canonical-partition induced by ∼. The proof
follows from these results and the fact that any canonical-partition induced
by ∼ has the minimum number of classes (i.e., no blocks can be united in
order to obtain a similarity set).

�

As we proved in Proposition 18, an automaton can be constructed from
any partition induced by a similarity relation. Example 20 depicts this con-
struction taking into account the partitions that have the minimum number
of blocks.
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Example 20 Let us consider the canonical-partitions that are obtained at
the end of Example 17. The automata obtained by considering the partitions
shown are depicted in Figure 5. Note that we have not taken into account
the undefined output of state 6. As noted in Proposition 18, this state can be
considered either final or non-final without affecting the consistency of the
automaton. Therefore, there exist eight minimal automata that are consis-
tent with respect to L(A+) and L(A∪)− L(A+).

6 1

2

3
a,b

a

b

a,b

a,b

{{1, 7}, {2, 4}, {3, 5}, {6}}

6 1

2

3
a

b
a

b

a,b

a,b

{{1}, {2, 4, 7}, {3, 5}, {6}}

6 1

2

3
a

b

a

b

a,b

a,b

{{1}, {2, 4}, {3, 5, 7}, {6}}

6 1

2

3
a

a

b

a,b

b

a,b

{{1}, {2, 4}, {3, 5}, {6, 7}}

Figure 5: Minimal consistent DFAs for the input languages. The dashed
state can be either final or non-final.

6 An efficient algorithm for computing a minimal

consistent DFA

Taking into account any regular language L+ that is included in a well-
structured regular language L∪, Section 5 proves that it is possible to reduce
the computation of ∼ to a relation over the states of a machine that is
consistent with respect to L+ and L∪ − L+. In this section, we propose
an efficient algorithm to carry out this computation. At the end of the
section, we prove the correctness and the complexity of the algorithm that
we propose.

Our method takes into account the Moore machine that is obtained from
the automata that accept the input languages. The states of the Moore ma-
chine are renumbered in order to consider the preorder described in Defini-
tion 3. This ordering is used to traverse the states and select those states for
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Algorithm 6.1 Computation of a minimal consistent DFA.

Require: A DFA A∪ that accepts a well-structured regular language
Require: A complete DFA A+ that accepts a sublanguage of L(A∪)
Ensure: A minimal consistent DFA with respect to L(A+) and L(A∪) −

L(A+)
1: Method

2: Obtain M = (Q,Σ, {0, 1, ?}, δM , q0,Φ) according to Definition 13
3: Rename the states in M according to the preorder ≤ described in Defi-

nition 3
4: Eqs = QSet = ∅
5: for p ∈ Q do

6: EqFound = False

7: for p′ ∈ QSet do

8: if p′ ≡M p then

9: Append (p, p′) to Eqs

10: EqFound = True

11: BreakFor
12: end if

13: end for

14: if EqFound == False then Append p to QSet end if

15: end for

16: for p ∈ QSet; a ∈ Σ do

17: if δM (p, a) ∈ QSet then Set δ(p, a) = δM (p, a)
else Set δ(p, a) = p′, where (p, p′) ∈ Eqs end if

18: end for

19: if ∃(q0, p
′) in Eqs then p0 = p′

else p0 = q0 end if

20: F = {q ∈ QSet : Φ(q) 6= 0}
21: Return A = (QSet,Σ, δ, p0, F )
22: End Method.

which no equivalent state has already been detected. Once all of the states
have been traversed, the algorithm considers the selected states for com-
puting the transition function, selecting the initial state, and distinguishing
the accepting states. The algorithm is summarized in Algorithm 6.1 and its
behavior is depicted in Example 21.

Example 21 We consider the automata in Figure 1 and, therefore, the
Moore machine shown in Figure 2.

The states in A∪ are numbered according to the order described in Def-
inition 3 and the states in A+ are numbered taking into account the first
string in canonical order that reaches each state. Note that the renaming of
the states of the Moore machine carried out in Figure 4 is consistent with
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the ordering because it considers the second component in each state first.
Any other numbering that satisfies this is also valid.

The loop in line 5 traverses the states taking into account an (initially)
empty QSet and therefore state 1 is added to QSet. The analysis of state 2
returns that 1 6≡M 2 (i.e., they have different outputs and therefore process
the λ string in a different way). Hence, state 2 is also added to QSet.

The analysis of state 3 returns that 3 6≡M 1 (e.g., because of the pro-
cessing of the string a) and also that 3 6≡M 2 (because of they have different
output). Therefore, state 3 is also added to QSet. Since State 4 is found to
be similar to state 2, once the updating has been carried out, Qset = {1, 2, 3}
and Eqs = {(4, 2)}.

The processing of state 5 returns that it is similar to state 3. Therefore,
Qset = {1, 2, 3} and Eqs = {(4, 2), (5, 3)}. Despite its undefined output,
the analysis of state 6 shows that it is distinguishable from every state in
Qset. Therefore, after updating the variables, Qset = {1, 2, 3, 6} and Eqs =
{(4, 2), (5, 3)}.

State 7 is similar to any of the states that are already in Qset. Neverthe-
less, in order to obtain an automaton, it suffices to detect one similarity. The
algorithm detects that state 7 is similar to 1; therefore, Eqs = {(4, 2), (5, 3),
(7, 1)}.

The initial state is in QSet, the set of accepting states is set to {1, 3},
and the transition function is obtained taking into account only the states in
QSet. The final output is shown in Figure 6.

6 1

2

3
a,b

a

b

a,b

a,b

Figure 6: Output of the proposed algorithm.

Propositions 22 and 23 prove the correctness and complexity of our the
method.

Proposition 22 Given any pair of DFAs A∪ and A+ that accept a well-
structured regular language and a sublanguage of L(A∪), respectively, the
Algorithm 6.1 obtains the minimum consistent DFA with respect to L(A+)
and L(A∪)− L(A+).

Proof. In order to prove the correctness of the algorithm, the method
traverses the set according to the preorder ≤ that guarantees that the states
with the most information available are considered first. The main loop in
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line 5 essentially constructs one of the possible canonical-partitions of the
set of states according to the relation ≡M . Once this partition is obtained,
the algorithm constructs the output automaton in a straightforward way.
Proposition 15 assures that the output is a minimal consistent DFA.

�

Proposition 23 Algorithm 6.1 runs with polynomial time complexity.
Proof. Let n and m be the number of states of A+ and A∪, respectively.
The complexity of the algorithm can be reduced to the complexity of the

main loop in line 5. This loop traverses the set of states of M whose size is
bounded by O(nm). Each analysis of similarity between states can be carried
out with O(nm) time complexity. The number of similarity analyses carried
out depends on the number of states of the minimal consistent DFA, but it
is bounded by O(n2m2). Therefore, the algorithm runs with polynomial time
complexity.

�

7 Well-structured languages

As we have proven in the previous sections, it is possible to polynomially
compute the MSA of two regular languages L+ and L− when the union of
both languages is well-structured. In this section, we present some results
that describe the class of well-structured languages. First, we prove that
there exists a method to decide (with polynomial time complexity) whether
a DFA identifies a well-structured language. Second, we characterize the
automata that identify the class of well-structured languages, and we pro-
vide a method to generate any automaton in that class. Third, we prove
that the class of well-structured languages is closed under some of the usual
operations on languages. Finally we show the relationship between the class
of well-structured languages and other well-known subclasses of regular lan-
guages.

Some of the results that we present here are based on the properties
of the Universal Automaton for a language as defined by Lombardy and
Sakarovitch in [19]. In order to describe the universal automaton for a
language L, the set of quotients of L plays an important role. Therefore,
we define the set DL = {u−1L : u ∈ Σ∗} and also the set DL

∩ = {q1 ∩
. . . ∩ qk : k ≥ 0, q1, . . . , qk ∈ DL} (the intersection closure of the set DL).
Whenever the language L is regular, both the sets DL and DL

∩ are finite.
In their paper, Lombardy and Sakarovitch define the universal automa-

ton for a language L as the automaton U L = (DL
∩ ,Σ, δ, I, F ), where I =

{p ∈ DL
∩ : p ⊆ L}, F = {p ∈ DL

∩ : λ ∈ p}, and the set of transitions
is defined as δ(p, a) = {p′ ∈ DL

∩ : p′ ⊆ a−1p}. The method proposed by
Lombardy and Sakarovitch for computing the universal automaton considers
the minimal DFA A = (Q,Σ, δ, q0, F ) for the language, and first computes
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the automaton DR(A) = (QDR,Σ, δDR, F, FDR) (according to the subset-
construction and the reverse operations explained in Section 2). Using this
intermediate result, the universal automaton UL = (U ,Σ, δU , IU , FU ) is
obtained as follows:

• U = QDR
∩

• IU = {X ∈ U : q0 ∈ X}

• FU = {X ∈ U : X ⊆ F}

• δU (X, a) = {Y ∈ U : δ(X, a) ⊆ Y ∧ ∀q ∈ X, δ(q, a)↓}, where δ(q, a)↓
means that the transition δ(q, a) is defined.

In order to propose a decision algorithm to decide if a given language is
well-structured we prove the condition on which the algorithm is based in
Proposition 24, and we prove that the decision process can be carried out
with polynomial time complexity in Proposition 25.

Proposition 24 Given a language L, if L is well-structured, then the min-
imal DFA and the universal automaton for L have the same number of
states.

Proof. To prove this proposition, we take into account that any au-
tomaton that accepts L has a morphic image that is a subautomaton of the
universal language for L [19]. We also recall that the set of states of the
minimal DFA for L is DL (the set of different quotients of L).

By definition, a language L is a well-structured language if there exists
an inclusion relationship between any pair of quotients. In this case, DL

equals DL
∩, and, therefore, both automata have the same number of states.

�

Proposition 25 It is possible to decide whether a minimal DFA A accepts
a well-structured language with polynomial time complexity with respect to
n, the number of states of A.

Proof. As shown in Proposition 24, the decision procedure is based
on the computation of the DR(A) automaton. Note that the computation
of R(A) can be carried out with linear time complexity with respect to n.
Note also that the name of each state in the DR(A) automaton denotes an
intersection of right languages in A.

In order to decide if the input automaton identifies a well-structured
language, it is not necessary to compute the DR(A) automaton (whose size
is potentially exponential) completely. To carry out the process, it suffices
to modify the well-known subset construction procedure.

The modification is twofold: first, every time a new state is found, the
procedure checks if the inclusion relationship holds (this can be done with
polynomial time with respect to n by analyzing the names of the states that
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Figure 7: A DFA example.

the subset construction method obtains); second, we note that, if the process
does not end after n iterations, then the universal automaton for the lan-
guage identified by the input DFA would have more states than n, and, by
Proposition 24, the input automaton does not identify a well-structured lan-
guage. Therefore, we can conclude that the decision process can be carried
out with polynomial time complexity with respect to n.

�

As mentioned in Proposition 24, when a language is well-structured, the
minimal DFA and the universal automaton for the language have the same
number of states and there exists a one-to-one correspondence between the
states of the two automata. Therefore, as a byproduct of the decision process
and whenever the input DFA is well-structured, it is possible to order the
set of states of the DFA with respect to the inclusion relation of their
right languages. The method described below for ordering the states of the
input DFA takes into account the computation of the DR(A) automaton,
especially the names of the states that are output by the subset construction
procedure. We illustrate the decision procedure and the ordering process in
Example 26.

Example 26 Let A be the DFA in Figure 7. The set of states of the
automaton DR(A) is {{3}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}}. For example, state
{2, 3} is related to the intersection of the right languages of states 2 and 3.
As can be observed, there exists an inclusion relationship in the elements of
the set, and the intersection closure of the set does not produce new states.
Therefore, by Proposition 24, the DFA is well-structured.

Note that every state of the universal automaton is related to the right
language of state 3, and, therefore, state 3 is the first in the order. Taking
into account the frequency of the right languages of the input DFA in the
set of states of the universal automaton, the second state is state 2, the third
one is state 1 and the fourth state state 4.

We now present a characterization of the automata that identify any
language in the class of well-structured languages. We first extend Definition
4 to automata. This natural extension takes into account the relationship
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between quotients of the language and the states of the minimal DFA for a
language. We then prove a characterization of the well-structured automata
class in Proposition 28.

Proposition 27 The minimal DFA A = (Q,Σ, δ, q0, F ) of a well-structured
language L satisfies that, for every pair of states p and q in Q, either
LA
p ⊂ LA

q or LA
q ⊂ LA

p .
Proof. The proof is straightforward from Definition 4

�

Proposition 28 A language L is well-structured if and only if its minimal
DFA A = (Q,Σ, δ, q0, F ) is such that there is a total order ≤ over the states
in Q that satisfies the following conditions:

• For any pair of states p and q, if p ∈ F and q ∈ Q− F , then p ≤ q.

• Given any two states such that p ≤ q, then, for any symbol a ∈ Σ, it
hold that δ(p, a) ≤ δ(q, a).

Proof.

First, we prove that if it is possible to establish the order described above
on the states of the automaton, then it is well-structured. Let p and q be
two states such that p ≤ q, and let us suppose that LA

q 6⊂ LA
p . Then there

exists a string x ∈ LA
q − LA

p , and therefore δ(q, x) ∈ F but δ(p, x) ∈ Q− F .
This implies that δ(p, x) 6≤ δ(q, x), and thus p 6≤ q, which contradicts the
hypothesis.

Second, let us consider the minimal DFA for any given well-structured
language and let the order ≤ be defined as p ≤ q if and only if LA

q ⊆ LA
p .

Let us suppose that p ∈ F and q ∈ Q−F . The automaton is well structured
(there exists an inclusion relation with respect to the right languages of the
states) and λ 6∈ LA

q . Therefore, LA
q ⊂ LA

p and p ≤ q. Let us now suppose

that p and q are two states such that LA
q ⊂ LA

p . Therefore, for any symbol a

in Σ, LA
δ(q,a) ⊂ LA

δ(p,a) and δ(p, a) ≤ δ(q, a).
�

Proposition 28 states the conditions that a DFA must fulfill to identify
a well-structured language. In the following, any DFA that fulfills these
conditions is referred to as well-structured. Furthermore, the described con-
ditions can be used to implement a method that is able to generate well-
structured automata. The method that we propose to do this is summarized
in Algorithm 7.1.

The method described in Algorithm 7.1 does not take into account acces-
sibility conditions and therefore can output a DFA whose minimal version
would have less than n states. Example 29 illustrates the behavior of the
algorithm.
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Algorithm 7.1 A method to generate well-structured automata.

Require: Two integers n (number of states) and k number of symbols of
the DFA

Ensure: A DFA A = (Q,Σ, δ, q0, F ) that accepts a well-structured lan-
guage

1: Method

2: Q = {1, . . . , n}
3: Σ = {1, . . . , k}
4: Let f be a random integer in the interval [1, n − 1]
5: F = {1, . . . , f}
6: for all s ∈ Σ from s = 1 to k do

7: limit = 1
8: for all q ∈ Q from 1 to n do

9: Choose a random number m in the interval [limit, n]
10: limit = m

11: Add the transition (q, s,m) to δ

12: end for

13: end for

14: Randomly choose the initial state q0 in the interval [1, n]
15: Return A = (Q,Σ, δ, q0, F )
16: End Method.

Example 29 Let n = 4 and k = 2 be the input values of the method.
Therefore, Q = {1, 2, 3, 4} and Σ = {1, 2}. Also let the set of final states be
F = {1, 2}. Note that the name of each state is related to its order in the
DFA (e.g., 1 ≤ 3).

The first loop traverses the set of symbols. For each symbol, the second
loop traverses the set of states and chooses the destination state of the tran-
sition. The limit variable establishes the first state that the transitions can
be addressed to and it is properly updated.

Some examples of well-structured automata are shown in Figure 8. The
set of final states as well as the initial state can be modified to obtain other
automata in the class. Nevertheless, this modification may imply that the
automata are not minimal. The automata at the bottom of Figure 8 are
examples of incomplete DFAs that identify well-structured languages.

In order to get an idea of how strict the condition of being well-structured
is, it should to be noted that the class contains the only two situations where
the polynomial computation of the minimum separating DFA has been
proved (when L∪ is either Σ∗ or a uniformly-complete set). We now present
some operations on languages under which the class of well-structured lan-
guages is closed. For each one of the closure properties, we provide the
essential base to prove it. Later, we show the relationship between the class
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(e)

1

2 3 4
1

21
2

1

2

2

(f)

123

4

11

2

1

2

2 2

Figure 8: Some examples of well-structured automata with 4 states and 2
symbols obtained by Algorithm 7.1. The names of the states show their
ordering according to the inclusion of their right languages.

of well-structured languages and aperiodic, ordered, locally testable, or def-
inite languages among others. This set of results provides an idea of the
depth and breadth of the class of well-structured languages.

Property 30 The class of well-structured languages is closed under the
complement operation.

The proof of Property 30 can be based on the fact that, given any lan-
guage L, its complement L, and any two strings x and y over the alphabet,
x−1L ⊆ y−1L is satisfied if and only if y−1L ⊆ x−1L.

Property 31 The class of well-structured languages is closed under the in-
verse homomorphism operation.

Property 31 can be proved taking into account that, given any well-
structured language L and a homomorphism h, for any two strings x and y

over the alphabet, if h(x)−1L ⊆ h(y)−1L, then x−1h−1(L) ⊆ y−1h−1(L).
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Property 32 The class of well-structured languages is closed under the quo-
tient operation.

The proof of Property 32 can be based on the properties of the quotient
operation on languages. Given any language L and any three strings x, y,
and z over the alphabet, x−1(z−1L) ⊆ y−1(z−1L) is satisfied if and only if
(zx)−1L ⊆ (zy)−1L.

Property 33 The class of well-structured languages is closed under the re-
verse operation.

Let L be any language in the class of well-structured languages and its
set of quotientsDL = {x−1

1 L, . . . , x−1
n L}, where x−1

i L ⊇ x−1
i+1L for 1 ≤ i < n.

Thus, DR(L) = {(
⋃i

j=1[xj ]≡L
)r, 1 ≤ i ≤ n}, where [xj ]≡L

denotes Nerode’s
class of strings that are equivalent to xj .

Property 33 can be proved taking into account that (
⋃i

j=1[xj ]≡L
)r ⊆

(
⋃i+1

j=1[xj]≡L
)r.

Property 34 The class of well-structured languages is not closed under the
union or intersection operations.

Both L1 = {λ, a, aa} and L2 = {λ, b, bb} are finite well-structured lan-
guages, but L1 ∪ L2 is not. The intersection is not a closure operation
for the class of well-structured languages because this class is closed under
complementation, and therefore, it would lead to a contradiction.

We finally prove that the class of well-structured languages is closed
under positive closure. We provide full proof because the reasoning in this
case is more complex. In the proof of the property, we take into consideration
a known result on non-deterministic automata that is used in several studies
(e.g., [10, 19]). This result states that, given two states p and p′ of a non-
deterministic automaton A such that LA

p ⊆ LA
p′ , and, for some other state

q and a symbol a, there exist transitions (q, a, p) and (q, a, p′) in A, then,
the transition (q, a, p) in A can be deleted without modifying the language
L(A). We illustrate the proof in Example 36.

Property 35 Let L be any well-structured language. Then L+ is also a
well-structured language.

Proof. Let L be a well-structured language and let A = (Q,Σ, δ, q0, F )
be the minimal DFA for L. Let us recall that because A is well-structured,
there is a relation inclusion between the right languages of any pair of states
of A.

We define the (non-deterministic) automaton A′ = (Q,Σ, δ′, q0, F ), where
δ′ contains every transition in A plus a transition (p, a, q), for every transi-
tion (q0, a, q) in δ, and every p ∈ F (a transition from every final state to
every successor of the initial state). Note that L(A′) = L+.
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Let us now consider the set F ′ = {q ∈ F − {q0} : q0 ≤ q}. We take
into account the automaton A and the set F ′ to define the (non-necessarily
minimal) DFA A+ = (Q− F ′,Σ, δ+, q0, F − F ′), where for every state q in
Q− F ′ and any symbol a:

δ+(q, a) =

{

δ(q, a) if δ(q, a) 6∈ F ′

q0 if δ(q, a) ∈ F ′

The definition of A+ satisfies the conditions stated in Proposition 28;
therefore, L(A+) is well-structured. We now prove that L(A+) = L(A′) =
L+ and, therefore, that L+ is well-structured.

First, for those states p′ ∈ F ′, the addition of the above mentioned tran-
sitions in A′ implies that LA′

p′ = LA′

q0
; therefore, the initial state q0 and the

states in F ′ can be merged in A′ without modifying the language L(A′).
The merging of these states in A′ implies the modification of the transitions
(p, a, q), where p is in (Q−F )∪{q0} and q is in F ′, by transitions (p, a, q0).
The language L(A′) does not change because LA′

q = LA′

q0
.

Second, in order to construct A′, it is not necessary to add transitions
from the states p ∈ F − F ′ to the set of successors of q0 because LA

p ⊇ LA
q0
.

Therefore, for any state in F−F ′, it is not necessary to modify the transition
function.

If these considerations are implemented on A′, it outputs an equivalent
automaton and the only (possible) difference with respect to A+ is related
to the transition function of the initial state because it is possible for the
automaton to be non-deterministic. If this is the case, it is because in A′

there is a loop on q0 and a transition from q0 to a state q, where q either is
in F −F ′ or in Q−F . In both cases, the non-determinism can be eliminated
(without modifying the language L(A′)) by selecting the transition to the first
state (either q or q0) according to the inclusion relation of the right languages
[19].

Therefore, the automaton A′ can be modified to obtain A+ without af-
fecting the language L(A′). Thus, A+ identifies the language L+, and, as we
have stated above, A+ satisfies the conditions in Proposition 28. Therefore,
L+ is a well-structured language.

�

Example 36 Let A be the DFA in Figure 9. It can be observed that A is
well-structured.

Figure 10 shows the automata A′ as the result of adding transitions from
every final state to any successor of the initial state. Dashed transitions
denote the ones that have been added.

Note that, in A′, the addition of transitions does not affect the order
between states present in A. Therefore, as shown in Proposition 35, the
transition (1, a, 4) is redundant because LA

1 ⊇ LA
2 . Besides, the addition
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Figure 9: A well-structured DFA.

1 2 3 4 5

a

b
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a
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b a

a
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Figure 10: A (non-deterministic) automaton that accepts the positive clo-
sure of the language identified by the DFA in Figure 9.

of the transitions (3, a, 4) and (3, b, 1) implies that LA′

2 = LA′

3 . Therefore,
the automaton can be modified (without affecting the language) by merging
states 2 and 3. The result is shown in Figure 11.

1 2 4 5

a

b

a a

b b

b ab

a

Figure 11: An automaton that is equivalent to the DFA in Figure 9 and to
the automaton in Figure 10.

As stated in Proposition 35, the only (possible) non-determinism is due
to the initial state. In this example, we describe the two different cases that
may appear. First, note that L1 ⊇ L2, therefore, the loop (2, b, 2) can be
deleted without modify the language. Second, since L4 ⊇ L5, the transition
(2, a, 5) can be deleted without modifying the language. The result gives the
DFA A+ shown in Figure 12.

We now relate the class of well-structured languages to other well-known
subclasses of regular languages. Let us first consider the class of aperiodic
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1 2 4 5

a

b

a a

b b

b a

Figure 12: The DFA A+ obtained from the DFA in Figure 9.

languages (also known as star-free, counter-free, or H-trivial languages) [20]
defined as the set of languages that can be obtained by boolean and con-
catenation closure over the class of finite languages. Aperiodic languages
are accepted by DFA such that, for any state q, there is no symbol a ∈ Σ
and i > 1 such that δ(q, a) 6= q and δ(q, ai) = q. According to this property,
every well-structured language is also aperiodic. In order to show the distri-
bution of well-structured languages within the class of aperiodic languages,
we consider the work by Brzozowski and Knast, who prove in [4] that the
class of aperiodic languages contains an infinite hierarchy with respect to
the number of concatenation operations (thus obtaining an infinite number
of dot-depth classes). In their proof of the result, we note that Brzozowski
and Knast provide, for each class in the hierarchy, an automaton that ac-
cepts a language in the class but not into any other of the lower classes of
the hierarchy. We note that the automata used by Brzozowski and Knast
in the proof are well-structured automata, and, therefore, that the class of
well-structured languages intersects with every subclass of the dot-depth
hierarchy.

Second, we show the relation between well-structured languages and or-
dered languages, a subclass of aperiodic languages defined in [28]. In that
paper, Shyr and Thierrin define ordered automata as the DFAs where the
set of states can be ordered by a relation that is preserved by the transi-
tion function (i.e. given two states such that p � q, for any symbol a of
the alphabet, δ(p, a) � δ(q, a)), and an ordered language is any accepted
by an ordered automaton. According to this definition and Proposition 28,
it is possible to see that the class of well-structured languages is properly
included in the class of ordered languages.

We now recall briefly some definitions of relevant well-known subclasses
of aperiodic languages. For the sake of brevity, we focus the attention on
the definition. We refer the interested reader to the cited bibliography for
further information. Given an alphabet Σ, the definite [24], reverse definite
[5, 13], and generalized definite [13] languages are defined as the languages of
the form A∪Σ∗B, A∪BΣ∗ and A∪BΣ∗C respectively, where A, B, and C

are three finite sets of strings over Σ. In [20], McNaughton and Papert define
the class of locally testable languages as the set of languages that belong
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to the Boolean algebra generated by languages of the form uΣ∗, Σ∗u and
Σ∗uΣ∗, where u ∈ Σ∗. In [11], Garćıa and Ruiz define the classes of right
and left locally testable languages as a generalization of the locally testable
class. Figure 13 shows the inclusion relationship between these classes and
the more restricted classes of finite and cofinite languages.

Aperiodic

Left locally
testable

Right locally
testable

Left piecewise
testable

Right piecewise
testable

Locally testable Piecewise testable

Generalized definite

Definite Reverse definite

Finite Cofinite

Figure 13: Inclusion relationship between some subclasses of aperiodic lan-
guages. A connection between two classes implies that the class below is
included into the upper one.

In [29], Simon define the Piecewise testable languages as the set of lan-
guages that belong to the Boolean algebra generated by languages of the
form Σ∗a1Σ

∗a2 . . . anΣ
∗, where ai ∈ Σ for 1 ≤ i ≤ n. In [3], Brzozowski and

Fich define the right piecewise testable and left piecewise testable classes
taking into account the order in which the symbols ai appear.

All these classes of languages have been algebraically characterized tak-
ing into account the syntactic semigroup properties of the languages in the
class [26, 17]. For instance, the classes of piecewise, left piecewise and right
piecewise testable languages have been characterized using Green’s equiv-
alence relations and are also known as J-trivial, L-trivial and R-trivial re-
spectively. These results permit to decide the membership of any language
to any of the mentioned classes. For instance, when these methods are ap-
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plied to the automata in Figure 8 it is possible to prove that: the language
accepted by automaton (a) is left locally testable but it does not belong to
any other class below this one; the language accepted by automaton (c) is lo-
cally testable and left piecewise testable but it does not belong to any other
class; and the the language accepted by automata (e) and (f) are aperiodic
but they do not belong to any other class. Note that, on the one hand, every
automaton in Figure 8 is well-structured, and, on the other hand, the finite
language {aa} is not well-structured. Therefore, it is possible to conclude
that, leaving aside the proper inclusion relationship with aperiodic and or-
dered languages, the class of well-structured languages is incomparable to
any other mentioned class.

8 Conclusions

The problem of computing a minimal separating automaton (MSA) for reg-
ular languages has been studied from many (unrelated) different points of
view. The study of the complexity of the problem has been dealt with by the
following authors: Trakhtenbrot and Barzdin [30], who studied the problem
within a framework for synthesis of automata; Gold [14] and Angluin [1],
who studied the problem in a Grammatical Inference context; and Pfleeger
[25], who took into account the minimization of incompletely specified finite
state machines. All of these authors reached the same conclusion: in the
general case, the problem is NP-complete. Despite this exponential worst
case complexity, this problem is important in many fields, from the refine-
ment of integrated circuits or GI to Model Checking.

In this paper, we show that the problem can be reduced to the com-
putation of a similarity relation and that this relation is equivalent to an
indistinguishability relation over a Moore machine obtained from the in-
put languages. We prove that this relation can be polynomially computed
whenever the language that contains all the strings involved in the problem
is well-structured. This is the most general condition proved to date that
guarantees polynomial computation of the MSA.

We also prove that it is possible to decide whether or not a given language
is well-structured with polynomial time complexity. We also characterize the
class of well-structured automata and provide an algorithm to generate any
automaton in the class. We prove that the class of well-structured languages
is closed under some of the usual operations on languages. Finally, we show
that the class of well-structured languages is a subclass of ordered languages
and it is not comparable to several widely-studied subclasses of aperiodic
languages.
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[11] P. Garćıa and J. Ruiz. Right and left locally testable languages. Theo-
retical Computer Science, 246:253–264, 2000.
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