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Abstract

The ever-increasing cases of acquired brain injury (ABI), especially among
young people, have prompted a rapid progress in research involving neurologi-
cal disorders. One important path is the concept of relearning, which attempts
to help people regain basic motor and cognitive skills lost due to illness or ac-
cident. The goals of relearning are twofold. First, there must exist a way to
properly assess the necessities of an affected person, leading to a diagnosis, fol-
lowed by a recommendation regarding the exercises, tests and tasks to perform;
and second, there must be a way to confirm the results obtained from these
recommendations in order to fine-tune and personalize the relearning process.

This presents a challenge, as there is a deeply-rooted duality between the
personalized and the generalized approach. In this work we propose a person-
alization algorithm based on the Ant Colony Optimization (ACO), which is
a bio-inspired meta-heuristic. As we show, the stochastic nature of ants has
certain similarities to the human learning process.

We combine the adaptive and exploratory capabilities of ACO systems to
respond to rapidly changing environments and the ubiquitous human factor.
Finally, we test the proposed solution extensively in various scenarios, achieving
high quality results.
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1. Introduction

Computer-aided recommendation, which is now extensively used, ranges
from content recommendation for ad-related issues to music and video sug-
gestions. A particular niche of the subject is the learning unit recommenda-
tion, which usually consists of suggesting to a student the next learning unit to
complete with e-learning software. The computation techniques behind these
problems are plentiful, ranging from fuzzy logic, neural networks to ant colony
optimization (ACO). Due to its nature, ACO is very well suited for establish-
ing paths in a discrete space, which can be seen as a metaphor for progressing
through a given set of study material. An interesting case is one where the
search over the space of learning units is not limited to a sequence, but rather
centers on finding the most suitable unit for a given user at a given time.

One particular use of the learning schema is the relearning process, which
is, as the name suggests, the process of learning abilities that have been lost.
Relearning is especially important in the context of people with Acquired Brain
Injury (ABI). The World Health Organization states that people with ABI have
suffered “Damage to the brain, which occurs after birth and is not related to
a congenital or a degenerative disease. These impairments may be temporary
or permanent and cause partial or functional disability or psychosocial mal-
adjustment.” [1]. The causes of ABI vary; they include, but are not limited
to skull-brain trauma, degeneration of the blood vessels, meningitis and brain
tumors. ABI affects many people every year; in the United States alone 1.7 mil-
lion people suffer brain injury each year [2]. The impact of ABI is wide-ranging,
from a multitude of physical effects, such as muscle spasticity, paralysis or weak-
ness, to cognitive abilities, such as memory, thinking skills or concentration, and
organization or planning abilities.

There is a general consensus that an automatized relearning process has a
high impact on the individuals affected by ABI. However, this process must be
carefully customized to individual abilities/disabilities, since no two people can
expect to have the same outcome or problem, even after a seemingly similar
brain injury. Proposing a relearning model is more complex than the straight-
forward learning unit recommendation or progressing through a sequence of
tasks. For people with ABI there is no recognized path through the space of
relearning activities to success. Instead the most appropriate activities must be
found for each new situation. In addition, the software must take into account
the user’s cognitive and motor skills to an extent that is simply unnecessary for
classical learning software.

In this work we present an ACO-based recommendation technique that in-
corporates the above assumptions and concerns. This technique suggests activ-
ities to individuals with ABI, starting with those that have proven to be the
most generally successful, and then progressing towards more personalized rec-
ommendations, at all times taking into account the user’s mental and physical
state.

The remainder of this paper is structured as follows. Section 2 discusses
related works and highlights the novelty of the present work. Section 3 presents
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the problem domain in more detail. Section 4 presents the mathematical defi-
nition of our ACO algorithm for personalized learning. Section 5 describes the
experiments performed with their results and a discussion. Finally, Section 6
presents our main conclusions and areas of future work.

2. Related Work

E-learning systems are powerful tools that complement or even replace reg-
ular teaching/learning activities. As mentioned, the relearning process for indi-
viduals with ABI is also a learning/teaching process that they must go through
to recover their lost abilities. The reasons for the adoption of e-learning systems
are many, but the fact that it is available at all times and places is one of its
most attractive aspects. However, despite undeniable advantages, their use can
be frustrating for educators, as they can find it difficult and time consuming to
define the paths each learner has to follow [3]. For this reason, the introduc-
tion of recommendation systems [4] meant a meaningful step forward for both,
educators and learners. These systems have taken advantage of different tech-
niques, such as Collaborative Filtering [5], Ant Colony Optimization [6], Data
mining [7], particle swarm optimization [8], biogeography-based optimization [9]
or combinations of different techniques [10].

Unfortunately, most of the recommendation systems simply exploit learner
preferences, interests and browsing behaviors as input to recommend learning
activities. As stated in [11], these approaches miss an important point, which is
taking into account the abilities of the learner, in order to truly equip e-learning
systems with personalized learning mechanisms. De Maio et al. [12] encourage
the exploitation of personalized e-learning as the way to become “more effec-
tive and efficient when a great number of educational content requires to be
dynamically filtered and assembled with respect to learners’ preferences and
cognitive states.” The user’s cognitive state thus becomes the cornerstone of
the recommendation systems in the personalization process.

The development of personalized e-learning systems has received a great deal
of attention from the Artificial Intelligence community. Some studies have pro-
moted the use of artificial neural networks to implement the aforementioned as-
pects of intelligence. For instance, Baylari and Montazer [13] developed a multi-
agent system able to estimate the learners’ abilities in order to provide them
with tests personalized and adapted to those abilities. One of the main strengths
of this work is the exploitation of an artificial neural network to discover users’
learning problems when using the system and then recommend them appropri-
ate learning material. Another interesting proposal is called MASACAD [14],
a multi-agent e-learning system able to provide students with academic assis-
tance by using an artificial neural network based on their preferences to infer
such advice.

Fuzzy systems have also been used in the development of personalized e-
learning systems. Lu et al. [10] applied this approach in a system that provides
learners with learning objects by analyzing both, the course difficulty of the
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material and the abilities of the learner. They employ a fuzzy set clustering
algorithm to create clusters of similar learners and assign them learning objects.

The introduction of evolutionary algorithms has also been exploited in the
context of personalized e-learning systems. For instance, Maio et al. [12] devel-
oped a system, named Intelligent Web Teacher (IWT). IWT builds the user’s
learning context (current needs, cognitive abilities and preferences) in an autom-
atized way, personalizing the learning experience through ad-hoc educational
paths. One of the main foundations of IWT is that the generation of learning
paths for a specific learner, or a class of learners, is transformed into an opti-
mization problem. Authors combine global and local searches to perform the
exploration of the set of learning objects to find the most appropriate learn-
ing path that includes the target concepts. Another interesting work is that
presented by Acampora et al. [15], who propose the definition of sequences of
learning objects in terms of competencies and transform the problem of finding
the proper sequence of learning objects into a classical Constraint Satisfaction
Problem (CSP). They chose, however, to use a particle swarm optimization
algorithm in their solution.

Other interesting proposals have also been developed by employing ACO
algorithms. Sharma et al. present in [16] an ACO based algorithm, named
Adaptive Content Sequencing in eLearning (ACSeL), that uses ant colonies to
evaluate the learning paths and the learners’ profiles to recommend suitable
content. It is worth noting the dynamic nature of the proposal, as it takes into
account the varying (most likely increasing) knowledge levels of the learners in
order to tune the strategy to produce a recommendation. Some other studies
[17] [18] [19] also used an ACO model to analyze past learning experiences to
discover new learning paths. Although most proposals use previous learning
experiences to update the pheromone trails as presented by ACSeL, they tend
to consider the best solution only, in order to avoid long convergence times. An
interesting aspect here is the introduction of a training strategy that promotes
the division of learning goals into sub-goals to fit the time available for the
learning session.

In a similar way to some of the aforementioned authors, in our proposal
we opted for an evolutionary algorithm (ACO), which has been deemed a very
promising underlying technology. Our contributions to the basic setup are mul-
tiple. First, an important feature of our solution is that it takes into account
the state of the individuals with ABI to drive the optimization search. Second,
a remarkable property of our system is that it is dynamic and able to adapt
the recommendation according to the recent behavior of, not only the user in
question, but an entire cluster of users of similar characteristics. Third, it also
takes into consideration the cognitive state of the user as the set of deficits (de-
ductive reasoning, sustained attention, short-term memory, etc.), which is later
treated as a characteristic unrelated to the knowledge levels. In addition, the
most important non-technical contribution is the fact that it is the first use of
evolutionary techniques within the domain of ABI, and as such, it is the only
fully distributed, decentralized and abstract ABI recommender system. This
means that any expert can contribute his preferred set of relearning tasks to the

4



network. Such new units are discovered, presented to the users and, from that
point on, they undergo continuous evaluation, with a chance of substituting the
current best-discovered units, for some particular cases. A growing network of
relearning tasks would allow a more precise matching user-deficiency-task, with
potentially pivotal benefits. Finally, from a technical point of view, our solution
does not focus on actually finding a learning path, as in all the cited proposals,
but on the selection of a ranked set of learning activities. To the best of the
authors’ knowledge no similar proposals have previously been defined for people
with ABI.

3. Problem Domain

ABI, as defined in the Introduction, may result from a number of different
causes, either internal or external. Internal causes are the most frequent in
the elderly, usually due to vascular disorders, such as strokes or hemorrhages.
External causes, generally known as traumatic brain injury (TBI), are usually
due to traffic accidents, falls, etc. As it can be seen from these examples, every
one of us is exposed to this problem at any point in our lives. This explains
why the number of people with ABI is growing every year and is currently one
of the most frequent health problems. For instance, according to the Brain
Injury Center [20] TBI is more common than breast cancer, spinal cord injury,
HIV/AIDS, and multiple sclerosis (MS) combined. In the United Kingdom alone
it is estimated that at least 1 million people live with the long-term effects of
brain injury [21]. In fact, ABI is recognized throughout the world as a problem
of epidemic proportions, known as “the Silent Epidemic”.

Brain damage can result in different long-term deficits, depending on the
area injured and the level of damage. These deficits can be classified into four
categories: i) physical deficits that limit the control of a part of the body, such
as paralysis or motor coordination; ii) cognitive deficits that impair intellectual
performance, such as memory problems; iii) emotional problems that limit or
change the control of the feelings, such as depression or anxiety; iv) behavioral
deficits that negatively affect the interaction with the environment, such as
irritability and restlessness. Although physical deficits are difficult for people
to adapt to [22], the cognitive ones are highly disabling, as they interfere with
the rehabilitation process and have the most negative effect on the quality of
life [14].

The following impairment types are usually related to cognitive deficits [23]:

- Executive function impairments: problems in controlling and regulating activ-
ities or behaviors that include abstraction, categorization (the ability to rec-
ognize objects and actions), cognitive flexibility (the ability to adapt cognitive
processing to new and unexpected situations), deductive reasoning, planning
and problem solving.

- Attention impairments. These can be detected when a person with ABI ex-
hibits problems with abilities [24] such as sustained attention (to direct and

5



focus a cognitive activity, given a specific series of stimuli), divided attention
(to be able to simultaneously respond to multiple stimuli), or selective at-
tention (to be able to identify the relevant stimulus while several distracting
stimuli are generated).

- Memory impairments: including short-term memory, semantic memory, re-
lated to the ability to collect information and knowledge about the world
without considering previous experiences, episodic memory of personal events,
such as places and emotions, which can be explicitly stated and procedural
memory, based on implicit learning, mainly for motor skills.

- Language deficits: detected when a person has difficulties in understanding or
communicating, reading or understanding a document.

- Spatial perception deficits: people with these deficits exhibit difficulties with
construction activities that require spatial abilities.

There is increasing evidence that individuals with ABI should be provided
with proper treatment as soon as possible [25]. This treatment is often carried
out in a center where they perform a number of supervised activities, usually
employing a board game or learning cards. However, this alternative has several
drawbacks, especially in terms of the time available for the relearning process,
since it is highly dependent on the number of specialists available. In addition,
Christiansen et al. [26] confirmed that the use of computers in the relearning
process helps to encourage and stimulate cognitive behavior and allows the
disabled to reinstate damaged functions.

The concept of using e-learning systems for their treatment thus emerges in
a natural way. One of these systems is called HABITAT [27, 28] and has been
developed by the authors of this work in collaboration with the ABI Association
of Castilla-La Mancha (ADACE). For its development, researchers from the Uni-
versity of Castilla-La Mancha carried out continuous tracking of the relearning
process of the handicapped over a period of two years. This study was de-
signed to determine how the relearning process could be supported by software,
what different kinds of relearning activities should be provided by an e-learning
system and how they could be created and parameterized by specialists.

All this experience was documented as a catalog of relearning activity pat-
terns (ReAP) [29]. Twenty-three cognitive activity patterns were identified and
their names are shown graphically in Fig. 1, each corresponding to different
cognitive deficits that people with ABI can suffer. Although each one of these
patterns treats several cognitive deficits, they have been defined to focus on a
special cognitive area. This explains why they have been related in Fig 1. For
instance, it can be observed that Question Evocation and Visual are related
because they treat mainly memory impairments, such as short-term memory
and semantic memory. Within the scope of the activity patterns specialists cre-
ate new relearning activities, such as the one illustrated in Fig. 2, customized
according to the specific needs of the individual subjects.

One of the most demanding tasks that specialists have to carry out is the
design of the relearning process of each individual. They have to select learning
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Figure 1: ReAP catalog with 23 cognitive activity patterns.

Figure 2: Divided Attention Relearning Activity.
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activities taking into account a range of different characteristics, such as age,
damage level, stress, etc. of the person being treated. Due to the success of the
e-learning software, we can claim that this step can be largely simplified or even
eliminated by the proper use of dynamic e-learning models. The definition and
development of such a recommendation technique would be a valuable asset for
both specialists and people affected by ABI alike. The former could devote more
time to the treatment and the latter would benefit from a relearning process
specially adapted to their needs.

4. An ACO Algorithm for ABI Rehabilitation Tests Recommendation

4.1. Ant Colony Optimization

ACO [30] is a non-deterministic evolutionary algorithm based on the use of
simple and stochastic automata to perform complex optimization tasks. The
automata in question are like ants in a colony searching for food and resources.
The mathematical model behind ACO is simple, yet powerful; each ant may find
itself in two states - either searching for food randomly, the so-called exploration
phase, or following the established paths, the exploitation phase. Without the
loss of generality, the worlds in which the ants live are limited to bidirectional
graphs rather than continuous open spaces.

Every search for resources must begin and conclude in one of the nodes of
the system. Once an ant is brought to life, it is given an objective and end
conditions; as soon as they are fulfilled the ant returns to the emitting node and
reports its findings. In each node it visits, it collects resources corresponding
to the goal associated. Pheromones are the essence of inter-ant communication;
ants either follow or deposit the pheromone according to the quality of their
findings and the mode of behavior they choose.

In short, the basic components of the ACO model are: i) graphs, composed
of nodes; ii) links between nodes, with assigned values of pheromone and cost;
iii) the resources in each node, representing goods of various types; iv) ants, the
search automata. Each of these elements finds its corresponding metaphor in
our conceptual model, as explained in Subsection 4.2.

4.2. Problem space conceptual model

In Fig. 3 we present the conceptual model of the problem space. The two
main components are: i) user, which represents a person, with its basic data
and ii) test pattern, or a relearning activity pattern p in the ABI domain (see
Section 3), which is an abstraction of a group of tests t. An example of a test
pattern would be the Association test pattern, under which specialists create
tests containing a particularized set of images and texts to match, depending
on the specific abilities to treat.

Each user u is described by i) an impairment state eu which is denoted A,
B, C, D or E. From A to D the degree of cognitive impairment increases, and
E indicates a person in coma who does not receive any treatment as explained
in [29]; ii) the list of acquired injuries dcu = [dc1, dc2, dc3, . . . ], in order of
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Figure 3: Conceptual Model.

importance. The first acquired injury is referred to as main acquired injury;
iii) additional metadata that are taken into account, such as the user’s age wu

(integer value) and gender gu (boolean value, 1 for female, 0 for male), as well as
the profession ju, drawn from the hierarchical structure provided by [31]. The
full description of a user is written as: u = (eu, dcu, ju, wu, gu).

On the other hand, each test pattern p provides a set of benefits dcp for users
in given states ei and acquired injuries dci, written as: dcp = {(e1, {dc11, dc12, . . . }),
(e2, {dc21, dc22, . . . }), (e3, {. . . }), . . . }. The dcp notation can be read as: for
users in the state e1 the test will be beneficial in case of the acquired injuries
dc1, dc2, . . . , etc. Note that each state corresponds to a set of acquired injuries
rather than a list, therefore the order of acquired injuries does not reflect the
increase or decrease of efficiency of the test pattern. In addition, not all possible
states must be benefited by a given p. For instance, state E is never benefited,
as it is the comatose state, which means user-system interaction is impossible.
All the test patterns available in the system are organized in a tree-like structure
that reflects dependencies and relates them to each other.

We argue that this approach, alongside underlying ACO strategy, is suffi-
cient to model the user–system interactions. The key algorithmic problem is
to propose a measure that would be capable of reflecting the satisfaction level
of a user u with a test pattern p that goes beyond a straightforward scoring
system, which is given with ACO. ACO performs a simple goodness marking,
which is a very good base to build upon, but it can be greatly improved by in-
corporating more features of our particular problem-space. Our proposal bases
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the measure on the performance history of all the users, as well as the potential
match between the list of user’s acquired injuries and test pattern’s benefits.
We elaborate on the subject in detail in Subsection 4.3.

The modeling of the problem space with the concepts offered by the ACO
domain is as follows: i) tests t are represented by nodes N ; ii) tests t are orga-
nized in a graph structure K, which is the aggregate of all the tests available;
iii) the action of querying tests for a user u is implemented as a release of a num-
ber of virtual ACO ants onto K; iv) the action of solving tests produces a test
solution Ts object, which is related the test in question t and the user involved
u, as well as the completion date d and score s and written as Ts = (t, u, d, s);
v) test solutions Ts are the resources of the model. They are evaluated and
collected by ants and stored in nodes N of K.

The graph K has a toroidal topology with random distribution. In the work
[32] we demonstrate that the topology has only a minor impact on the efficiency.
We therefore decided not to take this property as a factor in our study.

As mentioned, each ant models the action of searching for a test pattern
suitable for a given user. The ants are routed following a well-known ACO
algorithm, the Ant Colony System (ACS) [33]. For each visited test in the node
ni the ant generates an evaluation response resi = (ni, si), where si is the score
of the node for the given query. See Algorithm 6 for details on how the responses
resi are obtained. The algorithmic mechanics behind the process of querying is
explained in Subsection 4.3.

It is important to point out here our approach to the pheromone concept.
Traditionally, there is one layer of pheromone on top of the underlying graph.
This means that each ant reads and writes the same values. In some studies,
however, various levels of pheromone per graph have been introduced [32, 34].
This matches our situation, as in our problem-space there are many diverse users
with unrelated disabilities. Therefore, we use one pheromone level per disability.
As a consequence, the ants are introduced only to the level corresponding to
the main disability of the user related to the query.

4.3. Algorithmic Design

Our algorithmic design allows users to query for tests at any moment, re-
quiring as input the minimum and a maximum normalized score of tests to
solve, smin and smax respectively. The higher the smin the higher the match
quality required to present the test found to the user. The lower the smax the
more diverse and unexpected the suggestions become. The narrower the gap
between the smin and the smax the smaller the number of results becomes. All
the tests that have been discovered to have the similarity s ∈ [smin, smax] will
be presented to the user in descending order by the s value.

High level recommendation querying is governed by Algorithm 1. Once the
query is launched, the system releases a series of ants in search of tests. During
the querying process, the ants evaluate nodes along the way. The ants are
routed according to the traditional ACS rules, as mentioned in Section 4.1,
with the exception of the pheromone, which has been divided into layers. Each
pheromone layer corresponds to an acquired injury dc.
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Figure 4: Graphical description of Algorithm 1.

Algorithm 1: High level query execution

1: assume

- user u with main acquired injury dcu

- minimum smin ∈ R1
0 and maximum smax ∈ R1

0 desired score

- a subset of the nodes of the graph K, called injection points Ip

2: for each injection point ip ∈ Ip produce an ant Aip and release it into the
pheromone layer corresponding to dcu

3: while all Aip not finished do in parallel Aip builds a proposal of a solution
aResip (ant response set): a response resi = (ni, si) for every node ni visited
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4: end while
5: let pRes (partial response set) be the aggregate of the aResip. pRes contains

repetitions with respect to the ni value, as various ants might have evaluated
the same node.

6: obtain total response set tRes, by removing the repetitions from the partial
response set as shown in (1)

tRes =
⋃
i

ni,∑
j

sj |(ni, sj) ∈ pRes

 (1)

7: obtain the total (2) and top (3) quality of tRes:

Q(tRes) =
∑
i

si|(ni, si) ∈ tRes (2)

Qmax(tRes) = arg max
s

(ni, si) ∈ tRes (3)

8: Update pheromone values on links that participated in the solution:

τ(dcu, nr, ns)← (1− α) · τ(dcu, nr, ns) + α ·Q(tRes) (4)

where:

- τ(dcu, nr, ns) is the pheromone value, in the pheromone layer dcu, between
the tests (nodes) nr and ns

- α ∈ R1
0 regulates the influence of the new pheromone

9: The final result consists of tests t associated with nodes ni that fulfill (5)

{ni|(ni, si) ∈ tRes ∧Qmax · smin ≤ si ≤ Qmax · smax} (5)

Our algorithmic design, as described, is based on the definition of similarity
functions between users (Algorithm 2), between acquired injuries (Algorithm 3)
and between user states (Algorithm 4). Fig. 4 offers a graphical description of
Algorithm 1 to illustrate how the different subsequent algorithms are used.

The ability to compare different users is essential. It enables us to extrapo-
late the behavior of one user to recommend tests to users without performance
history. In (6) we obtain a user-to-user distance d(u1, u2) as a weighted linear
combination of several subdistances that have been deemed the most relevant.
Apart from the natural distances of disability and physical state we chose to
distinguish users of different professional backgrounds. The gender- and age-
distribution is based on the fact that the same disabilities acquired at differ-
ent moments and situations in life can have different sources and, therefore,
must not be considered completely identical. With (7), we obtain a smooth and
normalized similarity function simu−u with the softest and most gradual curve
around the mean of the population. The function used for the transformation
of the unbound distance value into a bound similarity level must have the fol-
lowing properties: i) domain of R; ii) upper- and lower-bound codomain, limits
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approached asymptotically; iii) be antisymmetric and monotonically growing.
We chose arctan, as it fulfills the above properties. We transformed arctan to
center on the (0, 0) point and normalized it with π−1 factor.

Algorithm 2: simu−u, user-to-user similarity measure

1: assume

- users u1 = (e1, dc1, j1, w1, g1) and u2 = (e2, dc2, j2, w2, g2), where: ei is
the physical state, dci is the main acquired injury, ji is the profession, wi

is the age and gi is the gender of the i-th user, for i = 1 and i = 2.

2: obtain

d(u1, u2) = 1+αdc×d(dc1, dc2)+αj×d(j1, j2)+αw|w1−w2|+αg|g1−g2| (6)

where

- d(dc1, dc2) and d(w1, w2) are the shortest distances in the corresponding
hierarchical structure between the values in question

- the parameter values: αdc = 0.7, αj = 0.1, αw = 0.1, αg = 0.1, and serve
as weights in the equation. The most important component was given
a dominating value, the rest is evenly distributed among the remaining
factors.

3: obtain

simu−u(u1, u2) =
1

2
− 1

π
× arctan

(
d(u1, u2)− µd

σd

)
(7)

where

- µd and σd are the mean and the standard deviation of the user population

Algorithm 3 calculates the similarity between acquired injuries, simd−d. As
the acquired injuries are provided in a hierarchical structure [29] we derive the
similarity from the in-structure distance d(dc1, dc2). Note that here we obtain a
bound and normalized value, based on an unbound distance measure. The Type
Score Penalty parameter in (8) is used to express how the absolute distance
between two concepts translates into a normalized value.

Algorithm 3: simd−d, acquired injury-to-acquired injury similarity measure

1: assume

- two acquired injuries dc1 and dc2

2: if d(dc1, dc2) =∞ then simd−d(dc1, dc2) = 0.
3: else

simd−d(dc1, dc2) = δd(dc1,dc2) (8)

where:

- d(dc1, dc2) is defined in Algorithm 2
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- δ ∈ R1
0 is a parameter called Type Score Penalty

4: end if

Algorithm 4 produces a compensation factor cs−s between users in different
states. One must expect that users in identical states behave similarly. However,
it is also possible to draw some limited conclusions from similar users in different
states. We designed the compensation factor with diminishing values according
to the distance between the states to highlight this property.

When calculating the compensation factor between states e1 and e2 we dis-
tinguish the first state (the input state) and the second (the base state). The
naming convention was established as we tend to iterate the input state, which
is bound to the current user, over all the possible states in order to obtain a list
of factors, which later serve as weights in the final similarity calculation. Due
to this distinction, the compensation factor is not symmetric:

cs−s(e1, e2) 6= cs−s(e2, e1) (9)

The complexity of the Algorithm 4 is a consequence of the most crucial
requirement imposed on cs−s. Namely, the sum of all the factors must be
constant when iterating one input value over all the possible base values. This
condition allows us to use the calculated factors as weights in (12). In addition,
the coefficients must decrease in the function of state-to-state distance. Factors
linearly dependent on the distance would cause central states to receive higher
quality measures than extreme states, simply due to lower average distance.
For instance, in the case of three states, the middle one has an average distance
of 1 to all the others, while the extreme ones are exactly at a distance of 1.5.
Therefore, the use of linear compensation as weights is not recommended, as it
favors the central state. The same can be said for all polynomially-dependent
coefficients. With our approach we obtain an unbiased coefficient matrix of an
exponential nature (see Table 1 for an example) that permits us to take into
account diminishing impacts of some states over others. Algorithm 4 takes 2 as
the base of the exponential dependency, but it can be easily reformulated for
other values.

Algorithm 4: cs−s, state-to-state compensation factor

1: assume

- states ei (input state) and eb (base state) with numerical values of |ei| and
|eb|

- E the number of possible states

2: if |ei| = |eb| then cs−s(ei, eb) = 1
3: else
4: if |eb| > 1

2 (E − 1) then x1 = E − |eb|
5: else x1 = |eb|
6: end if
7: x2 = E − x1
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Table 1: Example of Algorithm 4.

Base
SumState e1 e2 e3 e4 e5

Value 0 1 2 3 4
In

p
u
t

e1 0 1.00 0.53 0.27 0.13 0.07 2.00
e2 1 0.36 1.00 0.36 0.18 0.09 2.00
e3 2 0.17 0.33 1.00 0.33 0.17 2.00
e4 3 0.09 0.18 0.36 1.00 0.36 2.00
e5 4 0.07 0.13 0.27 0.53 1.00 2.00

8: C = (2− 2−x1 − 2−x2)−1

9: obtain
cs−s(ei, eb) = C × 2−||ei|−|eb|| (10)

10: end if

With the above algorithms in place we may now define a measure for the
user-to-test similarity (Algorithm 5) that summarizes all the properties of a test
pattern and a user. The value obtained from the algorithm is used as the static
component in the posterior quality analysis.
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Algorithm 5: simu−t, user-to-test similarity measure

1: assume

- user u in the state eu with the acquired injuries: dcu = [dcu1, dcu2, . . . ]

- test t, created under the scope of the test pattern p, with sets of benefits:
dcp = {(e1, {dc11, dc12, . . . }), (e2, {dc21, dc22, . . . }), (e3, {. . . }), . . . }.

2: for each (ek, Dk) ∈ dcp, obtain the partial similarity component psimu−t:

psimu−t(dcu, Dk) =
∑

dci∈dcu

∑
dcj∈Dk

γi−1 × simd−d(dci, dcj) (11)

where:

- γ ∈ R1
0 is a parameter named Benefit Score Penalty

- i iterates over all the acquired injuries of the user u in the order provided

- j iterates over all the benefits the test pattern p provides for users in the
state ek

- simd−d is the acquired injury-to-acquired injury similarity measure (see
Algorithm 3)

3: obtain

simu−t(u, t) =
∑

(ek,Dk)∈dcp

psimu−t(dcu, Dk)× cs−s(ek, eu) (12)

Equation 12 should be understood as a weighted sum of all the partial
similarity components psimu−t, where the state-to-state compensation factor
cs−s serves as a weight. The partial similarity components (11) are the to-
tal effect of all the possible cross-combinations of the user’s acquired injuries
and the test pattern’s benefits, with adequate weights in form of γ. We pro-
pose the following example for clarification. Assume i) user u in the state
e1 and acquired brain injuries dcu = [dc1, dc2, dc3, dc4, dc5]; ii) test pattern p,
with benefits dcp = {(e1, D1), (e2, D2)} = {(e1, {dc1, dc3, dc4}), (e2, {dc2, dc4})};
iii) sims−s(e1, e2) = 0.85

Based on these assumptions, in Table 2 we perform a step-by-step calcu-
lation of the two possible partial similarity components. With the psimu−t
values obtained there, and taking γ = 0.5, we can calculate simu−t(u, t) as:
simu−t(u, t) = (0.6γ4 + 1.1γ3 + 1.1γ2 + 1) × sims−s(e1, e1) + (0.5γ4 + 1.1γ3 +
0.1γ2 +γ)× sims−s(e2, e1) = 1.45×1 + 0.675×0.85 = 2.05, which is considered
a close similarity.

The final algorithm (Algorithm 6) is the evaluation that ants perform in
each node ni. First note that we divide the components of the evaluation
into two groups: the static components sstat(u, t) and the variable components
svar(u, Ts). As the name suggests the static components hardly ever evolve in
time, they are based on the invariants of the users and the test patterns. The
age of the user, their profession or other parameters are not absolutely fixed,
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Table 2: Example of Algorithm 5.

dcu
dc1 dc2 dc3 dc4 dc5

D1

dc1 1 0* 0* 0* 0*
dc3 0* 0* 1 0.1* 0.3*
dc4 0* 0* 0.1* 1 0.3*

Sum 1 0 1.1 1.1 0.6
Weight γ0 γ1 γ2 γ3 γ4

Weighted Sum 1 0 1.1γ2 1.1γ3 0.6γ4

psimu−t(dcu, D1) 0.6γ4 + .1γ3 + 1.1γ2 + 1

D2
dc2 0* 1 0* 0.1* 0.2*
dc4 0* 0* 0.1* 1 0.3*

Sum 0 1 0.1 1.1 0.5
Weight γ0 γ1 γ2 γ3 γ4

Weighted Sum 0 γ 0.1γ2 1.1γ3 0.5γ4

psimu−t(dcu, D2) 0.5γ4 + 1.1γ3 + 0.1γ2 + γ
* example value

and, therefore, even this component may change. The variable component, how-
ever, is highly dynamic. It is based on the test solutions Ts present at a given
moment in the node ni.

The equations (14) and, especially, (15) require additional comment. First
note that (14) is the static score component multiplied by a geometric average
of all the variable components. We opted for the geometric average rather than
arithmetic average due to the fact that the data in this case is of multiplicative,
not additive nature. In (15) we single out two clauses. The clause (a) increases
the impact of users similar to the user u. The second component of this equation
is (b) which acts as a score normalizer. It smoothens and softens the linear score
dependency and emphasizes higher scores. The 2π−1 factors convert the value
range of the subcomponents to (−1, 1) from (−π/2, π/2). The final +1 brings
the value to the (0, 2) range. As we are not dealing with probabilities, there is
no need to normalize the value to the range (0, 1).

Algorithm 6: Query Evaluation in Node ni

1: assume

- ant A searches for tests for the user u

- node ni corresponds to the test ti, within the test pattern p

- set of test solutions Ts = {(ti, u1, d1, s1), (ti, u2, d2, s2), . . . , (ti, uj , dj , sj), ...},
of size |Ts| which encompasses the performance history of all the past
solving of test ti.
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2: let
sstat(u, ti) = simu−t(u, ti) (13)

where simu−t(u, ti) is the static score component, defined in Algorithm 5
3: obtain score si(u, ti) of the test ti for the user u:

si(u, ti) = sstat(u, ti)× |Ts|

√ ∏
Tsj∈Ts

svar(u, Tsj) (14)

where svar(u, Tsj) is the variable score component, calculated for every test
solution Tsj = (ti, uj , dj , sj) available for the test ti:

svar(u, Tsj) =
(
2π−1simu−u(u, uj)

)3︸ ︷︷ ︸
(a)

×
(
2π−1 tan (2sj − 1)

)︸ ︷︷ ︸
(b)

+1 (15)

4: let the evaluation of the node ni be the tuple resi = (ni, si(u, ti))

5. Experimental Study

5.1. Experimental Procedure

In order to make mass experiments economically feasible we decided to gen-
erate the sets of tests and sets of users in a predetermined and probabilistic
manner. The set of users is created according to the strictest rules provided by
[35]. Both age-wise, gender-wise and injury-wise distributions are drawn from
the mentioned source, which is the most complete we were able to locate. The
professions are drawn from the classification [31]. In this way, we argue, one
might obtain a statically justifiable set of users. The test patterns are taken
directly from our previous work in [29]. Each time we require a set of tests of a
given size we generate them maintaining even distribution among the test pat-
terns, i.e. we must expect approximately similar amounts of tests in each test
pattern. For instance, in a test graph of 104 tests, with 23 test patterns, we have
about 430 tests per test pattern, which fulfills the requirements of small-world
network. This stochastic approach to the test and test pattern generation will
assure that our performance is not the outcome of the test-set employed, which
in turn allows drawing general conclusions about the results obtained.

In Table 3 we summarize the ACO-related execution parameters. The pa-
rameters are at their standard values, taken from literature [33] and our prior
research [36] [37] [32].

5.2. Experiment 1: Zero-knowledge correctness

The first experiment was designed to confirm the correctness of the model
and its implementation. In its uninitialized and uninformed state (zero-knowledge
state), without pheromone trails or stored test solutions, the system must be-
have in a fairly straightforward manner, namely, it should be able to find and
positively evaluate the theoretically optimal test patterns in a large number of
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Table 3: ACS Execution parameters.

ACO
Parameter Interpretation Value
q0 Weight of exploiting vs. exploring strategy 0.80
α Pheromone deposition parameter 0.07
ρ Pheromone evaporation parameter 0.10
β Weight of link costs 1.00
γ Weight of evaporation 0.02
τmin Minimum pheromone level 0.001
τmax Maximum pheromone level 1.000
τ0 Initial pheromone level 0.009

queries. Any deviations from this are only allowed once the system has stored
enough information to incorporate additional factors.

This experiment was designed in the following way: 1) generate a test world
of n tests and 40 users; 2) select a random user along with his 3 theoretically
most adequate test patterns; 3) perform 100 queries; in each recommendation
list obtained, save the best position of any of the 3 most adequate test pattern.
No test solving takes place.

The steps 1 − 3 were repeated 200 times, 100 for n = 5 × 103 and 100 for
n = 104. The experiment-wide average of test recommendations is presented in
Fig. 5. The theoretically best test patterns was nearly always placed on top 10
(∼ 97% of the cases) and, in a majority of cases, it was evaluated as the best one
(83%− 89%). From these results we can conclude that it is highly improbable
that a new user will fail to receive optimal suggestions. The suggestions are,
naturally, subject to change according to the performance history of the user
and the behavior of others. All the aforementioned phenomena are examined in
subsequent experiments.

5.3. DNA Graphs

From the user’s perspective each query is a simple input-output operation.
As input we take the querying characteristics of the user and as output a list of
test patterns in descending order of quality. An adequate representation of the
system’s evolution presented us with a challenge, seeing how the results are mul-
tidimensional and change over time. Traditional line graphs were illegible due
to the amount of dimensions in question, which in our case surpasses 40. Faced
with these challenges we opted for a novel way of representing the evolution
that capitalizes on the two dimensions available, in combination with gray-scale
intensity. This way we created a visual tool to represent any d-dimensional
value evolving over nmax discrete time units.

We refer to this type of graphs as dna-graphs (see Fig. 6)), as they resemble
quite closely dna test results. Reading the dna-graphs is straightforward. First,
the time axis runs, traditionally, left to right; n = 0 is the leftmost edge, while
the rightmost one is the end of the experiment. Each vertical cut is the set of
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Figure 5: Zero knowledge state correctness.

Figure 6: DNA-Graph example. The parallel evolution of the rank (gray-scale intensity) of
46 test patterns (vertical axis) in function of time (horizontal axis).

recommendations in the n-th time unit, also referred to as the n-th iteration.
Each horizontal cut represents the evolution of a single test pattern. Finally,
the gray-scale intensity represents the position of the test pattern in the recom-
mendation list - the brighter it is, the higher on the list. Black areas represent
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(a) Similar Users

(b) Random Users

Figure 7: User Groups. System outputs for different groups of users.

test patterns absent from the list. In order to facilitate the graph reading we
transferred the idea of rolling average into the visual representation as motion
blur, which runs left to right, along the time axis. Note the black rectangle on
the left side. On some occasions we use it to mark a test pattern of special
significance, the rest will be left in gray.

5.4. Experiment 2: Inter-user Similarity

In this experiment we analyze the correctness of the user-to-user (simu−u)
similarity measure. Two similar users must receive approximately the same
response from an uninitialized system, i.e. before any tests have been solved or
pheromone spread and additional profiling could take place.

We generate the test world with 103 tests and 10 users, with the prerequisite
that the similarity between each pair of users must not be inferior to 0.85, and we
have each user performs 100 queries. There is no test solving involved, similarly
to Experiment 1, we only observe the responses of the system.

As can be clearly seen in the series of 10 dna-grahps in Fig. 7a, users have
received a very similar set of test patterns, with only minor deviations. For
instance, User 6 receives some additional test patterns, whereas the rest do not.
These differences confirm that the system is capable of distinguishing between
even very similar users, yet maintaining the cohesion of results to a high degree.
On the contrary, Fig. 7b is an example of a group of random users with their
different test pattern recommendation.
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Statistical Analysis

Goal. Demonstrate that the User-to-User similarity corresponds to an actual
similarity of the recommendations. We chose the Pearson Correlation,
which is commonly used in such cases.

Procedure. First we generate a pool of 100 users with random pairwise sim-
ilarities, next we let each user perform 100 queries in order to obtain for
each one a stable dna-graph of responses, as in Fig. 7. Then we pro-
cess our data crosswise obtaining 105 pairs of (User-to-User similarity,
Result-to-Result similarity), where the Result-to-Result similarity is the
pixel-by-pixel overlap measures of two dna-graphs. Note that it is an
inverse scale, which means that the perfect similarity between graphs is
evaluated as 0.

Results. Our results show that there is a strong Pearson Correlation (Pc =
−0.423, Sig < 0.01) between the two types of similarity, which in turn
tells us that the user-to-user similarity measure is correct; i.e. similar
users will receive similar recommendations, while different users will re-
ceive increasingly different recommendations.

5.5. Experiment 3: Unexpected Good and Unexpected Bad

In Experiments 1 and 2 we have shown that users are initially given a rea-
sonable set of tests and similar users receive similar recommendations. In this
experiment we chose to see how the system reacts to unorthodox behavior, i.e.
one that contradicts the base profile of a user. The design of the experiment
was the following:

1. Take a single user.

2. Perform 50 queries, no test solving (Fig. 8, Phase 1).

3. (Unexpected Bad variant) Select one of the top evaluated test patterns
and solve it very badly 50 times. Score 10% of the maximum score. (Fig.
8a, Phase 2).

4. (Unexpected Good variant) Select one of the bottom evaluated test pat-
terns and solve it very well 50 times. Score 95% of the maximum score.
(Fig. 8b, Phase 2).

What we observe is that the system quickly corrects the recommendation
lists, incorporating the newly gained, user-related knowledge.

In the Fig. 8a we can see that, starting from the halfway point, the test
pattern in question immediately drops from the top position to one of the last,
eventually disappearing from the results completely. The opposite behavior
is witnessed in Fig. 8b where one of the worst of the top ten test patterns is
suddenly elevated, after being solved well several times. Note the black rectangle
on the left side of both subfigures in Fig. 8 that indicates the test pattern in
question.
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(a) Unexpected bad (b) Unexpected Good

Figure 8: Unexpected Behavior. Reinforcement or removal of test patterns.

Statistical Analysis

Goal. Demonstrate that the unexpected behavior results in significant changes
in the recommendation lists. We chose the Mann Whitney U test, as it is
the most commonly used in non-parametric tests with two populations.

Procedure. We decided to construct the test focusing on the recommended test
pattern relative rank shift. This rank shift was calculated as a difference
between the mean rank of the test pattern during the first 50 iterations and
the last 50 iterations, i.e. if a test pattern was 2nd on the recommendation
list and it changed with time to the 6th position, then we would consider
RankShift = −4.0; if it changed from the 5th position to the 3rd position,
then RankShift = 2.0, and so on. In both variants, we tracked the
evolution of 10 test pattern recommendations, 90% of which were left
unsolved (Mode = Unaffected) and 10% solved in an unexpected manner
(Mode = Unexpected), all repeated 100 times.

Hypothesis. Mann-Whitney U test.

Dependent Variable. RankShift is defined asRankShift = Rank51−100−
Rank1−50, where Rankj−i is the average rank of the given test pat-
tern between iterations i and j.

Independent Variables. Mode is defined as Unaffected for unaffected
test patterns and Unexpected for tests solved in either unexpectedly
well or unexpectedly badly.

Null Hypotheses. H0 the Mode variable does not influence theRankShift,
H1 the Mode variable does influence the RankShift.

Results. In the Unexpected Good variant we observed the mean RankShift of
0.27 for unaffected tests and −4.1 for tests solved well, with test statistics
U = 5.5, Sig < 0.001. Similarly, in the Unexpected Bad variant we
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Figure 9: Inter-user influence. Indirect influence of User 1 on Users 2 - 4.

observed the RankShift of −0.22 and 4.25 for unaffected tests and test
solved badly, respectively, with test statistics U = 1.0, Sig < 0.001. In
both variants we must reject the null hypothesis and assume that the
fact of solving tests in an unexpected manner affects the test ordering in
a significant way and, therefore, that the system is capable of adjusting
itself to the user’s progress.

5.6. Experiment 4: Indirect Inter-user Influence

In this experiment we intended to show how the behavior of one user can
affect a whole cluster of similar users in an indirect manner. A test world
with 103 tests and 4 users, with high degree of pairwise similarity (> 0.85)
was generated. We choose a central user, with the highest average similarity to
other users and label him user 1; others become user 2, user 3 and user 4. The
experiment consists of the following steps:

1. Users 2 - 4 perform 100 queries, without solving tests (Fig. 9, Phase 1).

2. User 1 performs 100 queries without solving tests (Fig. 9, Phase 2).

3. The best common test pattern for all the Users is chosen.

4. User 1 performs 100 queries, each time solving badly the previously chosen
pattern (Fig. 9, Phase 3).

5. Users 2 - 4 repeat the 100 queries, without solving tests (Fig. 9, Phase 4).

Note that during the run of this experiment only user 1 solves tests.
Fig. 9 shows the responses of the system. We can see how the test pattern

marked with a black rectangle on the left side was completely removed from the
suggested list of all the users after only one member of the user group solved it
badly.
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Statistical Analysis

Goal. Demonstrate that unexpected behavior of a user significantly affects the
recommendation lists of closely similar users. We chose the Mann Whitney
U test, as in Experiment 3.

Procedure. The statistical analysis in this experiment was similar to the one
in Experiment 3. We generated 20 groups of 4 users and performed the full
experiment 20 times. To every test pattern for every user we assigned the
RankShift value, which is the difference between the average rank of the
test pattern in Phase 1 and Phase 4 and the Mode value. The Mode takes
two values: Affected in case of the test pattern in question and Unaffected
in every other case.

Hypothesis. Mann-Whitney U test.

Dependent Variable. RankShift is defined asRankShift = Rankphase4−
Rankphase1, where RankphaseN is the average rank of the given test
pattern in the phase n.

Independent Variables. Mode is defined as Unaffected for unaffected
test patterns and Affected for tests solved by the User 1.

Null Hypotheses. H0 the Mode variable does not influence theRankShift,
H1 the Mode variable does influence the RankShift.

Results. Using the Mann-Whitney U test we concluded that there was a sta-
tistically significant difference in rank changes between the Mode of the
two groups, U = 8.0, Sig < 0.01. The average RankShift was −0.08 and
3.91 for the Unaffected and Affected group, respectively. We therefore
must reject the null hypothesis and assume that the recommendation for
test patterns solved by the central user was affected significantly for all
the users involved in the experiment.

It is now obvious that similar users affect each other. However, this could
cause unwanted results, if the behavior of the user constantly becomes domi-
nated by the behavior of others. In order to examine this question we proposed
Experiment 5.

5.7. Experiment 5: Fine-scale user clustering

The previous experiment answers the question about what happens if a
subset of a group of similar users acts in an unexpected manner. Here we try to
show a more difficult case when similar users act in contradictory ways. In other
words, we explore to what degree the system can distinguish between users if
their calculated similarity measure does not coincide with their actual behavior.

We assume that 10 similar users exist (pairwise similarity > 0.80), but be-
have in two distinct ways. First, there is a group of Good Users that solve the
queried tests as expected, i.e. theoretically suitable tests are solved well and the
unsuitable ones badly; second, there is a group of Bad Users that do the exact
opposite. These are the phases in the experiment:
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(a) 1 Good User, 9 Bad Users

(b) 3 Good Users, 7 Bad Users

Figure 10: Fine-scale clustering. Subclustering of similar users under the condition of
contradictory behavior

1. All users query test patterns, without solving, for the first half of the
experiment.

2. The best common test pattern is chosen.

3. Good Users start solving well the test within the chosen test pattern, while
Bad Users start solving them badly.

Fig. 10 is a visualization of the responses for: A) 1 Good User and 9 Bad
Users; B) 3 Good Users and 7 Bad Users. As we can see, in spite of the high level
of similarity, the system was capable of modifying its behavior in two opposite
ways. All Good Users still receive the test pattern in question, while all Bad
Users have it pushed off the first place on the list to a point at which it almost
disappears. In both figures the test patterns affected are marked with a black
rectangle on the left. This fine level split proves that the system can detect
subgroups of users based on their behavior as well as static characteristics.

5.8. Experiment 6: Global Experiment

After analyzing the system in a series of isolated situations, in which the
outputs were foreseeable and the inputs had direct consequences, we proceed
to a global experiment. In this final experiment we would like to examine the
performance of the system under a more realistic situation of a mixture of the
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aforementioned behaviors. We also allow users to evolve, change their behavior
modes and attitudes, and we incorporate several physiological components such
as boredom and curiosity.

There is an inherent difficulty in performing a global, realistically simulated
experiment. The more effort that is put into modeling natural user behavior,
the more difficult it is to predict the outputs of the system, which, in turn,
makes the statistical analysis less straightforward.

In order to accurately model the users, we need to introduce a new concept,
User Mentality, which in our model has the following values: Passive, Neutral,
UnexpectedGood, UnexpectedBad and Random. They can be understood as
follows:

Passive. Users with this mentality are only querying for tests, but never solve
them. It should be perceived as initial curiosity in the system, combined
with a certain degree of timidity. Every user starts with Passive mentality.

Neutral. These users solve all the tests according to the quality provided by
the model. This means that they should have a neutral impact on the
evolution of the system. Having said that, as we show in the Experiment
4, they can be influenced by other users. When a User chooses to evolve
from the Passive mentality, it always changes first to Neutral.

UnexpectedGood and UnexpectedBad. These two mentalities are identi-
cal to those in Experiment 3. With a certain probability users with Neutral
mentality can choose one Test Pattern as the objective of their unexpected
behavior. A test from the recommendation rank 5 - 10 can be selected as
the objective of UnexpectedGood mentality, and one from rank 1 - 3 can
become the objective of an UnexpectedBad mentality. Each time a test
is solved in an unexpected manner we increase or decrease the accumu-
lated Impact the users had on it (+1 for UnexpectedGood solution, −1
for UnexpectedBad solution).

Random. The last mentality is random behavior. Neutral, UnexpectedGood
and UnexpectedBad users can start and behave irrationally, solving tests
in a random manner. This sort of mentality corresponds to bored or
annoyed users, as well as input errors. It serves as a way of establishing
how well the system copes with input noise. Random users can return to
behaving in a Neutral way.

The transitions between states are probabilistic and expressed in the evolu-
tion matrix EM , (16). The probability of the transition from mentality m1 to
m2 is in the the m1-st row and m2-nd column, EM [m1][m2]. For instance: the
probability for Neutral (2) to convert to UGood (3) is EM [2][3] = 0.01.
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EM =



Passive Neutral UGood UBad Random

Passive − 0.03 0 0 0.002
Neutral 0 − 0.01 0.01 0.002
UGood 0 0 − 0 0.0001
UBad 0 0 0 − 0.0001
Random 0 0.008 0 0 −

 (16)

Statistical Analysis

As the results of this experiment are too complex to visualize by the dna-
graphs, we therefore only perform a statistical analysis.

Goal. Demonstrate that in a non-isolated, global experiment the recommen-
dation list ranks are correlated with the behavior of users. We chose the
Pearson Correlation Pc, as in Experiment 3.

Procedure. For each experiment run we generate a pool of 103 tests under 46
tests patterns and U users grouped in C clusters. Users from within a
cluster have pairwise similarity > 0.8, users from different clusters have
pairwise similarity of < 0.6. In addition, we take the evolution matrix as
EM/R, where R is referred to as Randomness decrease, i.e. the higher the
R, the less probable the evolution, the less users behave in an unexpected
manner and the lower the Impact value for each test pattern.

We have split this experiment into two variants. Variant i) uniform, in
which the evolution of the entire population is uniform and determined by
R; ii) per-cluster in which the evolution of each cluster of the population
is determined by a different RC . One experiment run consists of 103

iterations. A full iteration is composed of: i) selecting a random user
from U ; ii) performing a query for tests for the selected user; iii) handling
the query results according to the selected user’s mentality; iv) evolving all
users in U with probabilities given by EM/R (uniform variant) or EM/RC

(per-cluster variant) v) saving the ranks of all the test patterns queries
and updating the impacts, if the solution was performed in an unexpected
manner.

Each experiment run is repeated five times for the same U , C and R.
In our experiment we took U = {10, 25, 50, 100}, C = {1, 2, 3, 5}, R =
{1, 10, 50, 100} and RC ∈ {1, 10, 50, 100}, which resulted in 64 combina-
tions, 5×64 = 320 experimental runs for each variant and 640 experimental
runs total. The statistical analysis is reported for all the aggregated results
Pc, as well as, grouped for each R: Pc[R = 1], Pc[R = 10], Pc[R = 50],
Pc[R = 100] for both variants.

Hypothesis. Pearson Correlation Pc test.

Dependent Variable. RankShift is defined asRankShift = Rank0−50−
Rank950−1000. It is the difference in average rank of a given test pat-
tern in the first 5% and the last 5% iterations.
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Table 4: Experiment 6. Pearson Correlation results.

Uniform Per-cluster
Parameter Pc Sig Pc Sig
Pc −0.469∗∗ < 0.00 −0.352∗∗ < 0.00
Pc[R = 1] −0.652∗∗ < 0.00 −0.503∗∗ < 0.00
Pc[R = 10] −0.451∗∗ < 0.00 −0.290∗∗ < 0.00
Pc[R = 50] −0.146∗∗ < 0.00 −0.168∗∗ < 0.00
Pc[R = 100] −0.094∗∗ < 0.00 −0.143∗∗ < 0.00

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Independent Variables. Impact is calculated as an absolute sum of all
the unexpected solutions, tracked independently for each test pat-
tern.

Null Hypotheses. H0 the Impact variable does not influence the RankShift,
H1 the Impact variable does influence the RankShift.

Results. In the uniform variant the aggregated results, as well as each of the
results grouped by Randomness decrease, have been shown significant,
see Table 4. We must therefore conclude that Impact variable influences
RankShift in an expected manner in the uniform execution variant, con-
firming Experiments 3 and 4 in the global setup. In addition, we see that
the Impact is inversely proportional to RankShift and decreasing with R.

If the evolution of the system is not uniform (per-cluster) we also ob-
tain statistically significant results, see Table 4. This means that even if
the evolution, and consequently the behavior of the users of the system,
varies from cluster to cluster we still obtain statistically significant rec-
ommendation list changes, confirming Experiments 3 and 5 in the global
setup. The Impact variable is again inversely proportional to RankShift
and decreasing with R

We therefore conclude that our recommendation system works as expected
under all conditions.

Aside from the main statistical study we performed an analysis of the dis-
tribution of the Impact variable, grouped by R (Fig. 11). We chose R as the
grouping variable, as it is the main factor in the generation of User Mentalities.
We can clearly see the mean in all the cases remains very close to 0, which is
desirable and expected. The user pool must behave unexpectedly in a small
portion of the iterations, rather than a majority. The User population gener-
ated with R = 1 (Fig. 11a) is the most quickly evolving and, in consequence,
generates the most impacts. The standard deviation of the Impact variable
distribution is 33.126. As we proceed towards slowly evolving populations, the
standard deviation decreases, reaching 2.014 in the Fig. 11d. This suggests that
our model of user and user mentality generation is reasonable and realistic.
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(a) (b)

(c) (d)

Figure 11: The distribution of the Impact. Grouped by R

6. Conclusions and Future Work

In this work we have shown that our proposal proved to be appropriate for
the problem in question. ACO-based suggestion building is efficient starting
from the zero-knowledge stage, achieving precision of 80% - 90%. This indi-
cates that any user approaching the system would immediately receive quality
suggestions, as demonstrated in Experiment 5.2. In later experiments we have
shown conclusively that the precision only improves from that point.

The inter-user indirect influence is akin to ant communication in ACO mod-
els and is, therefore, deemed the most suitable metaphor. An important prop-
erty of ACO is the ability to reconverge if the desired conditions arise. Natu-
rally, the users’ behavior can evolve gradually, but it can also change abruptly
at any point in time. Such an event causes a quick response in the form of
a reevaluation and reconvergence with system-wide consequences. Experiment
3 demonstrates precisely this situation. In addition, Experiment 4 shows the
wider consequences of such an event. Here a group of users starts receiving
significantly different suggestions based purely on the actions of others.
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Apart from its adaptability the suggested model has the potential to distin-
guish fine differences between apparently similar users. This means that any
groups that may have formed over the evolution of the system can be very
quickly split into sub-groups if the conditions so dictate. Our proposed distinc-
tion between the static and dynamic score components facilitates this process.
This fine scale similarity reevaluation was shown in Experiment 5.

Finally, we performed a global experiment (Experiment 6), the largest in
terms of iterations and user-pools, which was designed to integrate all the par-
tial views provided by Experiments 1 - 5. In this experiment we maintain a
dynamic, evolving user population with different behaviors, ranging from Pas-
sive to Random, with the full range of disabilities, and in all possible physical
states. We consider that in this way we achieve an acceptably accurate repre-
sentation of a set of real-life users. From Experiment 6 we conclude that our
model reacts as expected to user actions and generates statistically relevant
recommendation lists.

Several challenges constitute our future work. Currently, we are working on
the integration of the solution here presented into HABITAT, the application
developed for the treatment of individuals with ABI in order to enable them to
take full advantage of our findings. This would involve a step forward in their
treatment and reduce the need for specialist attention. This integration must be
carefully planned, not because of technological issues, but to control its impact
on the evolution of system users. Therefore, a careful deployment plan must be
designed to maximize the acceptability of the proposal in clinical terms.

It would be of great interest to analyze if other well-known metaheuristics are
equally applicable in this domain as the underlying algorithmic structure. Most
notably, it would be interesting to examine the potential of the Particle Swarm
Optimization (PSO), which has been shown to have a multitude of applications
[38].

In addition, from a purely technological point of view, several issues must
be resolved to enable interaction with these individuals. For instance, it would
be necessary to design proper facilities to guide them in the query processes,
so that they know the real meaning of the minimum and maximum scores. It
would also be interesting to model additional factors, such as daily progress and
fatigue levels, so that the system can encourage the users to either continue with
additional tests or to rest.

Finally, in relation to the algorithm presented here, we are evaluating new
meta-heuristics that take into account the stress of the person with ABI while
they are using the system. These heuristics are oriented towards providing full
support for the personal part of the relearning process. They would also consider
additional inputs, not only about the users’ cognitive state, but also about their
physical conditions while solving the tests. The technique presented here has
the potential to be used outside the ABI field. An example reformulation of the
presented schema might be used for recommendation of rehabilitation game-
based therapies for hospitalized children in pediatric services.
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