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On the exponent of mutually permutable
products of two abelian groups

A. Ballester-Bolinches, John Cossey and M.C. Pedraza-Aguilera

Abstract

In this paper we obtain some bounds for the exponent of a fi-
nite group, and its derived subgroup, which is a mutually permutable
product of two abelian subgroups. They improve the ones known for
products of finite abelian groups, and they are used to derive some
interesting structural properties of such products.
Mathematics Subject Classification (2010): 20D10, 20D20
Keywords: finite group, abelian group, exponent, factorisations, p-
supersolubility, p-length.

1 Introduction

Throughout this paper all groups are finite and p denotes a fixed prime.
We recall that two subgroups A and B of a group G are said to permute

if AB is a subgroup of G. A and B are called mutually permutable if every
subgroup of A permutes with B and every subgroup of B permutes with A.
If every subgroup of A permutes with every subgroup of B we say that A
and B are totally permutable. Obviously totally permutable subgroups are
mutually permutable but the converse does not hold in general.

Products of mutually and totally permutable subgroups have been widely
studied in the last twenty five years and receive a full discussion in [1]. The
emphasis was on how the structure of the factors A and B affects the one of
the factorised group G = AB and viceversa. The class of all p-supersoluble
groups, or p-soluble groups in which every p-chief factor is cyclic, is one of the
most useful classical classes to highlight the differences between totally and
mutually permutable products. Every totally permutable product of two
p-supersoluble subgroups is p-supersoluble. In particular, G′, the derived
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subgroup of G, is p-nilpotent. This result does not remain true for mutually
permutable products (see [1, Example 4.1.32]). However, in that example,
the derived subgroup is still p-supersoluble.

This then brings up the natural question of whether or not the derived
subgroup of a mutually permutable product of two p-supersoluble groups is
p-supersoluble. A possible minimal counterexample is a primitive p-soluble
group whose core-free maximal subgroup is a mutually permutable product
of two abelian subgroups of exponent dividing p − 1. Hence, the answer
seems to depend on obtaining suitable bounds for the exponent of a mutually
permutable product of two abelian subgroups in terms of the exponents of
its factors.

If G = AB is a product of two abelian subgroups, then G is metabelian
by a well-known result of Itô. Futhermore, by a result of Howlett [5], if e
and f are the exponents of A and B respectively, then the exponent of G
divides ef . If G = AB is a metabelian group which is the product of two
subgroups A and B of exponents e and f respectively, then Mann [7] proves
that the exponent of G divides (ef)3 and if either A or B is abelian, then
the exponent of G divides (ef)2.

Our main aim in this paper is to obtain better bounds on the exponent
of a mutually permutable product G of two abelian subgroups in terms of
the exponents of the factors. A bound on the exponent of G′ that allows
us to give an affirmative answer to the above question is also determined.
Some results about the p-length of mutually permutable products will follow
as direct consequences of our main theorems.

2 Preliminaries

It is assumed that the reader is familiar with the notation presented in [1]
and [3]. In order to make our paper reasonably self-contained, we collect
in the following lemma some well-known facts about divisibility of binomial
coefficients.

Lemma 1. (i) ([4, Lemma]) For all positive integers q, r and i, with i ≤
prq,

(
prq
i

)
pi is divisible by pr+1 .

(ii) If 1 < i < pi−1, then
(
pi−1

i

)
is divisible by p.

The following expansion formulas for metabelian groups are also needed
(see [6, Lemma 3.1]).
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Lemma 2. Let G be a metabelian group and n a positive integer. Then, for
all x, y ∈ G,

[x, yn] =
n∏
i=1

[x, iy](
n
i)

and

(xy−1)n = xn

( ∏
0<i+j<n

[x, iy, jx](
n

i+j+1)

)
y−n

The following lemma gives information about groups which are products
of two cyclic p-groups which is crucial in the proof of the results of the next
section.

Lemma 3. Let the p-group G = 〈a〉〈b〉 be the product of two cyclic subgroups
A = 〈a〉 and B = 〈b〉. Assume that the exponent of G divides pn and fix
1 ≤ i ≤ n− 1. Then:

(i) Gpi ∩A = 〈api〉 and Gpi ∩B = 〈bpi〉 and Gpi = 〈api〉〈bpi〉. In particular,
(Gpi)p = Gpi+1

.

(ii) (Gpi)p
j

= Gpi+j
for all j.

Proof (i) We use induction on i. According to [1, Corollary 3.1.9], G is a
totally permutable product of the subgroups A and B. Therefore Gp = (Gp∩
A)(Gp∩B) = 〈aα〉〈bβ〉 by [1, Theorem 4.1.48]. Suppose that p does not divide
α. Then 1 = αα0 + pβ0 and a = (aα)α0(ap)β0 ∈ Gp ≤ Φ(G). Consequently
G = 〈b〉, as desired. Therefore we may assume that Gp ∩ A = 〈ap〉 and,
analogously, Gp ∩B = 〈bp〉. Therefore the statement holds for i = 1.

Assume that i > 1, Gpi−1 ∩ A = 〈api−1〉, Gpi−1 ∩ B = 〈bpi−1〉 and Gpi−1
=

〈api−1〉〈bpi−1〉. Then, by [1, Corollary 3.1.9], Gpi−1
is the totally permutable

product of the subgroups 〈api−1〉 and 〈bpi−1〉. Applying [1, Theorem 4.1.48],
(Gpi−1

)p = ((Gpi−1
)p∩〈api−1〉)((Gpi−1

)p∩〈bpi−1〉). We can apply now the above
arguments to conclude that (Gpi−1

)p∩〈api−1〉 = 〈api〉 and (Gpi−1
)p∩〈bpi−1〉 =

〈bpi〉. Since Gpi is a subgroup of (Gpi−1
)p, it follows that (Gpi−1

)p = Gpi =
〈api〉〈bpi〉 and the induction is complete.

(ii) We proceed by induction on j. Statement (i) tells us that the result is
true for j = 1. Assume that j > 1 and (Gpi)p

j−1
= Gpi+j−1

. Then (Gpi)p
j

=
(Gpi)p

j−1p ≤ ((Gpi)p
j−1

)p = (Gpi+j−1
)p = Gpi+j ≤ (Gpi)p

j
. Consequently

Gpi+j
= (Gpi)p

j
, as desired.
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3 Bounding the exponent of mutually per-

mutable products of two abelian groups

If the group G is the product of two abelian groups A and B and they have
finite exponent, then so does G, and moreover the exponent of G is bounded
in terms of the exponents of A and B [4]. The aim of this section is to prove
that this bound can be considerably improved in the case when G is either a
totally or a mutually permutable product of two abelian subgroups. A bound
for the exponent of the derived subgroup in terms of the exponents of the
factors is also exhibited.

Theorem 1. Let the group G = AB be the product of the cyclic p-groups A
and B. Assume that A and B have exponent dividing pn. Then the exponent
of G divides pn. Moreover, the nilpotency class of G is at most n.

Proof By [1, Corollary 3.1.9], G is the totally permutable product of A and
B. Suppose that A = 〈a〉 and B = 〈b〉. We prove that the exponent of G
divides pn by induction on n. If n = 1, then G is p-elementary abelian and the
theorem holds in this case. Suppose that n > 1 and write Z = Gp. Applying
Lemma 3(i), Z = 〈ap〉〈bp〉. Then Z is a totally permutable product of two
cyclic p-groups of exponent dividing pn−1. By induction, the exponent of Z
divides pn−1. Now if x ∈ G, then xp ∈ Z. Consequently (xp)p

n−1
= xp

n
= 1

and hence the exponent of G divides pn.
We prove that the nilpotency class of G is at most n by induction on

n. The result clearly holds when n = 1. Assume that n > 1. If j < n,
then G/Gpj is a product of two cyclic groups of exponent dividing pj. By
induction, the nilpotency class of G/Gpj is at most j. Therefore γj+1(G) ≤
Gpj . In particular, [a, tb] ∈ Gpn−1

for all t ≥ n− 1.
Next we show that Gpn−1 ≤ Z(G). By Lemma 2, we have [a, bp

n−1
] =∏pn−1

j=1 [a, jb](
pn−1

j ). Next, we see that all of the factors of the above prod-

uct belong to Gpn = 1. If j < n, then [a, jb] ∈ Gpj . By Lemma 1,

r =
(
pn−1

j

)
is divisible by pn−j. Then r = pn−jt for some integer t. Since

Gr ≤ Gpn−j
, we have that [a, jb]r ∈ (Gpj)r ≤ (Gpj)p

n−j
. By Lemma 3(ii),

[a, jb](
pn−1

j ) ∈ Gpn = 1. On the other hand, applying Lemma 3(i), |Gpn−1| ≤
p2. Thus [[Gpn−1

, G], G]=1. In particular for every j ≥ n + 1 we have
[a, jb] = [[a, (n − 1)b], b, b,mb] = 1, m ≥ 0. Assume that j = n. Then
[a, nb] ∈ Gpn−1

. If p = 2 and n = 2, then G has exponent dividing 4 and the
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nilpotency class of G is at most 2. Assume that p 6= 2 or p = 2 and n 6= 2.
Then n < pn−1. Hence, by Lemma 1(ii), it follows that

(
pn−1

n

)
is divisible by

p. Hence [a, nb](
pn−1

n ) ∈ (Gpn−1
)p = Gpn = 1 by Lemma 3(i). Thus bp

n−1
is

central in G. Analogously, ap
n−1

is central in G. Consequently, Gpn−1 ≤ Z(G)
and G has nilpotency class at most n, as wanted.

The general case follows from Theorem 1. Specifically, we have:

Corollary 1. Let the group G = AB be the product of the totally permutable
abelian subgroups A and B. Assume that the exponents of A and B divide
p1
α1p2

α2 · · · pnαn for distinct primes p1, p2, . . . , pn. Then the exponent of G
divides p1

α1p2
α2 · · · pnαn.

Proof First at all, note that the exponent of G is equal to the product of
the exponents of its Sylow subgroups. By [1, Theorem 1.1.19], there exists
Sylow pi-subgroups Pi, Api and Bpi of G, A and B, respectively, such that
Pi = ApiBpi is the totally permutable product of the subgroups Api and Bpi ,
for each i ∈ {1, 2, . . . , n}. Let xi be an element of Pi. Then there exist
ai ∈ Api and bi ∈ Bpi such that xi = aibi and so xi belongs to 〈ai〉〈bi〉, which
is the totally permutable product of the cyclic subgroups 〈ai〉 and 〈bi〉. By
Theorem 1, the exponent of 〈ai〉〈bi〉 divides pi

αi . Therefore the order of xi
divides pi

αi . Consequently, the exponent of G divides p1
α1p2

α2 · · · pnαn , as
desired.

In [4, Theorem 1], it is proved that if G = AB, where A and B are
abelian groups with exponent dividing e, where e = p1

r1p2
r2 · · · pnrn , and

p1, p2, . . . , pn are distinct primes, then the exponent of G′ divides f , where
f = ep1 . . . pn. In particular, the exponent of G divides ef .

Our next results show that in the case when A and B are mutually per-
mutable subgroups of G = AB, then the exponent of G divides f and the
exponent of G′ divides e.

Theorem 2. Let the group G = 〈a〉Z〈b〉Z be the product of the mutually
permutable abelian p-subgroups 〈a〉Z and 〈b〉Z. Assume that 〈a〉 and 〈b〉 have
exponent dividing pn and Z has exponent dividing pm. Then the exponent of
G divides pt, where t = max(n+ 1, m).

Proof Let T = 〈a〉Z ∩ 〈b〉Z. By [1, Proposition 4.1.16], we have that
G/T = (〈a〉T/T )(〈b〉T/T ) is the product of the totally permutable sub-
groups 〈a〉T/T and 〈b〉T/T . By Theorem 1, the exponent of G/T divides
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pn and the nilpotency class of G/T is at most n. Let x be an element of G.
Then x = shz for some s ∈ 〈a〉, h ∈ 〈b〉, and z ∈ Z. Next we show that
(sh)p

n+1
= 1. Write t = h−1. By Lemma 2, we have

(st−1)p
n+1

= sp
n+1

 ∏
0<i+j<pn+1

[s, it, js](
pn+1

i+j+1)

 t−p
n+1

=
∏

0<i+j<pn+1

[s, it, js](
pn+1

i+j+1)

Moreover, [s, it, js] = [[s, it, (j − 1)s], s] = [s, [s, it, (j − 1)s]]−1. Denote u =
[s, it, (j − 1)s]. Since G/GpkT is the totally permutable product of the sub-
groups 〈a〉GpkT/GpkT and 〈b〉GpkT/GpkT by [1, Proposition 4.1.16], we can
apply Theorem 1 and conclude that the nilpotency class of (G/T )/(GpkT/T )
is at most k, for each k ≤ n. This means that γk+1(G/T ) ≤ GpkT/T
for all k ≤ n. Hence if i + j > n, we have that u ∈ T ≤ Z(G) and so
[s, it, js] = [s, u]−1 = 1. Assume that i + j ≤ n. Then uT ∈ Gpi+j−1

T/T .

By Lemma 3(ii), we know that up
n−(i+j−1)

T ∈ ((G/T )p
i+j−1

)p
n−(i+j−1)

= T and

T ≤ Z(G). Then 1 = [s, up
n−(i+j−1)

]. Use of Lemma 2, allows us to conclude
that

1 = [s, up
n−(i+j−1)

] =

pn−(i+j−1)∏
r=1

[s, ru](
pn−(i+j−1)

r ) = [s, u]p
n−(i+j−1)

Note that [s, ru] = 1 for all r ≥ 2 since G is metabelian. Consequently

[s, it, js]p
n−(i+j−1)

= ([s, u]−1)p
n−(i+j−1)

= 1. On the other hand, by Lemma

1(i),
(
pn+1

i+j+1

)
pi+j+1 is divisible by pn+2. Thus

(
pn+1

i+j+1

)
is divisible by pn−(i+j−1).

Consequently, (sh)p
n+1

= 1, as wanted.
Finally, as z ∈ Z ∈ Z(G), if t = max(n + 1,m), we obtain that xt =

(sh)p
t
zp

t
= 1. This completes the proof of the theorem.

We shall draw two conclusions from the preceding theorem.

Corollary 2. Let the group G = AB be the product of the mutually per-
mutable abelian subgroups A and B. Assume that the exponents of A and B
divide p1

α1p2
α2 · · · pnαn for distinct primes p1, p2, . . . , pn. Then the exponent

of G divides p1
α1+1p2

α2+1 · · · pnαn+1.

Proof The result will follow if we bound the exponent of the Sylow subgroups
of G. By [1, Theorem 1.1.19], for each prime pi dividing |G|, there exists

6



a Sylow pi-subgroup of G, Pi say, such that Pi is prefactorised, that is,
Pi = (Pi ∩ A)(Pi ∩ B). Moreover Pi ∩ A = Api and Pi ∩ B = Bpi are the
Sylow pi-subgroups of A and B, respectively. By [1, Corollary 4.1.22], Pi is
the mutually permutable product of Api and Bpi . Let x denote an element of
Pi of maximum order. Then x = ab with a ∈ Api and b ∈ Bpi . Consider the
subgroup T = 〈a〉Z〈b〉Z of Pi, where Z = Api∩Bpi . Applying [1, Proposition
4.1.16], T is the mutually permutable product of the subgroups 〈a〉Z and
〈b〉Z. By Theorem 2, the exponent of T divides pri , where r = max(αi+1, αi).
Consequently the order of x divides pαi+1

i , as desired.

Theorem 3. Let the group G = AB be the product of the mutually per-
mutable abelian subgroups A and B. Assume that the exponents of A and B
divide p1

α1p2
α2 · · · pnαn for distinct primes p1, p2, . . . , pn. Then the exponent

of G′ divides p1
α1p2

α2 · · · pnαn.

Proof By [1, Lemma 3.1.5], G′ = [A,B]. It is enough to show that the
exponent of a Sylow pi-subgroup of G′ divides pi

αi for each i = 1, 2, . . . , n.
Fix an index i ∈ {1, 2, . . . n} and denote p = pi and α = αi. Let Ap and
Bp be the Sylow p-subgroups of A and B respectively. Then, as in the
above theorem, P = ApBp is a Sylow p-subgroup of G which is the mutually
permutable product of the subgroups Ap and Bp. Let a ∈ Ap, and b ∈ Bp.
Write T = 〈a〉Z〈b〉Z, where Z = Ap ∩ Bp. By [1, Proposition 4.1.16], T
is the mutually permutable product of 〈a〉Z and 〈b〉Z. Since (T/Z)/(T/Z)p

is abelian, it follows that T ′Z ≤ T pZ. In particular, [a, b] ∈ T pZ. On the
other hand, by Lemma 3(i), T pZ = 〈ap〉Z〈bp〉Z. Moreover the exponent
of 〈ap〉 and 〈bp〉 divides pα−1 and the exponent of Z divides pα. Now the
application of Theorem 2 yields the exponent of T pZ = 〈ap〉Z〈bp〉Z divides
pα. Consequently the order of [a, b] divides pα.

Let x be an element of P ∩ G′ of maximum order and suppose that
the order of x is pt for some t > α. Since G′ is abelian, we have that
x =

∏m
j=1[aj, bj]

tj where [aj, bj]
tj is a p-element for each j ∈ {1, 2, . . . ,m}

(note that for each [s, t] ∈ G′, [s, t] ∈ 〈[s, t]〉 = 〈[s, t]α〉〈[s, t]β〉 where 〈[s, t]α〉
and 〈[s, t]β〉 are the Sylow p-subgroup and Hall p′-subgroup of 〈[s, t]〉, re-
spectively). Moreover there exists r ∈ {1, 2, . . . ,m} such that the order
of [ar, br]

tr is pt. Denote [ar, br] = [a, b]. Let Ap′ and Bp′ be the Hall
p′-subgroups of A and B respectively. By [1, Theorem 1.1.19], Ap′Bp′ is
a Hall p′-subgroup of G. Then a = uv and b = wz for some u ∈ Ap′ ,
v ∈ Ap, w ∈ Bp′ and z ∈ Bp. Thus [a, b] = [u, z]v[u,w]zv[v, z][v, w]z and
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[a, b]tr = ([u, z]v)tr([u,w]zv)tr [v, z]tr([v, w]z)tr . It is clear that [u,w]zv is a p′-
element. Suppose that ([u, z]v)tr and ([v, w]z)tr are not p-elements. Then we
can express [a, b]tr as a product of three p-elements in the following way:

[a, b]tr = ([u, z]v)tr([u,w]zv)tr [v, z]tr([v, w]z)tr = ([u, z]v)f [v, z]tr([v, w]z)l

for some non-negative integers f and l. Since ([u, z])f belongs to a Sylow p-
subgroup of 〈u〉Z〈z〉Z, where Z = A∩B, we have that the order of ([u, z]v)f

divides pα. Analogously the order of ([v, w]z)l divides pα. Furthermore, v
and z are both p-elements. Applying the above argument, it follows that
the order of [v, z]tr divides pα. Hence the order of [a, b]tr and x divides pα,
contrary to our supposition. Consequently, the exponent of P ∩ G′ divides
pα. The proof of the theorem is now complete.

4 Applications to the structure of mutually

permutable products

One well-known feature of the saturated formation of all p-supersoluble groups
is that it is closed under the formation of totally permutable products ([1,
Theorem 4.1.31]). Unfortunately, this result does not remain true for mu-
tually permutable products, even if the factors are normal (see [1, Example
4.1.32]). However, a mutually permutable productG of p-supersoluble groups
is p-supersoluble if and only if G′ is p-nilpotent.

These results show the central role played by the derived subgroup in the
structure of a mutually permutable product of p-supersoluble groups (see
[2]). In particular, the question of whether or not the derived subgroup of a
mutually permutable product of p-supersoluble groups is p-supersoluble is of
interest.

Our first result of this section provides an affirmative answer to that
question and it is a consequence of Theorem 3.

Theorem 4. Let the group G = AB be the mutually permutable product of
the p-supersoluble subgroups A and B. Then G′ is p-supersoluble.

Proof We suppose that the theorem is false and derive a contradiction. Let G
be a counterexample of minimal order. Since the class of all p-supersoluble
groups is a saturated formation, it follows that G has a unique minimal
normal subgroup, N say. Applying [1, Theorem 4.1.15], G is p-soluble and
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so N is an elementary abelian p-group of rank greater than 1. Assume
that Φ(G) 6= 1. Then G′Φ(G)/Φ(G) ' G′/(G′ ∩ Φ(G)) is p-supersoluble.
Consequently, G′ is p-supersoluble. This contradiction shows that Φ(G) = 1,
and so there exists a core-free maximal subgroup M of G such that G = NM
and M ∩N = 1. Moreover, N = CG(N) = F (G) = Op(G) = Op′,p(G).

Since A is p-supersoluble, A′ is p-nilpotent by [1, Lemma 2.1.6], and
subnormal in G by [1, Corollary 4.1.26]. Hence A′ ≤ N . This implies that
A is supersoluble and so is B. Consequently they are Sylow tower groups
with respect to the reverse natural ordering of the prime numbers. By [1,
Corollary 4.1.30], the same is true for G. In particular, p is the largest prime
dividing |G| and N is the Sylow p-subgroup of G.

Suppose that N ≤ A and N ∩ B = 1 (or N ≤ B and N ∩ A = 1). By
[1, Lemma 4.3.3(5)], we have that N ≤ CG(B). Hence B ≤ N ≤ A and
G′ = A′ is p-supersoluble, contrary to assumption. Therefore N ≤ A ∩B by
[1, Lemma 4.3.9 and Lemma 4.3.3(4)]. Since A and B are both supersoluble
and N is self-centralising in G, it follows that the Hall p′-subgroups of A
and B are abelian of exponent dividing p − 1. Let Ap′ and Bp′ be Hall p′-
subgroups of A and B such that Ap′Bp′ is a Hall p′-subgroup of G. Without
loss of generality, we may assume that M = Ap′Bp′ . By [1, Corollary 4.1.22],
M is the mutually permutable product of Ap′ and Bp′ . By Theorem 3, the
exponent of M ′ divides p−1. Applying [3, B; Lemma 7.1] and [3, B; Theorem
9.8], N is a sum of irreducible modules for M ′ of dimension 1. Consequently
G′ is p-supersoluble, the final contradiction.

The class of all p-soluble groups of p-length at most 1 is a saturated
formation which is not closed under taking mutually permutable products:
the symmetric group of order 4 has 2-length 2 and it is a mutually permutable
product of a Sylow 2-subgroup and the alternating group of degree 4, both
of 2-length 1.

Our next result establishes that the class of all p-soluble groups of p-length
at most 1 is closed under the formation of mutually permutable products with
p-supersoluble derived subgroup.

Theorem 5. Let the group G = AB be the mutually permutable product of
the subgroups A and B. If A and B are p-soluble with p-length at most 1 and
G′ is p-supersoluble, then the p-length of G is at most 1.

Proof Assume that the result is false and consider a counterexample G with
|G|+|A|+|B|minimal. Then, by a routine argument, G has a unique minimal
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normal subgroup, N say. Applying [1, Theorem 4.1.15], G is p-soluble and
so N is an elementary abelian p-group. Moreover N = Soc(G) = CG(N) =
F (G) = Op(G). If N is cyclic, then G/N = G/CG(N) is abelian of exponent
dividing p− 1 and G has p-length at most 1, which is a contradiction. Thus
we may assume that N has rank greater than 1. Suppose that G′′ = 1. Then
G′ = N and G has a normal Sylow p-subgroup. This contradiction yields
G′′ 6= 1. Since G′ is p-supersoluble, it follows that G′′ is p-nilpotent by [1,
Lemma 2.1.6]. Hence G′′ = N and N is the Sylow p-subgroup of G′. In
particular, G is soluble.

Suppose that N ≤ A and N∩B = 1. Then, by [1, Theorem 4.3.3(5)], N ≤
CG(B). Hence B ≤ CG(N) = N ≤ A, contrary to supposition. Suppose that
N ∩ A = N ∩ B = 1. Then N is cyclic by [1, Theorem 4.3.9]. In particular,
G has p-length at most 1, contrary to the choice of G. Therefore we may
assume that N ≤ A ∩ B by [1, Lemma 4.3.3]. Since Op′(A) ≤ CG(N) = N ,
and A has p-length at most 1, we have that a Sylow p-subgroup Ap of A is
normal in A. Analogously, B has a normal Sylow p-subgroup, Bp say. By [1,
Theorem 1.1.19], Gp = ApBp is a Sylow p-subgroup of G.

Suppose that G = ApB. Then A = Ap(A ∩ B). Let (A ∩ B)p′ and Bp′

be Hall p′-subgroups of A∩B and B respectively such that (A∩B)p′ ≤ Bp′ .
Then Bp′ is a Hall p′-subgroup of G, G = Ap(A ∩ B)Bp′Bp = ApBp′Bp and
so 1 6= Bp′ 6= B. Note that G′ is a subgroup of B and so N is also a Sylow
p-subgroup of B. Note that AG′ is a mutually permutable product of A and
G′. If G′ is a proper subgroup of B, then the assumption about G implies
that the p-length of AG′ is at most 1. Since Op′(AG

′) = 1, it follows that Ap
is a normal subgroup of AG′. Therefore Ap is a subnormal subgroup of G
and then Ap = N . We conclude that N is a Sylow p-subgroup of G, which
is a contradiction. Consequently B = G′ is a p-supersoluble subgroup of
G. This means that A = Ap(A ∩ B) is a mutually permutable product of a
nilpotent group and a p-supersoluble group. Applying [1, Theorem 4.1.35],
A is p-supersoluble. By [1, Theorem 4.1.40], G has p-length at most 1. This
contradiction implies that ApB and ABp are proper subgroups of G. Note
that ApB = Ap(A ∩ B)B and ABp = A(A ∩ B)Bp are mutually permutable
products by [1, Theorem 4.1.16]. The choice of (G,A,B) implies that the
p-length of ApB and BpA is at most 1. Since N ≤ ApB ∩ BpA, we obtain
that Op′(ApB) = Op′(BpA) = 1. Therefore Gp = ApBp is a normal subgroup
of G. This is the final contradiction.
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