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ABSTRACT 

 

Optimal response to drought is critical for plant survival and will affect 

biodiversity and crop performance during climate change. Mitotically 

heritable epigenetic and dynamic chromatin state changes have been 

implicated in the plant response to the drought stress hormone abscisic 

acid (ABA). The Arabidopsis SWI/SNF chromatin-remodeling ATPase 

BRAHMA (BRM) modulates response to ABA by preventing premature 

activation of stress response pathways during germination. Here, we 

show that the core ABA signalosome formed by ABA receptors, PP2Cs 

and SnRK2s physically interact with BRM to regulate BRM activity and 

post-translationally modify BRM by phosphorylation/dephosphorylation. 

Genetic evidence suggests that BRM acts downstream of SnRK2.2/2.3 

kinases and biochemical studies identified evolutionary conserved 

SnRK2 phosphorylation sites in the C-terminal region of BRM. Our data 

suggest that SnRK2-dependent phosphorylation of BRM leads to its 

inhibition, and PP2CA-mediated dephosphorylation of BRM restores the 

ability of BRM to repress ABA response.  

 

ABA plays a key role to regulate germination and post-germination 

growth and the AP2-type ABI4 and bZIP-type ABI5 transcription factors 

(TFs) are required for ABA-mediated inhibition of post-germination 

growth when the embryo encounters water stress. The growth arrest 

induced by ABI4 and ABI5 involves ABA signaling and in the case of 

ABI5, it has been demonstrated that ABA inhibits the activity of BRM to 

induce ABI5 transcription. Loss of BRM activity leads to destabilization of 

a nucleosome involved in repression of ABI5 transcription. Therefore 

reduction of BRM activity in the brm-3 allele leads to enhanced 

expression of ABI5 in 2-d-old seedlings and enhanced sensitivity to ABA. 

Novel genetic evidence obtained in this work indicates that ABI4 is one of 
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the redundant TFs regulated by BRM that mediate ABA response during 

germination and early seedling growth. Thus, the association of BRM 

with the ABI4 locus together with the observed derepression of ABI4 

expression in brm-3 suggests that BRM directly regulates ABI4 

expression.  

 

Finally, this work provides a direct link between the ABA signalosome 

and the chromatin-remodeling ATPase BRM, which enables ABA-

dependent modulation of BRM activity as a possible mechanism to 

enhance plant drought tolerance. Additionally, we identified and 

characterized the promoter of PP2CA as a stress-inducible promoter and 

we have used it to drive the expression of ABA receptors from 

Arabidopsis and Solanum lycopersicum. This technology appears to be 

promising for the expression of ABA receptors in an inducible manner 

and to generate drought tolerant plants. 

 



 

 

RESUMEN 

 

La respuesta óptima a la sequía es crítica para la supervivencia de las 

plantas y afectará a la biodiversidad y al rendimiento de los cultivos 

durante el cambio climático. Las modificaciones epigenéticas y los 

cambios dinámicos del estado de la cromatina han sido implicados en la 

respuesta de la planta al ácido abscísico (ABA), la conocida como la 

hormona del estrés hídrico. La ATPasa remodeladora de cromatina de 

tipo SWI/SNF de Arabidopsis, BRAHMA (BRM), modula la respuesta al 

ABA mediante la prevención de la activación prematura de las vías de 

respuesta al estrés durante la germinación. Aquí, mostramos que el 

núcleo del señalosoma de ABA formado por los receptores de ABA, las 

PP2Cs y las SnRK2s interaccionan físicamente con BRM para regular su 

actividad y modificarla post-traduccionalmente por mecanismos de 

fosforilación/desfosforilación. La evidencia genética sugiere que BRM 

actúa aguas abajo de las quinasas SnRK2.2/2.3 y los estudios 

bioquímicos identificaron la presencia en la región C-terminal de BRM  

de sitios de fosforilación de las SnRK2 que estaban conservados 

evolutivamente. Nuestros datos sugieren que la fosforilación de BRM 

que depende de las SnRK2 conduce a su inhibición, y que la 

desfosforilación de BRM mediada por PP2CA restaura la capacidad de 

BRM para reprimir la respuesta a ABA. 

 

El ABA juega un papel clave en la regulación de la germinación y el 

crecimiento post germinativo y los factores de transcripción de tipo AP2 

como ABI4 y de tipo bZIP como ABI5, son necesarios para la inhibición 

del crecimiento post germinativo mediado por ABA cuando los 

embriones encuentran estrés hídrico. La detención del crecimiento 

inducida por ABI4 y ABI5 implica la señalización de ABA y en el caso de 

ABI5, se ha demostrado que el ABA inhibe la actividad de BRM para 
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inducir la transcripción de ABI5. La pérdida de actividad de BRM 

conduce a la desestabilización de un nucleosoma implicado en la 

represión de la transcripción de ABI5. Por lo tanto, la reducción de la 

actividad de BRM en el alelo brm-3 conduce a una mayor expresión de 

ABI5 en plántulas de 2 días y una mayor sensibilidad a ABA. La nueva 

evidencia genética obtenida en este trabajo indica que ABI4 es uno de 

los factores de transcripción redundantes regulados por BRM que 

median la respuesta a ABA durante los estadios de germinación y 

crecimiento temprano de las plántulas. La asociación de BRM con el 

locus ABI4, junto con la desrepresión de la expresión de ABI4 observada 

en el mutante brm-3 sugiere que BRM regula directamente la expresión 

de ABI4. 

 

Por último, este trabajo proporciona una relación directa entre el 

señalosoma de ABA y la ATPasa remodeladora de cromatina BRM, que 

permite la modulación de la actividad de BRM de modo dependiente de 

ABA como un posible mecanismo para mejorar la tolerancia a sequía de 

las plantas. Además, hemos identificado y caracterizado el promotor de 

PP2CA como un promotor inducible por estrés y lo hemos utilizado para 

dirigir la expresión de los receptores de ABA de Arabidopsis y Solanum 

lycopersicum. Esta tecnología parece ser prometedora para la expresión 

de receptores de ABA de modo inducible y para generar plantas 

tolerantes a la sequía. 

 



 

 

RESUM 

 

La resposta òptima a la sequera és crítica per a la supervivència de les 

plantes i afectarà la biodiversitat i al rendiment dels cultius durant el 

canvi climàtic. Les modificacions epigenètiques i els canvis dinàmics de 

l'estat de la cromatina han estat implicats en la resposta de la planta a 

l'àcid abscísic (ABA), la coneguda com hormona de l'estrès hídric. 

L’ATPasa remodeladora de cromatina de tipus SWI/SNF d'Arabidopsis, 

BRAHMA (BRM), modula la resposta a l‘ABA mitjançant la prevenció de 

l'activació prematura de les vies de resposta a l'estrès durant la 

germinació. Ací, mostrem que el nucli del senyalosoma d'ABA format 

pels receptors d'ABA, les PP2Cs i les SnRK2s interaccionen físicament 

amb BRM per regular la seva activitat i modificar-la post-

traduccionalment per mecanismes de fosforilació/desfosforilació. 

L'evidència genètica suggereix que BRM actua aigües avall de les 

quinases SnRK2.2/2.3 i els estudis bioquímics van identificar la 

presència, a la regió C-terminal de BRM, de llocs de fosforilació de les 

SnRK2 que estaven conservats evolutivament. Les nostres dades 

suggereixen que la fosforilació de BRM que depèn de les SnRK2, 

condueix a la inhibició de BRM, i que la desfosforilació de BRM mediada 

per PP2CA restaura la capacitat de BRM per reprimir la resposta a ABA. 

 

El ABA juga un paper clau en la regulació de la germinació i el 

creixement post germinatiu i els factors de transcripció de tipus AP2 com 

ABI4 i de tipus bZIP com ABI5, són necessaris per a la inhibició del 

creixement post germinatiu mediat per ABA quan els embrions pateixen 

estrès hídric. La detenció del creixement induïda per ABI4 i ABI5 implica 

la senyalització d'ABA i en el cas d’ABI5, s'ha demostrat que l’ABA 

inhibeix l'activitat de BRM per induir la transcripció d’ABI5. La pèrdua 

d'activitat de BRM condueix a la desestabilització d'un nucleosoma 
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implicat en la repressió de la transcripció d’ABI5. Per tant, la reducció de 

l'activitat de BRM a l’al·lel brm-3 condueix a una major expressió d’ABI5 

en plàntules de 2 dies i una major sensibilitat a l’ABA. La nova evidència 

genètica obtinguda en aquest treball indica que ABI4 és un dels factors 

de transcripció redundants regulats per BRM que medien la resposta a 

l’ABA durant els estadis de germinació i creixement primerenc de les 

plàntules. L'associació de BRM amb el locus ABI4, juntament amb la 

desrepressió de l'expressió de ABI4 observada al mutant brm-3 

suggereix que BRM regula directament l'expressió d’ABI4. 

 

Finalment, aquest treball proporciona una relació directa entre el 

senyalosoma d'ABA i l'ATPasa remodeladora de cromatina BRM, que 

permet la modulació de l'activitat de BRM de manera dependent d'ABA 

com un possible mecanisme per millorar la tolerància a sequera de les 

plantes. A més, hem identificat i caracteritzat el promotor de PP2CA com 

un promotor induïble per estrès i l'hem utilitzat per dirigir l'expressió dels 

receptors d'ABA d'Arabidopsis i Solanum lycopersicum. Aquesta 

tecnologia sembla ser prometedora per a l'expressió de receptors d'ABA 

de manera induïble i per generar plantes tolerants a la sequera. 
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Plants and environment 
Sessile nature of plants makes them very sensitive to environmental 

changes. Due to their nature, plants have to deal daily with several stress 

conditions as drought, light, salinity, wounding, pathogen attack and 

more. Therefore, plants have to be plastically enough to integrate these 

conditions and respond to them accordingly. This plasticity is managed in 

plants by hormones (Weake & Workman, 2010).  

 

Plant hormones are a collection of small signaling molecules that 

coordinate stress responses and developmental pathways through 

complex signaling pathways to increase plant fitness (Santner & Estelle, 

2009). There are five classical hormones in plants: auxins, gibberellins 

(GAs), cytokinins (CKs), ethylene (ET) and abscisic acid (ABA). They can 

work together or display independent roles in plant growth and 

development. Auxins, GAs and CKs are mainly implicated in growth in 

different ways (Verma et al., 2016). Auxins are involved in cell growth 

and cell expansion (Liscum & Reed, 2002). GAs acts in a similar way to 

auxins in growth and development but they are a completely different 

hormones (Swain & Singh, 2005). CKs are responsible of cell division 

and their balance with auxins is very important in regulating apical 

meristems, the patterning of the root, the development of the gynoecium 

and female gametophyte, and organogenesis and phyllotaxy in the shoot 

(Schaller et al., 2015). ET is a peculiar hormone; it is the only gas 

hormone known to date and participates in processes like plant growth, 

fruit ripening and flowering (Van de Poel et al., 2015). And last, ABA that 

is known as the drought stress hormone however is implicated in a lot of 

different developmental processes (Finkelstein & Rock, 2002, Finkelstein 

et al., 2002). Other plant hormones and growth regulators are 

brassinosteroids (BRs) that stimulates cell elongation and division 
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(Gudesblat & Russinova, 2011), salicylic acid (SA), nitric oxide (NO) and 

jasmonates (JA) that are involved in defense responses to pathogens 

(Klessig et al., 2000, Spoel & Dong, 2008, Cao et al., 2011, Gimenez-

Ibanez & Solano, 2013), polyamines (PAs) that regulates growth, division 

and cell death (Tiburcio et al., 2014) and strigolactones (SLs), which act 

in developmental processes like branching (Zwanenburg et al., 2016). 

 

Environmental stresses induce large amount of changes at 

transcriptional level. In response to ABA, more than 10% of the 

transcriptome is modified indicating that, high plasticity of the genome is 

needed to allow genes to be activated or repressed by this hormone 

(Wang et al., 2011, Bechtold et al., 2016). Chromatin-remodeling activity 

in plants plays an essential role to sustain these massive changes in 

gene expression providing the necessary flexibility for developmental 

plasticity and stress adaptation (Jarillo et al., 2009, Ahmad et al., 2010, 

Weake & Workman, 2010).  
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Abscisic acid 

ABA synthesis and catabolism 
The ABA molecule is synthesized in response to water deprivation and 

catabolized very quickly to avoid a sustained stress response. ABA is a 

sesquiterpenoid derived from the modification and cleavage of 

zeaxanthin, a C40 carotenoid in the chloroplast. The first step of the 

biosynthetic pathway involves 9-cis-epoxycarotenoid dioxygenase 

(NCED) (Schwartz et al., 2003). This enzyme cleaves the C40 substrate 

into a C25 metabolite and another C15 compound, xanthoxin. Xanthoxin is 

converted to ABA in two reactions. First, xanthoxin is translocated to the 

cytoplasm of the cell and converted to abscisic aldehyde by aba deficient 

2 (ABA2), a short-chain dehydrogenase encoded by a single ABA2 gene 

(Gonzalez-Guzman et al., 2002, Cheng et al., 2002). Finally, abscisic 

aldehyde is oxidized to ABA by an abscisic aldehyde oxidase (AAO) (Seo 

et al., 2000, Gonzalez-Guzman et al., 2004). 

 

To inactivate ABA, its catabolism also involves a series of reactions that 

will breakdown the molecule in response to environmental conditions. 

There are two major pathways for ABA catabolism. One of them involves 

hydroxylation of ABA molecule to 8-OH-ABA by a family of cytochrome 

P450 monooxygenase called CYP707A. 8-OH-ABA is spontaneously 

isomerized to phaseic acid (PA), a metabolite less active than ABA (Saito 

et al., 2004). ABA can also be inactivated by conjugation to another 

molecule as glucosyl ester. ABA suffers esterification to ABA-glucosyl 

ester (ABA-GE), which is an inactive conjugated storage or transportable 

form of ABA (Lim et al., 2005). ABA-GE can be stored in the vacuoles 

and apoplast but also translocated to endoplasmic reticulum when 

drought is perceived. This has been described as a fast mechanism, 

which allows plants to quickly adjust the ABA levels in response to 
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environmental conditions (Dietz et al., 2000, Lee et al., 2006, Xu et al., 

2012). The balance between biosynthesis and catabolism processes will 

determine the bioactive ABA levels and is responsible for the plant 

adaptation to stress. 

 

 

Figure 1. ABA metabolism overview. ABA biosynthetic pathway occurs in the 

chloroplasts and cytoplasm. The carotenoid intermediates are highlighted in 

yellow. ABA catabolism depends on its oxidation. Inactive ABA, ABA-GE can be 

stored in the vacuole and can be reused through endoplasmic reticulum. 

Reprinted from (Finkelstein, 2013). 
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sentially a chemical simulation of the original screen for suppres-
VRUV�RI�*$�GH¿FLHQW�PXWDQWV��ABA4 is expressed constitutively 
DQG�WKH�EDVDO�H[SUHVVLRQ�OHYHOV�DSSHDU�VXI¿FLHQW�IRU�$%$�V\QWKH-
sis under stress conditions, indicating that transcript levels are 
not rate-limiting. Furthermore, even aba4 knockout mutants have 
relatively mild phenotypes, implying an alternative pathway to-
ward xanthoxin production. This observation supported the previ-
ous suggestion, based on in vitro�VWXGLHV��6FKZDUW]�HW�DO����������
that NCED could use either cis-neoxanthin or cis-violaxanthin as 
substrates. However, the fact that stress-induced ABA was sig-
QL¿FDQWO\�UHGXFHG�LQ�WKH�aba4 mutant implied that cis-neoxanthin 
LV�WKH�SULPDU\�LQWHUPHGLDWH�LQ�VWUHVVHG�WLVVXH��,Q�DGGLWLRQ��WKH�DF-
cumulation of cis-violaxanthin in the aba4 mutants showed that 
WKH�$%$��SURWHLQ�GLG�QRW�SURYLGH�WKH�SUHGLFWHG�LVRPHUDVH�DFWLYLW\��
WKDW�HQ]\PH�KDV�QRW�\HW�EHHQ�LGHQWL¿HG�

;DQWKRSK\OO�FOHDYDJH�E\�1&('� LV� WKH�¿UVW�FRPPLWWHG�VWHS�
LQ�$%$�ELRV\QWKHVLV��DQG�LV�UDWH�OLPLWLQJ��UHYLHZHG�LQ�1DPEDUD�
DQG� 0DULRQ�3ROO�� ������� &RQVHTXHQWO\�� 1&('� H[SUHVVLRQ� LV�
tightly regulated in response to stress or developmental sig-
nals, as well as diurnally. NCEDs are encoded by multigene 
families in all species analyzed, with differential expression of 

VSHFL¿F� IDPLO\�PHPEHUV� FRQWULEXWLQJ� WR�$%$� V\QWKHVLV� LQ� GLI-
ferent contexts. There is enough redundant function within this 
IDPLO\�WKDW�RQO\�D�VLQJOH�ORFXV�ZDV�LGHQWL¿HG�E\�IRUZDUG�JHQHWLF�
analysis in several species, including Arabidopsis. Although 
similarly sized families are present in different species, ortholo-
JLHV�DUH�QRW�REYLRXV��7KH�¿UVW�NCED gene cloned was maize 
VP14. Since then, the notabilis mutant of tomato was shown 
to be an NCED� PXWDQW�� DQG� ELRLQIRUPDWLFV� VWXGLHV� LGHQWL¿HG�
9 potential NCED genes in Arabidopsis, 5 of which actually 
function as NCEDs� �7DQ�HW�DO����������$OWKRXJK�DOO��� LVRIRUPV�
are plastid-localized, they differ in their binding to the thyla-
NRLG�PHPEUDQHV��$W1&('���$7�*�������LV�PHPEUDQH�ERXQG��
ZKHUHDV�$W1&('���$7�*��������$W1&('���$7�*��������DQG�
$W1&('���$7�*�������DUH�IRXQG�LQ�ERWK�WK\ODNRLGV�DQG�VWUR-
PD��$OWKRXJK�$W1&('���$7�*�������ZDV�LQLWLDOO\�GHVFULEHG�DV�
exclusively in the stroma, a recent study suggests that this may 
KDYH�UHÀHFWHG�DQ�DQQRWDWLRQ�HUURU��)UH\�HW�DO���������7KH�IXQF-
WLRQDO�VLJQL¿FDQFH�RI� WKHVH�GLIIHUHQFHV� LV�QRW�FOHDU��EXW�GLIIHU-
ential localization might affect access to components affecting 
HQ]\PH�DFWLYLW\�RU� WKH�HI¿FLHQF\�RI� UHOHDVLQJ�[DQWKR[LQ� WR� WKH�
F\WRSODVP�IRU�WKH�¿QDO�VWHSV�RI�$%$�V\QWKHVLV��

Figure 3. ABA metabolic pathways. 

ABA biosynthesis, degradation and conjugation pathways are shown in relation to the cellular compartments where these events occur. Carotenoid in-
WHUPHGLDWHV�DUH�KLJKOLJKWHG�LQ�\HOORZ��(Q]\PHV�UHJXODWLQJ�NH\�UHJXODWRU\�VWHSV�DUH�VKRZQ�LQ�EROG��,QGLYLGXDO�ORFL�LGHQWL¿HG�EDVHG�RQ�$%$�GH¿FLHQF\�DUH�
shown in italics. 
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ABA transport 
Roots are the first part of the plant to experience drought conditions 

because they contact directly with the drying soil. The reduced soil water 

availability causes an increase in the synthesis of ABA that will promote 

root growth in the search of water. Furthermore, the expression pattern of 

ABA biosynthetic genes indicates that the synthesis of ABA takes place 

in the seeds, in the vasculature and in guard cells (Bauer et al., 2013). 

ABA synthesized in the vascular tissues is transported to shoots and 

roots through xylem and phloem. Under drought stress conditions, ABA 

is also accumulated in leaves. The accumulation in the leaves is several-

fold higher than that in the roots. This is in part due to ABA is being 

translocated from the root but also because exists de novo ABA 

synthesis in the leaves (Bauer et al., 2013). 

 

Due to the nature as a weak acid of ABA, it is in a pH-dependent 

equilibrium between a charged (ABA−) and an uncharged (ABAH) form. 

Although the uncharged form is thought to move by passive diffusion 

across cell membranes, the anionic form presumably requires a 

transporter (Wilkinson & Davies, 2002, Schachtman & Goodger, 2008). 

There are two different groups of transporters reported so far, the 

transporters belonging to the ATP-binding cassette (ABC) transporter 

family and those from the family of low-affinity nitrate transporters. 

AtABCG25 and AtABCG40 (A. thaliana ABC subfamily G25 and 40 

respectively) are members of the large and diverse ABC family of 

transporter proteins. AtABCG25, which is primarily expressed in vascular 

tissue, appears to serve as an ABA efflux transporter. Overexpression of 

AtABCG25 reduces water loss from detached leaves (Kuromori et al., 

2010). AtABCG40 is expressed in guard cells and is also an influx 

transporter of ABA. Loss-of-function abcg40 mutants have guard cells 

with reduced sensitivity to ABA and are more susceptible to drought 
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stress (Kanno et al., 2012, Kuromori & Shinozaki, 2010). The ABA-

importing transporter1 (AIT1), also known as NRT1.2 or At-NPF4.6 (Tsay 

et al., 2007, Kanno et al., 2012, Leran et al., 2014), mediates influx as 

well, demonstrating the variety of transporter types that are able to 

mediate ABA transport. Recently, the ABC subfamily C (ABCC) 

transporters ABCC1 and ABCC2 have been shown to transport ABA-GE 

into the mesophyll vacuole (Burla et al., 2013). 

 

ABA roles in plants 
ABA is the major hormone involved in controlling plants’ ability to survive 

in the changing environment. To be able to respond to all the challenges 

happening everyday in nature, ABA signaling regulates stress responses 

as well as plant growth and development (Cutler et al., 2010, Finkelstein, 

2013). ABA plays major roles in abiotic and biotic stress responses. It is 

implicated in guard cell regulation triggering stomatal closure to maintain 

water balance (Sirichandra et al., 2009, Merilo et al., 2015, Munemasa et 

al., 2015), antagonizes gibberellins (GAs) effects to fine tune growth in 

adverse situations (Golldack et al., 2013), controls gene expression to 

help with plant adaptation to stress (Bechtold et al., 2016) and also has a 

role in the promotion of plant resistance to pathogens restricting its 

entrance via stomata (McLachlan et al., 2014). Despite of the well known 

functions in abiotic and biotic stress, ABA is also important for the 

regulation of several physiological and developmental events as embryo 

maturation, promotion of seed desiccation tolerance and dormancy, 

germination and seedling establishment, primary and lateral root growth 

and transition from vegetative to reproductive stage (Finkelstein et al., 

2002, Cutler et al., 2010, Finkelstein, 2013, Harris, 2015). 
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Germination and dormancy  

Seeds are structures designed to protect the genetic material that will 

establish the next generation of plants. To assure that protection plants 

have developed several strategies such as regulation of seed 

development, desiccation tolerance or regulation of germination. Despite 

the fact that ABA has a role in several developmental processes, its 

effect on seed maturation and germination are the most studied 

processes. Seed maturation process begins with a transition between 

embryo cell division arrest and embryo cellular expansion and 

differentiation. This transition is marked by the storage reserves 

accumulation in the embryo (Raz et al., 2001) which is coordinated by 

ABA signaling and transcriptional regulators. In this transition phase 

there are two peaks of ABA accumulation. The first peak occurs in the 

early seed maturation phase where the ABA is produced by maternal 

tissues and in combination with FUS3 and LEC1/2 transcription factors, 

prevent the premature germination (Raz et al., 2001).  

 

Seed dormancy is an adaptive trait that delays germination until the 

environmental conditions are favorable to assure survival. The second 

ABA peak occurs in the late maturation phase and is derived from the 

embryo tissues (Kanno et al., 2010). These high ABA levels prevent 

precocious germination under non-favorable conditions. After seed 

dispersal, the after-ripening process prepares the dry seed to germinate 

after imbibition (Carrera et al., 2008). Seed imbibition activates ABA 

metabolism and dramatically reduces ABA levels to allow germination 

(Okamoto et al., 2006). At this level, crosstalk among the different 

hormones is necessary to integrate environmental signals. The major 

components implicated in dormancy are light, cold and plant hormones 

(Holdsworth et al., 2008). Several studies along the years concluded that 

the plant hormones GAs and ABA play central and antagonistic roles in 
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germination. While ABA is a positive regulator of dormancy, GAs release 

dormancy and promote germination counteracting the effects of ABA. 

GAs promotes proteasome-mediated degradation of the DELLA protein 

RGL2, that acts as a germination repressor (Golldack et al., 2013). On 

the other hand, ABA blocks germination by inducing the expression of 

seed specific transcription factors, such as members of B3-domain 

(ABI3), AP2 domain (ABI4) and bZIP domain (ABI5) families (Finkelstein, 

2013). ABI5 causes early seedling growth arrest due to the promotion 

late embryogenesis abundant (LEA) genes (Lopez-Molina & Chua, 2000, 

Finkelstein & Lynch, 2000, Shu et al., 2016c). At the end, the balance 

between GAs and ABA is the responsible for the regulation of seed 

dormancy and germination. 

 

Stomatal dynamics 

Guard cells are specialized cells surrounding stomatal pores in the 

epidermis of plant leaves. Stomatal pores are essential for the CO2 up-

take required for photosynthetic carbon fixation. Movement of guard cells 

is therefore necessary for the regulation of gas exchange in stomata. 

Importantly, plants lose 95% of their water by transpiration through these 

structures. Guard cells are able to integrate several stimuli (hormones, 

light, water status, CO2, temperature) through different signaling 

cascades to modulate stomatal aperture/closure. ABA is a master 

regulator in this process, it promotes stomatal closure and, at the same 

time, inhibits their aperture (Schroeder et al., 2001). ABA perception in 

guard cells is mediated by PYR/PYL/RCAR receptors through a kinase 

cascade. This pathway controls ion channels in the plasma membrane 

that will create an ion gradient controlling water intake by guard cells and 

stomata pore opening or closure (Schroeder et al., 2001, Daszkowska-

Golec & Szarejko, 2013, Merilo et al., 2015). Recently, new data from 
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Bauer et al. (2013) indicates that guard cells possess the entire ABA 

biosynthetic pathway indicating that ABA is autonomously synthesized in 

guard cells. 

 

Root development 

It is known that ABA is essential for the regulation of root development 

and architecture, likely by interaction with hormones like auxins (Swarup 

et al., 2005, Peret et al., 2009), gibberellins (Ubeda-Tomas et al., 2009) 

or brassinosteroids (Hacham et al., 2011). New insights on ABA function 

in roots have been recently reported. ABA signaling in the root is required 

for the maintenance of primary root elongation and the repression of 

lateral root formation when water availability is reduced (Sharp et al., 

2004, Deak & Malamy, 2005).  

 

Additionally, ABA plays a major role in the regulation of hydrotropism that 

consists in the differential growth of the root towards a water gradient 

(Takahashi et al., 2002). Antoni et al. (2013) described the importance of 

sensing drought conditions in the root tip in order to trigger growth 

towards a water source. In addition, lateral roots also respond to 

hydrotropism although the involvement of ABA signaling in this process is 

still not clear (Bao et al., 2014). Moreover, gravitropic response, known 

as growing along the gravity vector, is also very important in roots. It is 

known that both processes, hydro- and gravitropic responses, are linked 

through the degradation of amyloplasts in seedling roots when those are 

hydrotropically- and water-stressed stimulated. The degradation of the 

amyloplasts in the columella cells lets to reduced gravitropic 

responsiveness and allows the roots to exhibit hydrotropism (Takahashi 

et al., 2003, Sharp et al., 2004, Antoni et al., 2013). 
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Control of flowering time 

In Arabidopsis, flowering time is finely regulated by environmental and 

internal cues. It is well known in the literature that GAs promotes 

flowering, but recent studies pointed out the relevance of ABA signaling 

in suppression of the floral transition (Wang et al., 2013b). The ABA-

insensitive mutants, ABA deficient 1 (aba1), ABA insensitive1 (abi1-1) 

and ABA insensitive 3 (abi3-4) mutants exhibit early flowering phenotype 

while hyponastic leaves (hyl1) mutant, an ABA hypersensitive mutant, 

shows delayed flowering. These phenotypes are consistent with a 

negative role of ABA in floral transition (Lu & Fedoroff, 2000).  

 

Recently, it has been reported that ABA inhibits the floral transition by 

activating transcription of Flowering locus C (FLC) gene through ABA 

insensitive 4 (ABI4) binding to FLC promoter. FLC is a MADS box-

containing transcription factor that acts as an integrator of developmental 

and environmental cues in flowering transition (Shu et al., 2016b).  

 

Biotic stress 

The signaling pathways of ABA, SA, JA and ET are known to activate 

different transcription factors related with defense responses, which 

require certain level of crosstalk (Klessig et al., 2000, Spoel & Dong, 

2008, Bari & Jones, 2009, Cao et al., 2011). In general, ABA plays a 

multifaceted and pivotal role in disease susceptibility, resistance to 

pathogen infection and interaction with other biotic stress hormones. ABA 

is reported to play an ambivalent role in pathogen defense; it can act as a 

positive or negative regulator depending on the plant species, on the 

pathogen and on their mode of infection (Cao et al., 2011). In the early 

defense responses, ABA promotes stomatal closure to block the 

entrance of most of the pathogens and enhances the production of 
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reactive oxygen species (ROS) intermediates and callose deposition in 

the apoplast to interfere with pathogen entry (Melotto et al., 2006). 

However, ABA is also important for late defense responses through the 

modulation of crosstalk among other hormones. Thereby, ABA 

suppresses SA- and JA/ET-dependent responses and modulates 

synergistic crosstalk with JA signaling (Cao et al., 2011).  

 

ABA-mediated gene regulation 

Like most signaling transduction pathways, ABA response leads to 

changes in gene expression. These changes are controlled at different 

steps including transcription, transcript processing and transcript stability 

and they generally regulate genes that contribute to stress tolerance. 

Along evolution, plants have adopted different strategies to overcome 

water limitation. At cellular level, plants respond to drought with changes 

in gene expression and protein and metabolite abundances, which are 

part of the defense mechanisms (Bechtold et al., 2016). 

 

Extensive transcriptome profiling studies have been produced in the past 

years. Comparison of transcriptomes of Arabidopsis and rice exposed to 

various stresses including ABA, have shown changes affecting 5-10% of 

the genome and more than half of them are common to drought, salinity 

and ABA treatments. The ABA-regulated genes in Arabidopsis seedlings 

included more than 10% of the genes (Nemhauser et al., 2006). 

Comparison between seeds and seedling transcriptome analysis showed 

that two-thirds of the ABA-induced genes in imbibed seeds are the same 

than in ABA-treated seedlings. Another large-scale study identified over 

1000 ABA-regulated genes in guard cells, roughly 300 of which are 

uniquely ABA-regulated in guard cells (Wang et al., 2011). 
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Core signaling pathway  
ABA response has been largely studied during many years but it was not 

until 2009 when a chemical-genetic approach and protein-protein 

interaction studies allowed the discovery of proteins with ABA receptor 

characteristics (Park et al., 2009, Ma et al., 2009, Santiago et al., 2009a, 

Nishimura et al., 2010). Since then, this family of ABA receptors has 

proved real and represents today the only reliable proteins with ABA 

perception function. The discovery of the ABA receptors allowed the 

establishment of the ABA core signaling pathway. Briefly, the ABA 

signaling mechanism is based on the activity of a four-component 

module constituted by the PYR/PYL/RCAR family of ABA receptors 

(Pyrabactin resistance 1 (PYR1) /PYR1-like (PYL) /regulatory 

components of ABA receptors (RCAR)), protein phosphatases type 2C 

(PP2Cs), sucrose-non fermenting 1 (SNF1)-related protein kinase 2 

(SnRK2s) and the ABA responsive transcription factors (TFs). The core 

pathway was first reported in vitro using PYR1, ABI1, OST1, and ABF2 

components by Fujii et al. (2009). In this work the authors used 

protoplasts to introduce this four components systematically resulting in 

ABA-responsive expression of a RD29B-LUC reporter. They also proved 

how mutations of the different components prevent the activation of the 

signaling pathway (PYR1P88S, ABI1G180D and SnRK2.6K50N). Although the 

core elements are sufficient to recapitulate the ABA signaling pathway, 

other elements, i.e. ion channels, are also part of the cellular response to 

ABA. The current model for ABA action in plant cells through these 

components is summarized in Figure 2. 
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Figure 2. Overview of the ABA signaling pathway. The illustration includes 

the most remarkable proteins involved in the pathway and their relationship 

known to date. Adapted from Antoni et al. (2011). 

,N
O

 
C

A
R

s 

E3
 li

ga
se

s 

A
B

R
E

 

H
A

T/
H

D
A

C
  

co
m

pl
ex

es
 

S
W

I/S
N

F 
co

m
pl

ex
es

 

S
W

I3
B

 TF
 

B
R

M
 



!

 22 

The ABA signaling pathway is not only important at the nucleus but it 

also plays an essential role at the plasma membrane. When drought 

stress occurs, ABA level rises and plants activate the primary ABA 

response at the membrane level. ABA is transported through the 

vascular tissues and imported by AtABCGs and nitrate membrane 

transporters, which are responsible for the up take from the vasculature 

(Kuromori et al., 2010, Leran et al., 2014). When the ABA molecule is 

bound to the receptor, this complex recruits the PP2Cs, generating a 

ternary complex ABA-PYR/PYL/RCAR-PP2C, blocking the PP2C 

phosphatase activity. Thus the SnRK2s are released and cis- and trans-

activated to phosphorylate their targets (Ma et al., 2009, Park et al., 

2009, Umezawa et al., 2009, Vlad et al., 2009, Gonzalez-Guzman et al., 

2012). These targets are usually integral-membrane proteins like ion 

channels and H+ ATPases or enzymes associated such as NADPH 

oxidases. As a result, the ion and water fluxes are regulated for a fast 

ABA response and secondary messengers of stress like ROS, NO, Ca2+ 

are produced (Kwak et al., 2003, Mori et al., 2006, Planes et al., 2015).  

 

Focusing now in the nuclear part of the ABA signaling pathway, ABA is 

also perceived by the nuclear PYR/PYL/RCAR ABA receptors. This 

perception mediates the recruiting of the PP2Cs in the ternary complex 

allowing SnRKs to phosphorylate their targets in the nucleus. The most 

known function of the SnRKs in the nucleus is to phosphorylate 

transcription factors. SnRKs-mediated phosphorylation is capable of 

activate/inhibit their targets as the bZIP transcription factors ABF1, 

ABF2/AREB1, ABI5, and the ABI3 (AP2 type TF) (Yoshida et al., 2015), 

but this is not the only function of the kinases. 
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ABA receptors 
The discovery of the ABA receptors has been a long race. The first ABA 

binding protein discovered was Flowering time control protein A (FCA) 

(Razem et al., 2006). Although the protein showed some ABA-binding 

activity in vitro, this work was later retracted after the impossibility to 

reproduce the previous binding results (Razem et al., 2008, Risk et al., 

2008). The second postulated ABA binding protein was the Chloroplastic 

magnesium protoporphyrin-IX chelatase H subunit (CHLH), which is a 

component of the Mg-chelatase, a multisubunit plastid complex related to 

chlorophylls biosynthesis (Shen et al., 2006). This was proposed to be 

the link among nuclear and chloroplast gene expression in Arabidopsis, 

but its function in ABA binding and signaling has not been reproduced by 

others suggesting that CHLH protein has not ABA-binding activity. Later, 

the G-protein coupled receptor-type G-proteins (GTG) 1 and 2, were 

proposed to bind ABA in vitro (Liu et al., 2007). However, contradictory 

results were found in the analysis of mutant phenotypes and this protein 

is believed as not being an ABA receptor. 

 

One of the top breakthroughs of 2009 in plant biology was the 

identification of the PYR/PYL/RCAR family of ABA receptors. These 

receptors were identified separately by four independent research 

groups, Ma et al. (2009), Nishimura et al. (2010), Park et al. (2009) and 

Santiago et al. (2009a) its mode of action connected with well known 

components of ABA signaling, pointing to this family of proteins as the 

true ABA receptors. The discovery of the PYR/PYL/RCAR receptors by 

Park et al. (2009) was mediated by the use of the small molecule, 

pyrabactin. This compound was isolated through a phenotype-based 

chemical screening seeking for molecules able to inhibit germination. 

Mutants impaired in the ABA response, like abi1-1, were insensitive to 

pyrabactin, suggesting its role on ABA signaling. The subsequent genetic 
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screening lead to the identification of PYR1, as the protein responsible 

for pyrabactin-induced germination inhibition. Further work characterizing 

PYR1 showed how this protein is able not only to bind pyrabactin but 

also ABA, describing the family of PYR/PYL/RCAR proteins as the ABA 

receptors. 

 

PYR/PYL/RCAR proteins are members of the lipid/sterol-binding STAR-

related lipid transfer (START) proteins that contain a hydrophobic pocket 

able to accommodate diverse ligands. In A. thaliana, PYR/PYL/RCAR 

receptor family is constituted by 14 members. They can be grouped in 

three subfamilies based on their sequences homology as shown in the 

figure 3. 

 

 

Figure 3. Phylogenetic tree for ABA receptors family in A. thaliana. 

PYR/PYL/RCAR proteins are organized in three families based on their 

sequences homology. 
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Based on their biochemical properties, PYR/PYL/RCAR receptors can be 

also classified in two groups based on their oligomeric state. Several 

experimental data indicate that PYR1, PYL1 and PYL2 receptors exist as 

dimers in solution; however, the receptor-PP2C complex has a 1:1 

stoichiometry. This implies that receptor dimers have to dissociate before 

interacting with the PP2C (Nishimura et al., 2009, Santiago et al., 2009a, 

Yin et al., 2009). Other receptors are monomeric proteins (Dupeux et al., 

2011b, Hao et al., 2011). Detailed analysis of their ABA-dissociation 

constant (Kd) for ABA shows that the dimeric receptors have higher Kd 

for ABA (> 50 µM) than the monomeric ones (1 µM). However, in the 

presence of clade A PP2Cs, both groups of receptors form ternary 

complexes with high affinity for ABA (Kd, 30 to 60 nM) (Ma et al., 2009, 

Santiago et al., 2009a, Santiago et al., 2009b).  

 

The family of PYR/PYL/RCAR ABA receptors is the largest family of plant 

hormone receptors described to date. This implies a high level of 

functional redundancy among them. It also opens up some interesting 

questions: are they able to respond to different signals? Or, do they 

respond in a tissue- or developmental-specific manner? Several works 

have been able to address these questions. First, Antoni et al. (2013) 

described a unique role of PYL8 in the regulation of root growth. This 

work was the first describing a phenotype associated to a single mutant 

in the ABA receptors. Second, they showed functional redundancy in 

other ABA-responses and accordingly, several members of the family 

have to be inactivated in order to get an ABA-insensitive phenotype (Park 

et al., 2009, Gonzalez-Guzman et al., 2012). The redundancy among 

ABA receptors was analyzed in studies reported by Gonzalez-Guzman et 

al. (2012) where they found a quantitative regulation of stomatal aperture 

and transcriptional response to ABA by PYR/PYL/RCAR proteins. They 

analyzed the expression pattern for six of the PYR/PYL/RCAR receptors 
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(PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8) and generated a great 

number of multiple mutants including a sextuple knock out mutant that is 

“blind” to ABA. Taken together these results indicate that there is a large 

level of functional redundancy among ABA receptors being PYL8 the 

only one that has a specific role to date. 

 

Whole-genome microarray data show low expression levels for PYL3 and 

PYL10-13 whereas PYL1-9 present significant expression levels (Kilian 

et al., 2007, Winter et al., 2007). Promoter-GUS fusion analysis including 

the promoters of PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 reveal 

overlapping expression in some tissues such as seeds, guard cells and 

roots, although some differences could also be observed (Gonzalez-

Guzman et al., 2012). 

 

In addition to biochemical, genetic and genomic data, researchers have 

provided very valuable information about the crystal structure of some 

PYR/PYL/RCAR proteins. The elucidation of the structure of the 

receptors showed the importance of different amino acids, both for ligand 

binding and for the formation of the ternary complex with the PP2Cs. 

ABA binds to a hydrophobic cavity in the ABA PYR/PYL/RCAR receptors 

(Melcher et al., 2009, Miyazono et al., 2009, Nishimura et al., 2009, Yin 

et al., 2009). This binding induces a conformational change in two loops 

of the protein, named as gate and latch. When closed, the surface of the 

loops creates a favorable platform necessary for the interaction with 

PP2Cs (Melcher et al., 2009, Dupeux et al., 2011a). Additionally, after 

the ternary complex PYR/PYL/RCAR–ABA–PP2C is generated some 

residues of the receptor establish contacts with important residues of the 

PP2C active site, leading to the inhibition of the phophatase (Figure 4) 

(Miyazono et al., 2009, Dupeux et al., 2011b, Yin et al., 2009, Melcher et 

al., 2009). The elucidation of the PYR/PYL/RCAR receptors in complex 
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with ABA and PP2Cs also has illuminated the way to develop more 

receptors with increased activity by directed mutagenesis into important 

residues of the ABA binding pocket and the receptor–PP2C interactions 

surface. X-ray structures have also allowed the structure-guided design 

of small molecules with antagonistic and agonistic activities (Okamoto et 

al., 2013). Thus, the atomic resolution of the ABA receptor protein 

structures has been an important step to understand ABA signaling 

which might have implications in agriculture. 

 

 

Figure 4. Structural representation for the ternary complex generated by 

the interaction of Receptor–ABA–Phosphatase (PYR1–ABA–HAB1). 
Reprinted from Cutler et al. (2010). 

 

PYR/PYL/RCAR ABA receptors in Solanum lycopersicum 

Arabidopsis thaliana PYR/PYL/RCAR receptors have been largely 

studied and their implications on drought tolerance are known. 

Consequently, the basal knowledge of Arabidopsis has to be transferred 

into crops in order to improve their agricultural traits. Since the discovery 

of Arabidopsis PYR/PYL/RCAR receptors, several orthologous genes 

had been discovered in important crops as tomato, rice, strawberry and 

soybean (Sun et al., 2011, Chai et al., 2011, Kim et al., 2012, Bai et al., 
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2013). Deeper characterization of tomato PYR/PYL/RCAR receptors was 

done by Gonzalez-Guzman et al. (2014). Tomato PYR/PYL/RCARs are 

highly expressed in roots and present differential sensitivity to 

quinabactin, a synthetic agonist of ABA receptors (Okamoto et al., 2013). 

Quinabactin mimics the effects of ABA in the ligand-dependent activation 

of a subset of PYR/PYL/RCAR receptors. Based on Gonzalez-Guzman 

et al. (2014) studies, there are 15 putative tomato PYR/PYL/RCAR 

receptors. They could be grouped in 3 subfamilies correlated with 

Arabidopsis orthologous (Figure 5). Subfamily I includes two tomato 

receptors that are closely related to AtPYL1/PYR1 representing putative 

dimeric receptors. Subfamily II includes six tomato receptors related with 

AtPYL4/PYL5/PYL6 and in the subfamily III, four tomato receptors were 

related with AtPYL7/PYL8/PYL9/PYL10. Tomato receptors are very 

similar to their Arabidopsis counterparts in their amino acid sequence. 

Importantly, overexpression of tomato ABA receptors in Arabidopsis 

plants increases the sensitivity to ABA and enhances plant drought 

tolerance. 
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Figure 5. Cladogram of tomato PYR/PYL/RCAR ABA receptors. Cladogram 

of the multiple sequence alignment of tomato and A. thaliana PYR/PYL/RCAR 

receptors. Three major subfamilies can be distinguished from the similarity 

analysis. Reprinted from Gonzalez-Guzman et al. (2014). 
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Next step of the ABA signaling pathway rely on the protein 

phosphatases. 

 

Protein Phosphatases type 2C, PP2Cs 
Protein phosphatases are enzymes that remove a phosphate group from 

a phosphorylated amino acid. Plant protein phosphatases are divided in 

three groups depending on their substrate specificity: Serine/Threonine 

(Ser/Thr), Tyrosine (Tyr) and dual-specificity classes. Depending on their 

features, plant Ser/Thr phosphatases can be organized in PP1, PP2A 

and PP2C groups (Luan, 2003). The expansion of the family of PP2C 

proteins found in the Arabidopsis genome, which has 76 putative 

proteins, many of them without known function, organized in ten clades 

from A to J (Schweighofer et al., 2004), contrasts with the no more than 

15 PP2Cs are found in the human genome (Cheng et al., 2000) and only 

6 found in the yeast genome (Stark, 1996) which highlights the 

importance of the PP2C class of protein phosphatases in plants.  

 

A genetic screening focused on the isolation of ABA insensitive mutants 

involved in ABA signaling (Koornneef et al., 1984) identified the first 

PP2C, it was the abi1-1 mutant. Ten years later, ABA-insensitive 1 

(ABI1) was identified by map-based cloning (Meyer et al., 1994, Leung et 

al., 1994). ABI1 belongs to the clade A subfamily of PP2Cs. This clade is 

divided in two separate branches based on amino acid sequence 

alignments (Schweighofer et al., 2004) (Figure 6). ABI1, ABI2, 

hypersensitive to ABA 1 (HAB1) and HAB2 are grouped in the same 

branch, whereas the second branch is formed by ABA-hypersensitive 

germination 1 (AHG1), AHG3/PP2CA and highly ABA inducible 1 (HAI1), 

HAI2 and HAI3.  
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Figure 6. Topographic cladogram and domain structure based on amino 

acid sequence alignment of A. thaliana type-2C protein phosphatases 

(PP2Cs). The highlighted pink box is emphasizing clade A subfamily of 

phosphatases. Adapted from Schweighofer et al. (2004). 

A second ABA-insensitive mutant, abi2-1, was also identified by 

Koornneef et al. (1984) and the locus was cloned by Leung et al. (1997) 

and Rodriguez et al. (1998). Both mutants, abi1-1 and abi2-1, encode for 
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abi1G180D and abi2G168D proteins that display equivalent mutations in their 

catalytic domains (conserved Gly, G residue to Asp, A), which causes a 

diminished phosphatase activity in the absence of ABA as compared to 

wild-type (Santiago et al., 2012). These hypermorphic mutations reduce 

ABA responses and lead to strong insensitivity to ABA in seed 

germination, root growth, stomatal regulation and gene expression 

responses (Meyer et al., 1994, Leung et al., 1994, Leung et al., 1997, 

Rodriguez et al., 1998, Gosti et al., 1999). The characterization of some 

of the single loss-of-function mutants, hab1-1, abi1-2, abi2-2, showed 

they were weak ABA-hypersensitive, but the combination of double or 

triple PP2C loss-of-function showed an elevated ABA-hypersensitivity. 

This reflects the partial overlapping functions between them and 

confirmed the negative role of clade A protein phosphatases in ABA 

signaling (Gosti et al., 1999, Kuhn et al., 2006, Yoshida et al., 2006, 

Nishimura et al., 2007, Rubio et al., 2009).  

 

Another important structural feature of PP2Cs is the presence of a critic 

tryptophan residue (Trp, W) (W300A in ABI1 and W385A in HAB1) in the 

active site that is essential for the ABA-dependent inactivation of the 

phosphatase by PYR/PYLs. However, these mutants are able to interact 

with their downstream targets such as SnRKs (Dupeux et al., 2011a). 

These data provided key structural support to understand the formation 

of the ternary complex between PYR/PYL-ABA-PP2C (Figure 7), which is 

required for fully inhibition of the PP2C activity (Miyazono et al., 2009, 

Dupeux et al., 2011a, Santiago et al., 2012).  
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Figure 7. Model of ABA-induced phosphatase regulation by the receptors. 

The example in the figure represents PYL1 inhibition of ABI1 upon ABA sensing. 

The picture shows some of the important residues implicated in the main 

interactions for the ternary complex formation. Gate loop (red) and latch loop 

(green). Reprinted from Miyazono et al. (2009). 

 

In addition to the redundant functions presented by clade A PP2Cs 

family, it is important to mention that at the same time, they have specific 

roles controlling the ABA signaling pathway. Subcellular localization 

studies indicate that PP2Cs are present at the nucleus and cytosol, 

which is in agreement with their reported interaction with SnRK2s (Fujita 

et al., 2009). In addition to dephosphorylation of SnRK2s (Umezawa et 

al., 2009, Vlad et al., 2009), additional targets of clade A PP2Cs have 

been described, such as SnRK1, SnRK3s/calcineurin B-like (CBL)-

interacting protein kinases (CIPKs), calcium-dependent protein kinases 

(CDPKs/CPKs), ion transporters such as the K+ channel AKT1 and AKT2 

or the slow anion channel 1 (SLAC1) and SLAC1 homolog 3 (SLAH3), 

and transcriptional regulators, such as bZIP transcription factors and 

chromatin-remodeling complexes (SWI2/SNF2) (Cherel et al., 2002, Guo 

et al., 2002, Lee et al., 2007, Saez et al., 2008, Geiger et al., 2009, Lee 

surrounding loops of the ABA-binding site and the hydrophobic
pocket of PYL1 accompanying the complete formation of the com-
plex with ABI1. In the (1)-ABA-bound form of PYL1, the lid loops
may take metastable conformations and then be refined to the stable
conformations by contacting the PP2C domain of ABI1. This struc-
tural consideration explains that the interaction between ABI1 and
RCAR1 (also known as PYL9), which is a member of the ABA recep-
tors, increases the ABA-binding affinity of this ABA receptor protein12.
Our model leads to the idea that the amount of metastable PYR/PYL/

RCAR–(1)-ABA complex is a limiting factor for ABA signalling in
plant cells.

The (1)-ABA-mediated phosphorylation/dephosphorylation sig-
nalling pathway is a potent strategy for regulating the signalling that
controls responses to environmental stresses and developmental pro-
cesses. Our structural investigation has provided the detailed struc-
tural mechanism for the (1)-ABA-dependent inhibition of a negative
regulator ABI1 in the pathway by a (1)-ABA receptor PYL1, which
has deepened our understanding of the hormonal-signal-dependent
phosphorylation regulation of plant cellular functions.

METHODS SUMMARY
The recombinant PYL1 was purified by using a histidine-tag affinity column and
anion-exchange chromatography. The purified protein was concentrated to
10 mg ml21 in a buffer containing 10 mM Tris-HCl, pH 7.0, 2 mM TCEP and
4 mM (1)-ABA/(1/2)-ABA. The crystals of the protein were obtained under
reservoir solution conditions of 100 mM HEPES, pH 8.0, 24% PEG3350 and
0.2 M NaCl.

The recombinant ABI1 was purified by a histidine-tag affinity column and was
mixed with PYL1–(1)-ABA to form the complex. The complex was further
purified by anion-exchange chromatography and gel filtration chromatography.
The purified protein was concentrated to 22 mg ml21 in the following buffer:
10 mM Tris-HCl, pH 8.0, 100 mM NaCl and 1 mM TCEP. The crystals of the
complex were obtained under reservoir solution conditions of 100 mM sodium
citrate, pH 5.0 and 21% PEG3000.

The structure of PYL1–(1)-ABA was determined by the Se-MAD method. The
final model of PYL1–(1)-ABA was refined to 2.05 Å resolution with R and Rfree

values of 19.2% and 22.9%, respectively. The structure of PYL1–(1)-ABA–ABI1
was determined by the molecular replacement method using the coordinates of
PYL1 and human PP2C16. The final model of PYL1–(1)-ABA–ABI1 was refined
to 2.10 Å resolution with R and Rfree values of 20.1% and 24.9%, respectively.
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Figure 6 | A model of (1)-ABA-induced ABI1 regulation by PYL1. PYL1 is
an intracellular (1)-ABA receptor in (1)-ABA-dependent signal
transduction. When a (1)-ABA molecule enters into an ABA-binding site of
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Trp 300 of ABI1). This ABA-dependent contact between PYL1 and ABI1
allows access of the b3–b4 loop to the active site of the PP2C domain. Thus,
PYL1–(1)-ABA activates the SnRK2-dependent phosphorylation pathways
by inhibiting the phosphatase activity of ABI1.
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et al., 2009, Antoni et al., 2012, Brandt et al., 2012, Lynch et al., 2012, 

Pizzio et al., 2013, Rodrigues et al., 2013).  

 

Although a major portion of PP2Cs is localized in the cytosol, the 

presence of PP2Cs is also detected in microsomal membranes, where 

two PP2C-interacting proteins are localized (i.e. AKT2 and SLAC1) 

(Cherel et al., 2002). Interestingly, a minor portion of PP2Cs co-localize 

with the nuclear insoluble fraction (chromatin associated), in agreement 

with the reported interaction of HAB1 with SWI3B, a putative component 

of chromatin-remodeling complexes (Saez et al., 2008). 

 

PP2CA/AHG3 

PP2CA was originally cloned by Kuromori and Yamamoto (1994). 

Transient-assay experiments using protoplasts and studies with 

antisense genes implicated PP2CA in ABA signaling as a negative 

regulator (Sheen, 1998, Tahtiharju & Palva, 2001). PP2CA was found to 

be expressed ubiquitously in plant organs with the highest transcript 

levels taking place in leaf tissue. However extended expression analyses 

showed that PP2CA is up-regulated by several stresses, including ABA, 

cold, drought, and salt treatment (Tahtiharju & Palva, 2001, Cherel et al., 

2002). Later on the pp2ca/ahg3 mutant was isolated in a screening for 

mutants with enhanced sensitivity to ABA (Nishimura et al., 2004). In this 

study, seven putative Arabidopsis mutants were isolated and named as 

ABA-hypersensitive germination (ahg). After map-based cloning, ahg3 

was confirmed to have a mutation in AT3G11410 gene corresponding to 

PP2CA (Yoshida et al., 2006). Analysis of those knock out mutants on 

the ABA response during germination indicates an ABA-hypersensitive 

phenotype. Interestingly, ahg3/pp2ca had the strongest effect indicating a 

major role of AHG3/PP2CA during seed germination and early growth. 
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pp2ca-1 also shows moderate ABA-hypersensitivity in root tissue that 

indicates a partial redundancy with other PP2Cs. Conversely, 

overexpression of PP2CA showed an ABA-insensitive phenotype in seed 

germination and the regulation of stomatal closure (Kuhn et al., 2006, 

Yoshida et al., 2006). All these data together indicate that PP2CA has a 

strong negative role in the regulation of ABA signal transduction during 

seed germination, but it is also involved in other processes (Kuhn et al., 

2006, Yoshida et al., 2006). 

 

ABA controls K+ and other ion channels. PP2CA was found to interact 

and inhibit AKT2 (Cherel et al., 2002) and SLAC1, which is very 

important ion channel for stomatal closure regulation. PP2CA inhibits 

SLAC1 channel activity in two ways, due to direct interaction with SLAC 

and by dephosphorylation of the kinase OST1 leading to kinase-

dependent phosphorylation inhibition (Lee et al., 2009). Another study 

trying to elucidate implications of PP2CA in ABA signaling pathway came 

from Pizzio et al. (2013). This work generated an allele library composed 

of 10,000 mutant clones of Arabidopsis PYL4 receptor where mutations 

that promoted ABA-independent interaction with PP2CA/AHG3 were 

selected. PYL4A194T mutant selected because was able to form stable 

complexes with PP2CA in the absence of ABA, in contrast to wt PYL4. 

This interaction did not lead to significant inhibition of PP2CA in the 

absence of ABA; however, it improved ABA-dependent inhibition of 

PP2CA. 

 

PP2CA and ABI1 were also found to be related to energetic stress 

(Rodrigues et al., 2013). PP2CA negatively regulates SnRK1 that is a 

heterotrimeric complex composed of an α-catalytic subunit 

(SnRK1.1/1.2/1.3 in Arabidopsis) and two regulatory subunits, β and γ. In 

this study, ABI1 and PP2CA inhibited SnRK1 by dephosphorylation. 
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Accordingly, double and quadruple pp2c knockout mutants are sugar 

hypersensitive because of their failure in the repression of SnRK1, 

similarly to SnRK1 overexpression. They also demonstrate that ABA 

presence inactivates PP2CA and results in an activation of SnRK1, which 

promotes SnRK1 signaling during energetic stress. Hence, the PP2Cs 

generate a hub that allows a coordinated activation of ABA and energy 

signaling, strengthening the stress response through the cooperation of 

two key and complementary pathways.  

 

PP2C dephosphorylation of key components of ABA signaling has been 

largely studied but the regulation of the stability of PP2Cs has been 

described only lately. Recent works by Kong et al. (2015) and Wu et al. 

(2016) describe the putative pathways for PP2Cs degradation. Kong et 

al. (2015) discovered a degradation pathway that includes U-box E3 

ligases (PUB12/13) that ubiquitylate ABI1 only when ABI1 is interacting 

with the ABA receptor. This suggests that under stress conditions, ABI1 

would be ubiquitylated and degraded to enhance ABA response. Wu et 

al. (2016) discovered another family of E3 ubiquitin ligases, RGLGs, 

implicated in PP2Cs degradation. Particularly, RGLG1/5 mediate ABA-

dependent ubiquitylation of PP2CA, which promotes degradation in the 

proteasome. 
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SNF1-related protein kinases2, SnRK2s 
Although phosphatases are very important proteins in the ABA signaling, 

they are negative regulators. This suggests that there must be kinases 

that act in opposition to them as positive regulators in the signaling. The 

Arabidopsis genome codifies for 38 SnRKs related with the SNF1 

(Sucrose non-fermenting-1) kinases of yeast. They can be organized in 

three groups, SnRK1, SnRK2 and SnRK3 depending on their sequence 

similarity and domain structure (Hrabak et al., 2003). The SnRK1 and 

SnRK2 subfamilies are calcium-independent kinases whereas SnRK3s 

are calcium dependent and interact with a calcium sensor, calcineurin B-

like (CBL), thus these proteins are also known as CBL-interacting protein 

kinases (CIPKs). 

 

The group of SnRK2 in Arabidopsis is formed by 10 members named 

from SnRK2.1 to SnRK2.10 (Hrabak et al., 2003) (Figure 8). They are 

classified into three subclasses: subclass 1, activated by osmotic stress 

but not ABA, subclass 2, activated by osmotic stress and weakly by ABA 

and the subclass 3 that are activated by both ABA and osmotic stress. In 

this group, subclass 3, is represented by SnRK2.2/SnRK2D, 

SnRK2.3/SnRK2I and SnRK2.6/SnRK2E/OST1, which are activated by 

ABA (Boudsocq et al., 2004). OST1/SnRK2.6 was first identified in a 

genetic screening using thermal imagining to detect mutants with 

defective stomatal closure on drought stressed plants (Merlot et al., 

2002). This mutant showed reduced ABA responsiveness in guard cells 

suggesting that OST1 has a positive role in ABA signaling in stomata 

(Yoshida et al., 2002, Mustilli et al., 2002). However, although ABA does 

not induce OST1/SnRK6 gene expression, it stimulates the kinase 

activity (Yoshida et al., 2002, Mustilli et al., 2002). Genetic evidence 

showed that SnRK2.6 is expressed to high levels in guard cells but to low 

levels in other tissues, which explains why ost1/ snrk2.6 single mutant 
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was impaired only in ABA-mediated stomatal closure and not other ABA 

responses. SnRK2.2 and SnRK2.3 were also identified later on as 

positive regulators of the ABA signaling pathway (Fujii et al., 2007). 

Although the snrk2.2 and snrk2.3 single mutants showed no differences 

in ABA sensitivity compared to the wild type, their combination in the 

snrk2.2snrk2.3 double mutant let to a high ABA-insensitive phenotype in 

germination, dormancy and seedling growth assays (Fujii et al., 2007). 

This indicates a tissue-specific specialization of this group of kinases 

being SnRK2.6 very important regulating stomata closure and SnRK2.2 

and SnRK2.3 having also roles in other organs. Interestingly, the 

snrk2.2/2.3/2.6 triple mutant shows extreme ABA-insensitivity, which 

suggests that these three ABA-activated SnRKs play a major role in ABA 

signaling. Thus, this triple mutant showed dramatic insensitivity to ABA in 

stomatal closure, germination, shoot and root growth, ABA regulation of 

gene expression and water loss (Fujii & Zhu, 2009). This phenotype 

established that SnRK2s are the core positive regulators of ABA 

signaling (Yoshida et al., 2002, Fujii & Zhu, 2009, Fujita et al., 2009, 

Nakashima et al., 2009). The isolation and characterization of a decuple 

mutant affected in all 10 SnRK2s indicated that other SnRK2s have a 

more specific role controlling adaptation to osmotic stress (Fujii et al., 

2011). 
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Figure 8. Sequence alignment of the ten SnRK2s of Arabidopsis based on 

SnRK2.6/OST1 structure. All ten kinases present a conserved C-terminal 

domain called SnRK-box (green) responsible of the activation of all SnRK2 

kinases under osmotic stress. In addition to this domain, the three kinases ABA 

activated posses a specific region at the C-terminus called ABA-box (blue), 

Introduction 
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Figure 1.5. Structure-based sequence alignment of the ten SnRK2s of Arabidopsis with the structure of 
OST1.  All ten SnRK2s present at the C-terminus a SnRK-box (also called activation motif or DI) responsible of 
the activation of the kinases under osmotic stress. This domain is located parallel with the αC, an α-helix whose 
position is crucial in the adoption of a closed (active) or open conformation (inactive).  Mutants lacking the 
interaction between these two regions abolish the kinase activity and confirm the importance of the SnRK-box to 
modulate the kinase activity. In addition the three SnRK2s activated by ABA posses a specific region at the C-
terminus called ABA box. This region interacts with the PP2C and is responsible of the ABA-dependent 
activation of these three kinases.  
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whereby the kinases interact with the PP2Cs and responsible of the ABA-

dependent activation of these ABA kinases. 

 

Structurally, SnRK2 family contains a highly conserved kinase domain in 

N-terminal and a variable regulatory domain in C-terminal. This 

regulatory domain is divided in two subdomains, subdomain I is 

conserved in all the SnRK2s and subdomain II, conserved only in the 

ABA-regulated SnRK2 kinases. This subdomain II is responsible for their 

differential activation by ABA and for the interaction with clade A PP2Cs 

(Yoshida et al., 2006, Yoshida et al., 2010). Biochemically, SnRK2s are 

activated through the phosphorylation of Ser/Thr residues of their 

conserved activation loop. In the absence of ABA, PP2Cs interact with 

the subclass 3 SnRK2 kinases leading to the dephosphorylation of the 

activation loop (Yoshida et al., 2006, Ma et al., 2009, Park et al., 2009, 

Vlad et al., 2009, Umezawa et al., 2009, Soon et al., 2012). In the 

presence of ABA, PYR/PYL/RCAR receptors bind to PP2Cs and inhibit 

them. This allows SnRK2.6 to autophosphorylate certain Ser of their 

activation loop and to de-repress the ABA signaling pathway through 

direct phosphorylation of downstream targets (Fujii et al., 2009, 

Umezawa et al., 2009, Vlad et al., 2009, Vlad et al., 2010). SnRK2.2 and 

2.3 seem to be trans-phosphorylated by SnRK2.6 or by yet unidentified 

kinases. Clade A PP2Cs also regulates other SnRKs, for instance, 

Rodrigues et al. (2013) showed that stress generated by energy 

deprivation activates the SNF1-related protein kinase 1 (SnRK1), which 

was found to be dephosphorylated and inactivated by ABI1 and PP2CA. 

This work shows that PP2Cs can act as a hub to coordinate the 

activation of ABA and energy signaling pathways. 
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After SnRK2 cis- and trans-activation, they phosphorylate their 

downstream targets in order to fully activate the ABA response. Several 

proteins have been identified as substrates of the SnRK2s. Those 

include basic-region leucine zipper (bZIP) transcription factors, ion 

channels as the slow anion channel 1 (SLAC1), the R-type ion 

channel/QUAC1 and aquaporins (Geiger et al., 2009, Meyer et al., 2010, 

Imes et al., 2013, Grondin et al., 2015) that are critical factors involved in 

ABA regulation of stomatal movement. NADPH oxidases are also 

phosphorylated by SnRK2.6 to activate reactive oxygen species (ROS) 

production in guard cells (Sirichandra et al., 2009). Also, SnRKs can 

phosphorylate their targets to inactivate them as is the case of the 

plasma membrane ATPase and the potassium channel, KAT1 (Planes et 

al., 2015, Sato et al., 2009). All these targets are responsible of keeping 

the cellular homeostasis controlled in order to close the stomata and 

avoid water loss. 

 

Recent quantitative in vivo phosphoproteomic studies revealed numerous 

targets of SnRKs, which have important roles in RNA processing, 

epigenetic modifications, chloroplast processes and control of flowering 

time (Wang et al., 2013a, Umezawa et al., 2013). In these 

phosphoproteomic studies, the analysis of the triple snrk2.2/2.3/2.6 

mutant revealed that several chromatin regulators including SWI/SNF 

BRM ATPase were putative substrates of the SnRK2 kinases. However, 

direct biochemical evidence was lacking in these studies. 
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Transcription factors in ABA signaling 
In biology, a transcription factor is a protein that can bind to specific 

sequences of DNA to regulate gene expression. ABA-regulated gene 

expression is directly controlled by transcription factors that bind to 

specific regions in the DNA. Promoter analysis of ABA-inducible genes 

identified the ABA-responsive element (ABRE; PyACGTGG/TC) as a 

conserved cis-element. Yeast one-hybrid screening using ABREs as a 

bait identify a group of bZIP transcription factors designated as ABRE-

binding proteins (AREBs) or ABRE-binding factors (ABFs) (Uno et al., 

2000, Choi et al., 2000). Among the nine members of AREB/ABFs family 

in Arabidopsis (Yoshida et al., 2010), AREB1/ABF2, AREB2/ ABF4 and 

ABF3 are highly induced by ABA and osmotic stress treatments in 

vegetative tissues (Choi et al., 2000, Uno et al., 2000, Fujita et al., 2005, 

Yoshida et al., 2010). Large-scale transcriptome analysis of the areb1 

areb2 abf3 abf1 quadruple mutant revealed that a majority of 

downstream genes of SnRK2.2/2.3/2.6 are directly and indirectly 

regulated by the four AREB/ABFs (Yoshida et al., 2015). 

 

The bZIP TFs have been functionally characterized and are grouped in 

two subfamilies depending on their expression in the plant (Figure 9). 

ABI5/Dc3 promoter-binding factor (AtDPBF) subfamily genes are mainly 

expressed in seeds and during germination and seed maturation, 

whereas AREB/ABF subfamily genes are mainly expressed in vegetative 

tissues under abiotic stress conditions (Fujita et al., 2013). 
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Figure 9. Phylogenetic tree and domain structure of bZIP TFs of AREB/ABF 

and ABI5/AtDPBF subfamilies. bZIP TFs in Arabidopsis, rice, bryophytes and 

other species of vascular plants are shown in red, green, blue and black letters, 

respectively (Fujita et al., 2013). 

 

ABRE elements have been shown to play a central role in regulation of 

ABA-mediated gene expression in stress response (Fujita et al., 2011, 

Fujita et al., 2013). Besides the ABREs, there are other regulatory 

regions recognized by different ABA-related transcription factors. Some 

genes contain GC-rich sequences as the drought response elements 

(DRE) recognized by the Apetala2 (AP2) family of transcription factors 

including ABI4 (Finkelstein et al., 1998, Liu et al., 1998). Other ABA-
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Fig. 2. Phylogenetic tree and domain structure of bZIP TFs of AREB/ABF and ABI5/AtDPBF subfamilies. bZIP TFs in Arabidopsis, rice, bryophytes and
other species of vascular plants are shown in red, green, mazarine and black letters, respectively. The neighbor-joining phylogenetic tree was created
using CLUSTALX2 and MEGA5. Bootstrap values (1000 replicates) are shown at branches with >50% support. The bZIP and the other four conserved
domains of each bZIP TF were used for the alignment. The organization of the bZIP and the other conserved domains (C1 to C4) is shown in cartoon
format on the right. Scale bar = 100 amino acids. For AREB/ABFs from Arabidopsis, rice, Selaginella moellendorffii and Physcomitrella patens, protein
sequences were obtained as described previously (Yoshida et al. 2010). GmbZIP1 and the other protein sequences were obtained from the Phytozome
(http://www.phytozome.net/) and NCBI (http://www.ncbi.nlm.nih.gov/), respectively. OsbZIP codes are shown in green (Nijhawan et al. 2008) and in
pale green with parentheses (Corrêa et al. 2008). The former codes are mainly used. See main text for details for each protein.

support the notion that AREB1/ABF2, AREB2/ABF4 and
ABF3 are master transcriptional activators that coop-
eratively regulate ABRE-dependent gene expression in
ABA signaling under osmotic stress conditions during
the post-germination stage.

Subclass III SnRK2s are the major positive
regulators of ABA signaling that control
AREB/ABFs to activate ABRE-dependent
gene expression

The ABA-dependent activation of AREB/ABF proteins
requires the phosphorylation of multiple conserved
RXXS/T sites in the AREB/ABFs by SnRK2 protein kinases,
as illustrated by in-gel kinase assays (Uno et al. 2000,
Furihata et al. 2006, Fujii et al. 2007). In fact, when the
five Ser/Thr residues at the putative phosphorylation sites
in the conserved region of the AREB1/ABF2 are replaced
by Asp to mimic phosphorylation, the ectopic expression
of the resulting dominant active form of AREB1/ABF2 in
transgenic Arabidopsis plants activates ABA-responsive
gene expression under unstressed conditions (Furihata
et al. 2006). Three subclass III SnRK2 protein kinases

(SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3)
and AREB/ABFs co-localize and interact within plant cell
nuclei (Fujita et al. 2009, Yoshida et al. 2010). The ABA-
activated phosphorylation of AREB/ABFs was completely
impaired in the srk2d/e/i triple mutant in vitro (Fujii et al.
2009, Fujii and Zhu 2009). Furthermore, the down-
regulated genes in the areb1 areb2 abf3 and srk2d/e/i
triple mutants substantially overlap in the osmotic stress
response (Fujita et al. 2009). These results show that the
three subclass III SnRK2s phosphorylate AREB/ABFs to
activate gene expression under osmotic stress conditions.

Initially, the SRK2E/SnRK2.6/OST1 protein kinase was
shown to be involved in the regulation of ABA-mediated
stomatal closure (Mustilli et al. 2002, Yoshida et al.
2002). Among 10 SnRK2s identified in Arabidopsis, 9
SnRK2s except SRK2J/SnRK2.9 are activated by osmotic
stress as shown by in-gel kinase assays (Fig. 3; Boud-
socq et al. 2004). Of these protein kinases, two subclass
II SnRK2s are also weakly activated by ABA, whereas
only three subclass III SnRK2s are strongly activated
by both exogenous ABA and osmotic stress (Fig. 3;
Boudsocq et al. 2004). The srk2d/e/i triple mutant dis-
plays dramatically decreased tolerance to drought and

18 Physiol. Plant. 147, 2013
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responsive genes display W-box sequence in their promoter regions for 

the binding of WRKY transcription factors as WRKY63 and WRKY40 

(Ren et al., 2010, Shang et al., 2010) and other regions as the RY/Sph 

elements recognized by different transcription factors that are bonded by 

B3 domain proteins as ABI3 (Ezcurra et al., 2000) or MYC2 and MYB2 

that are bHLH- and MYB-related transcription factor, respectively (Abe et 

al., 2003) that are also implicated in ABA signaling.  

 

Transcriptional activity of AREB/ABF TFs requires its ABA-dependent 

activation by phosphorylation of multiple conserved RXXS/T sites, which 

is mediated by ABA-activated SnRK2s (Fujii et al., 2007, Yoshida et al., 

2010, Fujita et al., 2013). On the other hand, it was also found that 

AREB/ABFs are direct targets of the clade A PP2Cs (Lynch et al., 2012). 

This highlights the importance of the phosphorylation regulatory 

mechanism in the activation/deactivation of the ABA transduction 

pathway when plants are challenged by water deficit. The first bZIP TF 

identified and characterized was ABA-insensitive 5 (ABI5) (Finkelstein, 

1994, Finkelstein & Lynch, 2000). ABI5 binds to ABREs in the promoters 

of ABA-responsive genes and activates gene expression (Finkelstein & 

Lynch, 2000, Lopez-Molina & Chua, 2000). The analysis of abi5 loss-of-

function mutant revealed its key role as a positive regulator of ABA 

signaling during seed development, maturation, germination and early 

seedling growth (Lopez-Molina et al., 2002, Lopez-Molina & Chua, 2000, 

Finkelstein et al., 2002, Lopez-Molina et al., 2001). Post-germination 

developmental checkpoint is controlled by ABA and it is known that ABI5 

expression is induced in this process (Lopez-Molina et al., 2001). In 

addition, the expression level of ABI5 is severely reduced in the 

snrk2.2snrk2.3snrk2.6 triple mutant at different stages suggesting that 

these kinases also regulate ABI5 (Nakashima et al., 2009). Other 

AREB/ABFs with partly redundant functions, such as AREB1/ABF2, 
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AREB2/ABF4, ABF3 and ABF1 were characterized as positive regulators 

of ABA signaling in vegetative tissues (Fujita et al., 2005, Yoshida et al., 

2010, Yoshida et al., 2015).  

 

In addition to abi5, other ABA-insensitive mutants, abi3 and abi4, were 

identified in genetic screenings performed in seeds (Koornneef et al., 

1984, Finkelstein, 1994, Finkelstein et al., 1998). Cloning of the 

corresponding loci revealed the TFs ABI3 and ABI4, which belong to the 

B3 and AP2 transcription factor families, respectively, play important 

roles in seed germination and early seedling establishment (Parcy et al., 

1994, Finkelstein et al., 1998). ABI4 expression was think to be restricted 

to seed development and early germination stages (Finkelstein et al., 

1998). At these stages, ABI4 was shown to be involved in glucose 

signaling, sugar signaling and response pathways, ABA signaling and 

lipid mobilization in the embryo and germinated seeds as well as in 

chloroplast functioning and retrograde signaling. abi4 loss-of-function 

mutants are insensitive to ABA (Soderman et al., 2000) but also display 

reduced sugar sensitivity (Huijser et al., 2000), sucrose insensitivity 

(Laby et al., 2000) and glucose insensitivity (Arenas-Huertero et al., 

2000). ABI4, is a very versatile TF that fulfills other important roles in the 

regulation of plant development, such as glucose responses (Arenas-

Huertero et al., 2000), nitrate-modulated root branching (Signora et al., 

2001) and chloroplast-to-nucleus retrograde signaling pathways (Kaliff et 

al., 2007, Koussevitzky et al., 2007) and also, mitochondria-to-nucleus 

retrograde signaling pathways (Giraud et al., 2009). Recent studies have 

shown that ABI4 integrates redox, sucrose, ABA and JA signaling 

(Kerchev et al., 2011). Furthermore, the ABI4 protein binds to cis-acting 

elements mediating both sugar- and ABA-inducible gene expression 

(Bossi et al., 2009, Reeves et al., 2011).  
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The expression levels of ABI3, ABI4, and ABI5 during the plant life cycle 

show they are tightly co-expressed. All three genes are expressed 

through seed development, reaching their highest transcript levels at 

seed maturity, but decreasing during germination unless they are 

exposed to stresses that inhibit maturation such as ABA or dehydrating 

conditions (Wind et al., 2013, Finkelstein et al., 2011). A recent study 

shows that ABA induces transcription of ABI4 and ABI4 protein 

stabilization (Shu et al., 2016a). 

 

 

Figure 10. Expression levels of ABI3, ABI4, and ABI5 during the plant life 

cycle (Wind et al., 2013). Expression of these ABA-insensitive mutants shows a 

peak in germination and the levels are kept low until seed maturation when they 

accumulate again.  increased activity of ABI4 in wild type seedlings. ABI4 is
involved in trehalose signaling, as well. Root growth is
inhibited in young Arabidopsis seedlings exposed to treha-
lose containing media due to the accumulation of T6P [52].
The abi4 mutant is less sensitive to the inhibitory effects of
trehalose on root growth indicating the involvement of
ABI4 in this process [53].

Plastid-to-nucleus signaling and photosynthesis
Genes encoding photosynthesis components must be coor-
dinately expressed for optimal photosynthesis. Most pro-
teins involved in photosynthesis are encoded in the nucleus
and are imported into the chloroplast. Plastid-to-nucleus
signaling is needed to initiate and balance Photosynthesis-
Associated Nuclear Gene (PhANG) expression. Several
mutants have been identified that have a perturbed nucle-
ar feedback and misexpress the PhANG gene CAB2 [54].
The genes of several such genome uncoupled (gun) mutants
were cloned and shown to be involved mainly in plastidic
processes. The nature of the signal that is transported from
the plastid-to-nucleus to balance PhANG expression is still
not fully resolved [55,56]. ABI4 is a repressor of the PhANG
gene CAB2 in young seedlings and a role for ABI4 was
proposed in plastid-to-nucleus signaling as a negative
regulator of PhANGs acting downstream of GUN1 [37].
It was proposed that upon stress treatment a chloroplast-
bound PHD type transcription factor with transmembrane
domains is cleaved from the chloroplast outer membrane
and is transported to the nucleus where it promotes ABI4
expression [57]. Two other transcription factors regulating
PhANG genes positively, Golden2-like 1 (AtGLK1) [56] and
HY5 [58], were proposed to respond to retrograde signals
as well. The promoters of the PLASTOCYANIN1 (PC) and

other PhANG genes are repressed by the sugar analog 2-
deoxy-D-glucose (2DG). This repression is lost in the abi4
allele sucrose uncoupled6 (sun6) [43]. PC is no longer
repressed by sucrose in the sun6 mutant [59], showing
that ABI4 is essential for the repressing effect of sugars on
PC gene expression. 2DG represses overall photosynthetic
activity in mature rosette plants and this repression is
reduced in the sun6 mutant [60]. Possibly, the lack of sugar
repressed photosynthesis in abi4 explains the slightly
increased growth rate, despite increased ABA levels in
the abi4-1 mutant [61]. These findings clearly show the
importance of ABI4 in regulating PhANG expression at the
physiological level. Moreover, since most phenotypic dif-
ferences of abi4 mutants compared to wild type are inde-
pendent of added ABA, ABI4 most likely acts independent
of ABA signaling in the plastid-to-nucleus signaling pro-
cess.

Role in redox regulation
ABI4 function in plastid-to-nucleus signaling is linked to
redox regulation [62]. Reactive oxygen species are pro-
duced in electron transfer pathways associated with pho-
tosynthesis. ABI4 binds to the CE1 motif in the promoter of
ALTERNATIVE OXIDASE 1A (AOX1A) and represses this
gene. AOX1A enhances reactive oxygen species (ROS)
levels [63] and in the abi4-1 mutant, AOX1A is dere-
pressed, showing that ABI4 represses this gene [32]. How-
ever, ABI4 also plays a role in ROS metabolism through
control of ascorbic acid levels. The vitamin c defective
mutants vtc1 and vtc2 are mutated in genes encoding
enzymes in the ascorbate biosynthesis pathway. In vtc1,
vtc2, and abi4 mutant rosettes similar changes in tran-
scriptional profiles were observed and in abi4 rosettes
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Figure 3. ABI4 is mainly active during seed germination and seed maturation. The expression levels of ABI3, ABI4, and ABI5 during the plant life cycle shows that the genes
are tightly coexpressed. The roles of ABI4 during the different developmental stages are indicated. Expression data taken from Genevestigator [70]. Scale indicate log2 level
of absolute signal in the database.
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Chromatin remodeling and ABA signaling 
Eukaryotic cells have developed a highly organized structure called 

chromatin to compact the genomic DNA. This packaging allows the cell 

to have large amount of DNA in a small space in the nuclei. The 

nucleosome is the basic structural unit of chromatin in eukaryotic cells. A 

nucleosome consists in a DNA sequence of approximately 147 bp 

wrapped around a core structure formed by eight histone proteins called 

histone octamer. The octamer is composed by two H2A-H2B dimers and 

one H3-H4 tetramer. Each nucleosome is connected to the next by a 

linker DNA of approximately 20-90 bp depending on the species and 

tissues (Szerlong & Hansen, 2011). Thus, nucleosomes function is to 

compact and restrict the access to DNA in the nucleus.  

 

 

Figure 11. Overview of the nucleosome core particle structure, viewed in 

two different orientations. �-helices of the histone proteins are shown as 

spirals. (A) The nucleosome core particle viewed down the superhelical axis. (B) 

The same structure is rotated by 90º around the y-axis to emphasize the disc-

like shape of the particle. Luger, K. 2001 

H2A        H2B       H3       H4    

The histone fold in other proteins

Archaebacteria, but not eubacteria, have a very minimal
set of histone-like proteins. Tetramers of two histone-like
proteins (that do not contain extensions or tails) are
responsible for the protection and compaction of the very
small archaebacterial genome.

Surprisingly, the histone fold has also been identified in a
number of other proteins, most of which are involved with
transcription regulation. Some subunits in TFIID (a large
multi-subunit assembly that is required for the proper start
of RNA polymerase II) and subunits of large histone
modification complexes also contain this fold. It is
tempting to hypothesize that the histone fold motif in
these factors may aid the formation of nucleosome-like
structures on DNA. However, this does not appear to be a
general rule, since many of the proteins mentioned above
fail to bind to DNA on their own. An excellent source of
histone sequence alignments and a compilation of non-
histone proteins with this fold can be found in theHistone
Sequence Database.

The histone octamer

The histone octamer is best viewed as an arrangement of
histone fold dimers. Two histone fold pairs composed
either of H2A andH2B, or H3 and H4, form heterodimers
that each organize 30 base pairs of DNA, using the L1L2
and a1a1 binding sites as DNA-binding motifs (Figure 2b).

Two H3–H4 dimers are arranged in a tetramer via a four-
helix bundle structure composed of helices from two H3
molecules. This tetramer organizes the central 60 base pairs
of nucleosomal DNA.
A very similar, but heterologous four-helix bundle

structure formed by residues of H4 and H2B tethers one
(H2A–H2B) dimer to one half of the histone (H3–H4)2
tetramer (Figure 2c). This interaction is not stable in the
absence ofDNA, and is aided by ahistone fold extensionof
H2A (the docking domain) that interacts with the other
half of the histone (H3–H4)2 tetramer. The H2A docking
domain also positions an H3 histone fold extension
(H3aN) to interact with the 10 penultimate base pairs of
nucleosomal DNA.
The histone octamer is not stable in solution under

physiological conditions. Whereas the four-helix bundle
structure that holds the (H3-H4)2 tetramer together
persists in the absence of DNA, the dimer–tetramer
interaction is not observed. Consequently, (H2A–H2B)
dimers and (H3–H4)2 tetramers are the physiological
subunits in the absence of DNA. This has important
implications for the in vivo and in vitro assembly of
nucleosomes (see below).

Histone tails

The flexible tails of the core histones are the sites of
reversible modification whose central role in many cellular

Figure1 Overviewof thenucleosomecoreparticle structure, viewed in twodifferent orientations. This schematic representation is derived from thehigh-
resolution crystal structure, anddemonstrateshowa5-fold compactionofDNA is achievedbywrapping it around thehistoneoctamer core.aHelicesof the
histone proteins are shown as spirals. H3 is coloured blue, H4 green, H2A yellow and H2B red. The DNA is shown in grey. (a) The nucleosome core particle
viewed down the superhelical axis. (b) The same structure is rotated by 908 around the y-axis to emphasize the disc-like shape of the particle.

Nucleosomes: Structure and Function

2 ENCYCLOPEDIA OF LIFE SCIENCES / & 2001 Nature Publishing Group / www.els.net
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The representation of a nucleosome shown in figure 11 is obtained from 

high-resolution crystal structure and demonstrates how DNA can achieve 

a 5-fold compaction by wrapping it around the histone octamer core. This 

highly condensed structure, the chromatin, is normally associated to 

inactive chromosomal regions (Jarillo et al., 2009, Chodavarapu et al., 

2010). The binding of transcription factors to the DNA requires accessible 

or also the called “open” chromatin state. Recent studies have shown 

that ABA is also implicated in the modification of the access to the DNA 

via chromatin remodeling.  

 

Signaling transduction mediated by clade A of PP2C phosphatases and 

SnRK2 kinases plays an important role in the coordination of the 

environmental signals and the alteration of gene expression in water 

stress responses. Saez et al. (2008) reported a direct interaction 

between a core element of the ABA signaling pathway, the HAB1 

phosphatase, and a component of the SWI/SNF chromatin remodeling 

complexes, SWI3B. They found that this protein interaction blocked the 

induction of a subset of ABA regulated genes. HAB1 could induce a 

direct dephosphorylation of SWI/SNF complexes containing SWI3B in an 

ABA-dependent manner. Sokol et al. (2007) identified that ABA was also 

responsible for the induction of rapid changes in gene expression 

through histone modification. They discovered that some abiotic stresses 

as high salinity, cold and ABA can induce global H3S10 phosphorylation 

and H4K4 acetylation, which are modifications associated with the open 

state of chromatin. These studies established the first steps to link ABA 

response to mitotically heritable and dynamic chromatin state changes. 

Recently, it has been reported that chromatin remodeling (Han et al., 

2012), histone deacetylation (Ryu et al., 2014, Luo et al., 2012), and 

histone demethylation (Zhao et al., 2015b) can regulate ABA response. 
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SWI/SNF Chromatin Remodeling Complexes (CRC) 
Chromatin is subjected to dynamic modifications and chromatin-mediated 

control of gene expression involves two different mechanisms (Smith & 

Peterson, 2005, Kwon & Wagner, 2007, Weake & Workman, 2010). One 

mechanism depends on enzymes that covalently modify histones (for 

example by acetylation, methylation, phosphorylation and ubiquitylation) 

or the DNA (by methylation) and the other, is based on non-covalent 

changes of nucleosome occupancy or positioning through chromatin-

remodeling complexes (CRCs).  

 

In chromatin terminology, there are two terms that need clarification; one 

is nucleosome positioning which is referred to indicate where the 

nucleosomes are located with respect to the genomic DNA sequence. 

This positioning is critical for gene expression and most DNA-related 

processes. The genome-wide pattern of nucleosome positioning is 

determined by the combination of DNA sequence, ATP-dependent 

nucleosome remodeling enzymes and transcription factors that include 

activators, components of the pre-initiation complex and elongating RNA 

polymerase II. Thus, nucleosome occupancy reflects the fraction of 

cells from the population in which a given region of DNA is occupied by a 

histone octamer. While most genomic DNA is occupied by nucleosomes, 

many functional regions (promoters, enhancers, terminators) are 

depleted of nucleosomes (i.e. have low occupancy) and some regions 

are largely nucleosome-free (Struhl & Segal, 2013). 

 

Chromatin remodeling consists of a change of the interactions between 

DNA and histones. The canonical role of the non-covalent type of 

chromatin remodelers to use the energy derived from ATP hydrolysis to 

alter the density or the position of nucleosomes on the DNA or the 

composition of the histone octamer (Cairns, 2009, Hargreaves & 
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Crabtree, 2011, Narlikar et al., 2013). Therefore, certain ATPases play a 

key role in chromatin remodeling (CR). In particular, the Arabidopsis 

genome codifies for 41 ATPases, which are grouped in 19 subfamilies. 

Some of them are known to be key regulators in several developmental 

stages or to have essential functions in nuclear DNA organization, 

however function of many of them remains still unclear (Knizewski et al., 

2008). Plants chromatin remodeling complexes (CRCs) can be also 

classified in five major subfamilies according to their conserved ATPase 

subunit: ISWI, SNF2, CHD, Swr1 and INO80 (Figure 12). Each subfamily 

has unique domains besides the catalytic ATPase domain, which allows 

them to act in specific chromatin environments (Manning & Peterson, 

2013). For example, ISWI and Mi-2/Chd1 families have unique function in 

nucleosome spacing in chromatin assembly after replication (Corona & 

Tamkun, 2004). The unique property of SWI/SNF family is that they are 

capable to disassemble nucleosomes to induce stable alterations in the 

nucleosomal DNA (Whitehouse et al., 1999). Finally, INO80 and SWR1 

subfamilies play a role in histone variant exchange. The presence of H2A 

versus H2A.Z variant in the octamer of histones affects stability of the 

nucleosome (Mizuguchi et al., 2004, Papamichos-Chronakis et al., 2011). 
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Figure 12. Characteristic protein domains defining the major SWI2/SNF2 

family members in Arabidopsis thaliana. Reprinted from Gentry and Hennig 

(2014). 

 

The most studied family in the ATP-dependent CRC is the SWI2/SNF2 

(Switch/Sucrose non-fermenting) subgroup. SWI2 and SNF2 genes were 

originally discovered in Saccharomyces cerevisiae by screening for 

mutants affected in mating-type switch (Switch) and ability to growth on 

carbon sources other than glucose (Sucrose non-fermenting) (Abrams et 

al., 1986). In Arabidopsis thaliana, SWI/SNF complexes are involved in 

modulating various developmental and regulatory processes, including 

both vegetative and generative development, flowering time and 

hormonal signaling (Sarnowski et al., 2005, Bezhani et al., 2007, Saez et 

al., 2008, Han et al., 2012, Wu et al., 2012, Archacki et al., 2013, Efroni 

et al., 2013, Sarnowska et al., 2013, Vercruyssen et al., 2014, Zhao et 

al., 2015a, Peirats-Llobet et al., 2016). 

 

The SWI/SNF complexes are highly conserved, although their 

composition is different. This feature reflects the gain of complexity of the 

complexes during evolution. Plant SWI/SNF complexes can be 
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potentially assembled from combinations of identified core subunits and 

an unknown number of putative accessory subunits (Figure 13). 

Developmental processes are responsible for the generation of different 

patterns of gene expression and this expression requires, at the same 

time, different composition of the SWI/SNF complex to regulate them 

tightly in a spatial or temporal manner. 

 

 

Figure 13. Plant SWI/SNF chromatin remodeling complexes with annotated 

subunits (solid line) and unknown candidate auxiliary subunits (broken 
line). The most important component of the CRCs are the ATPases, other 

conserved groups of accessory subunits are the SWI3 group, SNF5 and SWP73 

group. Adapted from Jerzmanowski (2007). relevance of this domain in plants is not clear. Deletion of the
Drosophila Brahma bromodomain affected neither the function
nor chromatin binding of the ATPase [46]. However, in yeast
the SWI2/SNF2 bromodomain was shown to target remodel-
ing complexes to hyperacetylated chromatin [47]. SYDC, the
large and very acidic C-terminal domain of SYD also occurs
in a homologous protein in rice, indicative of an evolutiona-
rily-conserved character [42], see below, for discussion of
possible functions]. In the C-terminal regions of both SYD
and BRM there are AT-hook motifs which are typically found
in HMG I/Y DNA-binding domains (Fig. 3). The two smaller
ATPases, CHR12 and CHR23, lack distinctive C-terminal
domains (Fig. 3).

Thus far, plant chromatin remodeling enzymes have not
been extensively studied. DDM1, involved in maintaining
DNA methylation, is the only protein of over 40 members of

the Arabidopsis SWI/2SNF2 family, which has been shown to
remodel chromatin in biochemical assays [48]. With regard to
the activities of SYD and BRM, genetic, functional and in
vitro interaction studies, have allowed some comparisons to be
made and conclusions drawn. Neither the syd nor the brm null
mutants are embryo lethal, but both have highly pleiotropic
developmental defects [49,50]. In general these defects are not
overlapping. While both syd and brm plants share short stature
and delayed growth, the morphological changes observed in
leaves, flowers and roots are clearly different. Leaves of the
syd mutant are rounded and upward curling whereas those of
brm are severely twisted and curve downward. In contrast to
the characteristic splayed-open floral buds of syd, the flowers
of brm are closed. In addition, the effects of the two mutations
on the appearance of the internal floral organs and on
flowering time in SD and LD are different. Roots of syd are
not affected, whereas in brm the elongation of primary roots is
strongly inhibited and plants develop several lateral roots and
secondary root branches. Taken together, these morphological
observations indicate that SYD and BRM control different
molecular events and that the general phenotypic similarities,
like the overall delay in development or reduced fertility, are
secondary effects resulting from different initial causes. This
conclusion is supported by the finding that SYD and BRM
affect different sets of genes. For example, the flower homeotic
genes AP2, AP3 and PI which are down-regulated in brm [49]
are not affected in the null syd mutant [50]. These findings do
not rule out a certain degree of redundancy. The brm mutation
results in decreased male and female gametophyte transmission
[49] and since SYD is actively expressed during both male and
female gametogenesis, the partial penetrance of the gameto-
phyte defects of brm can be attributed to some functional
overlap between the two ATPases. Mutation of SYD results in
defects in the shoot apical meristem (SAM) that are most
probably due to SYD's involvement in upstream positive
regulation of the expression of meristem-specific transcription
factor WUSCHEL (WUS), a central regulator in SAM
maintenance. Notably, the first evidence of a plant promoter
physically interacting with or recruiting a SNF2 ATPase was

Fig. 2. Plant SWI/SNF complexes—the landscape of possibilities. The
Arabidopsis SWI/SNF complexes that can be potentially assembled from
combinations of identified core subunits (annotated proteins in solid circles) and
an unknown number of candidate auxiliary subunits (broken-line circle).

Fig. 3. Comparison of size and domain organization of four putative Arabidopsis Swi2/Snf2 ATPases [Arabidopsis ChromDB, 5].

333A. Jerzmanowski / Biochimica et Biophysica Acta 1769 (2007) 330–345

MINU 
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SWI/SNF chromatin remodelers have been proposed as “general 

transcription activators” because of their function in sliding nucleosomes 

but they do not have the possibility to assemble them (Clapier & Cairns, 

2012) and display the opposite function to Policomb Group (PcG) 

proteins that are identified as chromatin repressors (Tamkun et al., 1992, 

Wu et al., 2012). However, recent studies have shown that these 

remodeling complexes can also repress gene expression directly (Zhao 

et al., 2015a, Zhu et al., 2013, Han et al., 2012). 

 

All land plants encode three types of SWI/SNF subfamily ATPases: BRM, 

SPLAYED (SYD) and MINUSCULE (MINU) (Sang et al., 2012). Although 

they belong to the same family they show structural differences. BRM is 

the most similar to its metazoan counterparts, while SYD shows a larger 

and acidic C-terminal domain of 200 kDa. This C-terminal domain is 

considered as autoinhibitory and is related to the control of the SYD 

protein accumulation (Su et al., 2006). Besides, MINU proteins are the 

shortest family members showing N- and C-terminal truncated domains. 

The Arabidopsis genome encodes for four members of this subfamily, 

one BRM, one SYD and two MINU. 

 

The work of this thesis will be focused on the BRM ATPase and next 

paragraph will highlight some of its main features. 

 

BRM, the core ATPase of SWI/SNF CRC 

Structure of BRM protein 

BRM is the most studied member of the SWI/SNF subgroup. It has the 

canonical domains found in this family of proteins (Farrona et al., 2004, 

Han et al., 2015). BRM protein includes a N-terminal region with a 

glutamine-rich domain and a helicase SANT-associated domain (HSA). 
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This HSA domain frequently serves as docking site for recruiting 

transcription factors such as LFY and TCP4 (Farrona et al., 2004, 

Szerlong et al., 2008, Wu et al., 2012, Efroni et al., 2013). The HSA 

domain is followed by the catalytic helicase-like ATPase domain and the 

Snf2 ATP-coupling (SnAC) domain, which is very important for catalytic 

activity of BRM. The ATPase domain is the catalytic subunit that displays 

helicase activity. It is the responsible of providing the energy for 

nucleosome dynamics. The ATPase hydrolyzes the ATP molecule to 

obtain the energy to modify the contacts between the DNA and the 

histones in order to reposition or disassemble nucleosomes. The SnAC 

domain is known to be required for mobilizing nucleosomes and its 

presence is required in vivo for transcription regulation but not for the 

complex organization, the substrate recognition or the recruitment 

function (Sen et al., 2013, Sen et al., 2011). BRM has a C-terminal 

domain that contains an AT-hook and a bromodomain (Farrona et al., 

2007, Sen et al., 2011, Han et al., 2015). The AT-hook and the 

bromodomain are important domains for the BRM association with 

chromatin. The AT-hook motif consists in a GRP tripeptide surrounded by 

basic amino acid residues. AT-hook binds to A+T-rich sequences in the 

minor groove of the DNA (Reeves & Beckerbauer, 2001). The 

bromodomain was first reported in the Drosophila protein BRAHMA 

(Zeng & Zhou, 2002) and consists in a conserved module of 

approximately 110 residues responsible for the binding of acetylated 

histones. Both domains are evolutionarily conserved protein modules 

found in many chromatin-associated proteins and in nearly all known 

nuclear histone acetyltransferases (HATs) (Zeng & Zhou, 2002). The 

figure 14 is a scheme of the BRM domain organization. 
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Figure 14. Domain architecture of the A. thaliana BRM protein. Schematic 

representation of the putative domains identified in BRM protein. N-terminal 

domain (green) includes domains related with protein interactions and C-

terminal domain (orange) includes the catalytic subunit, the ATPases and 

several domains related to DNA-histones interactions. 

 

BRM mutants 

BRM is a 6582 nucleotides gene that encodes for a protein of 2193 

residues, whose Mw is around 250 kDa. The studies to date identified 

three BRM T-DNA alleles (brm-1, brm-2 and brm-3) that were 

characterized by Hurtado et al. (2006) and Farrona et al. (2007). brm-1 

and brm-2 represent null mutations, in contrast, the brm-3 expresses a 

truncated BRM protein that lacks a C-terminal segment of 454 amino 

acids encompassing the bromodomain motif. Additionally, three EMS 

alleles (brm-101–brm-103) were identified by Kwon et al. (2006) when 

they were studying Arabidopsis cotyledon boundary genes. These alleles 

correspond to nonsense mutations that presumably permit the synthesis 

of truncated protein products lacking various domains important for the 

biological function of BRM. Two more alleles (brm-4, brm-5) were 

described later by Tang et al. (2008) in the study of seed maturation 

genes. The brm-5 point mutation results in the exchange of Gly to Arg in 

the catalytic domain of BRM protein. Archacki et al. (2009) identified brm-

6 insertional mutant that has a phenotype indistinguishable from that of 

brm-1 null mutant. Recently Xu et al. (2016) described a new allele, brm-

Q-rich HSA! ATPase !SnAC! Bromodomain!

AT-hook !
2192 1 
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7, which was a substitution of a G by an A at the 5663-bp position of 

BRM coding sequence. This mutant exhibited an accelerated vegetative 

phase change phenotype and have more serrated leaves. The brm-3 and 

brm-5 mutants displayed less severe developmental alterations showing 

intermediate elongation and growth defects compared with wild-type and 

brm null mutant plants (Hurtado et al., 2006, Tang et al., 2008). 

 

 

Figure 15. Characteristics of brm mutants and point mutations. Triangles 

indicate T-DNA insertional mutants where the arrows indicate the direction of the 

insertion. Point mutations are indicated with arrows. Modified from Archacki et 

al. (2009). 

 

Along this thesis we performed most of our experiments with brm-3 and 

brm-1 mutants. brm-1 is a null mutant that has a T-DNA insertion in the 

first translated exon, 20 pb downstream the first translated nucleotide. 

brm-1 display a dwarf phenotype with characteristic short and branched 

roots, dark green coloration, curled leaves, homeotic changes in flowers, 

underdeveloped stamens, male sterility and delayed flowering under non-

inductive short-day conditions (Hurtado et al., 2006). brm-3 is an 

hypomorphic mutant, this allele carries a T-DNA insertion just upstream 

of the bromodomain. The insertional mutation causes formation of a 

truncated BRM polypeptide lacking the last 454 residues. Both mutants 
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impair BRM function, but brm-1 has an extreme phenotype. brm mutants 

are slow growing and dwarfed, have defects in cotyledon separation, 

defects in leaves and exhibit reduced apical dominance. brm null mutants 

also have unique root growth phenotypes, defects in the flowering time 

and are male sterile (Farrona et al., 2004, Su et al., 2006, Kwon et al., 

2006, Hurtado et al., 2006, Xu et al., 2016, Sarnowski et al., 2005). 

 

BRM as a growth and development regulator 

Pluripotency and differentiation  

In plants and mammals, SWI/SNF subfamily of chromatin remodelers are 

required to promote both stem cells fate and differentiation (Farrona et 

al., 2004, Tang et al., 2008, Farrona et al., 2011, Wu et al., 2012, Sang et 

al., 2012, Efroni et al., 2013, Vercruyssen et al., 2014, Zhao et al., 

2015a). BRM has been proposed as a regulator of the root cell stem 

niche through alteration of auxin distribution. brm mutant plants showed 

defects in the root stem cells that can be rescued by the overexpression 

of the PLETHORA genes, which maintain the root cell fate (Yang et al., 

2015). On the other hand, BRM and SYD promote differentiation of floral 

organs. brm mutants show transcription repression of all the classes of 

flower homeotic genes (Hurtado et al., 2006). BRM and SYD regulate 

floral homeotic genes through direct interaction with floral transcription 

factors as LFY and SEP3 (Wu et al., 2012). This indicates that SWI/SNF 

remodelers have a promoting function in floral organ identity. Moreover, 

BRM interacts with TCP4, ANGUSTIFOLIA3 (AN3) and 

BREVIPEDICELLUS (BP/KNAT1) to regulate leaf development and 

inflorescence architecture (Efroni et al., 2013, Vercruyssen et al., 2014, 

Zhao et al., 2015a). TCP4 is a member of the CIN-TPC transcription 

factor family, which promotes leaf maturation, AN3 is a transcriptional 

activator of cell proliferation in leaf development and BP/KNAT1 is a 
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KNOX transcription factor controlling the inflorescence shape by directly 

repressing other KNOX genes.  

 

Developmental phase transitions 

BRM is involved in the two major developmental transitions occurring in 

plants. One is the transition from embryo to seedling whereby the plant 

acquires the autotrophic capacity (Bezhani et al., 2007). Upon 

germination in the darkness, seedlings grow up to reach the light, in a 

process called skotomorphogenesis. When seedlings reach the light, 

growth stops, cotyledons expand and photosynthesis begins. brm 

mutants gene expression analysis show that several seed maturation 

and embryonic genes are derepressed during the vegetative 

development and BRM bind to several of this loci (Tang et al., 2008). 

Recent work has focus on this specific role of BRM in juvenile-to-adult 

transition. Xu et al. (2016) identified a direct interaction of BRM to 

miRNA165 promoter that represses its function. miRNA156 is a master 

regulator in this transition in plants. SWINGER (SWN), which is a key 

component of PCR2 (PcG repressive complex 2) acts antagonically to 

BRM at the nucleosome level to assure a fine-tuning of the vegetative 

phase change in Arabidopsis.  

 

 The second major transition occurs when plants change from vegetative 

to reproductive growth. This is the phase where plants allocate resources 

for flower production (Farrona et al., 2011). brm mutants show early 

flowering phenotype in SD and LD conditions, which correlates with a 

derepression of the flowering integrator FLOWERING LOCUS T (FT) and 

the photoperiod-pathway gene CONSTANS (CO) (Farrona et al., 2004). 

Kwon et al. (2006) found that SWI/SNF CRC enhance the expression of 

a set of CUP-SHAPED COTYLEDON (CUC) genes, which are in charge 
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of the control of cotyledon separation in Arabidopsis. Thus, BRM 

repressive function is very important in the control of floral transition 

when the conditions are not favorable for the plant. 

 

Stress response and growth 

Plants are constantly exposed to environmental changes from which they 

cannot scape. This sessile state requires a delicate balance of the 

molecular responses to maintain the integrity of the cellular structures. 

This balance is achieved by fine transcriptional reprogramming of the 

plant responses through, for instance, changes on the accessibility to the 

DNA mediated by chromatin remodeling (Shinozaki & Yamaguchi-

Shinozaki, 2007, Han & Wagner, 2014). brm mutants are hypersensitive 

to ABA and the expression of a key transcriptional regulator of ABA 

response, ABI5, is elevated in the absence of the stress hormone (Han et 

al., 2012). BRM is constitutively bound to the ABI5 promoter and inhibit 

its transcription until the stress triggers the ABA response (Han et al., 

2012). brm mutants also have reduced levels of GAs, and GA exogenous 

application can partial or fully rescue the reduced growth and late 

flowering in short days (Archacki et al., 2013).  

 

Beyond transcription 

Chromatin remodeling ATPases can act in many different pathways, but 

how is that selectivity achieved remains unclear. One proposed 

mechanism of selectivity is via recruitment of the complexes to the target 

loci by transcription factors or lncRNAs (spatiotemporally or 

environmentally controlled). Zhu et al. (2013) discovered a mechanism to 

explain how a long non coding RNA (lncRNA) is capable to guide 

SWI/SNF CRC to silence specific loci. SWI3B, a subunit of the SWI/SNF 
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CRC interact with IDN2, a lncRNA binding protein to direct the complex 

to specific loci to establish their nucleosome positioning. 

 

Chromatin is also important in other processes like DNA repair, 

recombination and replication, processes that control genome integrity. 

SWI/SNF and CHD3 have also been implicated in DNA repair (Bennett et 

al., 2013).  
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General objectives of this thesis are the study of ABA regulation of the 
SWI2/SNF2 chromatin remodeling complex BRAHMA and the generation 
of a stress-inducible promoter for biotechnological use. 
 
 
 
 
Specific objectives are: 
 
1. Characterization of the SWI2/SNF2 chromatin remodeling ATPase 
BRAHMA in ABA signaling and its interaction with core ABA signaling 
components. 
 

 

2. Study of the BRM role in the regulation of ABI4 gene expression 

during post-germination growth. 

 

 

3. Characterization of the PP2CA promoter and its application for stress-

inducible expression of ABA receptors. 
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Chapter One: A direct link between the 
core ABA signaling pathway and the 

chromatin remodeling ATPase BRAHMA 
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CHARACTERIZATION OF brm-3 MUTANT 
Previous results of our laboratory showed a relationship between 

chromatin remodeling through the protein SWI3B, a component of 

SWI/SNF chromatin remodeling complex and the ABA signaling 

phosphatase HAB1. Saez et al. (2008) reported a direct interaction 

between these two processes suggesting that ABA signaling could 

regulate chromatin status. Later on, Han et al. (2012) reported that 

brm-3, a mutant impaired in the core of the SWI/SNF chromatin 

remodeling complexes, the ATPase BRAHMA, showed 

hypersensitivity to ABA in seed germination and seedling 

establishment assays (Figure 16). This implies that BRM acts as a 

negative regulator of the ABA signaling pathway.  

 

 

Figure 16. brm-3 mutant is hypersensitive to ABA. Seedlings were 

grown in MS plates supplemented or not with the indicated ABA 

concentrations. Photographs were taken 11 (MS) and 18 (ABA) days after 

stratification. Reprinted from Han et al. (2012). 

 

MS                          0.5 µM ABA                    0.8 µM ABA 

Col               brm-3 Col             brm-3 Col             brm-3 
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INTERACTIONS BETWEEN BRM AND CORE ABA 
SIGNALING PATHWAY ELEMENTS 

Genetic Interaction between SnRK2.2/2.3 and BRM 
To test for a functional link between the core ABA signaling 

pathway and BRM, we crossed the ABA-hypersensitive brm-3 

mutant to the ABA-insensitive snrk2.2/2.3 mutant to generate the 

snrk2.2/2.3/brm-3 triple mutant. ABA-mediated inhibition of 

seedling establishment was compared among the different genetic 

backgrounds (Figure 17A). We found that the ABA-insensitive 

phenotype of the snrk2.2/2.3 double mutant was attenuated when 

brm-3 was introduced in this genetic background. Likewise, the 

reduced sensitivity of snrk2.2/2.3 to ABA-mediated inhibition of root 

growth was attenuated in the snrk2.2/2.3/brm-3 triple mutant 

(Figure 17B).  

 

 



One: An ABA Phosphorylation Switch Regulates BRM 

 69 

 

Figure 17. ABA insensitivity is dependent on BRM activity in 
different genetic backgrounds. (A) Left: Photographs of Col-0 wild-type 

(white), brm-3 mutant (light grey), snrk2.2/2.3 (dark grey) and 

snrk2.2/2.3/brm-3 triple mutant (black) grown for 7 days on MS medium 

either lacking or supplemented with the indicated ABA concentrations. 

Seeds were germinated in plates lacking or supplemented with ABA, and 

after 7 days seedlings were rearranged on agar plates to illustrate 

seedling growth. Scale bar corresponds to 1 cm. Right: Quantification of 

ABA-mediated inhibition of seedling establishment for the indicated 

genetic backgrounds. Approximately 100 seeds of each genotype were 

sown on each plate and scored for the presence of both green cotyledons 

and the first pair of true leaves 7 days later. Values are averages ± SE of 

three independent experiments. * indicates P < 0.05 (Student’s t-test) 

compared with snrk2.2/2.3 in the same assay conditions. (B) The root 

ABA-insensitive phenotype of snrk2.2/2.3 is attenuated in 

snrk2.2/2.3/brm-3. Quantification of ABA-mediated root growth inhibition 

in the indicated genetic backgrounds. Scale bar corresponds to 1 cm. 

Data are averages ± SE from three independent experiments (n = 30). * 

indicates P < 0.05 (Student’s t-test) compared with snrk2.2/2.3 in the 

same assay conditions. 
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These results suggest that the ABA insensitivity of snrk2.2/2.3 

mutant is in part dependent on BRM repressing the ABA response. 

To further test this idea, we took advantage of a double mutant 

previously generated that combines the brm-101 null mutant and a 

35S:HAB1 overexpressing (OE) line (Saez et al., 2004, Han et al., 

2012). HAB1 OE leads to enhanced dephosphorylation of SnRK2s 

at serine (Ser, S) residues of the kinase-activating loop, which 

prevents SnRK2 activation and ABA signaling (Umezawa et al., 

2009, Vlad et al., 2009, Antoni et al., 2013), and thus phenocopies 

higher-order snrk2 mutants. HAB1 OE causes ABA insensitivity in 

the root. The ABA-insensitive phenotype of HAB1 OE lines was 

attenuated in brm-101 HAB1 OE plants (Figure 18), which likewise 

suggests that the HAB1 gain-of-function effect on ABA signaling is 

partially dependent on BRM activity. 

 

 

Figure 18. The root ABA-insensitive phenotype of HAB1 OE line is 

attenuated in brm-101 HAB1 OE. Data are averages ± SE from three 

independent experiments (n = 30, except brm-101 with n = 14). * indicates 

P < 0.05 (Student’s t-test) compared with HAB1 OE line in the same 

assay conditions. 
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Finally we tested the effect of stratification time on the germination 

rate of brm-3 mutant and other ABA-insensitive mutants as 

snrk2.2/2.3 and snrk2.2/2.3/brm-3. Snrk2s mutants are insensitive 

to ABA and did not display dormancy phenotype. In contrast, as 

shown in the figure 19, without stratification, the brm-3 mutant 

germinates poorly whereas snrk2.2/2.3 and snrk2.2/2.3/brm-3 

mutants germinate well. Stratification of the seeds for 24 h in 

darkness at 4ºC improved the germination rate in Col-0 and brm-3. 

Moreover, all mutants dramatically improved their germination rate 

reaching close to 100% after 72 h of stratification. 

 

 

Figure 19. Dormant phenotype of brm-3 seeds. Quantification of Col-0 

wild-type (white), brm-3 mutant (light grey), snrk2.2/2.3 (dark grey) and 

snrk2.2/2.3/brm-3 triple mutant (black) seeds without stratification, 24 and 

72 h of stratification in darkness at 4ºC. Averages of three independent 

experiments are shown in SD. Approximately 50 seeds/genotype were 

used in each experiment. * indicates P < 0.05 (Student’s t-test) compared 

with snrk2.2/2.3 in the same assay conditions. 
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Physical interaction of BRM with SnRK2s and clade A 
PP2Cs 
BRM is an SWI/SNF subgroup ATPase and has the canonical 

domains found in this family of proteins (Han et al., 2015) (Figure 

20). BRM has an N-terminal region with a glutamine-rich domain 

and a helicase SANT-associated domain (HSA), which frequently 

serves as docking site for recruiting transcription factors such as 

leafy (LFY) and TCP family transcription factor 4 (TCP4) (Farrona 

et al., 2004, Szerlong et al., 2008, Wu et al., 2012, Efroni et al., 

2013). This is followed by the catalytic helicase-like ATPase 

domain, the Snf2 ATP-coupling (SnAC) domain, and a C-terminal 

domain which contains an AT-hook and a bromodomain; these 

domains are important for catalytic activity of BRM and for BRM 

association with chromatin, respectively (Farrona et al., 2007, Sen 

et al., 2011, Han et al., 2015). 

 

 

Figure 20. Domain architecture of the A. thaliana BRM protein. 

Colored boxes correspond to special nomenclature followed along this 

work. Adapted from Farrona et al. (2004). 

 

The genetic interaction between BRM and SnRK2s, together with 

data obtained in phosphoproteomic studies (Umezawa et al., 2013, 

Wang et al., 2013a), combined with the known role of BRM in 

  D2 C3 C2 ATPase D1 

BRMN BRMC 

Q-rich HSA! ATPase ! SnAC! Bromodomain!AT-
hook !

2192 1 
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preventing ABA response in the absence of stress (Han et al., 

2012), prompted us to test whether BRM is a direct target of the 

core ABA signaling pathway. Because BRM is a large protein 

(2193 amino acid residues (aa)), it is difficult to express transiently; 

to overcome that inconvenience, we first generate and express in 

tobacco leaves different BRM proteins fragments, BRM N (1–950 

aa), BRM C2 (1541-1890 aa), BRM C3 (1891-2193 aa) and BRM 

C2C3 (691-2193 aa), fused to green fluorescent protein (GFP). All 

the fusion proteins were localized to the nucleus of plant cells 

(Figure 21), as expected for a chromatin related protein. Location in 

nuclear speckles was observed for BRM C2-GFP and BRM C3-

GFP, whereas BRM N-GFP showed a nuclear pattern as nuclear 

GFP, which was also expressed in the cytoplasm. 

 

 

Figure 21. BRM fragments are localized in the nucleus of 

Agrobacterium-infiltrated tobacco leaves. Confocal microscopy of 

transiently transformed N. benthamiana epidermal cells co-expressing 

green fluorescent protein (GFP) or GFP-BRM fusions and the nucleolar 

marker, fibrillarin, tagged with red fluorescent protein (RFP). Bars 

correspond to 20 µm. Right panel shows CSLM images of roots from 

transgenic lines expressing full-length BRM-GFP under the control of their 

own promoter. 
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Next, we generate translational fusions of the N-terminal 1–950 

(BRMN) and C-terminal 1541–2193 (BRMC) residues to N-terminal 

part of the yellow fluorescence protein (YFPN). We used BiFC 

technique in A. thaliana leaf protoplasts (Figure 22) and tobacco 

leaf epidermal cells (Figure 23) to test whether BRM physically 

interacts with key components of the ABA signaling pathway, 

namely SnRK2s and clade A PP2Cs. We found that both BRMN 

and BRMC were able to interact with either the OST1/SnRK2.6 

kinase or the HAB1 PP2C phosphatase in the nucleus of A. 

thaliana protoplasts (Figure 22). A negative control was provided 

by an unrelated nuclear localized protein (NC) that lacks interaction 

with both HAB1 and OST1/SnRK2.6 (Figure 22) (Wu et al., 2012). 

 

 

 

Figure 22. BiFC interaction of HAB1 and OST1/SnRK2.6 with BRMN 

and BRMC in the nucleus of A. thaliana leaf protoplasts. Top: The 
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YFP fluorescence was merged with red fluorescence generated by 

chloroplasts. Bottom: Quantification of the percentage of YFP-positive 

cells observed. Values are averages ± SE from three independent 

experiments. The number of protoplasts scored per interaction test was 

>600. NC, negative control.  

 

We confirmed and extended this interaction by BiFC assays in 

tobacco epidermal cells, and showed that SnRK2.2, SnRK2.3 and 

SnRK2.6 kinases were able to interact with BRMN and BRMC 

(Figure 23A). SnRK2.6 Δ280, which lacks the C-terminal ABA box 

(Vlad et al., 2009), was no not able to interact with BRMN or 

BRMC. The interaction of BRMN with SnRK2s was confirmed by 

using yeast two-hybrid (Y2H) interaction assays. The BRMC 

fragment, which contains chromatin interacting domains, could not 

be assayed in Y2H assays because of autoactivation (Figure 23C, 

left panel). Likewise, two clade A PP2Cs, PP2CA and HAB1, were 

able to interact with BRMN and BRMC on the basis of BiFC (Figure 

23B). In contrast, the closely related HAI1 PP2C did not interact 

with BRM in BiFC assays. The interaction of BRMN with HAB1 and 

PP2CA was confirmed using Y2H assays (Figure 23C, right panel). 

In addition we found that AHG1, another clade A PP2C expressed 

mainly in seeds, interacted with BRMN in Y2H tests. In more 

stringent Y2H assay conditions (medium lacking Ade and His) we 

could not detect an interaction between HAB1 or ABI2 and BRMN; 

however, in medium lacking His and supplemented with 3AT, we 

confirmed the interaction of HAB1 with BRMN (Figure 23C, bottom 

right panel). 
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Figure 23. BiFC and Y2H analyses show interaction between BRM 

and SnRK2s/PP2Cs. (A) BiFC interaction of SnRK2.2, SnRK2.3, and 

SnRK2.6 with BRMN and BRMC in the nucleus of tobacco leaf cells. 

Tobacco leaves were infiltrated with a mixture of A. tumefaciens 
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suspensions harboring the indicated constructs and the silencing 

suppressor p19. (B) BiFC interaction of PP2CA and HAB1 with BRMN 

and BRMC. Scale bars on A and B corresponds to 20 µm. (C) Left: The 

BRMN interaction in (A) was confirmed in Y2H assays. Dilutions (10-1, 10-

2, and 10-3) of saturated cultures were spotted onto the plates, and 

photographs were taken after 5 days. Interaction was determined by 

growth assay on medium lacking His and Ade. Right: Interaction in (B) 

was confirmed in Y2H assays conducted as BRM-SnRKs assay except for 

the growth in the case of HAB1 that was also tested on medium lacking 

His and supplemented with 0.1 mM 3AT. 

 

To test whether full-length BRM protein is able to interact with 

SnRK2 kinases and PP2C phosphatases in plant cells we 

performed co-immunoprecipitation (coIP) experiments using the 

full-length BRM protein expressed in brm-1 background as 

ProBRM:BRM-HA. First, we demonstrated that a fraction of HA 

tagged-SnRK2.2/2.3 and of HA-PP2CA proteins, as well as of 

BRM-HA itself, could be detected in soluble nuclear extracts by 

biochemical fractionation (Figure 24).  

 

 

Figure 24. Biochemical fractionation and immunoblot analysis of 

protein extracts prepared from A. thaliana transgenic plants 

expressing 35:3HA-PP2CA, 35:3HA-SnRK2.2, 35:3HA-SnRK2.3, and 
ProBRM:BRM–HA. Nuclear total (Nt), nuclear soluble (Ns) and nuclear 

insoluble (Ni) protein extracts were analyzed by immunoblotting using α-

HA and α-H3 antibodies. 

α-H3 

ProBRM:BRM-HA SnRK2.2-OE PP2CA-OE SnRK2.3-OE 

250 - 

NT NS NI 

70 - 

15 - 

55 - 

NT NS NI NT NS NI NT NS NI 

α-HA 
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Next, we transformed ProBRM:BRM-GFP plants with 35S:3HA-

SnRK2.2 or 35S:3HA-PP2CA and generated stable transgenic 

lines. After anti-HA antibody immunoprecipitation in nuclear 

extracts from ProBRM:BRM-GFP 35S:3HA-SnRK2.2 plants, we 

tested for coIP of BRM-GFP using anti-GFP monoclonal antibody 

(Figure 25). BRM was co-immunoprecipitated with SnRK2.2 in the 

absence or presence of ABA (50 µM for 1 h). Hence, ABA-

mediated activation of SnRK2.2 is not a prerequisite for its 

interaction with BRM. This result is in agreement with Y2H assays, 

which show that non-ABA-activated SnRK2s are able to interact 

with BRMN (Figure 23C, left panel).  

 

To test the interactions between BRM and PP2CA in plant cells, we 

first immunoprecipitated BRM-GFP with anti-GFP antibody and 

tested for coIP of 3HA-PP2CA using anti-HA. We detected PP2CA 

coIP in the absence but not the presence of ABA (50 µM for 1 h). In 

the presence of ABA, PP2CA forms a highly stable PP2C–ABA–

receptor complex in both the nucleus (predominantly) and cytosol 

of plant cells (Pizzio et al., 2013). Thus ABA treatment impairs the 

interaction of PP2CA with BRM (Figure 25), which may be the 

result of PP2CA being hijacked by ternary phosphatase–ABA–

receptor complexes. 
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Figure 25. coIP of BRM and SnRK2.2 or PP2CA. Double transgenic 

lines containing ProBRM:BRM-GFP and HA-tagged SnRK2.2 or PP2CA 

were used for coIP experiments. Top: Nuclear soluble protein extracts 

prepared from mock- or ABA-treated plants (50 µM for 1 h) were 

immunoprecipitated using either α-HA (left) or α-GFP (right). CoIP was 

revealed using α-GFP or α-HA, respectively. Bottom: Histograms show 

the quantification of the protein signal obtained with analyzer LAS3000 

and Image Guache V4.0 software. 
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CORE ABA SIGNALING COMPONENTS MEDIATE 
PHOSPHORYLATION/DEPHOSPHORYLATION 
OF BRM 

In vitro phosphorylation/dephosphorylation of the 
carboxy-terminal region of BRM by OST1/PP2CA 
Several large-scale experiments have identified phosphorylation 

sites in BRM by mass spectrometry (The Arabidopsis Protein 

Phosphorylation Site Database [PhosPhAt 4.0; http:// phosphat.uni-

hohenheim.de/ phosphat.html]) (Durek et al., 2010, Umezawa et 

al., 2013, Wang et al., 2013a). In particular, more than 10 

phosphopeptides in the C-terminal domain of BRM were identified 

following ABA treatment in the wt that were absent in 

snrk2.2/2.3/2.6 triple mutant or were induced by osmotic stress 

(Umezawa et al., 2013, Wang et al., 2013a, Xue et al., 2013); 

Supplemental Excel and Figure 31). These studies suggest that 

BRM phosphorylation is dependent on SnRK2s; however, direct in 

vitro evidence was not provided. 

 

Phosphoproteomic studies identified S1760 and S1762 as putative 

phosphorylation targets of SnRK2.2/2.3/2.6 that lay in the well-

known LxRxxS consensus site for OST1 phosphorylation 

(Sirichandra et al., 2010, Umezawa et al., 2013, Wang et al., 

2013a). We reasoned that residues critical for BRM function in this 

region should be evolutionarily conserved. For instance, S1760 and 

S1762 were found to be conserved in the analyzed plant genomes 

(Figure 26).  
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Figure 26. Residues S1760 and S1762 of A. thaliana BRM are 

evolutionary conserved in different plant species. C-terminal amino 

acid sequence of BRM in different plant species such as Medicago 

truncatula, Glycine max, Populus trichocarpa, Ricinus communis, Vitis 

vinifera, Solanum lycopersicum, Zea mays, Sorghum bicolor, Oryza 

sativa. 

 

The C-terminal region of BRM contains domains that are critical for 

nucleosome interaction and normal function of BRM (Farrona et al., 

2007). For instance, the potential phosphorylation sites (S1760 and 

S1762) are located between the AT hook, which is a non-specific 

DNA-binding domain rich in lysines (Lys, K) and arginines (Arg, R) 

required for tethering of BRM to chromatin (Bourachot et al., 1999) 

and the bromodomain, which is known to interact with acetylated 

Lys of histones H3 and H4 (Dhalluin et al., 1999, Farrona et al., 

2007) (Figure 20). Further support for the importance of this 

domain comes from the brm-3 allele, which carries a T-DNA 

insertion just upstream of the bromodomain. This insertional 

mutation causes formation of a truncated BRM polypeptide lacking 

the last 454 residues and impairs BRM function (Farrona et al., 
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2007). Finally, additional potential SnRK2 phosphorylation sites are 

located after the bromodomain (Supplemental Excel and Figure 

26). 

 

To test whether BRM is a direct target of SnRK2s, we generated 

recombinant fragments of this chromatin remodeling ATPase for in 

vitro phosphorylation assays. We purified two histidine-tagged C-

terminal domain fragments (BRM C2 [residues 1541–1890] and 

BRM C3 [residues 1891–2193]) and one N-terminal fragment as an 

MBP fusion protein (MBP-BRM D2 [residues 684–950], which 

contains the HSA domain) (Figure 27). 

 

 

Figure 27. Coomassie gel staining of the proteins used in the 

phosphorylation assay. MBP-BRM D2 was purified using amylose 

affinity chromatography (left panel), whereas His-tagged PP2CA, OST1, 

BRM C2, BRM C3, ABF2ΔC and PYL8 were purified using Ni-NTA affinity 

chromatography. ABF2 is a direct target of OST1 used as a positive 

control of phosphorylation. 
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Next, we tested these fragments as in vitro substrates in a 

phosphorylation assays with the OST1/SnRK2.6 kinase (Figure 

28). Recombinant OST1 is 10-fold more active than SnRK2.2 and 

SnRK2.3 in phosphorylation assays as determined by [γ-32P] ATP 

labeling (Ng et al., 2011). Fragment BRM C2, which migrates just 

below OST1, and fragment BRM C3 were phosphorylated in vitro 

by OST1 and, as previously reported (Dupeux et al., 2011a, Ng et 

al., 2011), OST1 was autophosphorylated and is able to 

phosphorylate directly a target protein such as the transcription 

factor ABF2 (Figure 28). In contrast to BRM C2 and BRM C3, the 

BRM D2 fragment was not phosphorylated by OST1 (Figure 28, 

right panel). Addition of the PP2CA phosphatase 45 min after the 

phosphorylation reaction took place led to dephosphorylation of 

both the OST1 and the BRM fragments (Figure 28, left panel). 

However, addition of the PP2CA phosphatase together with PYL8 

and ABA did not result in BRM or OST1 dephosphorylation (Figure 

28, left panel). This was expected, since PYL8 inhibits PP2CA 

activity in an ABA-dependent manner (Antoni et al., 2012). These 

results suggest that ABA-mediated activation of SnRK2s initiated 

by PYR/PYL ABA receptors leads to phosphorylation of BRM, 

whereas the clade A PP2CA is able to dephosphorylate BRM when 

ABA levels are low. 
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Figure 28. In vitro phosphorylation of BRM C2 and BRM C3 

fragments by OST1/SnRK2.6. Subsequent addition of PP2CA 

dephosphorylates BRM C2 and BRM C3, whereas co-incubation of 

PP2CA with PYL8 in the presence of ABA (10 µM) prevents the 

dephosphorylation of BRM C2 and BRM C3. The BRM D2 fragment is not 

phosphorylated by OST1, in contrast to a positive control, ABF2ΔC (Pizzio 

et al., 2013) or the BRM C3 fragment. 

 

Identification of BRM phosphorylated sites by OST1 
Next, we performed in vitro cold phosphorylation of BRM C2 and 

BRM C3 by OST1 to identify by proteomic analysis the precise 

residues phosphorylated. After incubation of BRM C2 and BRM C3 

with OST1, phosphopeptides were enriched by immobilized metal 

affinity chromatography (IMAC) and Oligo R3 reversed-phase 

chromatography (Navajas et al., 2011). Phosphopeptide analysis 

was performed using CID/ETD fragmentation of the most abundant 

ions and liquid chromatography–tandem mass spectrometry (LC–

MS/MS) (Navajas et al., 2011). For protein identification, CID and 

ETD spectra obtained by LC–MS/MS system were searched 
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against the SwissProt database using a licensed version (v.2.3.02) 

of Mascot (Matrix Science, London, UK) as the search engine. 

Using this strategy, we identified one phosphopeptide in BRM C2, 

SGpS1762WAHDR, and three phosphopeptides in BRM C3: 

NALSFSGSAPTLVS(T)2029P(T)2031PR, TGGS(S)2120(S)2121 

PVSPPPAMIGR, and SPVpS2139GGVPR, whose CID/ETD 

spectra are shown in Figure 30. The fragmentation pattern of some 

of the phosphorylated peptides in the CID/ETD spectra did not 

allow the unambiguous assignment of the phosphate group to 

specific S/T residues (shown in parentheses in Figure 30). In these 

cases, the peptide sequence and the number of phosphorylation 

sites in the peptide could be derived from the mass spectrum, but 

not the precise location within the sequence. However, for the 

SGpS1762WAHDR and SPVpS2139GGVPR phosphorylated 

peptides, the precise location of the phosphorylation site was 

derived from the mass spectrum. 

 

 

Figure 29. Schematic representation of partial BRM protein. The 

locations of the four phosphorylation sites in the C-terminal part of BRM 

identified in this work are indicated with violet symbols. 

 

The four BRM phosphopeptides identified here (Figure 29) 

matched those deposited in PhosPhAt database based on in vivo 

phosphoproteomics (Durek et al., 2010). In particular, the genetic-

phosphoproteomic studies performed by Wang et al. (2013a) and 
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Umezawa et al. (2013) yielded BRM phosphopeptides that 

matched those identified in our in vitro analysis (Supplemental 

Excel). However, those studies did not discern whether the 

identified BRM phosphopeptides were a direct target of SnRK2s or 

downstream targets of MAPKs/GSKs that might be dependent on 

SnRK2 function (Umezawa et al., 2013). Motif analysis of ABA-

responsive phosphopeptides has identified four groups of motifs 

(Umezawa et al., 2013). Motif analysis of the phosphorylated BRM 

peptides identified in our assays revealed that SGpS1762WAHDR 

matched motif 1: (K/R) xx(pS/pT), whereas SPVpS2139GGVPR 

matched motif 4: (S) xx(pS). The LQRSGS1762WAHDR peptide, 

moreover, matches a well-known LxRxxS consensus site for OST1 

phosphorylation (Sirichandra et al., 2010), and phosphorylation of 

both Ser1760 and Ser1762 was found in BRM phosphopeptides 

present in PhosPhAt 4.0 (Umezawa et al., 2013, Wang et al., 

2013a). The phosphopeptides TGGS(S)2120(S)2121PVSPPPAMIGR, 

NALSFSGSAPTLVS(T)2029P(T)2031PR, and SPVpS2139GGVPR 

match motif 3 (pS/T-P; pSxP; pSPxpS), and we found in PhosPhAt 

4.0 evidence for in vivo existence of the corresponding 

phosphopeptides (Umezawa et al., 2013, Wang et al., 2013a). In 

addition to the OST1 phosphorylation sites identified in this study, 

other putative SnRK2 phosphorylation sites, for instance 

EIEDDIAGYpS1629EEpS1632pS1633EERNIDpS1640NEEE, were 

previously identified in the C terminus of BRM that match the 

[acidic pS acidic] consensus (Umezawa et al., 2013, Wang et al., 

2013a).  
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Figure 30. Identification of four phosphorylation sites in BRM C-

terminal region. Spectra obtained by MS/MS of phosphorylated peptides 

are shown and annotated.  

 

In summary, our in vitro phosphorylation assays together with in 

vivo phosphoproteomic studies indicate that the BRM C terminus is 

a hotspot for ABA-dependent phosphorylation (Supplemental Excel 

and Figure 31). We also provide direct evidence that OST1 is able 

to phosphorylate Ser1762 and Ser2139 residues, and either 

S2120/S2121 or T2029/2031 in the C-terminal part of BRM. 
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Figure 31. BRM phosphopheptides in PhosPhAt 4.0 identified 

through in vivo phosphoproteomic studies and in vitro OST1 

phosphorylation assays of BRM C2 and BRM C3 fragments. Green, 

phosphopeptides located in N terminal; blue and red, phosphopeptides 

located in C terminal; red highlighted-white writing, phosphorylation sites 

identified in this work after in vitro OST1 phosphorylation. 

Supplemental Figure 3. BRM phosphopheptides in PhosPhAt 4.0 identified through in 
vivo phosphoproteomic studies and in vitro OST1 phosphorylation assays of BRM C2 
and BRM C3 fragments (this work). 
 
green, phosphopeptides N-terminal located 
blue and red, phosphopeptides C-terminal located 
red, phosphorylation sites identified in this work after in vitro OST1 phosphorylation 
 
M1QSGGSGGGPARNPAMGPAGRTASTSSAASPSSSSSSVQQQQQQQQQQQQQQQLASRQQQQQHRN
SDTNENMFAYQPGGVQGMMGGGNFASSPGSMQMPQQSRNFFESPQQQQQQQQQGSSTQEGQQNFN
PMQQAYIQFAMQAQHQKAQQQARMGMVGSSSVGKDQDARMGMLNMQDLNPSSQPQASSSKPSGDQ
FARGERQTESSSQQRNETKSHPQQQVGTGQLMPGNMIRPMQAPQAQQLVNNMGNNQLAFAQQWQA
MQAWARERNIDLSHPANASQMAHILQARMAAQQKAGEGNVASQSPSIPISSQPASSSVVPGENSP
HANSASDISGQSGSAKARHALSTGSFApSTSSPRMVNPAMNPFSGQGRENPMYPRHLVQPTNGMP
SGNPLQTSANETPVLDQNASTKKSLGPAEHLQMQQPRQLNTPTPNLVAPSDTGPLSNSSLQSGQG
TQQAQQRSGFTKQQLHVLKAQILAFRRLKKGEGSLPPELLQAISPPPLELQTQRQIpSPAIGKVQ
DRSSDKTGEDQARSLECGKESQAAApSSNGPIFSKEEDNVGDTEVALTTGHSQLFQNLGKEAT(S
)TDVATKEEQQTDVFPVKSDQGADSSTQKNPRSDSTADKGKAVASDG(S)QSKVPPQANpSPQPP
KDTASARKYYGPLFDFPFFTRKLDSYGSATANANNNLTLAYDIKDLICEEGAEFLSKKRTDSLKK
INGLLAKNLERKRIRPDLVLRLQIEEKKLRLSDLQSRVREEVDRQQQEIMSMPDRPYRKFVRLCE
RQRLEMNRQVLANQKAVREKQLKTIFQWRKKLLEAHWAIRDARTARNRGVAKYHEKMLREFSKRK
DDGRNKRMEALKNNDVERYREMLLEQQTNMPGDAAERYAVLSSFLTQTEDYLHKLGGKITATKNQ
QEVEEAANAAAVAARLQGLSEEEVRAAATCAREEVVIRNRFTEMNAPKENSSVNKYYTLAHAVNE
VVVRQPSMLQAGTLRDYQLVGLQWMLSLYNNKLNGILADEMGLGKTVQVMALIAYLMEFKGNYGP
HLIIVPNAVLVNWKSELHTWLPSVSCIYYVGTKDQRSKLFSQEVCAMKFNVLVTTYEFIMYDRSK
LSKVDWKYIIIDEAQRMKDRESVLARDLDRYRCQRRLLLTGTPLQNDLKELWSLLNLLLPDVFDN
RKAFHDWFAQPFQKEGPAHNIEDDWLETEKKVIVIHRLHQILEPFMLRRRVEDVEGSLPAKVSVV
LRCRMSAIQSAVYDWIKATGTLRVDPDDEKLRAQKNPIYQAKIYRTLNNRCMELRKACNHPLLNY
PYFNDFSKDFLVRSCGKLWILDRILIKLQRTGHRVLLFSTMTKLLDILEEYLQWRRLVYRRIDGT
TSLEDRESAIVDFNDPDTDCFIFLLSIRAAGRGLNLQTADTVVIYDPDPNPKNEEQAVARAHRIG
QTREVKVIYMEAVVEKLSSHQKEDELRSGGpS1452VDLEDDMAGKDRYIGSIEGLIRNNIQQYKID
MADEVINAGRFDQRTTHEERRMTLETLLHDEERYQETVHDVPSLHEVNRMIARSEEEVELFDQMD
EEFDWTEEMTNHEQVPKWLRASTREVNATVADLSKKPSKNMLSSpS1593NLIVQPGGPGGERKRGR
PKSKKINYKEIEDDIAGYpS1629EEpS1632pS1633EERNIDpS1640NEEEGDIRQFDDDELpT1657GA
LGDHQTNKGEFDGENPVCGYDYPPGSGSYKKNPPRDDAGSSGSSPE(S)HRSKEMApS1714PVpS17

18pS1719QKFGpS1723LSALDTRPGpS1733VSKRLLDDLEEGEIAASGDSHIDLQRpS1760GpS1762WA
HDRDEGDEEQVLQPTIKRKRSIRLRPRQTAERVDGSEMPAAQPLQVDRSYRSKLRTVVDSHSSRQ
DQSDSSSRLRSVPAKKVASTSKLHVSSPKSGRLNATQLTVEDNAEASRE(T)WDGpT1883pS1884P
IpS1887(S)(S)NAGARMSHIIQKRCKIVISKLQRRIDKEGQQIVPMLTNLWKRIQNGYAAGGVNN
LLELREIDHRVERLEYAGVMELASDVQLMLRGAMQFYGFSHEVRSEAKKVHNLFFDLLKMSFPDT
DFREARNALSFSGSAPTLVpS2028pT2029PTPRGAGISQGKRQKLVNEPEpT2051EPpS2054pS2055P
QR(s)QQRENSRIRVQIPQKETKLGGTTSHTDESPILAHPGELVICKKKRKDREKSGPKTRpT2116

GGSpS2120pS2121PVpS2124PPPAMIGRGLRpS2136PVpS2139GGVPRETRLAQQQRWPNQPTHPNNS
GAAGDSVGWANPVKRLRTDSGKRRPSHL2192 



One: An ABA Phosphorylation Switch Regulates BRM 

 89 

INTERPLAY AMONG ABA CORE ELEMENTS 
AND BRM 

PYR/PYL ABA receptors impair the interaction of PP2CA 
with BRM 
Our in vitro results indicated PP2CA was able to dephosphorylate 

the C-terminal region of BRM after its phosphorylation by OST1 

only when PP2CA was not complexed with PYL8 in the presence 

of ABA (Figure 28). Moreover, in planta ABA treatment was able to 

prevent coIP of PP2CA with full-length BRM (Figure 25). These 

data prompted us to examine whether ABA and PYR/PYL ABA 

receptors modulate the direct interaction between BRM and 

PP2CA. Toward this end we employed a yeast three-hybrid (Y3H) 

approach (Brachmann & Boeke, 1997). As showed in the figure 32 

the interaction between the GAL4 DNA-binding domain (GBD)-

BRMN and the GAL4 transcriptional activation domain (GAD)-

PP2CA was disrupted in an ABA-dependent manner by the 

presence of PYL4 or PYL5. ABA itself did not affect the interaction 

of BRMN and a well-known partner of BRM, namely the SWI3C 

subunit of the SWI/SNF chromatin-remodeling complex (Hurtado et 

al., 2006, Jerzmanowski, 2007) (Figure 32). 
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Figure 32. PYR/PYL ABA receptors block the interaction of PP2CA 

with BRM in an ABA-dependent manner. Dilutions (10-1, 10-2, and 10-3) 

of saturated cultures were spotted onto the plates, and photographs were 

taken after 5 days. Interaction was determined by growth assay on 

medium lacking His, lacking His and supplemented with 0.1 mM 3AT and 

lacking His and supplemented with 0.1 mM 3AT and 10 µM ABA. 

 

We also examined whether the interaction of SnRK2.3 with BRM 

was disrupted by the presence of PP2CA, which has been reported 

to interact with SnRK2.3 in Y2H assays (Umezawa et al., 2009). 

The presence of PP2CA did not disrupt the BRM–SnRK2.3 

interaction (Figure 33). These results suggest that under basal low 

ABA levels, where PP2Cs are not forming stable ternary 

complexes with PYR/PYLs, the presence of free PP2C might not 

affect the interaction between SnRK2 and BRM, in agreement with 

the coIP results obtained in Figure 25. Under these conditions, 

however, the activation loop of SnRK2s is not phosphorylated and, 

hence, the kinase is not active (Fujii et al., 2009). 
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Figure 33. Presence of PP2CA does not interfere with the interaction 
between SnRK2.3 and BRMN in yeast. Dilutions (10-1, 10-2, and 10-3) of 

saturated cultures were spotted onto the plates, and photographs were 

taken after 5 days. Interaction was determined by growth assay on 

medium lacking His and Ade. 

 

BRMS1760D S1762D phosphomimetics display ABA 

hypersensitivity and increased ABI5 expression 
Because BRM represses ABA response during germination, in 

large part by preventing ABI5 expression in the absence of ABA 

(Han et al., 2012), we hypothesized that phosphorylation of BRM 

by SnRK2s – key positive regulators of ABA signaling – might lead 

to inactivation of BRM and activation of ABA response. Direct 

biochemical assay of BRM chromatin-remodeling activity in the 

phosphorylated and non-phosphorylated form was not feasible 

because we could not obtain sufficient recombinant protein, either 

by expression in E. coli or insect cells using a baculovirus vector, to 

test in vitro remodeling activity. As an alternative approach to test 

the effect of SnRK2 phosphorylation on BRM activity and taking 

advantage of the phosphorylation sites identified, we designed a 

BRM phosphomimetic mutant where Ser residues were replaced 
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by aspartic acid (Asp, D). Negatively charged amino acids such as 

Asp or glutamic acid (Glu, E) can frequently mimic the effect of 

phosphorylated Ser (Konson et al., 2011). A BRMS1760D S1762D 

phosphomimetic mutant was generated and introduced into the 

brm-3 background under the control of its own promoter. Analysis 

of ABA-mediated inhibition of seed germination and seedling 

establishment assays revealed that transgenic lines expressing 

BRMS1760D S1762D were ABA hypersensitive compared with wt 

(Figure 34). 

 

 

 

Figure 34. BRM phosphomimetic mutant (2S-D) shows ABA 

hypersensitivity during seedling establishment compared with wt, 
brm-3 or brm-1 mutant transformed with wt BRM (2S). Top: 

Photographs of the indicated genetic backgrounds grown for 4 days on 
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MS medium either lacking or supplemented with ABA. Scale bar 

corresponds to 0.5 cm. Bottom: Quantification of cotyledon greening 4 

days after sowing. Values are averages of two independent biological 

experiments. The error bars are proportional to the standard error of the 

pooled percentage computed using binominal distribution. * indicates 

P<0.01 (Chi-squared test) compared with wt in the same assay 

conditions. 

 

BRMS1760A S1762A phosphomutant transgenic plants in the brm-3 

background, or BRM WT in a brm mutant background, by contrast, 

did not display ABA hypersensitivity (Figure 34 and 35).  

 

 

Figure 35. BRMS1760A S1762A phosphomutant does not show ABA 

hypersensitivity during seedling establishment compared with wt. 

The error bars are proportional to the standard error of the pooled 

percentage computed using binominal distribution. * indicates P < 0.01 

(Chi-squared test) compared with wt in the same assay conditions. 
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Moreover, the expression of a direct BRM target, ABI5, was 

elevated in BRM phosphomimetic mutant lines, relative to the wt 

(Figure 36). These results are consistent with the idea that 

phosphorylation of BRM leads to release of its inhibitory effect on 

ABI5 expression (Figure 37). Conversely, these results suggest 

that PP2C-mediated dephosphorylation of BRM serves to maintain 

its repressive effect on ABI5 expression. 

 

 

Figure 36. Expression of ABI5 during seedling establishment in BRM 

phosphomimetic mutant compared to wt and brm-3. Two-day-old 

seedlings that were mock- or 50 µM ABA-treated for 1 h were used for 

ABI5 expression analysis. The error bars are proportional to the standard 

error of the pooled percentage computed using binominal distribution. 

 

A model integrating BRM regulation of the ABA signaling pathway 

is shown in figure 37, where BRM activity blocks ABI5 expression 

when ABA levels are low or what is the same, when the 

environmental conditions do not require the activation of the stress 

response. In contrast, when drought stress occurs, ABA level rise 

and ABA signaling pathway is activated, activating at the same 

time the kinases that will phosphorylate BRM inducing its inhibition 
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and allowing ABI5 activation and the consequent activation of the 

ABA-regulated genes to face stress condition. 

 

 

Figure 37. Model for the regulation of BRM activity through inhibitory 
SnRK2-dependent phosphorylation and restorative PP2C-dependent 

dephosphorylation. When ABA levels increase, SnRK2s are activated 

and clade A PP2Cs are inhibited by PYR/PYL ABA receptors. This allows 

SnRK2s to phosphorylate BRM, which leads to inhibition of BRM activity 

and ABI5 induction. At low ABA levels, dephosphorylation of BRM by 

PP2CA/HAB1 restores BRM activity and repression of ABI5 expression. 
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BRM IS GENETICALLY AND PHYSICALLY 
RELATED WITH ABI4 

Genetic Interaction between ABI4 and BRM 
Loss of BRM activity leads to destabilization of a nucleosome 

involved in repression of ABI5 transcription and therefore ABI5 acts 

downstream of BRM in ABA signaling (Han et al., 2012). Reduction 

of BRM activity in the brm-3 allele leads to enhanced expression of 

ABI5 in 2-d-old seedlings and accordingly, brm-3 is ABA-

hypersensitive in ABA-mediated inhibition of cotyledon greening 

assays (Han et al., 2012). By contrast, the brm-3 abi5-7 double 

mutant is not ABA hypersensitive and develops green cotyledons 

at 1 µM ABA, which otherwise fully inhibits cotyledon greening in 

brm-3. However, the brm-3 abi5-7 double mutant is less sensitive 

to ABA-mediated inhibition of primary root growth than brm-3, but it 

is still partially inhibited by ABA, which suggests redundant 

activities of other ABA-dependent TFs. Since ABI4 plays a crucial 

role in regulating embryo responses to ABA, we investigated a 

possible connection between BRM and ABI4. 

 

To this end we generated an abi4 brm-3 double mutant by crossing 

the abi4-T (SALK_080095 line) (Shu et al., 2013) with brm-3 

mutant and analyzed the ABA response in germination and early 

seedling growth. Whereas brm-3 was hypersensitive to 0.5 µM 

ABA, abi4-T was insensitive to 0.5 and 1 µM ABA. Interestingly, the 

abi4 brm-3 double mutant was able to establish at 0.5-1 µM ABA 

as the abi4-T mutant (Figure 38). Thus, abi4-T is epistatic to brm-3 

and these data suggest BRM acts up-stream of ABI4. 
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Figure 38. The ABA hypersensitive phenotype of brm-3 is almost 

abolished in the abi4 brm-3 double mutant. Right: Photographs of Col-

0 wt, brm-3, abi4 and abi4 brm-3 mutants grown in MS medium lacking or 

supplemented with the indicated ABA concentrations. Seeds were 

germinated in plates lacking or supplemented with ABA, and after 8 days 

seedlings were rearranged on agar plates to illustrate seedling growth. 

Scale bar correspond to 1 cm. Left: Quantification of seedling 

establishment. Approximately 100 seeds of each genotype were sown in 

plates and scored for green cotyledons after 5 days. Values are averages 

±SE of three independent experiments. * indicates P < 0.05 (Student’s t-

test) compared to brm-3 mutant in the same assay conditions. 

 

This result suggests that in addition to ABI5, ABI4 is also 

responsible of the brm-3 ABA-hypersensitive phenotype and BRM 

might regulate ABI4 expression. Next we transfer 2-d-old seedlings 

germinated in MS medium to plates supplemented with 10 µM ABA 

and scored primary root growth after 10 days (Figure 39). The abi4 

brm-3 roots were significantly less sensitive to ABA-mediated 

inhibition of root growth than brm-3, which suggests that ABI4, as 
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well as ABI5, mediate ABA response in brm-3 roots. The abi4 

single mutant was also less sensitive to ABA-mediated inhibition of 

root growth than wt, indicating that ABI4 is one of the redundant 

TFs that mediate ABA response in roots of seedlings (Finkelstein et 

al., 2005). 

 

 

Figure 39. The ABA hypersensitive phenotype of brm-3 is markedly 
reduced in the abi4 brm-3 double mutant. Right: Photographs of the 

different genetic backgrounds seedlings analyzed that were germinated in 

MS media plates and grown for 2 days before were transferred to either 

new MS plates or MS supplemented with 10 µM ABA plates until the end 

of the experiment, 11 days after. Scale bar corresponds to 1 cm. Left: 

Quantification of ABA-mediated root growth inhibition in the indicated 

genetic backgrounds. Values are averages ±SE of three independent 

experiments. * indicates P < 0.05 (Student’s t-test) comparing abi4 brm-3 

double mutant either with brm-3 mutant or abi4 mutant in the same assay 

conditions. 
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BRM regulates ABI4 through direct interaction with the 
ABI4 promoter 
The above data suggested that expression of ABI4 might be 

regulated by BRM. However, the mechanism through which BRM 

regulates ABI4 was still unknown. First, we analyzed the level of 

ABI4 by RT-qPCR in wt and brm-3 mutant. We were interested in 

early seedling growth stage, when ABI4 expression is up-regulated 

by stress, such as ABA or dehydrating responses (Finkelstein et 

al., 2011). We analyzed expression of ABI4 by RT-qPCR in wt and 

brm-3 and found that expression of ABI4 was up-regulated in brm-

3, thus suggests that BRM could act as a repressor of ABI4 

expression (Figure 40).  

 

 

 

Figure 40. ABI4 expression in germinated embryos after 36 h 
growing in MS –sucrose medium. (Top) RT-qPCR analysis 

quantification and (Bottom) RT-PCR of ABI4 expression showing the 
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induction of ABI4 in brm-3 mutant in mock treatment and less induction 

after 1 h of 50 µM ABA treatment.  

Since SWI2/SNF2 BRM complexes can repress transcription, we 

analyzed by chromatin immunoprecipitation (ChIP) whether BRM 

can bind to the ABI4 locus. To this end we used a brm-1 

ProBRM:BRM-HA line, where BRM-HA fully restores the brm-1 null 

mutant (Han et al., 2012), as a substrate for ChIP. We detected 

binding of BRM to the ABI4 promoter (Figure 41).  

 

 

Figure 41. ChIP analysis data for ProABI4 in ProBRM:BRM-HA 

transgenic lines. qPCR after anti-HA ChIP in 36 h embryos of brm-1 

ProBRM:BRM-HA plants after mock or ABA (50 µM for 1 h). The relative 

enrichment represents the fold change respect to the input sample. Data 

were normalized over PDF2 gene.  

 

The association of BRM with the ABI4 locus together with the 

observed derepression of ABI4 expression in brm-3 suggests that 

BRM directly regulates ABI4 expression. Next we performed data 
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mining on a genome-wide nucleosome positioning map of 

Arabidopsis obtained by massive sequencing of Micrococcal 

Nuclease digested nucleosomal DNA (Chodavarapu et al., 2010) 

that is a method for the analysis of DNA associated to 

nucleosomes. We found a well-positioned nucleosome in the 

region -501 to -364 of the ABI4 promoter (coordinates 19798086-

19797949, being 19797585 the beginning of the ATG start codon) 

(Figure 42). Therefore the ChIP data suggest the presence of the 

BRM in the ABI4 promoter, which might be related to the presence 

of a well-position nucleosome in that region. 

 

 

 

Figure 42. ABI4 promoter analysis. (A) Arrows indicate the primer pairs 

designed for the ChIP analysis. (B) Representative UCSC Browser 

screenshot of ABI4 promoter. (Chodavarapu et al., 2010) 
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BRM also interacts with PYR/PYL/RCAR ABA 
receptors 
The data showed in the chapter one demonstrate that ABA-

activated SnRK2s and clade A PP2Cs, which are core ABA 

signaling components, physically interact and modify BRM by 

phospho-/dephosphorylation, respectively. The interaction of 

PP2CA with BRM was abolished by ABA treatment (Figures 25 and 

32), which indicates that ABA perception by PYR/PYL proteins 

disrupts the PP2CA-BRM interaction and suggests a close link 

between ABA receptors and BRM. Here, we have tested whether 

PYR/PYL proteins are able to interact with BRM. To this end we 

generated YFPC-PYR1/PYL4/PYL5 protein fusions and tested their 

interaction with either BRMN-YFPN (N-terminal 1-950 BRM 

residues) or YFPN-BRMC (C-terminal 1541-2193 BRM residues) 

using BiFC assays in tobacco leaf epidermal cells and 

agroinfiltration. We found that all the receptors tested were able to 

interact with both BRMN and BRMC in the nucleus of tobacco cells 

(Figure 43A). As negative control we used a C-terminal deletion 

mutant of the SnRK2 OST1, which was unable to interact with both 

BRMN and BRMC. The interaction was nuclear and spread across 

the nucleoplasm, whereas the interaction with BRMC2C3 always 

showed nuclear speckles, which might represent specialized 

regions associated to chromatin. 
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Figure 43. BiFC and mcBiFC assays show interaction of BRM with 

ABA signalosome in the nucleus of tobacco leaves. (A) BiFC confocal 

images of transiently transformed tobacco epidermal cells co-expressing 

BRMN1-YFPN or YFPN-BRMC2C3 and YFPC-PYLs. The interaction of 

BRMN with all PYLs tested (top panels) was visualized in the 
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nucleoplasm, whereas the BRMC2C3-PYLs interaction (bottom panels) 

showed nuclear speckles. BRMN1/C2C3 and OST1Δ280 were used as 

negative controls and BRMN1/C2C3 fused to GFP as localization 

controls. (B) mcBiFC confocal images of transiently transformed tobacco 

epidermal cells co-expressing SCFPN-PYL4, VENUSN-PP2CA/VENUSN-

SnRK2.2 and SCFPC-BRMN1 (top panels) and SCFPN-PYL4, VENUSN-

PP2CA/ VENUSN-SnRK2.2 and SCFPC-BRMC2C3 (bottom panels). The 

interaction of BRMN1/BRMC2C3 with PP2CA and BRMN1/BRMC2C3 

with SnRK2.2 gave rise to VENUSN/SCFPC fluorescent protein that can be 

visualized in green, whereas the BRMN1/BRMC2C3-PYL4 interactions 

were visualized by the reconstitution of SCFP in blue. Scale bars 

correspond to 30 µm. 

 

We have demonstrated previously that both PP2CA and SnRK2.2 

were able to interact with BRM (Peirats-Llobet et al., 2016). The 

above results shows that ABA receptors also interact with BRM, 

which suggests the whole ABA signalosome formed by ABA 

receptors, PP2Cs and SnRK2s can interact with the BRM platform 

to regulate BRM activity. In order to test whether both PP2CA and 

the ABA receptor PYL4 can interact simultaneously with BRM, we 

performed multicolor BiFC (mcBiFC) (Gehl et al., 2009). This 

technique uses different BiFC vectors that are compatible among 

them and allows the visualization of two simultaneous interactions 

of a protein using two different colors (Waadt et al., 2008, Gehl et 

al., 2009). We cloned BRMN1/BRMC2C3 into p(MAS)-SCYCE, 

PYL4 into pDEST-SCYNE(R) and PP2CA into pDEST-VYNE(R) 

vectors (Gehl et al., 2009, Waadt & Kudla, 2008). The interaction of 

the N-terminal part of the supercyan fluorescence protein (SCFPN) 

and the C-terminal part, SCFPC, results in reconstitution of SCFP 
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(477 nm fluorescence) whereas interaction of VenusN and SCFPC 

generates green (515 nm) fluorescence.  

 

As a result, we found interaction of BRMN1 or BRMC2C3 with 

PYL4, which was visualized by the reconstitution of SCFP (cyan), 

whereas the BRMN1- or BRMC2C3-PP2CA interactions gave rise 

to VENUSN/SCFPC fluorescent protein (visualized in green). The 

complex PYL4-BRMN1-PP2CA could be visualized along the 

nucleoplasm, whereas the complex PYL4-BRMC2C3-PP2CA was 

concentrated in nuclear speckles (Figure 43B, first and third 

panels). On the other hand we could detect simultaneous 

interaction of BRMC2C3 with SnRK2.2 and PYL4 but no interaction 

between SnRK2.2 and BRMN1 could be detected in presence of 

PYL4, which suggests that SnRK2.2 is targeted to the C-terminal 

region of BRM in presence of PYL4 (Figure 43B, second and forth 

panels). We have demonstrated previously that PYL4, in presence 

of ABA, prevents the interaction of PP2CA with full length BRM 

(Peirats-Llobet et al., 2016). Since PYL4 targets SnRK2.2 to the C-

terminal region of BRM, which is a hotspot for ABA-dependent 

phosphorylation, and prevents the interaction between PP2CA and 

BRM in presence of ABA, these results support a model where 

BRM is phosphorylated by SnRK2.2 in an ABA- and receptor-

dependent manner (Figure 44). 
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Figure 44. Suggested model for BRM function in ABI4 promoter. Top: 

With low levels of ABA, PP2CAs are active and blocking SnRK2s, BRM is 

also active to block ABI4 expression. Bottom: With high ABA levels, 

PYR/PYLs bind ABA and are able to inhibit PP2Cs that will release 

SnRK2s that now will phosphorylate BRM. Phosphorylated BRM is 

inactive and ABI4 can be expressed. 

 

Figure 44 illustrates a model summarizing these novel data. Under 

low levels of ABA (Figure 44, top), data suggests BRM is 

interacting with PP2CA, SnRKs and PYR/PYLs at the same time, 

and this interaction blockade the transcription of ABA responsive 

genes, as ABI4 gene in this model. When ABA levels are higher 

(Figure 44, bottom) PYR/PYLs interact with ABA and recruit PP2Cs 

in a ternary complex. But at the same time, PYR/PYL ABA 

receptors could be interacting with BRM protein. Moreover, SnRKs 

that are already interacting with BRM, now are active and can 

phosphorylate BRM leading to a reduction of BRM activity allowing 

the transcription of ABA related genes to occur. 
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biotechnological use of PP2CA promoter 

in A. thaliana 
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PP2CA PROMOTER CHARACTERIZATION 

Expression pattern of PP2CA promoter 
In contrast to ABA receptors (Gonzalez-Guzman et al., 2012) the 

spatio-temporal expression patterns of clade A PP2Cs are not well 

known for most of them. We focused our work to get a deeper 

knowledge of PP2CA expression pattern. PP2CA plays a key role 

in ABA signaling (Sheen, 1998, Kuhn et al., 2006, Yoshida et al., 

2006) and additionally we discovered in chapter one a new role of 

PP2CA as regulator of BRM phosphorylation. To investigate 

PP2CA expression pattern we fusioned the promoter sequence of 

PP2CA to the GUS reporter (ProPP2CA:GUS construct). The 

ProPP2CA fragment, comprising 2000 base pairs 5‘ upstream of 

the ATG start codon of the PP2CA gene (AT3G11410), was 

amplified by PCR and cloned into pCR8®/GW/TOPO® vector. The 

PCR-generated DNA fragment was cloned into pMDC163 vector by 

LR reaction (Curtis & Grossniklaus, 2003) to drive expression of 

the GUS gene (Figure 45). The final construct was transferred to A. 

tumefaciens by electroporation and used to transform Col-0 plants 

by the floral dip method (Clough & Bent, 1998). T1 seeds were 

selected by using 25 mg/mL hygromycin antibiotic. T1 resistant 

seedlings were transferred to the green house and grown in LD 

conditions to generate T2 seeds. These T2 seeds were again 

selected in hygromycin medium in order to obtain T3 homozygous 

progeny and that will be used for following studies. 
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Figure 45. Construction for ProPP2CA fused to Gus A reporter gene 

with NOS terminator in pMDC163 vector. PP2CA promoter comprises 

2000 bp upstream ATG of PP2CA. The fragment was cloned into 

pMDC163 GW vector. 

 

The analysis of the promoter of PP2CA gene showed expression in 

embryos, roots, guard cells and vascular tissue along the A. 

thaliana seedlings (Figure 46). The GUS expression was induced 

within 2 h of treatment with 10 µM ABA in most of the tissues as 

previously reported for the protein phosphatase HAB1 (Saez et al., 

2004). GUS expression was induced by ABA treatment in 48 h-

germinated embryos mainly along the radicle (Figure 46B) and also 

in leaves and stomata of 8 days-old seedlings (Figure 46D and 

46F). In contrast, the expression in the hypocotyl junction showed 

no significant difference after ABA treatments (Figure 46G-H). 

PP2CA expression was found in root tip of 48 h-germinated 

embryos either with or without ABA treatment, but the expression 

was clearly up regulated after ABA treatment (Figure 46I-J). 

Staining of seed coats from 48-h imbibed seeds also detected up 

regulation of GUS expression in the endosperm (Figure 46K-L). 

The PP2CA was differentially expressed along the root. In fact, 

mature zones of the roots showed higher levels of GUS protein 

(Figure 46O-P) than immature ones (Figure 46Q-R). Interestingly, 

GUS signal appears in the elongation zone of the root and seems 

to be excluded from the meristematic zone. Curiously, the 

expression is up regulated in the root cap where the columella cells 

PP2CA promoter (2000 bp) Gus A 

attB1 attB2 NOS-T 
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are found, after ABA treatment (Figure 46S-T). The vasculature of 

the root, the stele, shows induction of GUS expression after ABA 

treatment. Altogether, these results indicate that expression of 

PP2CA is up-regulated by ABA in most of the plant tissues. 

Expression in seed and seedlings is in agreement with the relevant 

role of PP2CA in the regulation of seed germination and 

establishment (Yoshida et al., 2006, Kuhn et al., 2006). 

Additionally, the observed expression in other tissues indicates that 

PP2CA can be a global regulator of ABA signaling.  

 

Propidium iodide pseudo shift (PS-PI) staining technique was also 

used to visualize the root tip with more detail (Truernit et al., 2008). 

Expression of PP2CA was up-regulated by ABA and localized in 

the stele (Figure 47A). This technique does not allow a correct 

visualization of the columella due to the background generated by 

the amyloplasts. Interestingly, Antoni et al. (2013) described that 

GUS expression driven by several promoters of the 

PYR/PYL/RCAR receptors is also localized in the stele (Figure 

47B) whereas ProPYL8 is found in epidermis in addition to the 

stele. These results indicate an overlap in the expression patters of 

phosphatases and receptors that could be important for an efficient 

ABA signaling.  
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Figure 46. Images showing GUS expression driven by 

ProPP2CA:GUS gene in different tissues and developmental stages. 

Scale bar = 100 µm. The generation of ProPP2CA:GUS lines and imaging 

of histochemical GUS staining was performed as described in Gonzalez-

Guzman et al. (2012). Material was mock or 10 µM ABA-treated for 2 h. 

(A) Mock and (B) ABA-treated 48 h embryos; (C) mock and (D) ABA-
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treated leaves; (E) mock and (F) ABA-treated guard cells in leaves of 8-d-

old seedlings; (G) mock and (H) ABA-treated root-hypocotyl junction; (I) 

mock and (J) ABA-treated root tips; (K) mock and (L) ABA-treated 

endosperms of embryos imbibed for 48 h; (M) mock and (N) ABA-treated 

hypocotyl; (O) mock and (P) ABA-treated mature root; (Q) mock and (R) 

ABA-treated root at the elongation zone; (S) mock and (T) ABA-treated 

root tips.  

 

Figure 47. Core ABA-signaling element promoters driving the 

expression of GUS reporter gene in root tips of A. thaliana seedlings. 

GUS expression is visualized using modified PS-PI staining and confocal 

laser scanning microscopy. (A) ABA-inducible GUS expression driven by 

ProPP2CA. Seedlings of 8-d-old were treated with 10 µM ABA for 2 h. (B) 

GUS expression driven by PYR/PYLs promoters in the root tip (Antoni et 

al., 2013). The expression of GUS protein is localized in the stele in all the 
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PYR/PYL receptors, but also in the epidermis of ProPYL8. Scale bar = 

100 µm. 

After the analysis of PP2CA expression, we generated transgenic 

plants expressing HA-tagged PP2CA fusion protein driven by its 

own promoter in a pp2ca-1 background. We generated this 

material because PP2CA protein dynamics were not known at the 

beginning of this work. 

 

PP2CA PROTEIN DYNAMICS 

ProPP2CA drives the expression of PP2CA in pp2ca-1 A. 
thaliana mutant 
pALLIGATOR2 vector (Bensmihen et al., 2004) was digested using 

HindIII-SacI enzymes to remove 35S promoter and 1 out of 3 of the 

HA tags. The PP2CA promoter sequence was excised from pCR8-

ProPP2CA using a double HindIII-SacI digestion and ligated to 

double digested pAlligator2 to generate the construct 

pALLIGATOR2-ProPP2CA:2HA. Next, the open reading frame of 

PP2CA from pCR8-PP2CA (Antoni et al., 2012) was recombined 

by LR reaction into pALLIGATOR2-ProPP2CA:2HA to obtain 

pALLIGATOR2-ProPP2CA:2HA-PP2CA (Figure 48). The final 

construct in pALLIGATOR2 vector was transferred to A. 

tumefaciens by electroporation and used to transform pp2ca-1 

plants by the floral dip method (Clough & Bent, 1998). T1 seeds 

generated were selected via the GFP expression driven by the 

At2S3 seed-specific promoter (Bensmihen et al., 2004) under GFP 

filter in the microscope. 100% GFP positive T3 lines were used for 

the following studies.  
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Figure 48. pALLIGATOR2-ProPP2CA:2HA-PP2CA expression vector 
generated by SeqBuilder software (DNASTAR® Lasergene). ProAt2S3 

corresponds to a seed specific promoter; GFP is the marker gene for seed 

selection; Spectinomycin resistance is used for bacterial selection. 

 

Three independent transgenic A. thaliana lines expressing PP2CA 

driven by the PP2CA promoter in pp2ca-1 background were 

selected. We studied the accumulation of PP2CA in those lines and 

we found that PP2CA protein was hardly detectable unless ABA 

treatment was performed. Additionally, the expected molecular 
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weight of the protein was close to that of the Rubisco large subunit, 

which might generate some problems for detection by immunoblot 

analysis. Therefore, we isolated roots from ABA-treated plants in all 

our experiments in order to obtain Rubisco-free protein samples. 

Additionally, ProPP2CA:2HA-PP2CA seedlings were treated with 

50 µM ABA + 50 µM MG-132 for 3 h (Figure 49). 

 

 

Figure 49. Expression of PP2CA is induced by ABA in root tissue of 

ProPP2CA:2HA-PP2CA transgenic lines. Root material from 12-d-old 

plants was mock (+) or treated with 50 µM ABA + 50 µM MG-132 (+) for 3 

h. 35S:HA-FLAG PP2CA (Wu et al., 2016) leaf material treated with 50 

µM ABA + 50 µM MG-132 for 3 h was used as positive control. WB 

analysis was performed using anti-HA. 

 

Western blot analysis revealed low to undetectable expression of 

PP2CA in roots in the absence of ABA treatment. However, the 

expression was markedly induced upon ABA treatment in the three 

independent lines in agreement with the expression of the GUS 

reporter driven by the PP2CA promoter (Figure 46). 
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PP2CA degradation is induced by ABA 
The up-regulation of PP2CA (this thesis) and other clade A PP2Cs 

in response to ABA (Santiago et al., 2009b, Szostkiewicz et al., 

2010), suggests the existence of a negative feedback mechanism 

to modulate ABA signaling. To analyze PP2CA protein dynamics in 

vivo we also used Pro35S:HA-PP2CA lines (Antoni et al., 2012) to 

avoid ABA up-regulation of the PP2CA promoter. We treated 10-d-

old seedlings with different drugs, 100 µM CHX, 50 µM MG-132 or 

50 µM ABA and took samples at several time points (4, 7 and 9 h). 

 

 

Figure 50. Effect of CHX, MG-132 and ABA treatment on PP2CA 

protein level. Top panel, 10-d-old seedlings expressing HA-tagged 

PP2CA protein were either mock- or chemically treated with 100 µM CHX, 

50 µM MG-132 or 50 µM ABA for the indicated time period. Bottom panel, 

Histogram shows quantification of the anti-HA immunoblot. Error bars 

correspond to averages of relative intensity of the bands. The data 

analysis was performed by ImageJ analysis software. 
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Interestingly, PP2CA protein level was found to diminish with CHX 

and ABA treatments whereas the protein accumulates with MG-132 

treatment (Figure 50). These results suggest that PP2CA is 

degraded via the 26S proteasome. Moreover, ABA treatment 

induces PP2CA degradation when the protein expression was 

driven by a 35S promoter. These results opened new questions to 

be explored.  

 

Next, we analyzed PP2CA ABA-dependent degradation, by 

carrying out a degradation kinetic assay performed as described in 

the figure 51, using the transgenic lines expressing PP2CA driven 

by its own promoter, ProPP2CA:2HA-PP2CA. The material was 

pre-treated with 50 µM ABA for 3 h in order to induce and 

accumulate PP2CA protein before drug treatments.  

 

 

Figure 51. Experimental design for PP2CA degradation assay. The 

samples were pre-treatment with 50 µM ABA for 3 h and then, washed 3 

times with MS media to remove all the residual ABA. The experimental 

treatments with 100 µM CHX or 100 µM CHX + 50 µM ABA were applied 

for 3 and 6 h. The treated material was frozen in liquid nitrogen until future 

processing. 

9h 12h 

50 µM ABA 
WASHES IN MS (x3) 
+ 100 µM CHX 
+ 100 µM CHX + 50 µM ABA 

COLLECT 
T0h 

COLLECT 
T3h 

COLLECT 
T6h 

15h 18h 

INDUCTION 



Three: PP2CA, an ABA-inducible promoter 

 123 

 

After treating the plants with the translation inhibitor, CHX, for 3 h, 

all PP2CA protein was degraded (Figure 52A). This result 

suggested a fast turnover of PP2CA. Therefore, we repeated the 

experiment using a shorter time-course. We applied 20 min lapses 

between each material collection (Figure 52B). The results 

confirmed a quick degradation of PP2CA protein indicating that the 

protein has a short half-life. After 1 h of treatment with CHX most of 

the PP2CA protein is degraded. To further analyze ABA effect on 

PP2CA stability we also compared PP2CA protein levels in CHX-

treated seedlings in the absence (CHX) or in the presence of 

exogenous ABA (CHX+ABA). CHX treatment showed a rapid 

degradation of PP2CA, whereas the combined treatment with CHX 

and ABA did not show a significant difference at 40-60 min. At 20 

min, enhanced degradation was observed after CHX+ABA 

treatment. These data suggest that ABA promotes PP2CA protein 

degradation. However, since these experiments were performed 

using transgenic plants we could not conclude that PP2CA protein 

accumulation patterns were the same as in wild type plants. To this 

end, we developed a specific PP2CA antibody in collaboration with 

Professor An’s lab. 
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Figure 52. PP2CA protein is degraded in vivo. 10-d-old seedlings 

expressing HA-tagged PP2CA protein were pre-treated with 50 µM ABA 

for 3 h and either mock- or chemically treated with 100 µM CHX or 100 

µM CHX + 50 µM ABA for the indicated time periods. WB analysis of root 

tissue was performed using anti-HA. A) Root material treated for 3 h with 

CHX or CHX + ABA. B) Short time course experiment (20, 40 and 60 min) 

treated with CHX or CHX + ABA. 

 

The ProPP2CA:2HA-PP2CA pp2ca-1 line was a crucial material for 

the high-throughput screening of crude PP2CA antibodies 

generated by our colleges at Peking University. Figure 53A shows 

a PP2CA antibody that was successfully used in our laboratory for 

detection of PP2CA. Next, Professor An group assayed antigen-

affinity purified antibodies in protein samples of Col and pp2ca-1, 

obtaining the α-E2663 antibody for detection of endogenous 

PP2CA (Figure 53B).  
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Figure 53. α-E2663 is a specific antibody for PP2CA. (A) Crude extract 

of α-PP2CA identified HA tagged PP2CA. Root material from 12-d-old 

ProPP2CA:2HA-PP2CA pp2ca-1 seedlings were treated without (-) or with 

(+) 50 µM ABA for 3 h. Total proteins were extracted and equal protein 

amounts of each treatment were subjected to western blot analysis. α-

PP2CA was used to detect HA-PP2CA with a dilution of 1:8000. HA-

PP2CA (arrow) was markedly induced by ABA treatment. (B) Purified α-

E2663 antibody. 2-week-old Col-0 and pp2ca-1 etiolated seedlings were 

treated without (-) or with (+) 50 µM ABA for 6 h in darkness. Then total 

proteins were extracted and equal amounts of each treatment were 

subjected to western blot analysis. α-E2663 was used to detect 

endogenous PP2CA with a dilution of 1:3500. anti-Actin was analyzed as 

a loading control. Endogenous PP2CA (arrow) was detected in Col-0 and 

it was markedly induced by ABA treatment, whereas it was absent in 

pp2ca-1 mutant (-/+ABA).  

-        +     ABA + MG-132 

ProPP2CA:2HA-PP2CA pp2ca-1 

72 – 
55 – HA-PP2CA 
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ProPP2CA AS AN INDUCIBLE PROMOTER FOR 
PROTEIN EXPRESSION  

ProPP2CA drives stress-inducible expression of 
Arabidopsis thaliana and Solanum lycopersicum ABA 
receptors 
 

Overexpression of monomeric ABA receptors confers drought 

tolerance (Santiago et al., 2009b, Gonzalez-Guzman et al., 2014, 

Yan & Chen, 2016, Yang et al., 2016b), but a penalty on growth 

under normal conditions has been described in some cases (Kim et 

al., 2014). Expression driven by an ABA-inducible promoter might 

solve this problem. To this aim, we decided to use the PP2CA 

promoter to drive inducible expression of ABA receptors. A 

previous study from Pizzio et al. (2013) had showed that PYL4 

(AT2G38310) is an important ABA receptor for enhancing drought 

tolerance in A. thaliana plants. The mutant version of PYL4, named 

as PYL4A194T, was more sensitive to ABA than the wild type version 

of the receptor. Transgenic plants overexpressing the mutant 

receptor PYL4A194T were hypersensitive to ABA in different stages 

of development but also displayed reduced water-loss and 

enhanced drought tolerance (Pizzio et al., 2013). 

 

In crops, constitutive overexpression of ABA receptors might impair 

growth in the absence of stress. Therefore, we decided to generate 

PYL4A194T overexpressing plants using the ABA-inducible PP2CA 

promoter. At the same time, the work of Gonzalez-Guzman et al. 

(2014) identified and characterized tomato PYR/PYL receptors. 

Monomeric tomato receptors were highly expressed in roots and 
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able to enhance plant drought resistance (Gonzalez-Guzman et al., 

2014). We selected Sl3g007310 a good candidate for inducible 

expression. 

 

Our previous construct, pALLIGATOR2-ProPP2CA:2HA, was used 

to generate constructs where the above ABA receptors were driven 

by the ABA-inducible PP2CA promoter. To this end, pCR8-PYL4 

and pCR8-PYL4A194T generated by Pizzio et al. (2013) and pCR8-

Sl3g007310 were recombined by LR reaction to generate the 

constructs showed in the figure 10. The constructs pALLIGATOR2-

ProPP2CA:2HA-PYLs were transferred to A. tumefaciens by 

electroporation and used to transform Col-0 wild type plants by the 

floral dip method (Clough & Bent, 1998). T1 seeds generated were 

selected via the GFP expression driven by the At2S3 seed-specific 

promoter (Bensmihen et al., 2004) under GFP filter in the 

microscope. 100% GFP T3 lines were used for the following 

studies. 
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Figure 54. ProPP2CA fusions to different ABA receptors in 

pALLIGATOR2. PYL4 and PYL4A194T are A. thaliana ABA receptors and 

Sl3g007310 is a S. lycopersicum ABA receptor. All the constructs 

expressed proteins tagged with HA tags for WB analysis. 
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First, we checked the inducible expression of of receptors driven by 

the PP2CA promoter under greenhouse conditions. Transgenic 

lines containing the ProPP2CA fused to PYL4 and the mutant 

version, PYL4A194T, were analyzed by WB. The results of the 

analysis of leaf material showed a strong ABA-inducible expression 

in both receptor lines (Figure 55). 

 

 

Figure 55. Inducible expression of the receptors PYL4 and PYL4A194T 

driven by ProPP2CA. 3 weeks-old plants grown in the greenhouse were 

mock (-) or sprayed with 100 µM ABA (+) solution every hour during 3 h. 

WB analysis was performed using anti-HA antibody. 

 

Additionally, we carried out a time-course experiment to analyze 

the ABA induction in transgenic lines expressing PYL4, PYL4A194T 

and Sl3g007310 receptors. Seedlings of the transgenic lines were 

grown in liquid culture for 12 days and treated with 50 µM ABA for 

the indicated time periods. Figure 56 shows ABA-inducible 

expression of PYL4, PYL4A194T and Sl3g007310 receptors. These 

lines showed undetectable or very low expression in mock 

conditions whereas high induction was observed after the ABA 

treatment. 

α-HA 

PYL4               PYL4A194T 

ProPP2CA:2HA- 

35 – 

-          +             -          +      ABA 

Ponceau 55 – 
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Figure 56. Inducible expression of ABA receptors from A. thaliana 

and S. lycopersicum directed by ProPP2CA in A. thaliana transgenic 

stable lines. Protein extracts from plants were grown in MS liquid media 

for 12 days and time-course were treated with 50 µM ABA solution. WB 

was analyzed anti-HA. 

 

After confirming the ABA-inducibility of the transgenic lines, we 

conducted drought stress experiments to validate the approach. To 

this aim, ProPP2CA:2HA-PYL4 and ProPP2CA:2HA-PYL4A194T 

plants were grown under normal watering conditions for 2 weeks, 

and then irrigation was stopped (0D). Severe wilting of the leaves 

was observed at 17 days in the PYL4 wild type plants, in contrast 

to PYL4A194T. Then watering was restored and survival of the plants 

was scored on 22nd day. ProPP2CA:2HA-PYL4 plants did not 

survive after drought stress, whereas around 60% to 70% of 

ProPP2CA:2HA-PYL4A194T plants survived (Figure 57). 
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Figure 57. ProPP2CA:2HA-PYL4A194T transgenic plants are drought 

tolerant. ProPP2CA:2HA-PYL4 and ProPP2CA:2HA-PYL4A194T plants 

were grown in the greenhouse for 2 weeks before removing the watering 

for other 17 days. All plants were watered again and 5 days after (22D) 

recovery pictures were taken. 

 

This result suggested that the expression of PYL4A194T driven by 

ProPP2CA was more efficient to activate ABA signaling pathway 

than PYL4 wt plants. This is in agreement with the increased 

sensitivity of PYL4A194T for ABA in PP2C-activity assays (Pizzio et 

al., 2013). To verify that the plants express the ABA receptors 

during the drought stress treatment, we analyzed them by WB 

(Figure 58). The induction of the ABA receptors was detected in all 

the samples but certain variability in protein expression was found 

among the different lines. 

 

 

Figure 58. ABA inducibility of ABA receptors in leaves from adult 

plants of ProPP2CA:2HA-Receptor. 3-week-old plants grown in the 

greenhouse were sprayed with 100 µM ABA solution repeatedly for 3 h. 

One line of ProPP2CA:2HA-PYL4 and two lines of the mutant version, 

PYL4A194T, were used. WB was analyzed anti-HA. 
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Expression of abi1-1 driven by ProPP2CA leads to ABA-
insensitivity in root 
Another interesting question not yet resolved in the ABA signaling 

field was to know how interchangeable were the phosphatases in 

terms of spatio-temporal localization. To address that idea, the 

hypermorphic version of the ABI1 protein, abi1-1 mutant, was 

cloned into the customized pALLIGATOR2-ProPP2CA:2HA vector. 

pCR8-abi1-1 generated in our laboratory, was recombined by LR 

reaction to generate the pALLIGATOR2-ProPP2CA:2HA-abi1-1 

vector. The final construct in pALLIGATOR2 was transferred to A. 

tumefaciens by electroporation and used to transform Col-0 wild 

type plants by the floral dip method (Clough & Bent, 1998). 

 

Transgenic lines of ProPP2CA:2HA-abi1-1 were mock (-) or 50 µM 

ABA  treated (+) for 5 h. Root material was separated from the 

leaves and used for WB analysis. ProPYL8:2HA-abi1-1 plants that 

was previously generated in our lab (Antoni et al., 2013) were used 

as a control of non-inducible promoter.  

 

 

Figure 59. ABA-inducible phenotype of two different stable lines of 

ProPP2CA:2HA-abi1-1. Material was extracted from roots mock (-) or 50 

µM ABA treated (+) for 5 h. Col-0 roots were used as a negative control 

ProPP2CA: 
2HA-abi1-1 
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and ProPYL8:2HA-abi1-1 as non-inducible promoter control. WB was 

analyzed anti-HA. 

As shown in the Figure 59, the ABA treatment (50 µM ABA for 5 h) 

induces abi1-1 protein expression in the two independent lines 

tested. On the other hand, abi1-1 expression directed by PYL8 

promoter was constitutive whereas inducible expression of the 

protein was generated with ProPP2CA plants. 

 

abi1-1 is a hypermorphic mutant that shows strong ABA 

insensitivity (Leung et al., 1994, Meyer et al., 1994). To investigate 

whether abi1-1 expressed under the PP2CA or PYL8 promoter 

affects ABA sensitivity, we analyzed germination and seedling 

establishment of ProPP2CA2HA-abi1-1 and ProPYL8:2HA-abi1-1 

lines. After 3 days growing in 1 µM ABA (Figure 60A) 

approximately 90% of the seeds of both lines were germinated. 

The seedling establishment was also higher in both transgenic 

lines compared to wt. Therefore both transgenic plants showed 

reduced sensitivity to ABA compared to wt. We also analyzed ABA-

mediated inhibition of the root growth (Figure 60B and C). Both 

transgenic lines, ProPYL8 and ProPP2CA:2HA-abi1-1 showed 

ABA-insensitivity in root growth compared to wt. These results 

suggest that abi1-1 protein acts likely in the same tissues as 

PP2CA and PYL8. Additionally, selective expression of abi1-1 

driven by either PP2CA or PYL8 promoters confers reduced 

sensitivity to ABA. 
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Figure 60. abi1-1 displays an ABA-insensitive phenotype in 

germination, seedling establishment and root growth inhibition. (A) 

Quantification of the germination and seedling establishment of Col-0 

wild-type, ProPP2CA:2HA-abi1-1 and ProPYL8:2HA-abi1-1 genetic 

backgrounds sown in plates lacking or supplemented with 1 µM ABA. 

Germination was scored at 3 days and establishment, as the presence of 

green cotyledons and the first pair of true leaves, at 7 days. Approximately 

50 seeds per genotype were used in each experiment. Values are 

averages ± SE of three independent experiments. *P < 0.01 (Student’s t-

test) compared to Col-0 in the same experiment conditions. (B) The root 

growth ABA-insensitivity of abi1-1 is driven by both promoters, PYL8 and 

PP2CA. Photographs of Col-0, ProPYL8:2HA-abi1-1, ProPP2CA:2HA-

abi1-1 and snrk2.22.3 mutants grown for 10 days in MS medium 

supplemented with 10 µM ABA. Scale bar correspond to 1 cm. (C) 
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independent experiments (n=30). *P < 0.05 (Student’s t-test) compared to 

Col-0 in the same assay conditions. 

 

Figure 61 summarizes the use of the PP2CA promoter to drive 

inducible expression of ABA receptors or PP2Cs. In the case of 

ABA receptors, ABA treatment will activate ABA signaling further 

creating a positive feedback. In the case of PP2Cs, ABA signaling 

will be blocked and the loop will be negative. As a result, receptor 

levels obtained after ABA-treatment are high, however, when we 

use abi1-1 we can see induction but lower expression level is 

achieved. 

 

 

Figure 61. ABA activates PP2CA promoter producing high levels of 

target protein. In case the target is the receptor, the loop is positive and 

the level of the target will be increased, whereas if the target protein is a 

PP2C, the loop will be negative and the induction will be blocked. 

 



 

 137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 
 





Discussion 

 139 

The SWI/SNF ATPase BRM represses ABA responses in the 

absence of stress to balance plant growth and stress response 

(Han et al., 2012). Both the brm-1 and brm-3 loss-of-function 

alleles show enhanced ABA-mediated inhibition of seedling 

establishment. We show in this work that this phenotype can be 

rescued by removing ABI5 or ABI4 function since brm-3 abi5-7 and 

abi4 brm-3 double mutants are less sensitive to ABA than brm-3 in 

root growth assays. This suggests that ABI4 and ABI5 are targets 

of BRM to regulate the ABA response. In fact, BRM represses ABI5 

expression in the absence of the stress signal by stabilizing a 

nucleosome close to the ABI5 transcription start site (Han et al., 

2012). Similarly, ABI4 posses a well-positioned nucleosome close 

to the TSS and our results indicate that BRM could bind to this 

same region of the ABI4 promoter. This data suggests a 

mechanism by which BRM prevents ABI4 expression and could 

explain the increased expression of ABI4 in the brm3 mutant found 

in this work. In the case of ABI5, BRM does not prevent ABA-

mediated destabilization of the nucleosome since it still resides at 

the ABI5 locus in conditions of elevated ABA (Han et al., 2012). 

This raises the possibility that BRM might be inactivated in the 

presence of ABA, for example by a post-translational modification. 

In this work, we provide evidence to propose a model where 

ABA/SnRK2-mediated phosphorylation impairs BRM activity (BRM 

OFF), which releases BRM repression and leads to ABI5 induction 

(Figure 37). Conversely, PP2C-mediated BRM dephosphorylation 

could restore BRM activity (BRM ON) to maintain repression of 

ABA responses (and ABI5 expression) under non-stressed plant 

growth conditions. 
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ABA signaling relies on a phosphorylation cascade, and analysis of 

the phosphoproteome in response to ABA had suggested that BRM 

might be phosphorylated by SnRK2s (Umezawa et al., 2013, Wang 

et al., 2013a). In this work, we provide direct evidence that OST1 is 

able to phosphorylate at least four Ser/Thr residues in the C-

terminal region of BRM and that introduction of two 

phosphomimetic S1760D S1762D mutations impairs BRM function. 

Moreover, we have established that both SnRK2s and PP2Cs 

interact with the N- and C-terminal domains of BRM and co-

immunoprecipitate with full-length BRM in the absence of 

exogenous ABA. Interestingly, whereas ABA treatment did not 

significantly affect the interaction of SnRK2 and BRM, this 

treatment dramatically reduced the interaction be- tween PP2CA 

and BRM. These results were corroborated by yeast two-hybrid 

and three-hybrid analyses. Thus, ABA perception through 

PYR/PYL ABA receptors may abrogate the PP2CA interaction with 

BRM (Figure 32 and Figure 37). Additionally, multicolor BiFC 

experiments, that help to study multicomponent interactions, 

showed the whole ABA signalosome (PYR/PYLs, PP2Cs and 

SnRK2s) interacting with BRM. Both N- and C-terminal BRM 

domains interacted with PP2CA and PYL4 simultaneously. 

However, in the case of SnRK2.2, interaction with BRM N-terminal 

region was prevented when PYL4 was present. Altogether these 

data indicate that ABA perception though PYR/PYL ABA receptors 

may promote the SnRK-mediated phosphorylation of BRM to de-

repress the expression of important transcription factors in ABA 

signaling such as ABI4 and ABI5 (Figure 44). 

 

ABA leads to phosphorylation of the activation loop of SnRK2s, 

which is a requisite for kinase activation (Umezawa et al., 2009; 



Discussion 

 141 

Vlad et al., 2010). We have demonstrated that recombinant 

OST1/SnRK2.6 is able to phosphorylate the C-terminal region of 

BRM. According to the high number of SnRK2-dependent 

phosphopeptides identified in PhosPhAt database (Umezawa et al., 

2013, Wang et al., 2013a), C-terminal region seems to be a hotspot 

for ABA-dependent phosphorylation. What effect on BRM activity 

could be expected from this phosphorylation? In the absence of a 

biochemical assay for BRM activity, we relied on the generation of 

a phosphomimetic mutant, BRMS1760D S1762D, which was 

introduced in the hypomorphic brm-3 allele. The 

ProBRM:BRMS1760D S1762D::brm-3 mutant showed enhanced ABA 

sensitivity compared with the wt. Moreover, the ProBRM:BRMS1760D 

S1762D::brm-3 mutant displayed increased ABI5 expression, which 

suggests that irreversible introduction of negative charge in certain 

Ser residues of BRM impairs its function in ABA signaling. ABA 

treatment led to a similar fold increase of ABI5 expression in the wt, 

in both brm-3 and ProBRM:BRMS1760D S1762D::brm-3, consistent with 

the prior conclusion that BRM is inactivated upon ABA sensing 

(Han et al., 2012). 

 

The combined data point to a model (Figure 37) whereby reversible 

phosphorylation of BRM by SnRK2s might lead to transient 

inactivation of the ATPase, which could be reverted by PP2CA. Our 

results also suggest that ABA-mediated induction of ABI5 requires 

phosphorylation of BRM by ABA-activated SnRK2s. Once the ABA 

levels diminish when plants return to non-stress conditions, PP2CA 

might dephosphorylate BRM to restore its activity and allow BRM to 

repress ABI5 expression. Arabidopsis mutants lacking PP2CA or 

HAB1 show enhanced ABA-mediated inhibition of germination and 

seedling establishment, and higher expression of ABI5 than wt 
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(Nishimura et al., 2007; Rubio et al., 2009), which is in agreement 

with a role of PP2CA/HAB1 in maintaining BRM activity for 

repression of ABI5 expression. 

 

The in vivo identified SnRK2-dependent phosphorylation sites were 

concentrated around the AT hook and bromodomain of BRM, 

which are important domains for BRM function (Farrona et al., 

2007). These domains constitute a module that allows BRM to 

interact with linker and nucleosomal DNA as well as the histone 

octamer (Farrona et al., 2007). These domains are required for 

BRM function since the brm-3 mutant, which lacks most of this 

module (yet retains the AT hook), behaves as a hypomorphic allele 

(Farrona et al., 2007). In contrast, no phosphorylation sites were 

found in other important regions of BRM, such as the ATPase 

region required for ATP hydrolysis or the SnAC domain, which 

couples ATP hydrolysis to nucleosome movement (Sen et al., 

2011, 2013). Therefore, we suggest that the C-terminal region 

located after the AT-hook domain and the bromodomain represents 

a hotspot for regulation through phosphorylation/dephosphorylation 

events. Interestingly, human BRM and BRG1 are phosphorylated 

and excluded from the condensed chromosomes during mitosis 

(Muchardt et al., 1996). Numerous phosphorylated Ser/Thr 

residues were identified before and after the bromodomain of the 

human BRM and BRG1 proteins (PhosphositePlus; 

http://www.phosphosite.org/proteinAction.do?id=5848&showAllSite

s=true). Therefore, phosphorylation of the C-terminal domain of 

BRM may be evolutionarily conserved. In the case of Arabidopsis 

BRM, the phosphomimetic BRMS1760D S1762D mutant phenocopies 

ABA hypersensitivity of brm loss-of-function alleles, which strongly 

suggests that SnRK2-dependent phosphorylation releases BRM 
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repression of ABA signaling. Conversely, PP2CA and HAB1, which 

are key negative regulators of ABA signaling, cooperate to maintain 

dephosphorylated and active BRM in the absence of the cue. In 

summary, our work provides a direct link between the core ABA 

signaling pathway and the chromatin-remodeling ATPase BRM. 

This link enables ABA-dependent modulation of BRM activity and a 

possible entry point for increasing response to water stress in 

plants. 

 

In addition to the new role of PP2CA as a regulator of BRM 

phosphorylation status, we characterized the PP2CA promoter and 

identify that it is ABA-inducible. We also studied the stability of 

PP2CA showing that the protein was degraded by the proteasome 

and its degradation was induced by ABA (Wu 2016). This could 

represent a mechanism to enhance the stress response when ABA 

signaling is active. The acquired knowledge about the ABA 

inducibility of the PP2CA promoter prompted us to exploit this as a 

biotechnological tool. The use of ABA inducible promoters could 

potentially avoid the growth penalty observed in transgenic lines 

with a constitutive overexpression of ABA signaling core 

components observed before (Santiago et al., 2009b, Kim et al., 

2014). Our results suggested this is a good strategy to direct the 

expression of ABA receptors only under stress conditions in order 

to enhance drought resistance in commercial crops. Reduced 

water availability, will induce ABA accumulation, which will activate 

PP2CA promoter leading to increased PYR/PYL expression. This 

could help the plant to tolerate the stress since plants 

overexpressing PYR/PYL receptors are drought tolerant (Santiago 

et al., 2009b, Kim et al., 2014, Yang et al., 2016a). In turn, by 

generating ProPP2CA:abi1-1 transgenic plants we could efficiently 
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repress ABA signaling under stress conditions. Here we show how 

the ABA-inducible expression either of PYR/PYL ABA receptor or 

PP2CA could be used for biotechnological purposes. 
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1. We have identified the interactions among SWI/SNF ATPase 
BRM and the core elements of the ABA signaling pathway, i.e. 
PYR/PYL/RCAR receptors, clade A PP2Cs and SnRK2s. 
 
 
2. OST1 phosphorylates four BRM Ser/Thr residues at the C-
terminal region, which is a hotspot of phosphorylation.  
 
 
3. PP2CA dephosphorylates BRM. This can be prevented by the 
formation of the PYL8-ABA-PP2CA ternary complex.  
 
 
4. BRM phosphomimetic mutants are impaired to repress ABA-
induced ABI5 expression. 
 
 
5. BRM represses ABI4 expression and binds to ABI4 promoter 
region. 
 
 
6. PP2CA promoter is ABA-inducible and can be used to generate 
drought tolerant plants.  
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Biological Materials 

Bacterial Strains 
Escherichia coli (E. coli) chemocompetent cells (DH5α and TOP10® 

(Invitrogen)). 

E. coli electrocompetent cells (DH10β). 

E. coli DB3.1 strain from Life Technologies for GATEWAY™ 

plasmids containing ccdB toxic gene. 

E. coli BL21 (DE3) pLysS chemocompetent strain for protein 

expression. 

Agrobacterium tumefaciens (A. tumefaciens) C58C1 containing 

disarmed Ti plasmid pGV2260 (Deblaere et al., 1985). 

Yeast strains 
S. cerevisiae AH109 (Clontech Laboratories). 

S. cerevisiae PJ69-4A strain. 

Plant Material 
A. thaliana Col-0 ecotype. 

N. benthamiana. 

Mutants and transgenic stable lines in A. thaliana (Table 1). 

 

Mutants and Transgenic Lines Reference 

brm-3 (SALK_088462) (Farrona et al., 2007) 

snrk2.2/2.3  (Fujii et al., 2007) 

snrk2.2/2.3/brm-3 In this work 

Pro35S:HAB1 (Saez et al., 2004) 

Pro35S:HAB1/brm-1  (Han et al., 2012) 

pp2ca-1 (SALK_028132) (Kuhn et al., 2006) 
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abi4 (SALK_080095) (Finkelstein, 1994) 

abi4 brm-3 In this work 

ProBRM:BRM-HA brm-1  (Han et al., 2012) 

ProBRM:BRM-GFP brm-1  (Wu et al., 2012) 

Pro35S:PP2CA-HA/ProBRM:BRM-GFP In this work 
Pro35S:SnRK2.2-HA/ProBRM:BRM-
GFP In this work 

ProBRM:BRMS1760D S1762D brm-1 In this work 

ProBRM:BRMS1760A S1762A brm-1 In this work 

Pro35S:3HA-PP2CA (Antoni et al., 2012)  

Pro35S:3HA-SnRK2.2 (Planes et al., 2015) 

Pro35S:3HA-SnRK2.3 (Planes et al., 2015) 

ProPP2CA:2HA-PP2CA Col-0 In this work 

ProPP2CA:2HA-PP2CA pp2ca-1 In this work 

ProPP2CA:2HA-PYL4 Col-0 In this work 

ProPP2CA:2HA-PYL4A194T Col-0 In this work 

ProPP2CA:2HA-Sl3g007310 Col-0 In this work 

Table 1. A. thaliana mutant and transgenic lines generated and used 

in this work. 

Growing Conditions and Transformation 

Bacterial Culture 
Luria-Bertani media (LB; 10 g/L triptone, 5 g/L yeast extract and 10 

g/L NaCl, pH7.0 (2% agar in case of solid media preparation)) was 

used for bacterial culture. Different antibiotic-containing media was 

used depending on bacterial resistances (50 µg/mL Kanamycin 
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(KanR), 50 µg/mL Spectinomycin (SpecR), 100 µg/mL Ampicillin 

(AmpR)). The optimal temperature used for E. coli growth was 37ºC 

and for A. tumefaciens, 28ºC. In both cases, the liquid growth was 

performed in an orbital shaker at 250 rpm. 

 

Transformation 
For bacterial transformations, two techniques were used: 

 

Heat shock method 

100 ng of pDNA were incubated in 50 µL of E. coli competent cells 

suspension for 30 min on ice; the heat-shock was performed in a 

water bath at 42ºC for 45 sec followed by 2 min on ice. 500 µL of 

S.O.C. Medium (Invitrogen) was added to the mixture and was 

incubated for 1 h at 37ºC. After, the mixture was spinned down to 

collect the pellet and plated in LB medium containing the proper 

antibiotic. 

Electroporation method 

100 ng of pDNA were mixed with 50 µL of A. tumefaciens pGV2260 

competent cells suspension. The mixture was introduced in 0.2 cm 

pre-cooled electroporation cuvettes (Bio-Rad). Electroporation 

procedure was performed in Eppendorf Eporator®, 2000V/pulse (5-

6 ms) conditions. Immediately 1 mL of LB medium was added and 

the mixture was incubated for 1-2 h in an orbital agitator at 28ºC. 

200 µL of the mixture was plated in LB medium supplemented with 

the proper antibiotic. 

 

Same amount of pDNA was mixed with 50 µL of E. coli DH10β 

competent cells suspension. The mixture was introduced in 0.1 cm 

pre-cooled electroporation cuvettes (Bio-Rad). Electroporation 
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procedure was performed in Eppendorf Eporator®, 1800V/pulse (5-

6 ms) conditions. Immediately 500 µL of S.O.C. Medium 

(Invitrogen) was added to the mixture and incubated for 1 h at 

37ºC. After, the mixture was spinned down to collect the pellet and 

plated in LB medium containing the proper antibiotic. 

 

Yeast Culture 
For S. cerevisiae culture, synthetic complete defined (SCD) culture 

medium (20% glucose, 7% yeast nitrogen base, 0.5 M succinic 

acid pH5.5, 20x Drop Out solution (DO) 2% agar in case of solid 

media) and synthetic defined (SD) culture medium (20% glucose, 

7% yeast nitrogen base (YNB), 0.5 M succinic acid pH 5.5) were 

used. 

 

For yeast transformants selection, SD basic culture medium was 

supplemented with extra aminoacids depending on the autotrophy 

generated by the vector: 

-Trp -Leu/SD: Nitrogen base supplemented with DO, His and Ade 

-Trp -Leu -His -Ade/SD: Nitrogen base supplemented with DO 

-Trp -Leu -Ade/SD: Nitrogen base supplemented with DO and His 

 

-Trp -Leu -Ade/SD culture medium (+His) was also supplemented 

with different concentrations of 3-amino 1, 2, 4-triazol (3AT) in the 

indicated experiments. 3AT is an inhibitor of HIS3 gene product, 

which is part of the histidine biosynthesis in S. cerevisiae. Yeast 

was grown at 28ºC in an orbital shaker at 250 rpm. 
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Protocol for generation of S. cerevisiae competent cells was done 

according to MATCHMAKER GAL4 Two-Hybrid System 3 Manual 

(Clontech Laboratories). 

 

Yeast Co-Transformation 
1 µg of plasmidic DNA (pDNA) from the two partners we are 

interested to test the interaction were mixed in an aliquot of AH109 

yeast competent cells. 0.7 mL of PEG-Li-TE Solution (4 mL 45% 

PEG, 0.5 mL 10x LiAc-TE, 0.5 mL milli-Q water) was added. After 

vortex agitation, samples were incubated for 30 min at 28ºC. Vortex 

again was needed prior to next incubation for 20 min at 42ºC. Final 

centrifugation for 5 min at 1000×g was used to collect the cells and 

resuspended in 100 µL of milli-Q water. Glass beads were used to 

spread the culture on –Trp –Leu/SCD selective media. Plates were 

incubated for at least 2 days at 28ºC. 

 

Arabidopsis thaliana 

In Vitro Tissue Culture  
For in vitro growing assays, seed sterilization was performed using 

Sterilization Solution I (70% ethanol, 0.01% Triton X-100) for 10 

min followed by Sterilization solution II (50% Sodium hypochlorite) 

for 5 min. Removal of the sterilization solution II was done rinsing 

the seeds for 4 times with mili-Q water to fill the tube and changing 

the liquid with the pipette. Seeds were sown right after sterilization 

on Murashige–Skoog (MS) plates supplemented or not with 

different ABA concentrations per experiment. Stratification was 

conducted in the dark at 4ºC for 3 days and after it, the plates were 

incubated in controlled-environment growth chamber at 22ºC under 
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long day (LD) photoperiod conditions (16-h-light/8-h-dark 

photoperiod) at 80 to 100 µE m-2 s-2. 

 

Plant Treatments 
Treatments were performed differently depending on the nature of 

the media used: 

 

ABA stock solution was prepared from solid (+)-ABA (Sigma-

Aldrich). 26.4 mg of powdered ABA were dissolved in 1 mL of 50 

mM Tris-HCl pH8.0 buffer in order to get 10 mM ABA stock 

solution. 

 

- Solid media treatment 

MS plates were prepared with different concentrations of ABA. 

Germination and establishment experiments required ABA 

concentrations from 0.5 to 1 µM. Root growth working 

concentration was 10 µM ABA.  

 

- Liquid culture treatments 

Analyses of protein expression under several drug treatments were 

done using liquid cultures. Plants were grown in liquid MS medium 

cultures and treated with different drugs.  

For ABA treatment concentrations vary from 50-100 µM (+)-ABA 

prepared from stock solution of 10 mM ABA. In case of MG-132 

(Sigma-Aldrich) the working concentration was 50 µM prepared by 

dilution from 5 mM stock solution. CHX (Sigma-Aldrich) was used 

at 100 µM from a stock solution of 100 mM.. 

 

 



Materials and Methods 

 157 

- Spray treatment 

Exogenous application of ABA was done by spraying 100 µM 

solution onto 3 week-old leaves of adult plants grown in the 

greenhouse. Spray treatment was done for 3 h and the spray 

application was repeated each hour. 

 

Greenhouse Culture 
To propagate plants and for crosses, 1 week-old seedlings were 

transferred to soil (50% peat, 25% vermiculite, 25% perlite) and 

grown under LD conditions in the greenhouse 23°C/20°C 

temperature, 60% air relative humidity and 150 µmol m–2 s–1 light. 

 

Generation of Mutants 
To obtain mutants in A. thaliana such as snrk2.2/2.3/brm-3 and 

abi4 brm-3, mutant parental plants were sowed on soil for 3 weeks. 

Closed flowers from mother plants were peeled to isolate the 

ovaries. Pollen from father mutant plants was incorporated to the 

ovaries and the cross was kept in a plastic wrap for two days, 

allowing the cross to develop. Seeds generated from the cross, F1 

seeds, were grown in MS plates under LD conditions. To get 

homozygous lines, F2 seeds were grown and selected on MS 

media containing ABA (concentration was different depending on 

the strength of the parentals). ABA selection facilitates isolation of 

the homozygous mutants relying on their expected sensitivity to 

ABA. 

 

For example, to obtain snrk2.2/2.3/brm-3 triple mutant, F2 seeds 

were grown in normal MS media (¼ of the population in the cross is 
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expected to be the triple mutant). Rosette leaves were used to 

extract genomic DNA (gDNA) and genotyping. In this specific case, 

F2 1.1 line was homozygous for snrk2.2 and snrk2.3 mutations 

(this double mutant was used as the mother) and heterozygous for 

brm-3 mutant (this mutant was used as pollen donor). Seeds 

derived from this F2 1.1 line, the F3 seeds, were sown in 1 µM ABA 

selective media. This amount of ABA will assure us to introduce 

bias in the germination rate. We expected to have good 

germination in seeds containing double snrk2.2/2.3 and delay in 

germination in putative triple mutants because brm-3 

hypersensitivity. With this assumption, we transfer to soil different 

phenotypes of seedlings; insensitive seedlings and the other 

seedlings that show delayed germination. After genotyping the F3 

plants, triple mutants were obtained in the delayed seeds indicating 

that the assumption was correct. 

 

Arabidopsis thaliana Transgenic Lines Generation 
pALLIGATOR2 and pMDC163 vectors carrying the described 

constructions were transferred to A. tumefaciens by electroporation 

and used to transform Col-0 wild-type or specific mutant plants by 

the floral dip method (Clough & Bent, 1998). 

 

In the case of pALLIGATOR2 constructions, T1 seeds were 

selected via the GFP expression driven by the At2S3 seed-specific 

promoter (Bensmihen et al., 2004) under GFP filter in the 

microscope. T1 seeds were grown in the greenhouse to obtain T2. 

Same GFP selection strategy used before was followed with T2 

and T3 transgenic lines. 100% GFP T3 lines were used for the 

following studies.  
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In the case of pMDC163 vectors, the T1 seeds were selected by 

using 25 mg/mL hygromycin antibiotic. T1 resistant seedlings were 

transferred to the green house and grown in LD conditions to 

generate T2 seeds. These T2 seeds were again selected in 

hygromycin medium in order to obtain T3 homozygous progeny 

and that will be used for following studies. 

 

Physiological Assays 

Seed Germination and Seedling Establishment Assays 
Approximately 100 seeds of each genotype were sown after 

sterilization on MS plates supplemented or not with different ABA 

concentrations. Stratification was conducted in the dark at 4ºC for 4 

days. The plates were transferred to in vitro growing chamber 

under LD conditions. Radical emergence was analyzed at 72 h 

after sowing to score seed germination. Seedling establishment 

was scored as the percentage of seeds that developed green 

expanded cotyledons and the first pair of true leaves at 5 or 7 days. 

 

Root Growth Assays 
For root growth assays, seeds were sterilized and stratified as 

explained in a previous paragraph. Seedlings were grown on 

vertically oriented MS plates for 3-4 days. Afterwards, 20 plants 

were transferred to new MS plates lacking or supplemented with 

the indicated concentrations of ABA. The plates were scanned on a 

flatbed scanner after 10 days to produce image files suitable for 

quantitative analysis of root growth using the ImageJ v1.37 

software. 
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Drought Stress Assays 
For drought studies, transpiration rate was measured with water 

loss experiments. Seeds of all the genotypes were grown in MS 

plates for 7 days and transfer into soil in the greenhouse and grown 

under LD conditions for 2-3 weeks. 

 

Long-term drought assays for ProPP2CA:PYLs plants, were 

performed after withholding water in plants maintained under 

greenhouse conditions basically as described by Saez et al. 

(2006). Eight plants of each genotype (two independent 

experiments) were grown in the greenhouse with LD conditions 

under normal watering conditions for 17 days and then subjected to 

drought stress by completely terminating irrigation for 17 days. 

Representative pictures were taken at several time points during 

the experiment (8D, 14D and 17D). Plants subjected to the water 

deprivation were afterwards watered with Hoagland solution and 

data were collected after 4 days. Pictures were taken after each 

time point for qualitative data analysis. 

 

Nucleic Acids Extraction and Analysis Methods 

DNA Extraction 

Escherichia coli  

pDNA was extracted from the bacteria using alkaline lysis of the 

cells. 1.5 mL of saturated cultures of E. coli were centrifuged at 

12000×g for 1 min. Supernatant was discarded and the pellet was 

resuspended in 100 µL of ultrapure water of Type 1 (milli-Q water) 

and 100 µL of Lysis Solution (0.1 M NaOH, 10 mM ethylene 
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diamine tetraacetic acid (EDTA), 2% sodium dodecyl sulfate 

(SDS)). Samples were heated at 95ºC for 2 min and next kept on 

ice. 50 µL of 1M MgCl2 were added and after vortexing the solution, 

the tubes were centrifuged at 12000×g for 5 min. Neutralization 

was performed with 50 µL of 5 M AcK (balanced with acetic acid at 

pH 5.0). The pDNA was precipitated with 2 volumes of pre-cooled 

96% ethanol. After 15 min of incubation on ice, the precipitate was 

collected by centrifugation at 12000×g for 15 min. After discarding 

the supernatant, the pellet was rinsed with 500 µL of 70% ethanol 

and centrifuged at 12000×g for 5 min. The pellet was air-dried and 

resuspended with 30 µL of milli-Q water. 

 

Arabidopsis thaliana 

For gDNA extraction, 100 mg of leaf material from 2 weeks-old 

plants was collected in tubes and freeze into liquid nitrogen. The 

material was grinded with a glass pistil until fine powder. 2 volumes 

of Extraction Buffer (EB, 2% cetyl trimethyl ammonium bromide 

(CTAB), 100 mM Tris-HCl pH8.0, 20 mM EDTA, 1.4 M NaCl) were 

added to the sample and incubated at 65ºC for 10 min. 1 volume of 

chloroform/isoamyl alcohol (24:1) was added next and after 

vortexing, the sample was centrifuged at 12000×g for 10 min. 1 

volume of the aqueous phase was transferred to a new tube and 

1/10 of 10% CTAB was added (10% CTAB is very viscous so pre-

warming of the solution at 65ºC has to be done prior to use) 

followed by an incubation at 65ºC for 2 min. For induction of the 

CTAB/DNA-RNA complex precipitation, 2 volumes of milli-Q water 

were added and followed by 15 min of ice incubation. 

Centrifugation of 12000×g for 10 min was performed to collect the 

pellet. After discarding the supernatant, 400 µL of 1 M NaCl was 
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used to resuspend the pellet. To precipitate de DNA, 800 µL of 

96% ethanol were added followed by incubation on ice for 15 min. 

Last step was collecting the gDNA by centrifugation at 12000×g for 

15 min. Samples were rinsed with 70% ethanol, as described 

before and the gDNA was resuspended with 30 µL of milli-Q water. 

 

DNA Analysis by PCR Reaction 
For open reading frame (ORF) amplifications and their posterior 

GATEWAY™ cloning in pCR®8/GW/TOPO®, the proofreading Pfx 

50™ DNA polymerase (Life Technologies) was used. Table 2 

shows the primer list used for cloning along this work. 

 

Amplification Primer Name Sequence (5’-3’) 

BRM-N1 

(1-949 aa) 

F-BRMn 
ATGCAATCTGGAGGCAGTGGCG

G 

R-BRMN 

nostop 
TGGCGCATTCATTTCCGTAAATC 

BRM-D2 

(691-949 aa) 

FBRM-D2 

BamHI 

GGATCCATGTGTGAAGAAGGTGC

AGAGTTC 

R-BRMN 

nostop 
TGGCGCATTCATTTCCGTAAATC 

BRM-C2C3 

(691-2193 aa) 

FBRM-C2 NcoI 
ACCATGGTTGAGTTATTTGATCAG

ATG 

RBRM-C1 

nostop 
TAAATGGCTAGGCCGTCTTTTACC 

BRM-C2  

(1541-1890 aa) 

FBRM-C2 NcoI 
ACCATGGTTGAGTTATTTGATCAG

ATG 

RBRM-C2 Stop CTAATTTGAAGAGCTAATAGGACT 

BRM-C3 

(1891-2193 aa) 
FBRM-C3 NcoI 

ACCATGGCTGGTGCAAGAATGTC

CCAC 
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RBRM-C3 

BamHI 

AAAGGATCCCTATAAATGGCTAG

GCCGTCT 

BRM-D2 

(684-949 aa) 

FBRM-D2 NcoI 
ACCATGGATATTAAAGATCTGATT

TGTGAAG 

RBRM-D2 Stop 
CTATGGCGCATTCATTTCCGTAAA

TCT 

PP2CA 

FNotNdePP2C

A 

TTTGCGGCCGCCATATGGCTGGG

ATTTGTTGCGGTGTT 

RNotPP2CA 
TTTGCGGCCGCTTAAGACGACGC

TTGATTATTCCT 

ABI4 

FABI4NcoI 
ACCATGGACCCTTTAGCTTCCCA

A 

RABI4Stop 
TTAATAGAATTCCCCCAAGATGG

G 

ProPP2CA 

FproPP2CA 

HindIII 

AAGCTTGGTTTTACCCGAACTTAA

CCCAAATGC 

RproPP2CA 

SacI 

GAGCTCCATTTGATCTCTAACAAA

ACTTCTCCA 

Sl03g007310 

FNco03g00731

0 

ACCATGGACGCTAATGGATTCTG

CGGTG 

R03g007310 TTAGACCTGATCAATGGGTTCTG 

Table 2. Primer sequences for amplification of ORFs. Restriction 

sites are highlighted in green and Stop codons, in red. In brackets 

are the amplification size measured in aa. 

For genotyping of the mutants, CTAB protocol for genomic DNA 

extraction was performed and Taq polymerase (produced in our 

laboratory) was used for PCR analysis. Primers used for 

genotyping each mutant and insertions (SALK and SAIL T-DNA, 

GABI-KAT insertions), are listed in table 3. 
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Mutants Primer Name Sequence (5’-3’) 

brm-3 genomic 

FBRM-C2 

NcoI 

ACCATGGTTGAGTTATTTGATCAGAT

G 

RBRM-C2 

Stop 
CTAATTTGAAGAGCTAATAGGACT 

brm-3 T-DNA 

newpROK2 GCCGATTTCGGAACCACCATC 

FBRM-C2 

NcoI 

ACCATGGTTGAGTTATTTGATCAGAT

G 

snrk2.2 

genomic 

LP2.2 CAAGACCATACATCTGCAAGCTGG 

RP2.2 ACACCTTGATGTTTCTTCTGTGTG 

snrk2.2 T-DNA 

LP2.2 CAAGACCATACATCTGCAAGCTGG 

GK-o8474 
ATAATAACGCTGCGGACATCTACATT

TT 

snrk2.3 

genomic 

LP2.2 TTGGTTTTGAGTGTTCTGCTTTTG 

RP2.2 CACCACATGACCATACATCTGCAA 

snrk2.3 T-DNA 

LP2.3 TTGGTTTTGAGTGTTCTGCTTTTG 

GK-o8474 
ATAATAACG CTG 

CGGACATCTACATTTT 

abi4 genomic 
FABI4NcoI ACCATGGACCCTTTAGCTTCCCAA 

RABI4Stop TTAATAGAATTCCCCCAAGATGGG 

abi4 T-DNA 
FABI4NcoI ACCATGGACCCTTTAGCTTCCCAA 

newpROK2 GCCGATTTCGGAACCACCATC 

Table 3. Primer sequences for genotyping of double/triple mutants 

generated in this work. 
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Generation of Entry Vectors 

GATEWAY™ Cloning 
The GATEWAY™ system pCR®8/GW/TOPO® TA Cloning® Kit (Life 

Technologies) was used for generating entry clones following 

manufacturer’s instructions.  

 

Generation of Destiny Vectors 
For the generation of most of the destiny vectors GATEWAY™ 

technology was used. 

 

GATEWAY™ LR Clonase II Reaction 
50-150 ng of entry vector DNA and 150 ng of destiny vector DNA 

were mixed with 1.5 µL LR Clonase™ II enzyme mix (Life 

technologies). Volume was brought to 7.5 µL with milli-Q water and 

incubated at 25ºC for 1 h. To inactivate the clonase enzyme, 1 µL 

of 1% Proteinase K solution was added to the sample and 

incubated at 37ºC for 10 min. 5 µL of reaction was transformed in a 

50 µL aliquot of DH5α E. coli chemocompetent cells.  

 

Constructions for Yeast-Two and -Three Hybrid 
For yeast-two and -three hybrid (Y2H-Y3H) assays, pGADT7 and 

pGBKT7-GW versions and pGADT7 and pGBKT7 in their 

restriction versions were used. Moreover, other compatible vectors, 

as pACT2TM and pGBT9TM (Clontech Laboratories) that were 

already generated in our laboratory, were also used. The genes 

cloned in these vectors were fused to GAL4 activation domain 

(GAD) in pGADT7, pACT2TM vectors or to the GAL4 binding 
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domain (GBD) in pGBKT7, pGBT9TM vectors. In case of Y3H, 

pBridgeTM vector (Clontech Laboratories) was used because this 

vector can express two proteins at the same time: one fused to the 

DNA-binding domain and another additional protein. 

 

Constructions 
(Y2H) Plasmid Bacterial 

Selection References 

GAD-HA-BRMN1 pGADT7 
GW AmpR In this work 

GBD-myc-BRMN1 pGBKT7 
GW KanR In this work 

GBD-BRM N pDEST32 GenR In this work 

GAD-HA-BRMC1 pGADT7 
GW AmpR In this work 

GBD-myc-BRMC1 pGBKT7 
GW KanR In this work 

GBD-BRMD1 pGBKT7 
GW KanR In this work 

GBD-BRMD2 pGBKT7 
GW KanR In this work 

GAD-SWI3B pACT2 AmpR (Saez et al., 
2008) 

GAD-HAB1 pGADT7 AmpR (Santiago et al., 
2009b) 

GAD-HAB1 pDEST22 AmpR In this work 
GAD-HAB2 pGADT7 AmpR (Fujii et al., 2009) 
GAD-ABI1 pGADT7 AmpR (Vlad et al., 2010) 
GAD-ABI2 pGADT7 AmpR (Fujii et al., 2009) 
GAD-PP2CA pGADT7 AmpR (Fujii et al., 2009) 
GAD-HAI1 pGADT7 AmpR In this work 
GAD-AHG1 pGADT7 AmpR In this work 
Constructions 
(Y3H) Plasmid Bacterial 

Selection References 

GBD-SnRK2.2  pBridge AmpR (Fujii et al., 2009) 
GBD-SnRK2.3 pBridge AmpR (Fujii et al., 2009) 
GBD-
SnRK2.6/OST1 pGBT9 AmpR (Fujii et al., 2009) 
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GBD-BRMN pBridge AmpR In this work 
GBD-BRMN-HA-
PYL4 (MCSII) pBridge AmpR In this work 

GBD-BMN-HA-
PYL5 (MCSII) pBridge AmpR In this work 

Table 4. Constructs used in this work for Y2H and Y3H assays in 

yeast. 

 

Constructions for In Planta Expression 
For in planta expression vector generation, GATEWAY™ system 

was used. The proteins of interest were fused to the green 

fluorescent protein (GFP) in C-terminal position and expressed 

under the control of 35S promoter. These constructs were used for 

protein localization in tobacco epidermal cells.  

 

Constructions Plasmid Bacterial 
Selection  

35S:BRMN-GFP pMDC83 KanR In this work 
35S:BRMC2C3-GFP pMDC83 KanR In this work 
35S:BRMC2-GFP pMDC83 KanR In this work 
35S:BRMC3-GFP pMDC83 KanR In this work 

Table 5. Constructions for in planta localizations of BRM fragments. 
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Constructions for Bi-molecular Fluorescence 
Complementation (BiFC) and multicolor BiFC (mcBiFC) in 
Nicotiana benthamiana 
For BiFC experiments, destiny vectors for protein expression were 

generated. The pSPYNE-35S and pSPYCE-35S vectors used in 

this work were obtained from Walter et al. (2004) and pYFPN43 

and pYFPC43 vectors were kindly provided by Alejandro Ferrando 

(Belda-Palazon et al., 2012). The proteins of interest were fused to 

N-terminal or C-terminal part of the yellow fluorescent protein 

(YFP) under 35S promoter control. For mcBiFC the vectors used 

were obtained from Gehl et al. (2009).  

 

Constructions Plasmid Bacterial 
Selection References 

Pro35S:BRMN1-c-myc-
YFPN 

pSPYNE-
35S KanR In this work 

Pro35S:YFPN-
BRMC2C3 pYFN43 KanR In this work 

Pro35S:BRMN1-HA-
YFPC 

pSPYCE-
35S KanR In this work 

Pro35S:BRMC2C3-HA-
YFPC 

pSPYCE-
35S KanR In this work 

Pro35S:YFPC-SnRK2.2 pYFC43 KanR In this work 

Pro35S:YFPC-SnRK2.3 pYFC43 KanR In this work 
Pro35S:YFPC-
SnRK2.6/OST1 pYFC43 KanR (Vlad et al., 

2009) 
Pro35S: YFPC-
SnRK2.6/OST1 Δ280 pYFC43 KanR (Vlad et al., 

2009) 

Pro35S:YFPN-ΔNPP2CA pYFN43 KanR (Saez et al., 
2008) 

Pro35S:YFPN-PP2CA pYFN43 KanR (Antoni et al., 
2012) 

Pro35S:PP2CA-YFPN pSPYNE KanR (Pizzio et al., 
2013) 

Pro35S:YFPN-ABI1 pYFN43 KanR In this work 

Pro35S:YFPN-HAI1 pYFN43 KanR In this work 
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Pro35S:YFPN-HAB1 pYFN43 KanR (Pizzio et al., 
2013) 

Constructions for 
protoplasts Plasmid Bacterial 

Selection  

Pro35S:eYFPN-c-myc-
BRMN 

pSPYNE 
(R)173 KanR In this work 

Pro35S:eYFPN-c-myc-
BRMC 

pSPYNE 
(R)173 KanR In this work 

Pro35S:eYFPC-HA-
HAB1 

pSPYCE 
(MR) KanR In this work 

Pro35S:eYFPC-HA-
OST1 

pSPYCE 
(MR) KanR In this work 

Constructions for 
mcBiFC Plasmid Bacterial  

Selection  

Pro35S: SCFPC-HA-
BRMN1 

p(MAS)DE
ST-SCYCE 
(R)GW 

KanR In this work 

Pro35S: SCFPC-HA-
BRMC2C3 

p(MAS)DE
ST-SCYCE 
(R)GW 

KanR In this work 

Pro35S:VENUSN-c-myc-
PP2CA 

pDEST–
VYNE 
(R)GW 

KanR In this work 

Pro35S:VENUSN-c-myc-
SnRK2.2 

pDEST–
VYNE  
(R)GW 

KanR In this work 

Pro35S:SCFPN-FLAG-
PYL4 

pDEST–
SCYNE 
(R)GW 

KanR In this work 

Table 6. Constructions used for BiFC/mcBiFC experiments in N. 

benthamiana. 

 

Constructions for Protein Purification in Escherichia coli 
For expression of recombinant proteins, two systems were used. 

pETM-11 vector was used for expressing proteins tagged with 6His 

tail fused in the N-terminal part of the protein and pMAL-c2 vector 

(Biolabs) was also used for recombinant protein expression but in 



 

 170 

this case, the tag was maltose binding protein (MBP) fused in N-

terminal position. 

 

Constructions Plasmid Bacterial 
Selection References 

6His-BRM C2 pETM-11 KanR In this work 
6His-BRM C3 pETM-11 KanR In this work 
MBP-BRM D2 pMAL-c2 AmpR In this work 
6His-
SnRK2.6/OST1 pETM-11 KanR (Santiago et al., 

2009b) 

6His-PP2CA pETM-11 KanR (Antoni et al., 
2012) 

6His-ABF2 ΔC pETM-11 KanR (Antoni et al., 
2012) 

6His-PYL8 pETM-11 KanR (Antoni et al., 
2012) 

Table 7. Constructions used for protein expression and purification 

in E. coli. 

 

Constructions for Transgenic Lines Generation 
For the generation of transgenic lines pALLIGATOR2 vector 

(Bensmihen et al., 2004) was used. This vector combines a GFP 

selection marker expressed under seed specific promoter, At2S3, 

making the transgenic lines easy to select under GFP filter in the 

microscope. 

 

Constructions Plasmid Bacterial 
Selection  

ProPP2CA:2HA-
PYL4 pALLIGATOR2 SpectR In this work 

ProPP2CA:2HA-
PYL4A194T pALLIGATOR2 SpectR In this work 

ProPP2CA:2HA- pALLIGATOR2 SpectR In this work 
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3g007310 
ProPP2CA:2HA-
PP2CA pALLIGATOR2 SpectR In this work 

Table 8. Constructions for expressing PYR/PYL receptors/PP2CA 

under the control of PP2CA promoter.  

Phosphomimetics and Phosphomutants Generation 
A part of genomic BRM fragment of 2850 bp (BamHI–EagI gBRM), 

was cloned into pENTR3C vector (Invitrogen). The S1760 and 

S1762 residues were mutated either to aspartic acid 

(phosphomimetic) or alanine (phosphomutant) by site-directed 

mutagenesis. To achieve this aim, we used primers described in 

the table 9 following http://openwetware.org/wiki/Knight:Site-

directed_mutagenesis/ 

Single_site procedure and the Stratagene QuickChange Site-

Directed Mutagenesis manual. After verification of the mutagenesis 

by nucleotide sequencing, the BamHI–EagI gBRM fragment 

containing the S1760D/A and S1762D/A changes replaced the wt 

fragment in ProBRM:gBRM-GFP (Wu et al., 2012). Subsequently, 

ProBRM:gBRM-GFP was recombined into pGWB1 by 

GATEWAY™ LR clonation. The resulting binary expression vector 

was transformed into A. tumefaciens and introduced into brm-3 

mutants (Farrona et al., 2004) by floral dip method (Clough & Bent, 

1998). 

 

Primer Name Primer sequence (5’-3’) 

BRM S1760D S1762D 
GATTCTCACATAGATCTCCAACGAGA
TGGAGATTGGGCCCATGACCGTGATG
AAGG 

BRM S1760A S1762A GATTCTCACATAGATCTCCAACGAGC
TGGAGCTTGGGCCCATGACCGTGATG
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AAGG 

Table 9. Primers for phosphomimetic and phosphomuntant 

generation in brm-3 mutant plants. 

RNA extraction and PCR analysis of gene 
expression 

Analysis of ABI5 Expression 
Two-day-old seedlings that were mock treated or treated with 50 

µM ABA for 1 h, were used for ABI5 expression analysis. RNA was 

extracted as Peirats-Llobet et al. (2016). In briefly, Trizol reagent 

(Invitrogen) was used for RNA extraction and further purified 

through DNaseI treatment and the RNA purification RNeasy mini kit 

(Qiagen). cDNA was synthesized using the Superscript IV kit 

(Invitrogen). Real-time PCR (StepOnePlus Real-Time PCR system; 

Applied Biosystems) was performed using Power SYBR Green 

PCR Master Mix (Life Technologies) and platinum Taq DNA 

polymerase (Invitrogen). ABI5 transcript levels were normalized 

over that of the reference UBQ10 gene (Czechowski et al., 2005). 

 

Primer name Primer sequence (5’-3’) 
qABI5_F AACATGCATTGGCGGAGT 

qABI5_R TTGTGCCCTTGACTTCAAACT 

qUBQ10_F CCCTCCACTTGGTCCTCAG 

qUBQ10_R GTCAGAACTCTCCACCTCCAA 

Table 10. Primers for analysis of ABI5 expression by RT-qPCR in A. 

thaliana. 
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Analysis of ABI4 Expression 
For RNA extraction material from 40 h germinated embryos (or 100 

mg from 12 dag (days after germination) seedlings) was mock or 

50 µM ABA treated for 1 h and samples were collected with liquid 

nitrogen. RNA extraction was performed with NucleoSpin® RNA 

Plant kit from Machery-Nagel, following the manufacturer’s 

instructions. cDNA was synthesized from 2 µg of total purified RNA 

using 30U of RevertAid Reverse Transcriptase (Thermo Scientific) 

following the manufacturer’s instructions.  

 

RT-qPCR was performed using PyroTaq EvaGreen qPCR Master 

Mix 5X from Cultek (or EvaGreen® Dye 20X in water, carboxy-X-

rhodamine (ROX) as a passive reference dye, both from Biotium 

and Taq DNA polymerase). The reaction was performed in a final 

volume of 10 µL using 0.4 µL of cDNA. The primer pairs used for 

this analysis are listed in table 11. The equipment used for the RT-

qPCR was the 7500 Fast Real-Time PCR System from Applied 

Biosystems. The PCR conditions used were 1 cycle of denaturation 

for 15 sec at 95ºC, 40 cycles of denaturation (15 sec at 95ºC), 

primer hybridation (30 sec at 55ºC) and extension (30 sec at 60ºC); 

1 cycle of DNA dissociation (15 sec at 95ºC, 1 min at 60ºC, 15 sec 

at 95ºC). ABI4 transcript levels were normalized over that of the 

reference Act8 gene (or PDF2 gene (Czechowski et al., 2005)). 

RT-qPCR results were analyzed by 7500 Software v2.0.4 (Applied 

Biosystems) using 2ΔΔCt method for relative genic expression as 

described in (Livak & Schmittgen, 2001). 

 

Primer name Primer sequence 

FwABI4-721 TTAGGGCAGGAACAAGGAGG 
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RvABI4-831 CGGCGGTGGATGAGTTATTG 

FAct8 AGTGGTCGTACAACCGGTATTGT 

RAct8 GAGGATAGCATGTGGAAGTGAGAA 

FPDF2 TCAACATCTGGGTCTTCACTTAGC 

RPDF2 GATGCAATCTCTCATTCCGATAGTC 

Table 11. Primers for semiquantitative/quantitative analysis of ABI4 

expression in A. thaliana mutants.  

Analysis of ABI4 Promoter 
For ChIP analysis of the ProBRM:BRM-HA material, we used the 

following list of primers. 

 

Primer 
name 

Final 
Concentration Primer sequence (5’-3’) 

F1 pABI4 500 nM CCGTTAGCCGTTATGTAATGATTTA 

R1 pABI4 500 nM GGAACAGAGATATCATTTTTGTTTG
T 

FnewP2.1 500 nM CAATTTAAATTGACAAGTACTTAG 
RnewP2.1 500 nM GAACTGAATCAAATTCACCAAGG 
FnewP2.2 500 nM CAGTTCTCTCTGGTTGAATCCTC 
RnewP2.2 500 nM GGGTAACTATAGCAAATCATGAGC 
F3 pABI4 500 nM CGCTCATGATTTGCTATAGTTACC 
R3 pABI4 500 nM GAGAAAAATAGTGGAGAGGACGAA 
F4 pABI4 500 nM CGTCCTCTCCACTATTTTTCTCA 
R4 pABI4 500 nM GTGGAATCGGATTGAGGATTATT 
FPDF2 300 nM TCAACATCTGGGTCTTCACTTAGC 
RPDF2 900 nM GATGCAATCTCTCATTCCGATAGTC 
FpABI5e1 500 nM AATTCTCCGGCGGCTTTT 
RpABI5e1 500 nM CCGGTGGCTTTGTGTTCC 

Table 12. Primers for ABI4 promoter analysis by RT-qPCR in A. 

thaliana.  
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Protein Technology 

Recombinant Protein Induction In Escherichia coli 
Purification of recombinant proteins was performed as described 

previously in Santiago et al. (2009b); Antoni et al. (2012), except in 

the case of BRMD2, which was fused to MBP protein. BRM protein 

fragments corresponding to the C-terminal region, BRMC2 (1541–

1890 aa) and BRMC3 (1891–2193 aa) were amplified using PCR 

and cloned into pETM11, and BRMD2 (684–950 aa) corresponding 

to the last fragment of N-terminal region, was cloned into pMAL-c2. 

For the expression of each recombinant protein in E. coli BL21 

(DE3) cells or DH5α, transformed with pETM11/pMAL-c2 construct, 

respectively, bacteria were grown in LB medium to an optical 

density (OD600) of 0.6-0.8. At this point, 1 mM of Isopropyl β-D-1-

thiogalactopyranoside (IPTG) was added for the induction of this 

protein system and bacteria were harvested after 3 h incubation at 

28ºC. To collect the bacterial pellet, culture was centrifuged at 

3000×g for 15 min. After discarding the supernatant, pellet was 

washed with 2 mL of MBP buffer (20 mM Tris-HCl pH7.4, 200 mM 

NaCl, 1 mM EDTA and 10 mM β-mercaptoethanol (added prior to 

use)) centrifuged at 13000×g for 1.5 min at 4ºC and kept in -80ºC. 

 

Recombinant Protein Purification in Escherichia 
coli 

His-tag proteins culture and purification 
6His-tagged recombinant proteins were purified to homogeneity 

using nickel-nitrilotriacetic (Ni-NTA) affinity chromatography (Antoni 

et al., 2012). Shortly, the protein pellet was resuspended in 2 mL of 
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histidine buffer (HIS buffer, 50 mM Tris-HCl, pH 7.6, 250 mM KCl, 

10% glycerol, 0.1% Tween 20, and 10 mM β-mercaptoethanol), 

and the cells were sonicated with 2 pulses of 30 sec (hold position, 

50% of the power) in a Branson Sonifier. A cleared lysate was 

obtained after centrifugation at 14000×g for 15 min at 4ºC, and it 

was diluted with 2 volumes of HIS buffer. The protein extract was 

applied to a 0.5 mL Ni-NTA acid agarose column, and the column 

was washed with 10 mL of HIS buffer supplemented with 20% 

glycerol and 30 mM imidazole. Bounded protein was eluted with 

HIS buffer supplemented with 20% glycerol and 250 mM imidazole. 

Recovery of the columns was done by adding 5 mL of 0.2 M acetic 

solution supplemented with 30% glycerol, washed with 8 mL of 

milli-Q water and the resin was kept at 4ºC with 5 mL of 30% 

ethanol. 

MBP-tag proteins culture and purification 
Maltose binding protein (MBP) is a big and soluble protein used 

when solubility problems happens in purifications.  

 

Purification of MBP-BRMD2 protein was performed using amylose 

affinity chromatography. The matrix for the protein separation was 

amylose resin (New England, Biolabs), which is a polymer with 

high affinity for MBP protein. 1 mL of the resin was added to the 

column for the matrix generation, flow-through was discarded and 

the resin was washed once with 10 mL of MBP buffer (20 mM Tris-

HCl pH 7.4, 200 mM NaCl, 1 mM EDTA and 10 mM β-

mercaptoethanol). The samples have to be kept on ice during all 

the process but especially in the sonication step, to preserve the 

integrity of the proteins. 2 mL protein pellet was resuspended in 

MBP lysis buffer (1x MBP buffer, 10 mM β-mercaptoethanol and 
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0.25% Tween 20) for sonication 2 pulses of 30 sec (hold position, 

50% of the power) in a Branson Sonifier. The samples were 

centrifuged at 13000×g for 10 min and 4ºC. Around 2 mL of the 

sample was collected and diluted 5 times with MBP dilution/wash 

buffer (1x MBP buffer, 10 mM β-mercaptoethanol). 10 mL of the 

sample were loaded into the column, washed with 10 mL of MBP 

dilution/wash buffer and eluted in protein fractions with 0.3 mL of 

MBP elution buffer (1x MBP buffer, 10 mM β-mercaptoethanol, 200 

µL 0.5 M maltose). 

 

Quantification of the protein in both purification protocols was done 

by Bradford assay (Bio-Rad). Samples are loaded in a one 

dimension SDS-polyacrylamide gel electrophoresis (SDS-PAGE). 

 

Coomassie staining 
For protein visualization, acrylamide gels were incubated in 

InstantBlue™ (Expedeon) staining solution for 15 min. Unstaining 

of the gel was done rinsing the gel with milli-Q water until the 

background was removed. 

 

Protein Extraction  

Saccharomyces cerevisiae 
Yeast cultures for protein extraction were grown O/N in selective 

medium at 28ºC. The OD600 of the cultures were adjusted to 5, 

centrifuged at 1000×g for 2 min, washed with 1 mL of milli-Q water 

and resuspended again in 100 µL milli-Q water. 100 µL of 0.2 M 

NaOH, 1% β-mercaptoethanol were added and incubated 10 min at 

room temperature (RT). Samples were centrifuged and 
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resuspended in 100 µL of milli-Q water. Quantification of the 

samples was done by Bradford assay (Bio-Rad). Samples were 

mixed with 5x Laemmli buffer (30 mM Tris-HCl pH6.8, 7.5% SDS, 

0.1 M dithiothreitol (DTT), 10 mM EDTA, 30% Sucrose, 0.25 

mg/mL Bromophenol Blue), boiled for 3 min at 95ºC, cooled on ice 

for 1 min and spinned down prior to separate the proteins in SDS-

PAGE. 

 

Nicotiana benthamiana 
2x Laemmli buffer was used for total protein extraction from N. 

benthamiana leaves (2 volumes of 2x Laemmli buffer per each 

gram of pulverized vegetal tissue). The mixture between sample 

and buffer was vortexed and heated at 95ºC for 15 min. Afterward, 

the sample was cooled on ice, spinned down and it was ready for 

SDS-PAGE analyses. 

 

Arabidopsis thaliana 
For protein extraction from A. thaliana material, 2 volumes of Lysis 

Buffer (50 mM Tris-HCl pH8.0, 150 mM NaCl, 1% Triton X-100, 3 

mM DTT, 50 µM proteasome inhibitor MG-132 (UBPBio) and 1 

tablet of antiprotease cocktail Roche (1 tablet/10mL buffer)) were 

added to sample. The mixture was kept on ice for 30 min and 

vortexed every 10 min. Samples were centrifuged at 12000×g at 

4ºC for 30 min. The supernatant was transferred into a new tube 

and the protein quantification was performed by Bradford assay 

(Bio-Rad). 
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Biochemical Fractionation 
Protein extracts for immunodetection experiments were prepared 

from tobacco leaves 48–72 h after agro-infiltration or from A. 

thaliana transgenic lines expressing GFP- and HA-tagged versions 

of BRM and PP2Cs/SnRK2s, respectively. Grinded plant material 

(100 mg) for direct WB analysis was extracted in 2xLaemmli buffer, 

proteins were run in a gradient 4%-15% SDS-PAGE Mini-Protean® 

Precast gel (Bio-Rad), and analyzed by WB. Nuclear fractionation 

of GFP- or HA-tagged proteins was performed as described 

previously (Saez et al., 2008, Antoni et al., 2012). Briefly, material 

from 40 h germinated embryos of ProBRM:BRM-HA were grown in 

MS –sucrose (suc) plates, ground in liquid nitrogen and 

homogenized in Lysis Buffer (20 mM Tris-HCl pH 7.6, 25% 

Glycerol, 20 mM KCl, 2.5 mM MgCl2, 250 mM sucrose, 0.8 mM 

phenylmethylsulfonyl fluoride (PMSF), 5 mM β-mercaptoethanol, 1 

tablet Protease Inhibitor Cocktail (Roche)/10mL of buffer). The 

lysate was filtered thought two layers of miracloth paper and was 

centrifuged at 12000×g at 4ºC for 20 min. Cytoplasmic fraction was 

stored at -20ºC and nuclear pellet was rinsed 3 times with Nuclei 

Resuspension Buffer (NRB, 20 mM Tris-HCl pH7.6, 25% glycerol, 

2.5 mM MgCl2, 0.5% Triton X-100, 0.8 mM PMSF, 5 mM β-

mercaptoethanol). Nuclei were lysed with Medium Salt Buffer 

(MSB, 20 mM Tris-HCl pH7.6, 0.4 M NaCl, 1 mM EDTA, 5% 

glycerol, 0.5 mM PMSF, 0.1% Triton X-100, 1xProtease Inhibitor 

Cocktail and nuclear soluble fraction was collected for analysis. 

Soluble proteins from the nuclear fraction were immunoprecipitated 

using super-paramagnetic micro MACS beads (Miltenyi Biotec) 

coupled to monoclonal anti-GFP or anti-HA antibody according to 

the manufacturer’s instructions. Purified immunocomplexes were 
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eluted with pre-heated elution buffer, run in a 10% SDS–PAGE gel 

and analyzed by WB. 

 

SDS-PAGE Electrophoresis  
Mixed samples with Laemmli buffer were boiled for 10 min at 95ºC 

and spinned down. The system used for protein analysis was Mini-

Protean® System from Bio-Rad. Running gel containing 8-12% 

Acrylamide (19:1 Acrylamide/Bis-acrylamide from National 

diagnostics), 375 mM Tris-HCl pH8.8, 0.1% SDS, 0.2% N,N,N’,N’-

tetramethyl ethylenediamine (TEMED) and 0.08% ammonium 

persulfate (APS). Stacking gel is composed by 4% acrylamide/bis-

acrylamide, 125 mM Tris-HCl pH 6.8, 0.1% SDS, 0.8% TEMED 

and 0.1% APS. 

 

Western Blot Analyses 
After SDS-PAGE, wet transfer method was used for protein 

visualization. Proteins were transferred to a polyvinylidene 

difluoride (PVDF) membrane Immobilon®-P (Millipore™), previously 

activated in 100% methanol solution, using Mini Trans-Blot® Cell 

system (Bio-Rad). Transfer buffer used was 1x Towbin Buffer (25 

mM Tris-HCl pH7.6, 192 mM glycine, 20% (v/v) methanol, 0.1% 

SDS).  

 

To check the transference, the membrane was incubated in 

Ponceau S Solution (0.1% (w/v) Ponceau S (Sigma-Aldrich) in 5% 

acetic acid) for 15 min in an orbital shaker. 1% acetic acid was 

used for membrane unstaining and 1x Tris-buffered saline (TBS, 50 
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mM Tris-HCl pH 7.6, 150 mM NaCl) was used to remove 

completely the staining. 

 

For protein detection, the membrane was incubated for at least 2 h 

in blocking solution (1x TBS, 0.1% Tween-20 with 5% (w/v) nonfat 

dry milk). The antibodies (Table 13) were incubated at least for 1 h 

at room temperature in 5% blocking solution. After the antibody 

incubation, 3 washes with 1x TBST for 10 min were performed to 

remove the excess of primary antibody, and next, secondary 

antibody which was also diluted in 5% blocking solution was 

incubated for 1 hour and 3 washes were done as previously 

described. Detection was performed using the ECL advance 

western blotting chemiluminescent detection kit (GE Healthcare). 

Image capture was done using the image analyzer LAS3000, and 

quantification of the protein signal was done using Image Gauche 

V4.0 software. 

 

 

Primary Antibodies Type Manufacturer Dilution 

Anti-GFP  Monoclonal Clontech (JL8) 1:10000 

Anti-HA/HRP Monoclonal Roche (3F10) 1:1000 

Anti-c-myc  Monoclonal Roche (9E10) 1:700 

Anti-Histone3 Polyclonal Abcam 1:10000 

Anti-GAL4 AD Monoclonal Clontech  1:1000 

Anti-GAL4 DNA-BD Monoclonal Clontech  1:1000 
Secondary 
Antibodies Type Manufacturer Dilution 

Anti-IgG(mouse)-
HRP Polyclonal GE Healthcare 1:5000 

Anti-IgG(rabbit)-
HRP Polyclonal GE Healthcare 1:5000 
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ChIP antibodies Type Manufacturer Dilution 

Anti-HA High Affinity Monoclonal Roche (3F10) 1:500 

Table 13. Primary and secondary antibodies used in this work for 

chemiluminescent detection of the proteins of interest. ChIP, 

Chromatin Immunoprecipitation; HRP, horseradish peroxidase. 

 

In vitro phosphorylation and phosphopeptide proteomic 
analysis 
Phosphorylation assays were done basically as described 

previously in Dupeux et al. (2011a). In brief, a reaction mixture 

containing 1 µg of 6His-OST1 and 1 mg of 6His-BRMC2, 6His-

BRMC3 or MBP-BRMD2 was incubated for 60 min at room 

temperature in 30 µL of Kinase Buffer (20 mM Tris–HCl pH 7.8, 10 

mM MgCl2, 2 mM MnCl2, 0.5 mM DTT, and 3.5 µCi of γ-32P ATP 

(3000 Ci/mmol)). When indicated, ABF2ΔC recombinant protein 

(100 ng) was added as a substrate of OST1. Reactions were 

stopped by adding Laemmli buffer, proteins were separated by 

SDS–PAGE using an 8% (w/v) acrylamide gel, transferred to an 

PVDF membrane, and detected using a phosphorimaging system 

(FLA5100; Fujifilm). 

 

Cold phosphorylation of 6His-BRMC2 and 6His-BRMC3 substrates 

was performed in the presence of 1 mM ATP. Next, samples were 

run on a SDS-PAGE and Coomassie stained, and the gel bands 

corresponding to the different proteins were cut and in-gel 

digested. In brief, following reduction and alkylation (10 mM DTT 

and 50 mM Iodoacetamide, respectively, both in 25 mM ammonium 
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bicarbonate), BRMC2 and BRMC3 samples were digested with 

trypsin (1:50 enzyme/protein ratio) and incubated O/N at 37ºC. 

Peptides were recovered in 50% acetonitrile (ACN)/1% 

trifluoroacetic acid (TFA), dried in speed-Vac, and kept at -20ºC 

until phosphopeptide enrichment. The enrichment procedure 

concatenated two in-house packed microcolumns, the IMAC 

microcolumn and the Oligo R3 reversed-phase column, which 

provides selective purification and sample cleanup prior to liquid 

chromatography coupled to mass/mass (LC–MS/MS) analysis. 

Reversed-phase LC was performed on an Ultimate 3000 nano 

High-performance liquid chromatography (nanoHPLC) (Dionex). A 

5-mL volume of the reconstituted peptide samples was injected on 

a C18 Acclaim™ PepMap™ 100 LC Column (Dionex) (5 µm, 100 

Å, 300 µm I.D. x5 mm) at a flow rate of 30 mL/min, using 

H2O/ACN/TFA (98:2:0.1) as loading mobile phase for 5 min. Then 

the trap column was switched online in back-flush mode to a C18 

PepMap™ 100 analytical column (3 µm, 100 Å, 75 mm I.D. x15 

cm). A 60-min linear gradient of 4%–50% B was delivered from the 

micro pump at a flow rate of 300 nL/min, where mobile phase A 

was 0.1% formic acid in milli-Q water and B was 20% milli-Q water 

and 0.1% formic acid in ACN. For rinsing the column, the 

percentage of B was increased to 95% in 6 min and then returned 

to initial conditions in 2 min. Afterward the column was re-

equilibrated for 15 min. The UV detector wavelengths were 

monitored at 214 and 280 nm. 

 

NanoHPLC was coupled to a 3D ion-trap mass spectrometer 

amaZon speed (Bruker Daltoniks) via CaptiveSpray ion source 

operating in positive ion mode, with capillary voltage set at 1.3 kV. 

The ion-trap mass spectrometer was operated in a data-dependent 
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mode, performing full scan (m/z 350–1500) MS spectra followed by 

MS/MS, alternating Collision-induced Dissociation (CID)/Electron 

Transfer Dissociation (ETD) fragmentation of the eight most 

abundant ions. Dynamic exclusion was applied to prevent the same 

m/z from being isolated for 1 min after its fragmentation. For protein 

identification, CID and ETD spectra obtained by LC-MS/MS system 

were searched against the SwissProt database using a licensed 

version v.2.3.02 of Mascot (Matrix Science) as search engine. ETD 

preserves the phosphoryl moiety during peptide fragmentation, 

which facilitates phospho-site characterization. Peptides with 

scores above a threshold that indicates a reliable identification 

were selected, and based on these individual scores protein 

identifications were assigned. In addition, manual validation of 

phosphopeptide MS/MS spectra was performed. 

 

Yeast Two-Hybrid and Triple-Hybrid Assays 
Interaction assays were usually performed as described by Saez et 

al. (2008), using the AH109 yeast strain and testing yeast growth in 

medium lacking Histidine (-His) and Adenine (-Ade). The resulting 

transformants, in both cases, were grown O/N in liquid –Triptophan 

(-Trp) –Leucine (-Leu)/SD culture medium and adjusted to equal 

cell density. Serial dilutions of cells were spotted on -Trp -Leu -

His/SD culture medium with 0.1 mM 3-amino-1, 2, 4-triazole (3-AT). 

 

To perform triple-hybrid experiments whereby ABA receptors 

interfere with the binding of PP2CA to BRMN, the sequence of 

BRMN was fused to GBD in pBridge vector. Next, the coding 

sequences of PYL4 or PYL5 were cloned into the NotI site 

(multicloning site II, abbreviated as MCSII) of pBridge-BRMN. For 
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triple-hybrid experiments with PP2CA and SnRK2.3, the sequence 

of SnRK2.3 was firstly fused to GBD in pBridge. Next, the coding 

sequence of PP2CA was cloned into the NotI site of pBridge-

SnRK2.3. Yeast growth in triple-hybrid experiments was tested 

either in medium lacking His supplemented with 3-AT or medium 

lacking His and Ade. For triple-hybrid experiments, we cloned 

BRMN BamHI-SalI fragment into pBridge vectors containing PYL4 

and PYL5 coding sequences. BRMN coding sequence is fused to 

GBD. Yeast host AH109 was co-transformed with one of the 

following plasmids, pGADT7-PP2CA, encoding GAD-PP2CA fusing 

and pBridge-BRMN, encoding GBD-BRMN fusion; whereas to test 

the interference of ABA-receptors on this interaction, pBridge-

BRMN+PYL4 and pBridge-BRMN+PYL5 were employed. 

 

β-Glucuronidase Staining 

GUS Histochemical assay  
Seeds were sterilized and stratified as in the germination 

experiments. Whole seedlings or organs of A. thaliana plants were 

submerged for incubation in GUS-staining solution at 37ºC. This 

solution contains 1:1 of X-Gluc: K+ ferricyanide (0.5 mM)/ 

ferrocyanide (0.5 mM), where 5-bromo-4-chloro-3-indolyl 

glucuronide (X-Gluc) is the substrate for the β-glucoronidase 

activity, GUS gene. The product of glucuronidase action on X-Gluc 

is not colored. Instead, the indoxyl derivate produced must undergo 

an oxidative dimerization to form an insoluble and highly colored 

indigo dye (ClBr indigo). This dimerization is induced by 

atmospheric oxygen, and can be enhanced by using an oxidation 

catalyst such as a K+ ferricyanide/ferrocyanide. 
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For leaf staining, GUS solution was infiltrated into the tissue 

subjecting the samples to vacuum for 10 min prior to O/N 

incubation in at 37ºC. 

For root staining, samples were incubated 15-30 min at 37ºC. 

Previous to visualization and after the GUS incubation, roots need 

a clarification process, which consists in an incubation of the 

samples in acidified methanol solution for 20 min at 55ºC, followed 

by 15 min in sodium hydroxide (NaOH) solution. Rehydration of the 

roots was performed in decreasing ethanol series: 40%, 20% and 

10%, keeping the samples more than 15 min each ethanol. 

In case of whole seedlings, after GUS incubation for 15-30 min, 

samples were incubated, at least O/N with chloral hydrate solution 

(8 g chloral hydrate: 1 mL 100% glycerol: 2 mL H2O). After, the 

samples were kept 50% glycerol for at least 2 h and were mounted 

in 50% glycerol for further visualization. 

 

In case of embryos, GUS incubation was performed for 15-30 min 

at 37ºC and O/N incubation was performed for seed coats (testas). 

Embryos were kept in Fixative solution (50% Methanol and 10% 

acetic acid) O/N at 4ºC. Tissue was rinsed with milli-Q water twice 

prior to incubate it in 50% glycerol for at least 2 h. 

 

The samples in all cases were ABA treated with 10 µM ABA for 2 h 

and after GUS staining protocol, they were stored in 50% glycerol 

from at least 2 h to O/N and mounted on microscope slides for 

further analysis with Leica EZ4D microscope (Leica Microsystems). 
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GUS Fluorogenic assay  
Jefferson et al. (1987) described the method used for GUS 

quantification. Shortly, 150 mg of plant material was grinded with a 

mortar in liquid nitrogen until fine powder. Samples were 

homogenized with 2 volumes of extraction buffer (50 mM NaPO4 

pH 7.0, 10 mM β-mercaptoethanol, 10 mM EDTA, 0.1% sodium 

lauril sarcosine (inhibitor of the initiation of DNA transcription), 

0.1% Triton X-100, 25 µg/mL PMSF), mixed 3 times for 30 sec with 

a vortex and centrifuged at 12000×g for 15 min at 4ºC. Supernatant 

was collected in a new tube. The assay buffer (1 mM of 4-

methylumbelliferyl β-D-glucuronide (MUG) in extraction buffer) had 

to be pre-heated at 37ºC for 30 min in order to perform the assay at 

37ºC. 5 µL of extract were used per each 500 µL of assay buffer. 

After mixing with the pipette, the assay can start. 100 µL of this 

mixture had to be collected in each time point and had to be added 

to 900 µL of Stop Buffer (0.2 M Na2CO3). Time points will depend 

on the expression of the line, here were measured every 20 min 

and the substrate was quantified with TECAN® spectrophotometer 

using the following parameters, Excitation 365 nm/Emission 455 

nm. 

 

Pseudo-Schiff-Propidium Iodide Root Staining 

Pseudo-Schiff-Propidium Iodide protocol (mPS-PI) for root staining 

used was adapted from Truernit et al. (2008) by Mary Paz 

Gonzalez-Garcia. 5-7 days-old seedlings were fixed in 50% 

methanol, 10% acetic acid solution and stored at 4°C O/N. 
Samples were rinsed 3 times for 5 min with milli-Q water, 

transferred to 1% periodic acid solution (Sigma-Aldrich 3951) and 

incubated at RT in fume hood for 30 min. Samples were rinsed 
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again 3 times for 5 min with milli-Q water. The staining solution was 

composed of 540 µL Schiff reagent (100 mM sodium 

metabisulphite (Na2S2O5) and 0.15N HCl; propidium iodide to a final 

concentration of 100 µg/mL was freshly added) and incubate at RT 

for 1 h. Seedlings were placed on microscope slides and some 

drops of chloral hydrate solution (2 mg/mL choral hydrate, 40% 

glycerol) were added to cover the roots. Microscope slides were 

stored O/N in a box with wet paper in the bottom to protect it from 

dehydration and light. chloral hydrate excess was removed with 

paper towels. Some drops of Hoyer's solution (32.5 g chloral 

hydrate, 3.2 mL glycerol, 5 g arabic gum (Sigma-Aldrich G9752)) 

were added to the samples and sealed with covers. The 

preparations were stored for drying at RT in the dark for at least 1 

week before imaging at confocal. Microscope slides can be 

completely sealed with nail polish to obtain permanent samples. 

 

Agro-transformation, Transient Expression and 
Bi-molecular Fluorescence Complementation 
Assays 
Pre-culture of single isolated colony of A. tumefaciens was grown 

in liquid media at 28ºC for 2 days to saturate the culture. 1/100 

dilution of the pre-culture was added to the fresh culture and grown 

O/N. A. tumefaciens cells were harvested by centrifugation at 

3000×g for 30 min and resuspended in infiltration solution (10 mM 

MES buffer pH5.6, 100 µM acetosyringone, 10 mM MgCl2) to an 

OD600nm of 1. These cells were mixed with an equal volume of A. 

tumefaciens C58C1 (pCH32 35S:p19) expressing the silencing 

suppressor p19 of tomato bushy stunt virus (Voinnet et al., 2003) 
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so that the final density of A. tumefaciens solution was 

approximately 1. Bacteria were incubated for 3 h at room 

temperature and then injected into young fully expanded leaves of 

4-week-old N. benthamiana plants. Leaves were examined 48–72 

h after infiltration using Confocal Laser Scanning Microscopy 

(CLSM). 

 

Arabidopsis thaliana Protoplast Generation and 
Transient Expression Assays 
A. thaliana protoplast isolation and transformation was performed 

as described by Yoo et al. (2007). Briefly, around 25 leaves from 2-

3 weeks-old rosettes grown in the greenhouse were cut in fine 

stripes. Enzyme solution for cell wall digestion (20 mM MES, 1.5% 

(w/v) cellulase R10, 0.4% (w/v) macerozyme, 0.4 M mannitol, 20 

mM KCl) was warmed at 55ºC for 10 min and cooled down before 

adding 10 mM CaCl2 and 0.1% Bovine serum albumin (BSA). 

Enzyme solution was filtered (0.45 µm) added to the tissue 

samples and kept in a rocker for 3 hours. Sample was filtered with 

a mesh and protoplasts were washed with salt solution W5 (2 mM 

MES, 154 mM NaCl, 125 mM CaCl2, 5 mM KCl). After critical 

centrifugation of 100×g in each step for 3 times, incubation of 30 

min of the protoplasts on ice was required. Centrifugation of the 

protoplasts at 100×g for 30 sec was used to change the previous 

buffer into mannitol-magnesium buffer (MMG, 4 mM MES, 0.4 mM 

mannitol, 15 mM MgCl2).  

 

For BiFC assay with protoplasts, pDNA, protoplasts and a 

polyethylene glycol (PEG) solution for transformation (40% PEG 

4000, 0.2 M mannitol, 100 mM CaCl2) were gently mixed and 
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incubate at RT for 10-15 min. 1 mL of salt solution W5 was added 

to wash the PEG solution followed by a centrifugation at 150×g for 

2 min, and second round at 200×g for 2 min. New salt solution W5 

was added and samples were kept O/N in dark for expression of 

the proteins. 

 

Confocal Laser Scanning Microscopy 
Confocal imaging was performed using a Zeiss LSM 780 

AxioObserver.Z1 laser scanning microscope with C-Apochromat 

403/1.20-W corrective water immersion objective. The following 

fluorophores, which were excited and fluorescence emission 

detected by frame switching in the single or multi-tracking mode at 

the indicated wavelengths, were used in tobacco leaf infiltration 

experiments: GFP (488 nm/500–530 nm) and YFP (488 nm/529–

550 nm). Pinholes were adjusted to one Air Unit for each 

wavelength. Post-acquisition image processing was performed 

using ZEN (ZEISS Efficient Navigation) Lite 2012 imaging software 

and ImageJ v1.37 (http://rsb.info.gov/ij/) for image analyses. 

 

Chromatin Immunoprecipitation (ChIP) 
50 mg of seeds for each of the treatments were grown in MS –

sucrose and 2% agar. Seeds were stratified at 4ºC in the dark for 4 

days and grown in continuous light in the growing chamber for 36 

h. Liquid treatment with 50 µM of ABA was applied to the plates for 

1 h. Next, the material was collected and treated with 5 mL of 

fixation buffer (0.4 M sucrose, 10 mM Tris-HCl pH 8, 0.05 % 

Triton X-100, 1% Formaldehyde, 1 mM PMSF). To improve the 

crosslinking efficiency vacuum was applied for 15 min while the 
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tubes were kept on ice. To stop the fixation process, 2 M of glycine 

was added to the sample containing the fixation buffer and 5 more 

min of vacuum were applied. Samples were washed three times 

with cold milliQ water, mixed gently and filtered with a strainer to 

remove the remaining formaldehyde. Dry samples were freeze in 

liquid nitrogen and stored at -80ºC for the next level of processing. 

 

The material was grinded with a mortar and pistil with liquid 

nitrogen until a fine powder was obtained. 5 mL of extraction 

buffer 1 (0.4 M sucrose, 10 mM Tris-HCl pH8.0, 1 mM EDTA, 

protease inhibitors, 1 mM PMSF, 5 mM β-mercaptoethanol) was 

used for homogenizing the material prior to filter it twice with 

miracloth. The material was centrifuged at 1000×g and 4ºC for 20 

min to collect the nuclei. The pellet was resuspended in 2 mL of 

extraction buffer 2 (0.25 M sucrose, 10 mM Tris-HCl pH8.0, 1 mM 

EDTA, 10 mM MgCl2, 1% Triton X-100, protease inhibitors, 1 mM 

PMSF, 5 mM β-mercaptoethanol) and centrifuged at 1000×g and 

4ºC for 10 min. This processes has to be repeated at least two 

times or until obtain a white pellet. The intact nuclei pellet should 

be resuspended in 1 mL lysis buffer (50 mM Tris-HCl pH8.0, 10 

mM EDTA, 1% SDS, 1 mM PMSF). The sonication was performed 

with Bioruptor® from Diagenode and the conditions were 5 cycles 

of 10 sec ON and 30 sec OFF. The sonicated chromatin was 

centrifuged at 13000×g and 4ºC for 10 min. The IP with 200 µL of 

the sonicated chromatin and 1:500 dilution of the α-HA from Roche 

was performed in the rocker at 4ºC for 2 h. The immunoprecipitated 

material was eluted with 300 µL of elution buffer (1% SDS, 0.1 M 

NaHCO3) in the shaker (1100 rpm) for 1 h at 65ºC. The IP material 

and the input sample DNA was treated with 13 µL of NaCl 5 M and 

kept O/N in the shaker (900 rpm) at 65ºC. DNA was purified with 
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columns using Qiagen DNA gel extraction kit according to the 

manufacturer instructions.  
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3AT: 3-Amino-1, 2, 4-Triazole 

AA: Amino Acid 

AAO: Abscisic Aldehyde Oxidase 

ABA:  Abscisic Acid 

ABA-GE: ABA-Glucose Ester 

aba1: ABA deficient 1 

ABA2: ABA deficient 2 

ABF1: ABA Binding Factor2 

ABF2/AREB1: ABA Binding Factor2 

ABI1/abi1: ABA-Insensitive1 

ABI2: ABA-Insensitive2 

ABI3: ABA Insensitive3 

ABI4: ABA Insensitive4 

ABI5: ABA Insensitive5 

AD: Activation Domain 

Ade: Adenine 

AHG1: ABA-Hypersensitive Germination1 

AHG3/PP2CA: ABA-Hypersensitive Germination 3 

AmpR: Ampicillin resistance 

AP2: APETALA2 

APS: Ammonium Persulfate 

ARE: ABA Responsive Element 

AREB1/ABF2: ABA Responsive Element Binding Factor1 

AtABCG25: Arabidopsis thaliana ATP-Binding Cassette G25 

AtABCG40: Arabidopsis thaliana ATP-Binding Cassette G40 

BD: Binding Domain 

BR: Brassinosteroids 

BRM:  Brahma, ATPase  

BSA: Bovine Serum Albumin 

bZIP: Basic Leucine-Zipper transcription factor family protein 
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CID: Collision-induced Dissociation  

CIP: Calf Intestinal alkaline Phosphatase  

CIPK: Calcium Independent Protein Kinase 

CK: Cytokinins 

CLSM: Confocal Laser Scanning Microscopy 

CO: Constans  

co-IP: Co-immunoprecipitation 

CR: Chromatin remodeling 

CRC: Chromatin remodeling complexes 

CTAB: Cetyl Trimethyl Ammonium Bromide 

CUC: CUP-SHAPED COTYLEDON 

DO: Drop Out solution 

DTT: Di Tio Treitol 

EDTA: Ethylene Diamine Tetraacetic Acid 

EMS: Ethyl methanesulfonate 

ET: Ethylene 

ETD: Electron Transfer Dissociation 

FLC:  Flowering locus C 

FT: FLOWERING LOCUS T  

GAs: Gibberellins 

GAD: GAL4 activation domain 

GBD: GAL4 binding domain  

GenR: Gentamycin resistance 

GFP: Green Fluorescence Protein 

GUS: β-Glucuronidase 

HAB1: Hypersensitive to ABA1 

HAB2: Hypersensitive to ABA2 

HAI1: Highly ABA Inducible1 

HAI2: Highly ABA Inducible2 

HAI3: Highly ABA Inducible3 
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HAT/HDAC:  Histone Acetyltransferase/Histone Deacetilase 

His: Histidine 

HSA:  Helicase SANT-associated domain 

hyl1: Hyponastic leaves 

IPTG: β-D-1-thiogalactopyranoside 

JA: jasmonates 

KanR: Kanamycin resistance 

KAT1: Potassium channel 1 

Kd: dissociation constant  

LB: Luria broth, Luria Bertani media 

LC–MS/MS: Liquid chromatography coupled to mass/mass 

LD: Long Day 

Leu: Leucine 

lncRNA: Long non coding RNA  

MES: 2-(N-morpholino) ethanesulfonic acid 

MMG: Mannitol-Magnesium buffer 

mPS-PI: Pseudo-Schiff-Propidium Iodide protocol 

MS: Murashige-Skoog 

MUG: 4-methylumbelliferyl β-D-glucuronide 

NADPH oxidase: Nicotinamide Adenine Dinucleotide Phosphate 

oxidase 

nanoHPLC: nano High-performance liquid chromatography 

NCED: 9-Cis-Epoxycarotenoid Dioxygenase 

NI: Nuclear insoluble fraction 

Ni-NTA: Nickel-Nitrilotriacetic 

NO:  nitric oxide 

NS: Nuclear soluble fraction 

NT: Nuclear total fraction 

OD600: Optical density mesured at a wavelenght of 600nm 

OE: Overexpression 
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ORF: Open Reading Frame 

OST1: Open Stomata1 

PA: Polyamines 

PcG: Polycomb proteins 

PCR2: PcG repressive complex 2 

PEG: Polyethylene glycol 

PM-ATPase: Plasma Membrane ATPase 

PMSF: Phenylmethylsulfonyl Fluoride 

PP1: Protein Phosphatase Type 1 

PP2A:  Protein Phosphatase Type 2A 

PP2C:  Protein Phosphatase Type 2C 

PP2CA/AHG3: Protein Phosphatase 2CA 

ProGC1: Promoter of Guard Cells 

PYL1 to 13: PYR1-Like1 to 13 

PYR/PYL/RCAR:  Pyrabactin Resistance 1/PYR1-Like/Regulatory 

Components of ABA Receptors 

PYR1: Pyrabactin Resistance 1 

QUAC1: R-Type Anion Channel 

RAM: Root Apical Meristem 

RFP: Red fluorescent protein 

ROS: Reactive Oxygen Species 

ROX: Carboxy-X-rhodamine 

RT: Room Temperature 

SA:  Salicylic acid 

SCD: Synthetic Complete Defined culture medium 

SD: Synthetic Defined culture medium 

SDS: Sodium DodecylSulphate 

SDS-PAGE: SDS-PolyAcrylamide Gel Electrophoresis 

Ser: Serine 

SL:  Strigolactones 
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SLAC1: Slow Anion Channel 1  

SnAC: Snf2 ATP-coupling 

SnRK1: Sucrose-Non Fermenting1 (SNF1)-Related Protein Kinase 

1 

SnRK2: Sucrose-Non Fermenting1 (SNF1)-Related Protein Kinase 

2 

SnRK2.2/D: SNF1-Related Protein Kinase 2.2 

SnRK2.3/I: SNF1-Related Protein Kinase 2.3 

SnRK2.6/E/OST1: SNF1-Related Protein Kinase 2.2 

SpecR: Spectinomycin resistance 

SWI/SNF: Switch/Sucrose Non-Fermenting 

SWN: Swinger 

TEMED: N,N,N’,N’-Tetramethylethylenediamine 

TF: Transcription Factor 

TFA: Trifluoroacetic Acid 

Trp: Triptophan 

X-Gluc: 5-bromo-4-chloro-3-indolyl Glucuronide 

YFPN: N terminal part of the yellow fluorescence protein 

YNB: Yeast Nitrogen Base  

 


