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Modal Pattern Stability Factor as a Figure
of Merit for Characteristic Modes

E. Antonino-Daviu, N. Mohamed Mohamed-Hicho, M.
Cabedo-Fabrés and M. Ferrando-Bataller

This letter proposes the use of a Modal Pattern Stability Factor (MPSF)
parameter to quantify the pattern stability associated to Characteristic
Modes (CM). The proposed parameter can be used as a figure of merit
for CM associated to arbitrary-shaped structures, aiding the antenna
design process. This parameter can be used (together with other modal
parameters) to optimize the geometry of a radiating element in order to
improve the radiation pattern stability in a desired range of frequencies.
Two examples are presented for analysis. First, MPSF for the CM of
three ring antennas with different width are analysed, showing how
pattern stability of CM depend on this geometrical parameter. Secondly,
three metallic plates with different shapes are analysed in terms of
MPSF, in order to assess the stability of the CM for each geometry.

Introduction: The Theory of Characteristic Modes described by
Harrington and Mautz in [1] defines a set of real modes on the surface
of a conducting or dielectric body, which can be used to expand the
total current. These modes are independent of any kind of excitation and
depend only on the shape and size of the conducting object. In the last
decade, CM have attracted increasing interest for antenna design [2], as
they provide physical insight into the radiation behaviour of antennas.
Different parameters have been investigated and proposed lately in
order to quantify the information provided by CM, like modal Q-factor
or modal radiation efficiency.

Radiation pattern associated to CM changes with frequency,
depending on the intrinsic electrical properties of the radiating structure.
In this paper, we propose a new parameter that aims to compute the
stability of the radiation pattern associated to a specific CM. This
parameter, called Modal Pattern Stability Factor (MPSF), is based in the
Pattern Stability Factor parameters (PSF and PSFII) defined in [3] and
[4], with the purpose of quantifying the stability of the radiation pattern
associated to wideband antennas for a specific bandwidth and range of
directions. Here, a similar parameter is proposed for CM, in order to
assess the stability with frequency of the radiation pattern associated to
the CM of any structure, providing a new figure of merit for CM which
can certainly help in the antenna design process. This parameter can be
used (together with other modal parameters) to optimize the geometry
of a radiating element in order to obtain radiation pattern stability in a
desired range of frequencies.

Definition of MPSF will be presented next, and two cases will be
analysed hereinafter in order to show the interest of the proposed
parameter.

Modal Pattern Stability Factor (MPSF): Equation (1) presents the
autocorrelation factor p, in the frequency domain of the 3D radiation

pattern associated to the n™ CM with respect to a reference frequency fx:
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where e (f,Q)is the 3D radiated electric far field of mode n at
frequency f, and dQ =sing-d@-d¢ . Similarly to [4], the average value

of the correlation factor between the radiated modal electric field in
reference frequency fr is given by
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Finally, the average value of C, gives the PSFII, [4] or MPSF:

Co(foX) =

{[Cn(f)-df}

MPSF in ring antennas: In this first analysis, the stability of the CM
associated to three circular rings with different width (w) will be
investigated. Fig. 1 shows the three structures under analysis, whose
width goes from 2 mm (wire loop) to 30 mm. In all three cases the
internal radius is R=26 mm.
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Fig. 1 Circular ring with different widths (w): a) w=2 mm; (b) w=10
mm and ¢) w=30 mm. Radius is R=26 mm for all cases.

As known, CM associated to wires or narrow plates present
narrowband behaviour or high Q-factor [2]. The wider the structure is,
the larger the bandwidth (the lower the Q-factor) the CM present and
hence wideband antennas can be obtained with proper excitation.
However, their pattern stability varies in a different manner, what can
be easily computed with the proposed MPSF parameter.

Fig. 2 shows the radiation pattern variation with frequency associated
to the first CM (J;) for rings with different widths. As observed,
radiation pattern changes with the electrical length for all three
structures, showing a different degree of variation in each structure for
the same mode J;. Fig. 3 shows the pattern autocorrelation vs.
frequency for mode J;. Current distribution associated to mode J; is also
shown in the figure. Considering the resonance frequency of the mode
as the reference frequency (fr=fres) in equation (1), it can be observed
that thinner rings (w=2 mm) present more stable radiation patterns for
mode J; than wider rings. Resonance frequency (frs) of mode J; is
remarked in Fig. 2 for each structure.

Table 1 shows the Q-factor and MPSF associated to mode J; for the
three analysed structures. As observed, an increase of the ring width
leads to a lower Q-factor for mode J;, but at the same time, stability for
the modal radiation pattern is degraded, as MPSF decreases for this
mode. In this case, bandwidth considered for the analysis is from 0 to 5
GHz, but other bandwidth can be considered depending on the
frequency range of interest.

Finally, Fig. 4 shows the autocorrelation obtained for mode J, (which
resonates at higher frequencies) in each of the three structures. Current
distribution of mode J, is also shown in the figure. Table 1 shows the
modal Q-factor for mode J, and its MPSF up to 8 GHz. For this mode,
the behaviour shown by the pattern stability is opposite to the previous
case, as in this case stability is improved for wider rings.
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Fig. 2 Radiation pattern assomat.ed to the first CM (J1) of a circular
loop with different widths: a) w=2 mm; (b) w=10 mm and c¢) w=30 mm.
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Fig. 3 Radiation pattern autocorrelation (o) vs. frequency for the first
CM (J,) associated to a circular ring with different widths, and current
distribution of mode J; (dotted line marks the nulls of Ji).

Table 1: Modal parameters for the rings with different widths (w).

MPSFoe1 MPSFo—s
Width Q'(fgc;or (BW=0-5 Q'(f(gc)tor (BW=0-8
. GHz) 4 GHz)
wireloop | 5eq 0.610 5 0.334
(w=2mm)
w=10mm | 1.803 0.557 2.087 0.444
w=30mm | 0847 0.398 0.486 0.426

0.8 op

0.6

04

Autocorrelation, e,

0.2

==

s . e
Frequency (GHz)
Fig. 4 Radiation pattern correlation (pn) vs. frequency for mode Js
associated to a circular ring with different widths, and current
distribution of mode J, (dotted lines mark the nulls of J,).

Metallic Plates: In this case, the MPSF will be analysed for planar
metallic plates with different shapes and the same length. Fig. 5 shows
the three structures analysed: a square plate of length L=52 mm, a
similar plate with truncated corners and a circular plate of diameter L
(R=L/2=26 mm).

Fig. 6 shows the radiation pattern variation with frequency for the
first CM (J;) of the plates. This mode presents a vertical current
distribution along the structure, as shown in [2]. Again, the variation is
different depending on the geometry of the plate. Fig. 7 shows the
autocorrelation obtained for mode J; considering the resonance
frequency of the mode as the reference frequency (fx=fres), for the three
planar structures. Table 2 shows the Q-factor and MPSF computed for
mode J; in the three plates. As seen, the square plate presents the lowest
bandwidth and the lowest pattern stability for mode J;, whereas the
circular geometry leads to the best stability and bandwidth in this case.
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Fig. 5 Metallic plates with different shapes: a) Square plate with L=52
mm; b) Square plate with L=52 mm and truncated corners; c) Circular
plate with R=L/2=26 mm.
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Fig. 6 Variation with frequency of the radiation pattern associated to
the first CM (J1) of the structures shown in Fig. 5: a) Square plate; b)
Square plate with truncated corners; c) Circular plate.
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Fig. 7 Radiation pattern correlation vs. frequency for the first CM (J;)
associated to the structures shown in Fig. 5.

Table 2: Modal parameters for the plates shown in Fig. 5.

Q-factor MPSFq-1
Plate geometry Q) (BW=0-7 GHz)
Square 0.228 0.6304
Truncated corners 0.0697 0.8476
Circular 0.001 0.9349

Conclusion: Modal Pattern Stability Factor (MPSF) parameter is
proposed as a figure of merit for CM, in order to perform a quantitative
measure of the pattern stability associated to each mode. The proposed
parameter can be used in arbitrary-shaped structures to compare the
suitability of different antenna geometries for radiation pattern stability
and/or to assess pattern stability improvement methods.
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