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Abstract

The sound field distribution in a room is the consequence of the acoustic
properties of radiating sources and the position, geometry and absorbing
characteristics of the surrounding boundaries in an enclosure (boundary
conditions). Despite there existing a consolidated acoustic wave theory, it is
very difficult, nearly impossible, to find an analytical expression of the sound
variables distribution in a real room, as a function of time and position. This
scenario represents as an inhomogeneous boundary value problem, where
the complexity of source properties and boundary conditions make that
problem extremely hard to solve.

Room acoustic simulation, as treated in this thesis, comprises the al-
gebraical approach to solve the wave equation, and the way to define the
boundary conditions and source modeling of the scenario under analysis.

Numerical methods provide accurate algorithms for this purpose and
among the different possibilities, the use of discrete-time methods arises as
a suitable solution for solving those partial differential equations, particular-
ized by some specific constrains. Together with the constant growth of com-
puter power, those methods are increasing their suitability for room acous-
tic simulation. However, there exists an important lack of accuracy in the
definition of some of these conditions so far: current frequency-dependent
boundary conditions do not comply with any physical model, and directive
sources in discrete-time methods have been hardly treated.

This thesis discusses about the current state-of-the-art of the boundary
conditions and source modeling in discrete-time methods for room acoustic
simulation, and it contributes some algorithms to enhance boundary condi-
tion formulation, in a locally reacting impedance sense, and source modeling
in terms of directive sources under a defined radiation pattern. These algo-
rithms have been particularized to some discrete-time methods such as the
Finite Difference Time Domain and the Digital Waveguide Mesh.

Regarding to boundary conditions, two different approaches have been
followed to achieve a locally reacting impedance boundary condition: one
consisting into modify the reflection factor of the boundaries according with
the plane wave angle of arrival and the other one, defining these boundaries
in terms of the impedance, which is independent from this angle. Both
methods have been implemented in a Digital Waveguide Mesh. From the
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results obtained, advantages and inconveniences are discussed throughout
this thesis. Furthermore, based on these new methods, a locally reacting
impedance boundary condition is proposed to the Finite Difference Time
Domain method, in a similar fashion to the previous one.

On the new topic of directive sources for discrete-time methods, some
new algorithms are proposed in this dissertation. In a first approach, a
method which uses monopoles in order to be adapted to all discrete-time
methods for a single frequency is proposed. Later, it has been extended for
broadband simulations with a frequency-dependent directivity.

Keywords: Discrete-time methods, inhomogeneous boundary value
problem, locally reacting impedance, room acoustic simulation, sound source
modeling.



Resumen

La distribucion del campo sonoro en una habitacion es la consecuencia de las
propiedades ondulatorias de las fuentes actsticas y de la posicién, geometria
y propiedades absorbentes de las paredes que conforman los limites de la
habitacion (condiciones de contorno). Aunque existe una consolidada teoria
actstica ondulatoria, es muy complejo, practicamente imposible, encontrar
una expresion analitica de la distribucién de las variables actsticas en una
sala real, en funcién de la posicion y del tiempo. Esta situacion debe tratarse
como un problema no homogéneo de contorno, donde dada la complejidad
de las condiciones de contorno y la definicién de las fuentes , éstas hacen
que el problema sea extremadamente complejo de resolver.

La simulacién actstica de salas, tal como es tratada durante esta tesis,
comprende la aproximacién algebraica para resolver la ecuacién de onda y el
modo de definir los modelos de las fuentes y de las condiciones de contorno
que caracterizan el escenario bajo analisis.

Los métodos numéricos proporcionan algoritmos precisos para este pro-
posito, y entre las diferentes posibilidades, el uso de métodos en tiempo
discreto surge como una solucién adecuada para resolver esas ecuaciones
en derivadas parciales, particularizadas para ciertas condiciones. Junto con
el constante crecimiento de la capacidad de computaciéon actual, crece la
conveniencia de estos métodos para la simulacion actstica de salas. Sin em-
bargo, hasta ahora, existe una considerable falta de precisién en la definicion
de algunas de estas condiciones: las actuales condiciones de contorno de-
pendientes de la frecuencia no cumplen ningtin modelo fisico, y las fuentes
directivas en los métodos en tiempo discreto, apenas han sido tratadas.

Esta tesis trata sobre el estado del arte actual de las condiciones de
contorno y la definicién de fuentes sonoras en los métodos en tiempo dis-
creto y contribuye con ciertos algoritmos para mejorar la formulacion de
las condiciones de contorno, en el sentido de impedancia de reaccién local,
y de los modelos de fuentes sonoras, en términos de directividad radiando
conforme a un patrén de radiaciéon determinado. Estos algoritmos han sido
particularizados para el método de las Diferencias Finitas en el Dominio del
Tiempo y para la Malla de Guias de Ondas Digitales.

Respecto a las condiciones de contorno, dos aproximaciones diferentes
han sido propuestas con el fin de conseguir impedancias de reaccion local: la
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primera consiste en modificar el factor de reflexiéon acorde con el angulo de
llegada de una onda plana; mientras que la otra solucién propuesta, define
las condiciones de contorno en términos de la impedancia, que es indepen-
diente del angulo de llegada. Ambos métodos han sido implementados para
la Malla de Guias de Ondas Digitales. A partir de los resultados obtenidos,
se discuten las ventajas e inconvenientes a lo largo de esta tésis. Ademas,
basado en estos nuevos métodos, se propone una definicién de condiciones
de contorno para el método de las diferencias finitas, de manera similar a
los anteriores.

Respecto al nuevo tema propuesto de las fuentes directivas para métodos
en tiempo discreto, una serie de algoritmos han sido propuestos. En una
primera aproximacién al problema, se usan uUnicamente monopolos para
que el método propuesto se adapte a cualquier algoritmo de simulacién
mediante aproximaciones en tiempo discreto para seniales sinusoidales. A
continuacién, dicho método se extiende para senales en banda ancha, cuya
directividad tiene dependencia con la frecuencia.

Palabras clave: Impedancia de reaccién local, métodos en tiempo dis-
creto, modelo de fuentes sonoras, problema no homogéneo de contorno,
simulacién actstica de salas.



Resum

La distribucié del camp sonor en una habitacié és la conseqiiéncia de les
propietats ondulatories de les fonts actistiques i de la posicié, geometria i
propietats absorbents de les parets que conformen els limits de ’habitacio
(condicions de contorn). Encara que hi ha una consolidada teoria actstica
ondulatoria, és molt complex, practicament impossible, trobar una expressié
analitica de la distribucié de les variables aciistiques en una sala real, en
funcié de la posicio6 i del temps. Esta situaci6 ha de veure’s com un problema
no homogeni de contorn, on donada la complexitat de les condicions de
contorn i de les fonts sonores, estes fan que el problema siga extremadament
complex de resoldre.

La simulacio actustica de sales, com és tractada durant esta tesi, comprén
I’aproximacié algebraica per a resoldre la equacioé d’onda i el mode de definir
les fonts sonores i les condicions de contorn que caracteritzen 1’escenari baix
analisi.

Els métodes numérics proporcionen algoritmes precisos per a este propo-
sit, i entre les diferents possibilitats, 1'is de métodes en temps discret sorgix
com una soluci6é adequada per a resoldre eixes equacions en derivades par-
cials, particularitzades per a certes condicions. Junt amb el constant creix-
ement de la capacitat de computacié actual, creix la conveniéncia d’estos
métodes per a la simulacié acustica de sales. No obstant, fins a ara, hi ha
una considerable falta de precisié en la definicié d’algunes d’estes condicions:
les actuals condicions de contorn dependents de la freqiiéncia no complixen
cap model fisic, i les fonts directives en els métodes en temps discret, a
penes han sigut tractades.

Esta tesi tracta sobre 'estat de I'art actual de les condicions de contorn
i dels models de fonts sonores en els métodes en temps discret i contribuix
amb certs algoritmes per a millorar la formulaci6 de les condicions de con-
torn, en el sentit de impedancia de reacci6 local, i els models de les fonts
sonores, en termes de la directivitat radiant d’acord amb un patr6 de ra-
diaci6 determinat. Estos algoritmes han sigut particularitzats per al métode
de les Diferéncies Finites en el Domini del Temps i per a la Malla de Guies
d’Ones Digitals.

Respecte a les condicions de contorn, dos aproximacions diferents han
sigut proposades a fi d’aconseguir impedancies de reacci6 local: la primera
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consistix a modificar el factor de reflexi6 d’acord amb l'angle d’arribada
d’una onda plana; mentres que ’altra solucié proposada, definix les condi-
cions de contorn en termes de la impedancia, que és independent del angle
d’arribada. Ambdos métodes han sigut implementats per a les Malles de
Guies d’Ones Digitals. A partir dels resultats obtinguts, els avantatges i
inconvenients es discutixen al llarg de esta tesi. A més, basat en estos nous
métodes, es proposa una definicié de condicions de contorn per al métode
de les diferéncies finites, de manera semblant als anteriors.

Respecte al nou tema proposat de les fonts directives per a métodes
en temps discret, es proposa uns nous algoritmes. En una primera aproxi-
maci6 al problema, s’usen tinicament monopoles perqué el métode proposat
s’adapte a qualsevol algoritme de simulacié per mitja de aproximacions en
temps discret per a senyals sinusoidals. A continuacio, el dit métode s’estén
per a senyals en banda ampla, la directivitat del qual té dependéncia amb
la freqiiéncia.

Paraules clau: Impedancia de reacci6 local, métodes en el temps dis-
cret, model de fonts sonores, problema no homogeni de contorn, simulacié
acustica de sales.



Abbreviation and Acronyms

1-D

2-D

3-D
ABC
FEM
CAD
DWG
DWM
FEM
FDTD
FIR
FFT
FTM
IIR
K-DWM
LRI
MLS
ODE
PDE
PML

SI

SSS
TDWM
TLM
ULS
WDF
W-DWM

One dimensional

Two dimensional

Three dimensional

Absorbing Boundary Conditions
Boundary Elements Method
Computer Aided Design

Digital Wave Guide

Digital Waveguide Mesh

Finite Elements Method
Finite-Difference Time-Domain
Finite Impulse Response

Fast Fourier Transform
Functional Transformation Method
Infinite Impulse Response
Kirchhoff Digital Waveguide Mesh
Locally reacting impedance
Maximum-Length Sequence
Ordinary Differential Equation
Partial Differential Equation
Perfect Matched Layer
International System (units)
Space-State Structure

Triangular Digital Waveguide Mesh
Transmission Line Matrix

Upwind Leapfrog Scheme

Wave Digital Filter

Wave Digital Waveguide Mesh
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Notations and Conventions

Conventions

The next conventions are used throughout this thesis:

e Time-domain scalar quantities are denoted by lowercase characters,
e.g., a(t).

e Frequency-domain scalar quantities are denoted by uppercase charac-
ters, e.g., A(w).

e Time-domain vector quantities are denoted by boldface lowercase char-
acters, e.g., a(t).

e Frequency-domain vector quantities are denoted by boldface upper-
case characters, e.g., A(w).

e Time-domain matrix quantities are denoted by underlined, boldface
lowercase characters, e.g., a(t).

e Frequency-domain matrix quantities are denoted by lowercase char-
acters, e.g., A(w).

e Discretized vector or matrix are denoted by tilde characters, e.g., a
and a

Mathematical operations

) Vector or matrix transposition
)av Time-averaged

) Vector or matrix conjugated

) Vector or matrix inverse

|| L2 Norm or vector norm

ftoo f(r)dr Integration operator w.r.t. ¢
Fi Time Fourier Transform

{-} Imaginary component



0/t
R{-}

Laplace Transform

Partial derivative w.r.t. ¢

Real component

Nabla operator (gradient)

Laplace operator

Convolution operator

Angular component of a complex number
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List of symbols

Variables and constants

()i
(')r

«

A

J

Jo

J(0,9)

k

A

n

n

w

p(r,t), P(r,w)
r = (||r[|,0,¢)
r= (a:,y,z)
r= (iaja k)
r(6,t), R(0,w)
p

Po

Incident component of the variable
Reflected component of the variable
Diagonal direction with respect to
the mesh coordinate system
Absorption coeflicient

Incoming wave digital variable, oriented along n direction
Outgoing wave digital variable, oriented along n direction

Speed of sound

Numerical speed of sound

Green’s function matrix, w.r.t. angular frequency w
Thickness

Source directivity

Discrete time step

Discrete angular step

Discrete spatial steps

Sound energy

Linear frequency

Acoustic intensity vector

Complex number, j2 = —1

Radiation pattern of an omnidirectional source
Radiation pattern of a source

Wavenumber

Wavelength

Discrete time

Normal direction of the wall

Angular frequency

Pressure

Continuous spherical coordinates

Continuous cartesian coordinates

Discrete cartesian coordinates

Reflection factor filter response w.r.t. angle of arrival ¢
Density of the medium

Density of the air

Source term

Surface
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Material’s flow resistivity
Continuous time
Sampling period
Ambient temperature
Time delay
Plane wave angle of arrival
Degree of freedom in the reflection factor digital filter
u(r,t),U(r,w) Particle or fluid velocity
|4 Volume
(r,t),W(r,w) Sound energy density
Specific acoustic admittance of a wall
Z-transform variable
1 Unit delay
Specific acoustic impedance of a wall
Wave digital port impedance
Characteristic acoustic impedance

SR IS I
2

S

J\BN N NI

Special functions

d(n) Dirac Delta function

hg)(:c) Spherical Hankel function of first kind of order n,
w.r.t. argument x

P (x) Associated Legendre function of order n and degree m,
w.r.t. argument x

Y"(x)  Spherical harmonics of order n and degree m,
w.r.t. argument x
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Introduction and scope

1.1 Introduction

FROM OUR OWN EXPERIENCE AND WITHOUT ANY SPECIAL TRAINING,
one can distinguish and estimate by listenings the volume and the amount
of absorption of a room. The result of the particular sound distribution in
a room is the consequence of a certain sound wave phenomena appearing
due to the geometric distribution and absorbing properties of the walls,
ceiling and floor. This makes that each room “sounds” different from the
rest. Furthermore, the particular combination of acoustic phenomena gives
a distribution of acoustic variables which strongly depends on position and
time. When an architect designs a concert hall, theater or lecture room,
even with the help of experienced acousticians, the final acoustic result is
hard to predict even, unfortunately, impossible [Beranek, 1962].

Although strong mathematical and physical knowledge of the acoustic
in rooms exists, it is extremely hard to find analytical expressions of the
sound variables distribution, except in very simple and unrealistic scenarios,
able to synthesize the complexity of a particular room. For this reason, the
use of computers to predict the room acoustic field arises as an important
contribution in the design of room acoustics [Schroeder, 1973].
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The final scopes of these simulations are, mainly, two:

e As a prediction tool, it could allow architects and engineers to de-
termine, with a certain degree of accuracy, the acoustic quality of a
room, according to the size and shape of the room, and the materials
involved in its construction.

e Given an anechoic sound recording (only direct sound from the source
with no contributions from where it was produced), it is possible to
modify this sound based on information obtained from the simula-
tions. After hearing this filtered sound, one should have the impres-
sion the sound has been played in a particular room [Farina, 1993];
the listener should “perceive” some information of the characteristics
of the virtual hall (size, materials, ...). This process, called auraliza-
tion [Kleiner et al., 1990], can be seen as a convolution process of the
original sound with the simulated impulse responses obtained from
the virtual room.

Computer room acoustic simulation is an important tool for accurate
predicting and then, for improving the quality of built or unbuilt rooms.
The computer game and entertainment industries together with training
simulators based on virtual reality technologies need, day after day, to find
more realistic auditive sensations in order to create a highly immersive
environment with spatial attributes [Begault, 1994].

1.2 Motivation and scope of the thesis

Although it is essential to be able to reproduce spatial sound information,
it is equally important to realistically simulate phenomena occurring during
sound propagation. For that reason, a special effort has been made during
the last decades in order to develop accurate simulation methods reproduc-
ing the characteristics of wave propagation and their interaction with the
enclosure, with a reasonably small computational effort.

Among the different solutions appearing in the technical literature, this
thesis deals with the computer simulation of virtual acoustic spaces using
physics-based models. These methods consist of a numerical approach to
the sound wave equation, particularized for the specific boundary conditions
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(walls) and the characteristics of the sources. Mathematically speaking,
they could be seen as numerical methods for solving an inhomogeneous
boundary value problem.

Going into details, some of these techniques, grouped and called discrete-
time methods ', allow us to approximate the sound pressure distribution in
a room, obtaining directly the impulse responses of the entire scenario.
They are based on a discretization, not only in space, but also in time,
and recursively solve a set of algebraical expressions coming from the origi-
nal partial differential equations or the potential propagating wave shapes,
which describe the sound propagation phenomena. Since the sound field is
the result of an approximated solution of the wave equations, the accuracy
of the solution can be assured. In fact, all the wave acoustic phenomena
such as diffraction, wave superposition, ..., appear in a direct way, with
the exception of sound absorption in air.

Although several methods have been developed for this purpose, in
room acoustic simulation the most usual techniques are the Finite-Difference
Time-Domain (FDTD) method and the Digital Waveguide Mesh (DWM)
method. They reproduce the sound field evolution in time (impulse re-
sponse) for every discretized point of the room. Together with the constant
growth of computer power, these methods are increasing their suitability
for room acoustic simulation. Many aspects of these methods have been
improved, increasing their accuracy and keeping a reasonable computation
cost for the simulations.

However, many problems involved in room acoustic simulation by means
of discrete-time methods are not solved yet, and the ones this thesis deals
with, these are the following:

1. Boundary conditions: most of the walls present in an enclosure are
considered reflecting waves in a specular way, under the assumption

'The concept discrete-time modeling has been widely used in digital sound synthe-
sis [Valimaéki et al., 2006], but not really in room acoustic simulation where wave-based
methods in the time domain [Savioja, 1999] is the most common denomination. We
strongly believe discrete-time methods is an accurate sentence to describe these methods.
Furthermore, since physical-based modeling for digital sound synthesis and room acous-
tic simulation share many advances and methodology (room acoustics is a 3-D problem
whereas digital sound synthesis consist of solving, mostly, the same problem but on 1-D
or 2-D [Fontana, 2003|) and they progress in the same direction, then, it is fair to think
about a common term to describe them.
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of a locally reacting impedance model. So far, few contributions to
this point have appeared for frequency-dependent absorbing boundary
conditions, and a generalized and accurate method capable of dealing
with them is still unknown.

2. Sound source modeling: so far, only point or plane sources have been
considered in these methods. However, real sources are far from be-
ing considered such as those, since they have an irregular pattern of
radiation, and very frequently, a frequency dependence.

Both topics are fundamental for a correct and accurate simulation, since
variations in these conditions have a considerable influence in the final re-
sult, and even in the correct perception of the spatial sound distribution in
their use for auralization [Dalenbéck et al., 1993|.

After introducing some of the current limitations of discrete-time meth-
ods in the previous section, the main scope of this thesis is

To contribute, on the one hand, to boundary condition modeling in the
discrete-time methods, which results in allowing one to include locally react-
g 1mpedances with a reduced computational cost. On the other hand, to
deal with the sound source modeling in these methods, offering algorithms
adequate to define radiating sources under a particularized radiation pat-
tern. These algorithms will be validated by comparison with corresponding
analytical expressions.

1.3 Organization of the thesis

This thesis is organized as follows:

e Chapter 2: This chapter presents a brief summary of the basic math-
ematical and physical fundamentals involved in sound propagation in
enclosures, paying special attention to the boundary conditions and
sound source modeling in room acoustics. These notions are neces-
sary for a proper comprehension of this dissertation; however, a reader
with some experience in this field, could just overview this chapter.

e Chapter 3: Since the mathematical description of sound distribution
in a room is an inhomogeneous boundary value problem, the solu-
tion of realistic enclosures must be obtained through techniques that
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simplify those calculations. This chapter discusses various simula-
tion approaches used in virtual acoustics. Finally, after justifying the
suitability of the so-called discrete-time methods for room acoustic
simulation, a survey of those methods is presented. Furthermore, a
brief review of some alternative discrete-time methods is included.

e Chapter 4: This chapter deals with the mathematical description
of the most important discrete-time methods: The Finite-Difference
Time-Domain method and the Digital Waveguide Mesh method. Dif-
ferences and similarities are emphasized, arriving at a hybrid model
as a convenient solution. Furthermore, a short overview of the Wave
Digital Filters (WDFs) is presented, which theory is fundamental for
the contributions which have been developed in Chap. 5.

e Chapter 5: In this chapter, the first group of original contributions is
presented, which are related to the boundary conditions, particularly,
how to perform a locally reacting impedance model for discrete-time
methods. First, a review of the previous models is presented, followed
by a detailed analysis of the behavior of these algorithms. Since these
methods are not able to model boundary conditions with accuracy,
some new algorithms are introduced for the DWM, and also for FDTD
method.

e Chapter 6: The second group of original contributions is based on
the incorporation of directive sources in the discrete-time methods.
For given directivity patterns, an algorithm is introduced to perform
non-uniform radiating source patterns for sinusoidal sources; also, this
algorithm is extended to broadband sources, with variable directivity
as a function of frequency.

e Chapter 7: Finally, conclusions obtained in this dissertation are pre-
sented, including some guidelines for future research, opened by this
thesis.

Additionally, two appendixes supplement the main work, organized as
follows:

1. Appendix A: deals with qualitative, not quantitative, aspects of the
dispersion of some of the discrete-time methods which appear through-
out this thesis.
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2. Appendix B: shows some aspects of design of room acoustics software
based on discrete-time methods. Although a front-end software has
been considered outside from the scope of this thesis, some thoughts
about what should be the first steps in order to design a room acoustic
computer-based program are presented.



Mathematical and Physical
Foundations in Room Acoustic
Simulation

THE COMPUTER ROOM ACOUSTIC SIMULATION METHODS arise from a set
of simplifications concerning to the sound wave propagation theory. Then, it
is mandatory in any computer method proposal to present a consistent back-
ground of the room acoustic phenomena. This sound wave phenomenology
is the starting point in order to develop a solid method for room acoustics.

This chapter concerns the acoustic propagation in unbounded and boun-
ded spaces, where the sound propagation in enclosures is its main aim. In
this chapter, some of the fundamental aspects in room acoustic theory are
revisited and they form the mathematical and physical basis for the contri-
butions addressed in this thesis.

2.1 Introduction

Mathematically, sound propagation can be described as an inhomogeneous
boundary value problem [Polyanin and Zaitsev, 2003| through hyperbolic
or parabolic differential equations, both being characteristics in wave-like
propagation phenomenons. This mathematical description arises from the
physical analysis of a time-varying perturbation in a medium.
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Room acoustic is considered as the propagation phenomena where acous-
tic waves travel through a fluid, mostly air, and interact with the limits of
an enclosure, giving a particular sound pressure distribution. Also, sound
source properties have a main role in the final room acoustic, and also in
its sound perception.

The present chapter deals with the mathematics for sound wave prop-
agation in room acoustics, forming a solid base for understanding the fol-
lowing chapters. It is organized as follows: in the first section, some basic
mathematical foundations related to sinusoidal and complex waves are pre-
sented. Section 2.3 deals with the equations involved in the sound propa-
gation description in unbounded spaces. In Sec. 2.4, a mathematical and
physical description of the sound propagation key concepts in enclosures for
this thesis are overviewed, paying especial attention to the boundary con-
ditions (wall properties) and sound source directivity. All the concepts in-
volving the room acoustic modelling concerning this thesis can be expressed
in a compact form as an inhomogeneous boundary value problem, which is
presented in Sec. 2.5. Finally, the chapter is summarized and discussed.

2.2 Mathematical foundations

This section reviews some basic mathematical concepts involved in sound
propagation. In order to arrive at a tractable mathematical description
of problems related to room acoustics, some a few basic assumptions are
introduced here. Let us consider a basic oscillatory function (known also
as a sinusoidal wave), q, given at a position r and at instant ¢ , which is
mathematically defined as

g(r,t) = QeI =), (2.1)

where @) is the wave amplitude, w is the angular frequency and k is the
wavenumber. The angular frequency is related to the linear frequency f
through

w=2rf, (2.2)

where f is measured in Hertz (Hz) and it indicates the number of oscil-
lations in a second. The temporal period can also be introduced T as the
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inverse of the frequency, indicating how many oscillations occur in a second.
Regarding to the wavenumber, its module is defined as

w

el =2, (23)
where c¢ is the speed of sound. Wavenumber is a defined spatial analog of
frequency, that is, it is the measurement of the number of repeating units
of a propagating wave (the number of times a wave has the same phase) per
unit of space. The vectorial form of the wavenumber is usually expressed

in spherical coordinates with polar 6 and azimuthal ¢ angles as follows

k = ||k|| cos ¢ sin 6% + || k|| sin ¢ sin Oy + | k|| cos 0z, (2.4)

where each wavenumber component is usually defined as

k. = ||k||cos¢sinb, (2.5)
ky = |k||/sin¢sind,
ko= Jlklcoso,

and where the next expression is preserved

k|[* = k2 + K + k2. (2.8)

At the same time, wavelength A is defined as an inverse of the wavenum-
ber through

_27r
|[k[|”

which denotes the distance, in the wave propagation direction, where equal
values of the field quantity occur. From now on, the absolute value of the
wavenumber ||k||, will be simply denoted by k, since most texts use this
notation.

Y (2.9)

As will be shown in this thesis, sinusoidal sources are used as mathe-
matical definitions to introduce more complex concepts, since these waves
appear in nature (and particularly, in room acoustics) only in very few oc-
casions. However, it is possible to express any periodic function ¢(t) as a
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linear combination of harmonic waves. This combination is called Fourier
series, mathematically expressed as

q(t) =%

+o0 A
> q] , (2.10)

n=-—oo
where w, = (2n/T)n. This means that a periodic function with a period
T =27 /w is a weighted sum of harmonically related sinusoidal functions.

The coefficients (or Fourier series coefficients) g, are calculated multi-
plying both parts of Eq. 2.10 by e/“» and integrating over the time segment
T, obtaining

- 1 [zt .
an = [q(t)e’ oy = T/ q(T)e™ " dr. (2.11)
—%—&-t

Until now, only periodic functions have been considered; however, more
generalized functions can be represented as a decomposition of harmonic
functions. A generic function can be seen as a periodic function, which
period is infinite. In that case, basic functions (complex exponential func-
tions) are not harmonically related, but also all frequencies appear. Let us
define the continuous Fourier transform as follows

Q) = / T y0etdt = Fi{q(t)), (2.12)

—00
where, for a given angular frequency wp, the complex value Q(wp) indicates
the complex amplitude of the corresponding complex sinusoidal function
(Eq. 2.1). The linear operator F;{-} is used as a definition of the Fourier
transform. This allows a sinusoidal wave with w = wg to be defined as

q(r,t) = Q(w)e!* T = Q(r,w)e 70, (2.13)

where its corresponding Fourier transform is

Fi{q(r,t)} = Q(r,wo). (2.14)

The Fourier transform is a powerful tool for describing both periodic
and non-periodic signals. It specifies the spectral content of a signal. Thus,
the Fourier transform provides a frequency-domain description of a signal.
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It is also defined the inverse Fourier Transform, the linear operator
which finds the time-domain representation from a frequency domain signal.
It is defined as

FiH{Qw)} = q(t) = % /OO Qw)e ! dw. (2.15)

The Fourier transform has a set of interesting mathematical properties
and some of the most important ones (used during this thesis) are summa-
rized as follows:

Fi{a-q(t) +bf(1)} = a-Qw) +b- F(w),
Fila(t) - f(t)} = 5:Q(w) * F(w),
Fila(t) = f(1)} = Qw) - F(w),

FL 20 = —juQ(w),

where the operator * indicates the convolution function. Many other prop-
erties of the Fourier transform can be found in [Soliman and Srinath, 1997].

2.3 Physical foundations

In this section, some of the physical foundations underlying the sound prop-
agation are overviewed. The sound waves are described as compressional
oscillatory disturbances that propagate in a fluid [Jacobsen, 2007] or as a
result from time-varying perturbation of the dynamic and thermodynamic
variables that describe the medium [Pierce, 2007|. In these fluids (or media),
two laws appear:

e The time rate of change of the fluid mass is equal to the net mass
per unit time entering (minus that leaving) a volume V' through a
confining surface S.

e The mass times acceleration of the center of mass of a fluid particle
equals the net apparent force exerted on it by its environment and by
external bodies.
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Both laws allow the introduction of two key equations, known as conser-
vation of mass and Fuler’s equation of motion for a fluid, and they are the
basis of the simplest realistic model of sound propagation in fluids. These
equations, as will be introduced in Sec. 2.2, relate to the acoustic basic
variables: pressure, density and particle (or fluid) velocity.

The pressure p is the force over an area applied on an object in a
direction perpendicular to the surface; it is a scalar quantity, and it has SI
units of pascals: 1 Pa = 1 N/m?2.

The particle velocity u, measured in m/s as SI units, is the velocity of
a particle (real or imaginary) in a medium as it transmits a wave; when
applied to a sound wave through a medium of air, particle velocity would
be the physical speed of an air molecule as it moves back and forth in the
direction the sound wave is travelling as it passes. Since the particle velocity
is a vector, it is defined as

u = uX + uyy + uz. (2.16)

In physics, density p is mass m per unit volume V', that means the ratio
of the amount of matter in an object compared to its volume. The classical
model of compressible fluid presumes the existence of some relation between
density and pressure:

p=p(p). (2.17)

In the next subsections, a mathematical model of the sound propagation
is introduced, where a set of equations provides a relation between the
different acoustic variables, their being the basis of this thesis.

2.3.1 Euler and conservation of mass equation

Let us consider for this section a sound propagation free of losses and with
no obstacles such as walls (unbounded in all directions). Furthermore, let
us assume a medium to be homogeneous and at rest. In accordance to these
assumptions, the speed of sound ¢ is constant with reference to time and
space. For air, its magnitude is calculated as [Everest, 1994]

Tamb
=331.44/1 am 2.18
¢ Vit oy (2.18)
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and it is approximated as follows [Kuttruff, 4th edition, 2000]:

¢ = 331.4 + 0.6Tap, (2.19)

where Ty is the ambient temperature in centigrade and c¢ is measured in
m/s. In large halls where there exists some gradient of temperature, this
dependence cannot be ignored. However, it is a common practice to assume
a constant speed of sound.

As has been previously mentioned, the basic laws for sound propagation
are the conservation of mass in a fluid, which is mathematically expressed
as

Ip(r,t)
ot

and the Euler’s equation of motion in a fluid

+ V- (p(r,t)u(r,t)) =0, (2.20)

p(r,t) (E)ugt',t) +u(r,t)- (V- u(r,t))) = —Vp(r,1). (2.21)

Although these basic acoustic equations are clearly nonlinear, acoustic
disturbances can usually be regarded as small-amplitude perturbations to
an ambient state and negligible body forces such as gravity, are not consid-
ered. This particularity of sound propagation could be applied to the room
acoustics and it allows the reduction of governing equations by a first order
approximation in the expansion of nonlinear equations.

Let us define the ambient-field or steady-state variables pg, pg and ug in
a homogeneous and quiescent medium. Since the medium is homogeneous,
the ambient quantities are independent of the position; and quiescent means
these variables are independent of time and uy = 0. These variables are
the solution to the Eqgs. 2.20 and 2.21, but when a disturbance modifies the
steady-state, one has

p(r,t) = po+p/(r,8)  plr,t) = po + o/ (x,8). (2.22)

Substituting Eqgs. 2.22 into Eqgs. 2.17, 2.20 and 2.21, giving the following
system equations
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%(Po + 0 (r,t) ==V [(po + ¢ (r;))u'(r,1)],  (2.23)

(po+ p'(r,t)) <§t +u'(r,t) - v> u(r,t) = =V(po + p'(r,t)), (2.24)

po+p'(r,t) =plpo+ p'(r,1)).  (2.25)

The terms in Eqs. 2.23 and 2.24 can be grouped into zero-terms (all
are identically zero), first-order (just one prime variable), second-order (two
prime variables), ... |Pierce, 1994]. Equation 2.25 can be expanded through
a Taylor serie in p as

Op(r,t) 1 (0%*p(r,t)

'(r,t) = ’ (e, t) + = [ 25—~ '(r, )%+ ... 2.26
v = (ghey) s+ (Gaes) (Eoie. )
where the indicated derivatives are evaluated at constant entropy (expressed

through subindex 0) and with density subsequently set to pg.

The linear approximation (or so-called acoustic approximation) neglects
second- and higher-order terms, giving

/
8pz§§’ D 4 gV ul(r, 1) =0, (2.27)
!/
poau(;r’t) + Vp'(r,t) = 0, (2.28)
Op
'(r,t = '(r,t c2—<> , 2.29
P t) =/ (r,1) o) (2:29)

where, based on thermodynamic consideration, requires ¢? always to be
positive [Chatelier, 1888].

These equations are arranged in a set of two equations where, and from
now on, the primes are removed:

WD | oS ulet) =0 (2.30)
e 22T LG 1y = 0. (2.31)

ot
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There exist some applications where the particle velocity variable is
not computed, such as room acoustics. For that reason, it is convenient
to introduce the wave equation, consisting of a unique equation with only
a pressure variable dependence. From the linear acoustic equations, the
linear operator p%v : (ffoo()dT) is applied to Eq. 2.31 and this result is
substituted in Eq. 2.30. This sequence of steps yields

1.9%p(r,1)

2
Vop(r,t) — 2 or

=0, (2.32)
where the operator V2 is the Laplacian sum of the second derivatives with
respect to the three cartesian coordinates.

When the wave equation includes an independent term which purpose
is to model a certain source s(r,t), Eq. 2.32 becomes the inhomogeneous
wave equation 1

1.9p(r,t)

2
Vop(r,t) — 2 op

= s(r, t), (2.33)

In a case with sinusoidal sound propagation, the wave equation becomes
the Helmoltz equation via Fourier transform and Eq. 2.3

V2P(r,w) + k*P(r,w) = S(r,w). (2.34)

2.3.2 Solutions to the wave equation

Since the sound propagation is modelled as a wave equation, there exists a
set of basic solutions to these equations (waves), which are interpreted as
travelling disturbances through a medium. In this section two simple but
basic solutions are presented: plane and spherical waves. Although these
solutions are far from real waves, they give the basis to understand the real-
world propagation phenomenon of acoustic propagation, since they could
be seen as a linear combination of these basic wave shapes.

'The Euler and conservation of mass equation can also be defined as inhomogeneous
PDEs [Ziomek, 1995]; however, this thesis only will concern about the wave equation
source terms.
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2.3.2.1 Plane waves

One of these basic solutions is the plane wave, which plays a key point in
many applications, as it will be seen later, in this thesis. The plane wave
is defined when all the acoustic variables vary with time and with some
cartesian coordinate ||r|| = s, but are independent of position along planes
normal to the s direction, p = p(s,t). Because Vp has only s component,
the fluid acceleration du/90t must be in the +s direction and if the initial
particle velocity has no initial components in the transverse direction to s,
these components will remain zero. If one writes u(r,t) = u(s,t)n,, where
N, is the unit direction of increasing distance s and in accordance to these
simplifications, the next equations yield

ap(sv t) 2“(57 t) _
o + poc s = 0, (2‘35)
du(s,t) Op(s,t)
= —— 2.36
£0 ot Os 9 ( )
whereas the wave equation reduces to its 1-D form
I*p(s,t) 1 0%p(s,t
p(57 ) - p(S, ) — 07 (237)

0s2 c2  Ot?

0 10 0 10
Q%‘caJ(§s+cm)“&“:0' (2.58)

The general solution to the latter equation is a sum of a function of
& =t —s/c and of a function of n =t + s/c, that is,

or equivalently

p(s,) = f(t — s/e) + g(t + /), (2.39)
where the function f and g are arbitrary [Everest, 1994]. This solution to
the wave equation is known as the D’Alembert solution.

In order to obtain the relation between the solution for pressure and
particle velocity, Eqs. 2.35-2.36 are used, giving

3} 0 0 3}
poc <8t + C@S) u(s,t) = F <0t + C@s) p(s,t). (2.40)
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The solution to this equation is

u(s,t) = (poc) ' [f(t = s/c) — gt + s/c)], (2.41)
where the functions f and g are the same as Eq. 2.39.

The wave interpretation of the solution follows since f(t — s/¢) and
g(t — s/c) describe waves moving in the +s and —s directions, respectively,
with speed c. If f(t—s/c) is plotted versus s for two fixed successive values
of t, both wave shapes are identical but separated by distance c(to — t1) to
the right (see Fig. 2.1 for details).

D — R

g(t+s/c) f(t-s/c)

C(tz—tl) S

Figure 2.1. Physical interpretation of a 1-D traveling wave
based on D’Alembert solution.

In a vectorial form, in a plane wave propagated in a direction n, the
particle velocity is expressed as follows

f. (2.42)

2.3.2.2 Spherical waves

In addition to plane waves, another idealization of the wave propagation
corresponds to a symmetric wave spreading in a unbounded fluid medium.
The source is considered to be a sphere with radius a centered at the origin.

Since a spherical wave varies symmetrically according to ||r||, which is
the radius distance from the origin, a simple way to derive the wave shape



18 Mathematical and Physical Foundations in Room Acoustic Simulation

of a spherical wave consists on expressing the wave equation into spherical
coordinates (||r||,0,¢). After some modifications [Pierce, 1994|, the wave
equation in spherical coordinates is

iaz(llr!\p(!\r\l)) _ 1%l _ 0, (2.43)

el Ollr|f? o

where the pressure p(||r||,¢) has no dependence on 6§ or ¢. In a similar
fashion to the plane wave, the wave solution to this equation is deduced as

(Il ) =[xl 71 £ = Iell/e) + e[|~ (¢ + lIx]] /<), (2.44)

where f and g are a priori arbitrary functions.

Outside of the region where the initial conditions are confined, if there
are not sources except the one situated at the origin, waves only move in
the +||r|| direction and thus, g(t + ||r||/c) = 0 (see Fig 2.2).

. \ \
N \ \
N \ \
~ N \ \ I'
N N \ e D
* ‘llr”‘ —--n”
N \ Ly~ \
\ PR ' '
-t
\
|

I i
1

Figure 2.2. Vibrating spherical source with radius a radiating

in a free field).

The particle velocity in a spherical wave is not directly obtained as
in the plane wave case, since particle velocity and pressure are not propor-
tional. After using some concepts which are far from this thesis (see [Pierce,
1994]), the particle velocity is defined as

(ell.t) | F(t = lrll/) (2.45)

. p
u([[r]], £) - B, = )
' poc pollr||?
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W}lere n, indicates the unitary vector in the radius direction and F(t) =
f_oo f(r)dr.

An interesting conclusion of Eq. 2.45 arises because of the peak values
in time of the second term decreases with distance as 1/||r||?> while the
first term decreases as 1/||r||. This means for a large ||r||, the second term
may be considered negligible compared with the first; then, the asymptotic
relation between pressure and particle velocity gives the same relation as
in plane waves. For waves of constant frequency, this relation is true when
||r|| is much larger than its associate wavelength (=~ 10)).

2.3.2.3 Acoustic energy, intensity and source power

Since pressure and particle velocity define an acoustic field, it implies mov-
ing fluid elements have kinetic energy, and changes in the pressure imply
potential energy. Thus, there is a flow of energy involved in the phenomenon
of sound; sources of sound emit sound power, and sound waves carry en-
ergy |Jacobsen, 2007].

The linear acoustic equations have a corollary related to the energy con-
servation for an acoustic field [Pierce, 1994], similar to Poynting’s theorem
in electromagnetism [Balanis, 1989].

To derive this energy conservation, the linear version of the Euler equa-
tion has to be taken (Eq. 2.31) and the dot product of u applied

u(r,t) - <p08u((911;,t)> = —u(r,t) Vp(r,t) (2.46)

Through Eq. 2.31 and Eq. 2.30, Eq. 2.47 it can be reexpressed as [Ja-
cobsen, 2006]

duw(r, 1)

g +V-i(r,t) =0, (2.47)

where
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1 1p(r,t)?
w(r,t) = Spolfulrt)I* + 3 0 (2.48)
i(r,t) = u(r,t)p(r,t). (2.49)

The variables w(r,t) and i(r,t) are defined as the total instantaneous
energy density and the instantaneous sound intensity, respectively. The
terms of the total instantaneous energy density correspond with the kinetic
energy (po||u(r,t)||?/2) and the potential energy (p*(r,t)/(2p0c?)).

Equation 2.47 is the conservation of sound energy, which expresses the
simple fact that the rate of decrease of the sound energy density at a given
position in a sound field (—0w(r,t)/dt) is equal to the rate of the flow of
sound energy diverging away from the point (V - i(r,t)).

It could be easier to see this fact through the global version, which is
obtained through Gauss’s theorem, according to which the net outflow of
sound energy integrated over a given volume V equals the total net outflow
of sound energy through the surface of the volume S

/vv Ci(r, t)dV = /Si(r,t) L dS = % </V w(r, t)dV) - _Geg;t)’ (2.50)

which shows that the total net outflow of sound energy through the surface
equals the (negative) rate of change of the total sound energy within the
surface, e(r,t). In other words, the rate of change of the sound energy
within a closed surface is identical with the surface integral of the normal
component of the instantaneous sound intensity, i(r,t).

The intensity vector in a plane wave is reduced, according to Eq. 2.42,
as follows

2 T
i(r ) = L p(o’ct)ﬂ _ cu(r, t)A, (2.51)

where the kinetic and potential energies are therefore equal for plane waves.

In the spherical waves case, the intensity vector, according to Eq. 2.45,
becomes
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i(r,1) = [pi()z’ct) 4 % <W>] . (2.52)

For a constant frequency w spherical wave (p,u o e=%?) it is demon-
strated [Pierce, 1994] how in the limit wr/c < 1, the energy predominant is
kinetic; but in the limit wr/c > 1, the potential and kinetic energy density
are the same.

2.4 Some sound propagation considerations in en-
closures

Up till now, free field conditions have been assumed since an unbounded
space is considered and sources are supposed as idealized. However, a room
or enclosure is defined as a bounded space, where the iterative reflections
of the propagated waves in different walls form the total sound field and
real-world sound sources are far from being an idealized plane or spherical
wave since their power is not spread evenly. Then, the total sound field
in an enclosure is the result of a set of wave phenomena such as reflec-
tion, absorption, diffraction,. .. particularized on the room properties under
analysis.

From a mathematical point of view, the total sound field is obtained
solving the inhomogeneous wave equation under the specific boundary con-
ditions. These concepts are the basis of the so-called wave theory of room
acoustics.

It is not within the scope of this thesis to deal with a detailed overview
nor wave theory, nor subjective and objective aspects in room acoustics
(this can be consulted in [Kuttruff, 4th edition, 2000]). However, some
basis of the sound propagation in enclosures used throughout this thesis are
presented. These considerations are, firstly, an overview of the boundary
conditions definition, focusing on the absorption and reflection in walls. On
the other hand, sound sources are analyzed under the concept of source
directivity.
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2.4.1 Boundary conditions

In this section, the wall influence in an enclosure is analyzed and modeled.
When a wave strikes a wall, part of its energy is reflected. However, these
reflections can be categorized in two possibilities: specular and diffuse. In
real life, both phenomena occur in each reflection, with different propor-
tions, depending on the wall shape.

Smooth walls produce specular reflections, where the reflected wave
keeps the same angle of incidence. Irregularly shaped acoustic boundaries
result in diffuse reflections, causing a redistribution of the sound energy
across a range of angles upon reflection.

In this thesis, only specular reflections are considered, introducing the
locally reacting impedance concept (see Sec. 2.4.1.3), which simplifies the
wall properties definition.

2.4.1.1 Wall impedance, reflection factor and absorbing coefficient

The normal surface specific acoustic impedance Z = Z(w), or the specific
boundary impedance for short, is defined for a given plane wave, as the
ratio of complex amplitude and the normal component of the associated
particle velocity. Let us consider a plane surface with a specific boundary
impedance. This impedance presents a particular response depending on
the shape of the incident wave. This is because the normal component of
the particle velocity at any point of the surface is influenced not only by the
local pressure, but also by the surrounding points. This means that it is not
possible to specify a unique boundary impedance, independent of the am-
plitude and phase distribution of the incident wave over the surface [Fahy,
2001].

However, there are cases where material is able to dissipate energy
efficiently, i.e. porous sound absorbing materials [Beranek, 1940], or where
only reflection phenomena exists, i.e. ground surfaces [Embleton et al.,
1976|. In these scenarios it is reasonable to assume that the particle velocity
generated by incident sound at any point is linearly related only to the
local sound pressure, and then, independent of the shape of the incident
sound field. Therefore, a material surface may be characterized in terms
of a unique specific boundary impedance. Fortunately, this impedance can
be considered in many practical cases, i.e. room acoustics [Kuttruff, 4th
edition, 2000] and mathematically described as
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Z(w) = —— (2.53)
where 1 is the perpendicular direction to the impedance surface, and P(w)
and U(w) corresponds with the amplitude of a sinusoidal plane wave with
angular frequency w. In the particular case of a plane wave traveling in the
air, the specific acoustic impedance is Z,;; = poc.

Frequently, the wall impedance is divided by the specific acoustic im-
pedance of the air, giving the characteristic acoustic impedance, defined
as

((w) = : (2.54)

The reciprocal of the specific acoustic impedance is known as specific
acoustic admittance, Y (w) whereas the characteristic acoustic admittance is
the reciprocal from the characteristic acoustic impedance.

The impedance definition (Eq. 2.53) can be inserted into the wave equa-
tion through the Euler equation (Eq. 2.31) in the wave domain and obtain

OP(r,w)
on
where 0/(011) denotes partial differentiation in the direction of the outward
normal to the wall. It also can be defined in terms of the specific impedance

as

Z(w) + jwpoP(r,w) =0, (2.55)

g(w)‘w + jkP(r,w) = 0. (2.56)

When the plane wave strikes on a surface, the amplitude and phase

of the reflected wave changes. This proportion between the reflected and
incident wave is characterized by a complex reflection factor

R = ||R||e?“. (2.57)

As will be shown in Sec. 2.4.1.3, the reflection factor absolute value
||R|| and phase ZR is dependent on the frequency and angle of arrival.
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Finally, the sound absorption is defined: according to Eq. 2.51, the
intensity of a plane wave is proportional to the square of the pressure am-
plitude. Therefore, the intensity of the reflected wave is smaller by a factor
of ||R||? than that of the incident wave and the fraction 1 — || R||? of the in-
cident energy is lost during reflection. This quantity is called the absorption
coefficient A of the walls

A=1—|R|> (2.58)
2.4.1.2 Fundamental conditions for physically representable impedance model

Equation 2.53 represents an impedance without mean flow. In the time
domain, it could be described as

+oo
p(r,t) ! / z(t — 7)u(r, 7) - ndr, (2.59)

where z(t) denotes the time domain impedance.

If the impedance is expressed in a rational form Z(w) = A(w)/B(w) it
is possible to obtain a convolution on both sides

+00 +oo
/ a(t — m)p(r,7)dr = / b(t — 7)u(r,7) - ndr, (2.60)

—0o0 — 0o
From those expressions, let us define some conditions in order to define

a physical realizable impedance model [Rienstra, 1998|:

e Since p(r,7) cannot depend on u(r,t) - n of the future, it must be
defined z(t — 7) = 0 for t > 7 and Z(w) has to satisfy the causality
condition.

e Since u(r,t)-n cannot depend on p(r, 7) of the future, the admittance
Z(w)~! must be causal.

e Since p(r,7) and u(r,t) - i are real, z(t) has to be real too, and so
Z(w) has to satisfy the reality condition

Z*(w) = Z(~w). (2.61)
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In other words, the real part R(Z) (resistance) is even and the imag-
inary part (Z) (reactance) is odd.

e Usually, the impedance wall is a passive wall that absorbs energy at
any frequency, i.e. the acoustic intensity into the wall is positive (see
Sec. 2.3.2.3). As a result, the resistance R(Z) has to be positive. In
other words, the impedance satisfies the condition of passivity

R(Z(w)) >0 Yw eR. (2.62)

It should be noted that violation of the reality condition produces phys-
ically impossible results; violation of causality produces instabilities due to
“decay” in reversed time; violating the passivity condition implies a wall that
produces instead of absorbs energy which will also lead to an instability.

2.4.1.3 The locally reacting impedance problem

In this subsection, the oblique incidence problem is formulated, giving the
definition of a locally reacting impedance. Let us consider an infinitely ex-
tended impedance surface of uniform impedance, shown in Fig. 2.3(a). On
the basis of a locally reacting impedance, it is possible to obtain a general
expression for the reflection factor in terms of the impedance and the an-
gle of the sinusoidal plane wave incidence. Let us define an incident plane
wave with amplitude P;(w) and angular frequency w, propagating in a di-
rection (cosf,sinf) where 6 is the angle with the z-axis and approaching
from = < 0 and impedance wall Z = P(w)/U,(w) at x = 0:

pi(r, t) — ‘Pi(w)efj(kx cos 0+ky sin 0) ejwt? (263)
where k is the wavenumber (see Fig. 2.3b) for details).

The reflected wave, with amplitude p;, is propagating in the direction
(—cos@,sin6):

pr (I‘, t) =P, (w)e—j(—kx cos O+ky sin 0) ejwt. (264)

Both amplitudes are related to the reflection factor R

R = R(w)/P(w). (2.65)
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Figure 2.3. (a) Incidence of a plane wave on an infinite plane
surface of uniform impedance. (b) Wavenumber vector compo-
nents of the incidence wave.

Thus, the total pressure field p is the sum of both components,

p(I‘, t) _ (Pi(w)e—jkaOSG + Pr(w)ejkac cos@)e—j(ky sin 0—wt)
— Pi(w)(e—jkICOSG + Rejkzcos@)e—j(kysiHG—wt). (266)
Using the linearized momentum conservation law p(du,/0t) = —0p/0z,

the normal component of the particle velocity u, can be derived

ugg(r,t) — COSH—Pi(w)(efjkICOSG o Rejkxcos@)efj(kysianwt)' (267)

pc

The latter definition permits the definition of the impedance at the
point z = O:

_ pc 1+ R
~ cosf1—R’

(2.68)

and the reflection factor

_ Zcost — pc

=\ 2.69
Z cos b + pc (2:69)
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An impedance with a local reaction assumption or locally reacting im-
pedance (LRI), means that the impedance does not depend on the plane
wave angle arrival, e. g. Z = Z(w), but the reflection factor does depend
on this angle, e. g. R = R(0,w):

Z(w) cos @ — pc

RO,w)= —F———. 2.70
(6,) Z(w) cos b + pc (2.:70)
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Figure 2.4. Representation of the reflection factor as a func-
tion of the impedance and the angle of incidence.

At this point, Eq. 2.70 is graphically represented in Fig. 2.4 in order to
better understand its behaviour which will be important later in the pro-
posed model. The reflection factor has been expressed using a gray scale
in dB as a function of the impedance and the angle of arrival. The impe-
dance is represented dimensionless, determined by the ratio of the specific
impedance to the characteristic impedance of the medium pc. In the figure,
the considered angle of arrival varies between 0 and 7/2, whereas the im-
pedance is situated between 0 and 100. It can be observed that when the
impedance has low values (high absorption), there are significant differences
when the angle of arrival varies. However, if the impedance value increases
(low absorption), the dependence on the angle of arrival decreases, espe-
cially for low angles of arrival where the reflection factor is almost constant
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at 0 dB. In this case, the highest differences appear when the angle tends to
be parallel to the surface. When impedance tends to infinity, the reflection
factor will be 0 dB for all the angles of incidence.

2.4.1.4 Hard-backed layer of porous material impedance

An interesting case of the LRI model is the hard-backed layer of porous
material. This consists of a semi-infinite rigid porous layer developed on
the basis of semi-empirical considerations. It involves many measurements
on fibrous materials that have been used widely for modeling the impedance
of outdoor ground surfaces.

The mathematical expression given for a layer with a thickness d [Kut-
truff, 4th edition, 2000] is

Z(w) = —jZp(w) cot (ky(w)d), (2.71)

where the material is modeled using Delany and Bazley’s one-parameter
model [Delany and Bazley, 1970|, that is, the characteristic impedance and
wavenumber of the material are given by

Zy(w) = poc(l40.057X (w)~ 07 — j0.087X (w)"72),  (2.72)
kp(w) = poc(1+0.098X (w) %7 — 50.189X (w)O5%)  (2.73)

where X (w) = pow/(2w0) and o is the material’s flow resistivity.

A 0.1 m thick layer of porous material with a flow resistivity of 1000
kg m™3s7! is considered as a reference example for the proposed methods
throughout this thesis (see Chap. 5). For these given considerations, the
resulting normalized complex impedance in respect to the characteristic
impedance pgc is represented in Fig. 2.5. As is mentioned in Sec. 4.2.1,
the results presented in this thesis are presented in a normalized frequency
corresponding to a sampling frequency fs; =80 kHz.

In accordance with the locally reacting impedance definition, Eq. 2.70,
the theoretical reflection factor can be theoretically calculated for different
angles. In this case, the angles of arrival under study 6 are 0, 15, 30, 45, 60
and 75 degrees. These theoretical reflection factors are indicated in Fig. 2.6.

In this thesis, a digital filter-based representation of both reflection fac-
tor and impedance is used. From the point of view an impedance, slight vari-
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Figure 2.5. Complex impedance of a hard-backed layer of
porous material, where the continuous line represents the real
and imaginary part of the theoretical expression, whereas the
dashed line corresponds to the approach followed during this
thesis.
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Figure 2.6. Theoretical reflection factor calculated for differ-
ent angles of arrival, according to the analytical expression for
a locally reacting impedance assumption.

ations in its modeling could produce evident changes on the reflection factor
obtained through Eq. 2.70. For instance, during this thesis (see Chap. 5),
the impedance is approached using the Yule-Walker [Friedlander and Porat,
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Figure 2.7. Reflection factor calculated from the spectrum
response of a Yule-Walker approach of the impedance for dif-
ferent angles of arrival, according to the analytical expression
for a locally reacting impedance assumption.

1984] in order to synthesize a 60th order digital filter 2. From the frequency
response of that filter, it could be observed some differences in the reflection
factor at different angles of arrival (see Fig. 2.7).

From this point, what should be noted is how in case to use a digital
filter representing the impedance, the reflection factors used as a referenced
must be the ones obtained from the approached impedance spectrum. Fur-
thermore, one must be careful with this, since when a reflection factor is
used as as boundary condition, it must be take into account the differences
between the theoretical reflection factor for an analytical impedance and the
one coming as a consequence of the spectrum of the digital filter approach
of the impedance.

This premise would be assumed along this thesis and it should be spec-
ified which option is used at each particular example.

2This method as been selected for simplicity using a Matlab® code, although some
experiments using more efficient methods such as [Ramos and Lopez, 2006] are carrying
out with successful results.
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2.4.2 Sound source modeling

In this section, some fundamental concepts of sources are reviewed, focused
on the directive properties of sound power sources. Furthermore, some basic
directive sources are presented, called multipoles, since they can be seen as
an orthogonal basis for more complex and realistic directive sources.

2.4.2.1 Directive sources

Real-world sources are far from the basic sources introduced previously in
Sec. 2.3.2. The sound power of sources is not usually spread evenly. This
means, the intensity vector depends also on polar and azimuth angles.

Now, let us consider a source with a non-spherical symmetry. At a
large distance from the source, the acoustic variables locally resemble a
plane wave propagating with speed of sound ¢ away from the source. Then,
it can be written

p(r,t) o gt —|[r|/c,0,0), (2.74)
a(r,t) o PEDL (2.75)
poc

where 6 and ¢ denote polar and azimuthal angles in spherical coordinates.

Considering g as a sinusoidal function of time, it is reasonable to con-
sider the next approximate simplifications [Pierce, 1994|:

1
p(r,t) = —g(t—[lr|l/c,0,9), (2.76)
u(r,t) = p;r’ct)m, (2.77)
0
iy
oy = |(|r”§))nr, (2.78)
B 1 to+Ta )
0.0) = o [ oo (2.79)

with T, being a very long time period containing an ample number of half
periods. The first two expressions are, in fact, not restricted to periodic
signals. The function J(6, ¢) describes the radiation pattern of the source,
e.g. acoustic power radiated per unit solid angle.
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Figure 2.8. Measuring points in order to measure the direc-
tivity in (6, ¢) points.

These equations indicate the spherical spreading law is not restricted
to spherically symmetric sources, allowing the use of these concepts in real
sources.

The radiation pattern has a measurable consequence, the source direc-
tivity Ds(0, ¢). This function is related to the source in far-field conditions
and constant vorticity assumption as

u(r,t) = Dg(

s(0,9)
p(r,t) = Dg(0

(0, 9)po(r,t), (2.81)

where u,(r,t) and p,(r,t) are the omnidirectional particle velocity and pres-
sure of the source. Figure 2.8 shows an example of the set-up for measuring
the directivity of a loudspeaker inside a box.

The directivity and the radiation pattern is related through

J(0,¢) = | Ds(0,9)I* Jo, (2.82)
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where J, is the radiation pattern in the far-field for an omnidirectional
source, defined as

1 t0+TCL 9
J—/ g (t —||r||/c)dt 2.83
T A A L (28)
where function g does not depend on azimuth or elevation since J, is defined
for an omnidirectional source.

Let us consider an sinusoidal wave, where since the omnidirectional
pressure (and also the particle velocity) is constant in angle, and the pres-
sure reference p(r,t) is measured in far field conditions, the directivity can
also be seen as

P(w,0,9)

p0.0)= |75

', (2.84)

giving a new definition of directivity as the module of the pressure in an
angular position (6, ¢), divided by a reference pressure. This reference used
to be obtained as the maximum pressure produced by the source and cor-
responding to symmetry axis.

Since the directivity is now defined as the ratio of two frequency-
dependent functions, it is straightforward to consider the directivity as a
function of the angle. This allows us to define the directivity diagram as
a graphical representation of the directivity for a particular frequency as a
function of each one of the angles (see an example in Fig. 2.9).

2.4.2.2 Some basic directive sources: from monopoles to quadripoles

Any spherically symmetric source of sound, and particularly a point source,
with an angular frequency w and situated in position rs radiates an outgoing
spherically symmetric wave with a complex pressure amplitude represented
as

gkl
P(r,w) = Sn(w)

W)
v = x|

(2.85)

where the function S(w),, is defined as monopole amplitude since the terms
point source and acoustic monopole are synonyms. The monopole amplitude
is calculated for k||r — rg]| > 1 as



34 Mathematical and Physical Foundations in Room Acoustic Simulation

0.75

0.50 3007
0.25

0 270°

240"

180°

Figure 2.9. Example of a directivity diagram. The directivity
has been represented as a scalar function and as a function of
the azimuth angle 6.
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Sm (w) A7

(2.86)
where Q is a constant, termed the complex source strength and represents
the volume of fluid displaced by the source.

The monopole pressure satisfies the Helmoltz equation, except in the
source position, leading to a generalized function

V2P(r,w) + k*P(r,w) = —47S(w)md(r — ry). (2.87)

To obtain the directivity of a monopole is straightforward, since it ra-
diates spherically symmetric and then Dg(6, ¢) = 1.

A more complex source can be obtained as a combination of those
monopoles with the proper choice of the monopole weight and at a different
position [Russell et al., 1999] (see Fig. 2.10). This is the case of the dipole,
consisting of two monopoles of equal source strength but opposite phase,
and separated by a small distance d (such that kd > 1). The far-field
expression for the amplitude of a sinusoidal wave is calculated through
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Figure 2.10. Multipole distribution to conform: (a)
monopole, (b) dipole, (c) lateral quadripole and (d) longitu-
dinal quadripole. White and black circles have an opposite
phase.

Il
P(r,0,w) = QPocke

2.
ym HI‘—I'sdeCOSH’ (2.88)

which directivity is expressed by the term Dg(6, ¢) = cos 8 (see Fig. 2.11b)).

A quadrupole consist of two identical dipoles with opposite phase and
separated by a small distance D. For a lateral quadrupole source, the dipole
axes do not lie along the same line (see Fig. 2.10c)), while for a longitudinal
quadrupole source, the dipole axes do lie along the same line(see Fig. 2.10c)).
For the lateral quadrupole, the complex amplitude is calculated through

onck eijr_rSH

P(r,0,w) = 4k2dD cos 0 sin 6, (2.89)

A ||r — rg|

which directivity is expressed by D4(0,¢) = cosfsinf (see Fig. 2.11c));
whereas the longitudinal quadrupole has a complex amplitude expressed as

jklr—r.|
Plr, 0,w) = G0k €

4k2dD cos? 6, (2.90)

A ||r — rg|

which directivity is expressed by Ds(6, ¢) = cos 6? (see Fig. 2.11(d)).
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Figure 2.11. Directivity diagram of some multipole distribu-
tions: (a) monopole, (b) dipole, (c¢) lateral quadrupole and (d)
longitudinal quadrupole.
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In fact, dipoles, quadrupoles, ..., (from now on multipoles) are also a
solution to the wave equation expressed in spherical coordinates [Williams,
1999]. Indeed, radiation from bodies which are located at the origin and
which are of finite extent can be characterized by a sum of multipoles:

P(r,0,¢,w —Z Z Connhl) (K|[x|) Y7 (60, 6), (2.91)

n=0m=-—n

where the pressure is evaluated at a distance ||r|| greater than the largest

radial extent of the source. The function hg) is the spherical Hankel func-
tion of the first kind of order n and Y,*(, ¢) is the spherical harmonic of
order n and degree m [Williams, 1999]. From the properties of the spherical
Hankel functions [Abramowitz and Stegun, 1970], it is stated that

A (K| |e]]) o e*IITll (2.92)

representing an outgoing wave. The coefficients C),,, represent the weighting
in order to obtain a sound pressure field distribution, and they can be
considered as frequency-dependent.

Let us define a spherical harmonic Y,7*(6, ¢) such as

(2n+1) (n —m)! :
Y0, ¢) = P (cos §)el™? 2.93
(0.9) \/ G Pt eoso) e, (209)
where P! is the associated Legendre function given by two integer m (de-
gree) and n (order) [Williams, 1999].

There is not a one-to-one equivalence between spherical harmonics and
multipole expansion, but also, the multipoles can be expressed for particu-
lar spherical harmonics [Williams, 1999]. Multipoles are constructed from
distributions of points sources, infinitesimally close to the origin, of equal
amplitudes but opposite phase. Whereas spherical harmonics form an or-
thogonal basis, multipoles do not. In example, YOO(Q, ¢) corresponds with
monopole (see Fig. 2.12); different dipole orientations are achieved through
RV (0, 0)], SV, ¢)] and Y(0,¢) (see Fig. 2.13); on the other hand,
some quadripoles are obtained with multipoles I[YZ2(6, #)], YL(0, ¢) and
R[YS (0, ¢)] (see Fig. 2.14).
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Figure 2.13. Dipole directivities obtained through spherical
harmonic a) R[Y;!(6, 9], b) S[¥7!(6, ¢)] and c) Y2 (9, ).
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Figure 2.14. Quadrupole directivities obtained through
spherical harmonic a) S[YZ(0,¢)], b) Y2(0,¢) and c)
R[YZ (0, 9)].

2.5 Room acoustics as an inhomogeneous bound-
ary value problem

After presenting the most relevant acoustic foundations for the present the-
sis along this chapter, they can be summarized just as an inhomogeneous
boundary value problem [Polyanin and Zaitsev, 2003|, as follows:

1 0?p(r,t) .
2 it b b Al 3
Vp(r,t) 2 o s(rs,t,0,¢0) in D C R, (2.94)
Z(w)ia (r,w) + jwpoP(r,w) =0 on 9D, (2.95)

on
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where D denotes the domain of propagation, the region in which the wave
propagates and 9D the boundary region.

Equation 2.94 corresponds to the inhomogeneous wave equation, since
it includes the source term s which is different to 0 at position rs. The
source term also has a dependence on the azimuth and elevation angle,
denoting a certain directivity.

Regarding the boundary condition (Eq. 2.95), as said during Sec. 2.4.1,
this thesis is only focused on the most commonly relevant boundary condi-
tion, namely the impedance boundary condition. In this equation [Kuttruff,
4th edition, 2000], and throughout, 9/01 denotes the normal derivative on
the boundary, i.e. the rate of increase in the direction i, where fi(r) denotes
the unit normal at r € 9D, directed into D 3.

2.6 Discussion

In this chapter, some of the fundamentals of the mathematics and physics
involving the sound wave propagation are introduced. The particular dis-
tribution of the sound quantities such as the pressure and particle veloc-
ity components, determines the perception of the acoustical properties. It
could be possible to mathematically determine those sound field properties
through a sound wave equation.

A first step before entering into the acoustic of a room is to model the
sound propagation in an unbounded medium. Once the equations involved
in the sound propagation are determined, the room acoustic is defined as the
consequence of a sound field in a bounded area. The boundary conditions in
room acoustic are determined by the absorbing and reflecting properties of
the walls. Along this chapter only smooth walls are considered, and without
loss of generality, a locally reacting impedance is the followed model for
specular reflection. It allows the definition of a wall property through a
unique impedance, independent of the amplitude and phase distribution of

3Tt should be noted how Eq. 2.94 is expressed in the time domain, whereas Eq. 2.95
is in the frequency domain. In most scientific texts both equations are expressed in
the frequency domain in order to keep a coherent formulation, since Eq. 2.95 must be
expressed in this domain because impedance is a frequency-based concept [Kuttruff, 4th
edition, 2000]. However, the core of this thesis is based on time domain methods for
solving wave equation. Then, the author of this thesis suggests that these expressions
are consequent with the rest of the text exposed on this thesis.
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the incident wave over the surface.

Regarding the sound source modeling, apart from their position and
energy, spatial source properties are far from idealized radiation patterns
as plane and spherical (point) sources. It is possible to characterize real
sources through their directivity properties, which are angle dependent,
having information how the energy is spread from the source and which
dependence can be considered, with no loss of generality, as frequency-
dependent.

Thus, any particular sound field can be represented as an inhomoge-
neous boundary value problem, where a partial differential equation (wave
equation) could be solved for some particular boundary conditions and a
determined source term, that being what differentiates one room from an-
other.



42

Mathematical and Physical Foundations in Room Acoustic Simulation




Room Acoustics
Simulation Techniques

DURING THE PREVIOUS CHAPTER, some of the mathematical and physical
concepts regarding the room acoustic have been presented. As has been
previously mentioned, an inhomogeneous boundary value problem is the
starting point to predict and analyze a particular sound field in an enclo-
sure (see Sec. 2.5). However, with the exception of some particular (and
very simple) cases, these inhomogeneous boundary value problems are un-
solvable analytically. For that reason, the room acoustic prediction requires
obtaining an approximation of the sound field through several physical sim-
plifications and to define computer algorithms for solving the problem in
a reasonable computing time [Schroeder, 1973]. Depending on what pos-
sible simplifications are carried out, some of the different room acoustic
simulation techniques arise.

3.1 Introduction

In this chapter, some of the main computer simulation techniques for room
acoustic simulation are revisited, with particular emphasis on the ability to
incorporate source modeling and boundary conditions. In this thesis, the
classification followed is based on geometrical and wave methods. Due to the
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nature and scope of this thesis (see Chap. 1), the wave-based methods are
also subdivided in two large groups: in the frequency and time domain (the
latter, also known as discrete-time modeling or methods). Savioja [Savioja,
1999| also included statistical methods, but since they do not model the
temporal behavior of the sound field, they are far from the aim of this
thesis.

It is the purpose of this chapter not to deal with a deep overview of the
current state-of-the-art in room acoustic modeling, but also to give some
of the advantages and disadvantages of some of the most representative
techniques, with the aim of justifying the use of the discrete-time methods.

The current chapter is organized as follows: Sec. 3.2 presents some
of the most important geometrical methods, focused on a brief overview
of the ray-tracing and image-source method. The next two sections deal
with wave-based methods. The first one concerns frequency-based wave
methods with a generic sight over the two most used methods for room
acoustic simulation: finite and boundary element methods. In Sec. 3.4, as
this thesis is mainly focused on time-based wave methods (or discrete-time
methods), a deeper overview of the state-of-the-art is introduced, justifying
reasons to contribute to these methods. Finally, the chapter is summarized.

3.2 Geometrical methods

The key point in these methods is to assume the sound propagation as a
ray. This simplification can considerably decrease the computational cost
since a PDE problem is directly transformed into an algebraic and/or ge-
ometric problem. Geometrical methods make the assumption that sound
wavelengths are significantly smaller than the size of obstacles found in their
path. Thus, they are valid only for high-frequency sounds. This means some
sound propagation phenomena in low frequencies, such as diffraction, are
not considered under these approximations.

Regarding the boundary conditions, at first sight, these methods as-
sume specular reflections, since the angle of reflection is the same as the
angle of arrival. It could also include the absorption issue in a frequency-
dependent manner according to the impedance/absorbing factor of the wall
(see Sec. 2.4.1.1) and also including sound propagation absorption.
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A considerable disadvantage of these methods lies in the inability to
include phenomena such as interference, diffusion and diffraction, since they
are phenomena which appear when wavelengths are similar to the size of
obstacles. However, some advances have appeared to include these effects
and produce highly realistic results.

Two main algorithms have emerged from the geometrical method’s as-
sumptions: the ray-tracing and the image-source method. From this mo-
ment on, many variations of these methods have emerged in order to improve
their computational cost, flexibility or to include some of the sound propa-
gation characteristic properties, such as diffraction and diffusion [Cox et al.,
2006]. Although being far from the scope of this thesis, it is worth mention
that recently a unified integral equation generalizing those methods in an
unique formulation has been proposed [Siltanen et al., 2007]. In the next
subsections, these algorithms are overviewed.

3.2.1 Ray-tracing method

The ray-tracing method is a general technique from geometrical optics of
modeling the path taken by a wave by following rays as they interact with
surfaces. This method arises from optical physics |Lipson et al., 1995,
with important applications in the computer graphics field [Whitted, 1980,
Glassner, 1989] and communications [McJown and Hamilton, 1991, Catedra
et al., 1998, Coleman, 1998, Ji et al., 2001].

The first attempt to use the ray-tracing technique for room acoustic
simulation was applied by Krokstad et al [Krokstad et al., 1968|. They
propose finding propagation paths between a source and a receiver by gen-
erating rays emanating from the source position and following them through
the environment until a set of rays has been found that reach the receiver.
As mentioned above, the initial tendency of this algorithm is to consider
only specular reflections, where in each incidence, the incident ray is fil-
tered with its absorbing coefficient (non-frequency or frequency dependent),
and reflected with the same angle of incidence [Kulowski, 1985]. Thus, it
could be considered that ray-tracing allows simulation of locally reacting
impedances (see Sec. 2.4.1.3). However, several improvements of the al-
gorithm have included diffusive surfaces [Lam, 1996, Embrechts, 2000] and
edge diffraction [Svensson et al., 1999|. Ray-tracing applies the Monte Carlo
simulation technique to sample these reflection paths and thus it gives a sta-
tistical result [Halton, 1970]. By this technique higher order reflections can
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be searched for, though there are no guarantees that all the paths will be
found.

Regarding the sources, in principle, the way sound rays are emitted
can be either randomized or predefined as a function of the directional
characteristics of the sound source [Savioja, 1999]. Therefore, it must be
ensured that the generation is almost uniform on the surface of a spherical
source [Farina, 1995|. The simple assumption of three random generators
for the three components of the vector direction of the ray is not completely
correct, as that produces a “cube of rays” instead of a sphere. It is possible
to cut away the corners of the cube, discarding each vector with a modulus
greater than one [Farina, 1995]. If each ray is weighted by an angle depen-
dent function, it is possible to include directivity properties to the source
with no increase of computational cost.

The listener positions cannot be considered as a point, since an infinitely
small point cannot detect an infinite small ray. For this reason, the receiver
should have a finite size. The listeners are typically modelled as spheres or
cubes, but the listeners may also be planar. In theory, a listener can be
of any shape as long as there are enough rays to penetrate the listener to
achieve statistically valid results. In practice, a sphere is in most cases the
best choice, as it provides an omnidirectional sensitivity pattern and it is
easy to implement.

Some examples of its application and comparison with measurements
can be found in [Hodgson, 1989, Tsingos et al., 2002]. A software example
of the use of the ray-tracing method is CATT-Acoustic .

3.2.2 Image-source method

From a computational point of view the image source method is also a ray-
based method. The concept of image sources has been applied to various
field problems such as electromagnetic wave propagation |Balanis, 1997]. In
acoustics, the first contribution on the room acoustic field was presented
by Allen and Berkley [Allen and Berkley, 1979] and extended to arbitrary
polyhedra by Borish [Borish, 1984].

The concept is based on the principle that a specular reflection can
be represented as a sound source located outside the physical boundary,
radiating in free space. It computes specular reflections paths by considering

YURL: http://www.catt.se.
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virtual sources generated by mirroring the location of the audio source, over
each boundary surface of the environment.

The primary advantage of image source method is their robustness.
They guarantee that all specular paths up to a given order of reverberation
time are found. Also the listener can be modeled as a point instead of a
volumetric object. Thus, the results are more accurate if the order of the
reflections is high enough.

However, image source methods model only specular reflection, and
their expected computational complexity grows exponentially. Thus, it is
an important matter to try to reduce this complexity i.e., checking visibil-
ity. The visible surfaces to each image source can be calculated by beam
tracing [Funkhouser et al., 1998|. Each beam is a pyramidal frustum, whose
tip is the image source and whose top is the reflecting surface. Only the
surfaces inside these volumes, which are faced toward the image source,
must be taken account. For this reason image source models are usually
only used for simple rectangular rooms or in such cases where low order
reflections are sufficient [Rindel, 1995].

This method has been implemented in commercial softwares such as
CARA (Computer Aided Room Acoustics) 2.

3.2.3 Hybrid and alternative geometrical methods

A possible improvement of those models is to create hybrid models, in which
ray tracing and the image source method are applied together. Typically,
early reflections are calculated with image sources due to their accuracy in
finding reflections paths, and later reflections are handled with ray tracing.
An example of this method is the ODEON software [Naylor, 1993] 3, initially
developed in the Technical University of Denmark.

Due to the highly elevated computational cost and other implementa-
tion problems of these geometrical methods, an increasing number of al-
ternative methods has appeared during last few years, being more or less
inspired by the previous ones. However, it should be mentioned all of them
share the same problematic regarding to the low frequencies approaches
as in ray tracing and image-source methods. Some of the most important
methods are commented in this section.

2URL: http://www.cara.de.
3URL: http://www.odeon.dk
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An alternative method is the beam tracing method [Funkhouser et al.,
2004]. It arises as an improvement to the ray tracing, since rays have no
thickness, and it uses beams. Beams are shaped like unbounded pyramids
and each beam represents an infinite number of potential ray paths emanat-
ing from the source location. It does not suffer from the sampling artifacts of
ray tracing [Lehnert, 1993], nor the overlap problems of cone tracing [Vian
and van Maercke, 1986|. Another alternative is the pyramid tracing, suited
to room acoustics and outdoor calculations [Farina, 1995|. The main advan-
tage of Pyramid Tracing over other diverging beam tracers is the fact that
pyramids perfectly cover the surface of a spherical source, while cones cause
overlapping or uncovered zones. This method has been produced the first
publicly available software for acoustical simulations based on this method,
RAMSETE 4

Another method is the acoustic radiosity [Dalenbédck, 1996, Hodgson
and Nosal, 1996, Nosal et al., 2004|, that is able to handle surfaces with
mixed specular and diffuse reflection properties in a very general way, based
on approximate cone tracing. The specular reflections are implemented in
the ray tracing manner, and each ray striking a diffusing surface should
ideally create a new source that spawns a set of secondary rays, each of
which continues as any other ray but from a new origin. The process should
then be continued until the echogram is saturated.

Finally, acoustic sonel mapping [Kapralos, 2006| is an application of the
photon mapping algorithm used in computer graphics for room acoustic sim-
ulation. Acoustic sonel mapping is a two-pass particle-based, probabilistic
global method developed in order to determine the sound field at any point
in a scenario. In the first pass, “sonel” (the analogue to photons, the basic
quantity of light, when considering the visual photon mapping method) are
emitted from each sound source and traced through the scene until they
interact with a surface. When sonel encounter a diffuse surface, they are
stored in a structure called a sonel map. In the second stage, the scene is
rendered using the information provided by the previously collected sonel
map to provide a quick estimate of the diffuse reflected sound field. A distri-
bution of ray tracing is employed to model specular effects. Sonel mapping
is independent of the scene geometry, thereby allowing for the sound field
simulation of arbitrary complex scenes to be computed. In addition, it can
handle complex interactions between sound and a surface, including pure

4URL: http://www.ramsete.com.
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specular, pure diffuse and glossy reflections and any combination of them.

3.3 Wave methods in the frequency domain

In this section two of the most important wave-based methods in the fre-
quency domain are presented: Finite Element Method (FEM) and Boundary
Element Method (BEM). These methods have been widely used in disci-
plines such as structural mechanics [Courant, 1943, Dominguez, 1993| and
electromagnetism [Jin, 2002, Chen and Zhou, 1992]. In the acoustic liter-
ature, their application has an innumerate number of applications whose
main scope is the analysis of the resonance of acoustic systems [Thlenburg,
1998, Wrobel and Aliabadi, 2002|. This discretization is defined for discrete
frequencies, giving as a result a steady-state sound pressure distribution.

Due to the discrete frequency-based nature of these algorithm, they are
not usually used for room acoustic simulation, but they are very useful and
accurate for eigenvalue analysis of the enclosures. Moreover, the use of FEM
or BEM in room acoustical problems is (at least for the majority of rooms
larger than e.g. vehicle enclosures) up until now limited to a frequency
range that is considerably smaller than the range of commonly used room
acoustical analyzes up to high frequencies. The limiting factor for these
methods is the required discretization of the volume or surface in elements
of a size small enough to reconstruct the wave in magnitude and phase at
every point of the discretization domain.

Despite of these limitations, there exist a few applications of these
methods in room acoustics which makes it worthy to review them in most
parts of the literature related. From a general point of view, regarding the
boundary conditions and source modeling, wall absorption is not a sim-
ple task [Wright, 1995], but an unsolved problem is the use of directive
sources [Svensson, 2004]. In the next sections, both methods are presented
in some detail.

3.3.1 Finite Element Method

FEM is primarily used when only the interior acoustic field of an enclosure
is to be computed. The main advantage of this method lies in the ease of
handling problems involving complex geometries and inhomogeneous media.
The systematic generality of the method makes it possible to build general
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purpose computer programs. The method consists of discretizing the space
under analysis by using a set of basis functions. These basis usually conform
a tessellation of the whole space. This representation by elements creates
matrices that are large but sparsely filled. Each of these elements only
interacts with the elements directly adjacent to it.

The finite element analysis of any problem involves four basic steps:

discretizing the solution region into a finite number of subregions or
elements.

deriving governing equations for a typical element.

assembling of all elements in the solution region, and

solving the system of equations obtained.

Although there exists a very high number of FEM applications in acous-
tics, the choice of this method for room acoustic simulation could give a set
of important handicaps. The main handicap lies on the frequency domain:
it requires a simulation for each frequency and since the room acoustic
properties are usually not constant with the frequency, it will considerably
increase the computational effort. But this is not only limitation of this
method: it requires a very small element size for accurately model in the
entire frequency bandwidth. Six or seven elements per wavelenght are re-
quired as sufficient sampling rate [van der Geest and McChulloch, 1998,
Murphy, 2000]. In an example reported by Murphy |[Murphy, 2000], if an
element is 0.5 m long, with ¢ =343ms™!, the maximum frequency that can
be calculated with any reasonable accuracy is approximately 114 Hz. In a 3-
D simulation, doubling the frequency the number of elements are multiplied
by eight (more details will be given at Sec. 4.6).

Despite of these limitations, in the room acoustics field, some analysis
of rectangular rooms through FEM have been provided by Wright [Wright,
1995] and Savioja et al. [Savioja et al., 1996a]. On the other hand, more
realistic rooms have recently been analyzed giving a fair agreement among
simulation and measurements in small [Pietrzyk and Kleiner, 1997]| and
large [Ahnert et al., 2006] rooms.
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3.3.2 Boundary Element Method

Since FEM is fairly a very computational expensive method, BEM arises
as an alternative method which considerably reduces the computational
cost, since only boundaries are discretized. BEM attempts to use the given
boundary conditions to fit boundary values into the integral equation, rather
than values throughout the space defined by a partial differential equation.
Once this is done, in the post-processing stage, the integral equation can
then be used again to calculate numerically the solution directly at any
desired point in the interior of the solution domain. It allows a simple and
accurate modeling of problems involving infinite and semi-infinite domains.
The matrix implementation of the method gives a full matrix, i.e. every
element of the matrix is non-zero [Kirkup, 1998|.

As well as FEM, a few examples of its applications to room acoustic
simulations can be found. Those examples are found in [Bai, 1992| and
[Osa et al., 2006], where the latter analyzes large hall effects through this
method.

3.4 Wave methods in the time domain

So far, several methods have been reviewed in this chapter: geometrical
methods provide simple algorithms but their assumptions are valid only for
high frequencies, whereas frequency-domain wave-based methods analyze
the steady-state of a room and since they are using the wave equations as a
starting point, they provide a high accuracy in their results. Then, it should
be desirable for room acoustics simulation to use methods as accurate as
frequency-domain wave-based methods but allowing transitory analysis; on
the other hand, flexibility and more simple conceptually such as geometrical
methods, but with a higher accuracy at low frequencies, is a main aim for
room acoustic simulations.

The wave-based in the time domain, or discrete-time methods arise as
suitable alternative methods, since they are based into discretize the wave
equation providing a considerable accuracy, especially at low frequencies;
furthermore, geometries are more simple to define than FEM or BEM, since
a constantly regular polyhedron (in a 3D simulation) can be used during
grid definition (see Appendix B).
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These methods share a common definition: they discretize the sound
propagation mathematical expressions not only in space, but also in time %,
giving a recursive algebraic expression which is updated in each time step
for every discretized point. Since the first works in the room acoustic field
of Botteldooren [Botteldooren, 1995] and Savioja [Savioja et al., 1994] in
the middle of the nineties, an increasing number of publications and works
related in this topic have arisen, where the finite-difference time-domain
method (FDTD) and Digital Waveguide Mesh (DWM) are the most repre-

sentative ones.

As mentioned in Chap. 1, this thesis is focused on analyzing and con-
tributing to these methods, and is particularly centered on the FDTD and
DWM methods. In this section, neither technical nor mathematical foun-
dations are presented (they will be introduced along next chapters), but
a summarized state of the art about the use of the discrete-time methods
for room acoustic simulation is introduced. Furthermore, some alternative
methods are briefly introduced in Sec. 3.4.2.

3.4.1 Suitability of the discrete-time methods for room acoustic sim-
ulation: a survey

The Finite-Difference Time-Domain (FDTD) is one of the most popular
and used methods to solve Maxwell’s electromagnetic equation. It was pro-
posed by Yee in 1966 [Yee, 1966] and the method consists of a staggered
distribution of the discretized electric and magnetic variables. After that,
a very prolific bibliography has appeared on electromagnetism [Taflove,
1988, Kunz and Luebbers, 1993, Taflove, 1995, 1998|. Since the FDTD
method can be classed as a special case of the finite difference method,
a standard method for solving PDEs [Strikwerda, 1989|, the method has
been adapted to solve other wave propagation problems, such as acous-
tic/aeroacoustic [Wang, 1996, Nguyen, 1996, Botteldooren, 1997, Ostashev
et al., 2005, Liu and Albert, 2006| and seismology [Graves, 1996, Kristek
and Moczo, 2006, Gandomi and Takenaka, 2007].

The first attempt to use the FDTD method on room acoustics was
done by Botteldooren [Botteldooren, 1995|. He proposed an approach of
the FDTD over the Euler and conservation of mass equation (Eq. 2.30-
2.31), where the pressure and the particle velocity components are updated

5This is the reason for calling these algorithms discrete-time methods.
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in a similar fashion to the electromagnetic approach (more details will be
seen in Sec. 4.2). At this time, Maloney and Cummings [Maloney and
Cummings, 1995] demonstrated how the properties of the acoustic field
simulated through the FDTD method in a cartesian grid are very similar to
the electromagnetic field approach, sharing the same stability and dispersion
characteristics. These approaches have considered a cartesian discretization.
During following years, a few attempts of using Botteldooren’s approach in
the room acoustic simulation field, where the use of a quasi-cartesian grid,
based on Voronoi cells [Botteldooren, 1994| and an analysis of the influence
of the seat dips in the total sound fields [Lovetri et al., 1996] stand out.

In a deep review of the room acoustic simulation topic, it is easy to
note how this approach is not very popular, although some examples of
room sound field simulation are found in [Yokota et al., 2002, Sakamoto
et al., 2002, 2005]. The main handicap of this approach lies in the com-
putational cost, since the particle velocity is not usually computed as a
result, but is also used as intermediate step in the final calculation of the
pressure, which is the common variable determined as an output of the sim-
ulations. For that reason, it should be desirable to calculate directly the
pressure distribution without store the particle velocity components, saving
a considerable amount of computer memory.

At this point, a set of papers appeared, lead by Savioja, improving
and adapting the suitability of the method to the room acoustic simula-
tion, where the wave equation (Eq. 2.32) is directly approached through
the FDTD instead of the Euler and conservation of mass equation [Savioja
et al., 1994, 1996b]. With this approach, the pressure at each node is up-
dated through the surrounding and previous nodes, and the massive storage
of the particle velocities is avoided. In those works, the suitability of this
method for room acoustics is demonstrated; however, the computational
cost is still high to compute the total sound field of a moderate size room
with the total bandwidth of the human hearing. For that reason, the limi-
tation of this method is assumed for low frequencies [Savioja et al., 1994].
However, the constant growth of the computer power will allow us to apply
these methods for room acoustic simulation in a near future.

A constant aspect in the room acoustic simulation through discrete-time
modeling is the parallel growth with the digital sound synthesis through
physical modeling topic [Valiméaki et al., 2006] since van Duyne and Smith
proposed the Digital Waveguide Mesh (DWM) [Duyne and Smith, 1993,
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1995]. Many of the advances on this topic have been inherited as an exten-
sion of the membranes and plate, being a 2D problem, to enclosures as a 3D
problem [Savioja et al., 1995]. The DWM could also be seen as a particular
class of finite difference method [Savioja et al., 1999|, with the particu-
larity that it uses a decomposition of the sound pressure waves based on
incoming and outgoing components [Duyne and Smith, 1993] (mathemati-
cal details are shown in Sec. 4.3 ). This method has a similar formulation to
the Transmission Line Matrix (TLM) method [Christopoulos, 1995, Elmasri
et al., 1998|, although finally it was demonstrated the equivalence between
both methods [Johns, 1987, Krumpholz et al., 1995, Bilbao, 2001] ©.

In room acoustic, the DWM method has taken an important advantage
over the FDTD method, not only over the method itself, but also as the
method denomination. Since Karjalainen and Erkut demonstrated their
equivalence |[Erkut and Karjalainen, 2002a, Karjalainen and Erkut, 2004],
both methods have been denominated as Digital Waveguide Mesh, although
their origins are different [de Poli and Rocchesso, 1998|. However, they
are differentiate by the term Wave-DWM (W-DWM in the sequel) for the
method proposed by van Duyne and Smith [Duyne and Smith, 1993] and
Kirchhoff-DWM (K-DWM in the sequel) for Savioja’s approach [Savioja
et al., 1994]. During the last few years, these denominations could be very
confusing since the terms FDTD (Savioja’s approach) and K-DWM have
been considered as equivalent, and also DWM and W-DWM; however these
terms are alternated according to each one of the authors. In Chap. 4,
all these methods are developed and explained with more detail, justifying
when each terminology is used. In the following, and unless the contrary
would be indicated, it will be only FDTD will be used for Botteldooren’s
approach; and the DWM acronym will be specified if it corresponds with
the K- or W- approach.

There have been two main research lines in this topic: to correct the
inherent dispersion of the mesh and the boundary conditions implementa-
tion. In the following, both research line advances so far, are summarized,
giving more mathematical details in Chap. 4.

o Mesh dispersion correction: As will be shown in Sec. 4.2.1, all the

5Despite this equivalence, some authors such as Miklavcic and Ericsson have published
a paper on this topic using this acronym Miklavcic and Ericsson [2004]. However, this
work should be emphasized since they show some first examples of 3-D room acoustic
simulation.
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frequencies do not travel with the same speed of sound, having a di-
rectional dependence as well. Although the FDTD and DWM were
initially developed in a cartesian grid, it has been demonstrated how,
due to their dispersion characteristics (both share same dispersion
due their equivalence [Erkut and Karjalainen, 2002a]), they are not
the most efficient [Campos and Howard, 2005] nor most accurate im-
plementation of those methods [Murphy, 2000]; although it should be
noted how the cartesian implementation is more conceptually simple
and the geometries are easier to implement.

One of the most important contributions to this topic has been to
propose alternative topologies to the cartesian mesh in discrete-time
methods, where the triangular one for 2D problems [Fontana and Roc-
chesso, 1998| and the tethraedrical mesh for 3D problems [Duyne
and Smith, 1995] are the most used. They are more efficient since
they reduce the oversampling factor used for a giving an accuracy
level [Fontana and Rocchesso, 2001].

Another option is to use a pre/post processing in the algorithm, which
is able to compensate for the modifications in the speed of sound due
to the grid. This process could be on-line [Fontana and Rocchesso,
2000] (being highly computationally expensive) or off-line. Since the
use of the discrete-time methods are far from being implemented in
real-time, the off-line processing is not a serious handicap for real im-
plementations. The most important contributions to the off-line meth-
ods were done by Savioja and Vialiméaki when they proposed the use
of warping techniques in interpolated meshes [Savioja and Valiméki,
1997, 1999, 2000, 2001, 2003]. These methods consist of the use of an
interpolated mesh removing (mostly) the angular dependence of the
dispersion. This interpolation is done by taking into account not only
pressure values on the cartesian directions, but also weighted values of
the ones situated in diagonal directions. After that, a pre-processing
based on the use of a warping filter modifies the frequency axis in a
non-uniform scaling factor, which is used in this application in order
to match the different resulting frequencies with the expected ones.
A similar method applied to the Botteldooren’s FDTD can be found
in [Wagner and Schneider, 2005].

Boundary conditions: As has been mentioned in Sec. 2.4.1, bound-
ary conditions are the mathematical representation of the walls and



56

Room Acoustics Simulation Techniques

objects which interfere with the sound propagation and they are a
deciding factor in the total pressure distribution in the enclosure. In
this topic, two have been the research directions about boundary con-
ditions:

1. Absorbing boundary conditions: once a FDTD grid is specified,
the untreated boundaries act as hard walls (total reflection). In
many acoustic simulations this is a serious handicap, since an in-
finite space is desired, e.g. scattered sound field analysis. Then,
it is absolutely necessary to avoid this truncation in the anal-
ysis space through the so-called absorbing boundary conditions
(ABC). The scope of these boundary conditions is to absorb all
the waves arriving at the mesh boundaries and it is also desirable
that they absorb waves completely independently of the arrival
direction and frequency content.

To find a suitable ABC is not direct or simple. Many approaches
have been proposed but a definitive solution has not been achieve
yet. Most of these solutions have been developed to the Bot-
teldooren’s FDTD approach and are mostly an adaptation of
the electromagnetic FDTD approach [Mur, 1981, Higdon, 1986,
1987, Bayliss and Turkel, 1980, Bayliss et al., 1982|, but the per-
fect matched layer (PML) [Berenger, 1994| has been the most
popular and effective method for this purpose. In acoustics, this
method has also been adapted through an extensive number of
publications [Yuan et al., 1997, Liu and Tao, 1997, Katsibas and
Antonopoulos, 2004, 2007]. Since the PML method uses pres-
sure and particle velocity variables and requires large boundary
layers around the simulation area, it has not been used in the
DWM method. For the DWM case, few attempts have been
made [Murphy and Mullen, 2002, Kelloniemi et al., 2005, Kel-
loniemi, 2005b|, but the results are quite far from the PML
method results in the FDTD method. However, it should be
noted how, in room acoustic simulation, it is not common prac-
tice to include these absorbing boundary conditions, except for
accurate simulations where open windows or doors could exist.

2. Frequency dependent and non-dependent boundary conditions: In
the particular case of the room acoustic simulation, the enclo-
sure is (mostly) surrounded by walls and objects with a partic-
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ular impedance, which after each reflection on them, the total
sound field is modified. According to Sec. 2.4.1, specular and
diffuse reflections with different proportions appear each time a
wave strikes over a surface. To simulate both kind of reflections
through the FDTD or DWM method is not directly solved either.

Regarding the diffuse reflections, several approaches have appear
for the FDTD method |Lee and Smith, 2005, Redondo et al.,
2007] and for the DWM method [Shelley and Murphy, 2005a,b,
2008]. This last contribution, made by Shelley and Murphy, gives
accurate results for a given statistical distribution of the diffuse
wall properties [Murphy et al., 2008b].

Unfortunately, the number of contributions for simulating spec-
ular reflections with some level of accuracy are lower. Under a
LRI assumption, it is an unsolved problem for the FDTD and
DWM method. Since this problem is one of the key points of
this thesis, a deeper review of this topic will be carried out in
Sec. 5.2.1.

Of course, these are not the only research lines on room acoustic sim-
ulation through discrete-time models, since many unsolved problems still
exists: conformal methods for adapting geometries [Schneider et al., 1998b],
impulse response recording for multichannel audio reproduction [Escolano
et al., 2004, Southern and Murphy, 2007, 2008| . ... Another important un-
solved problem is to simulate directive sources, but the appropriate review
is made in Chap. 6, since this is another key point of this thesis.

3.4.2 Alternative methods in discrete-time modeling

After carefully reading Sec. 3.4.1, one might think FDTD and DWM are
the only discrete-time methods. But this is not true, since there exist some
interesting and suitable methods for room acoustic simulation with very
promising results. Some of them are detailed in the following.

e The Functional Transformation Method (FTM) |[Trautmann and Raben-
stein, 2003] has been developed for performing real-time sound syn-
thesis of string instruments. An extension to solve room acoustic
simulation problems has been proposed too [Petrausch et al., 2005b,
Petrausch and Rabenstein, 2006]. Based on multidimensional systems
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theory, the FTM applies functional transformations in the time and
space domain. This method can be summarized as follows:

— Apply the Laplace transformation to wave equation with respect
to time. This removes the time derivatives and turns the inhomo-
geneous boundary-value problem into a boundary value problem
for the space variable.

— Construct a suitable transformation for the space variable which
removes the spatial derivatives and turns the boundary value
problem into an algebraic equation. In this case, this is done
through the use of a Sturm-Liouville transformation.

— To obtain a multidimensional transfer function, solve the alge-
braic equation for the transform of the solution of the partial
differential equation.

From this multidimensional transfer function a discrete model in the
form of a multidimensional difference equation can be derived which
is suitable for computer implementation.

The main advantage of this method lies in its total lack of dispersion
effects; unfortunately, the analytical solution of the Sturm-Liouville
problem can be only find for simple geometries like rectangles or cir-
cles. This fact can limit its use for room acoustic. This problem
can be solved using block-based models, which are a methodology for
model complex physical models based into the interaction of several
subsystems. This can be implemented interacting simple geometrical
blocks implemented by pure FTM blocks [Petrausch and Rabenstein,
2005b] or different paradigms [Petrausch and Rabenstein, 2007|, and
create complex structures.

Wave Digital Filters (WDF) is a particular kind of digital filter based
on physical modeling principles [Fettweis, 1986]. It uses the bilinear
transform to discretize the PDE of lumped elements such as resistors,
capacitors and inductors (a deeper review of the mathematics behind
WDFs is presented in Sec. 4.7). A WDF representation of a complete
system is constructed by interconnecting simple discrete-time models
of individual lumped components.

It is possible to use WDFs to integrate a PDE [Fettweis and Nitsche,
1991, Bilbao, 2004|, and then it is possible to use this method in
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wave propagation simulation [Krauss and Rabenstein, 1995, Krauss
et al., 1996, Schetelig and Rabenstein, 1998, Rabenstein and Schetelig,
1998]. In spite of their advantages, WDF have few known imple-
mentations in room acoustics, where the work of Kuntz and Raben-
stein stands out [Kuntz and Rabenstein, 2006, 2008|, who have imple-
mented a room acoustic simulator based on a space-state representa-
tion of the WDF |Zayati, 1998, Zayati and Rabenstein, 2000].

o Upwind Leapfrog Schemes (ULS): This method is an alternative to the
FDTD method used in order to reduce the inherent dispersion forc-
ing to increase the computational cost to compute it. The Upwind
Leapfrog Scheme or Linear Bicharacteristic Scheme [Thomas, 1996]
is an economical alternative for the classical FDTD leapfrog scheme.
The Upwind Leapfrog Scheme is a well-known scheme for unsteady
aeroacoustic and electromagnetism applications, although in acous-
tics simulations it has not been frequently used. It has a more com-
pact stencil compared with the classical leapfrog scheme. Clustering
the stencil around the preferred directions (characteristics), it enables
high accuracy with a low order of operations.

Although it has not been used in room acoustics, recently it has been
proposed for Digital Sound Synthesis of string [Escolano and Lopez,
2006a] and membranes instruments [Escolano and Lopez, 2006b|. It is
the personal opinion of the author that this method could be a good
candidate for room acoustic simulation.

3.5 Discussion

In this chapter, an overview of the modeling techniques for room acoustic
simulation has been presented. Since solving directly the particular inhomo-
geneous boundary value problem which represent the room under analysis
is an extremely complex task, simplified models should be used to obtain
approximated but accurate solutions.

In general, these methods are classified as geometrical and wave meth-
ods. Geometrical methods assume a sound propagation characteristics such
as a ray and reflections completely specular; under these considerations, the
geometrical methods work accurately for high frequencies, since many low
frequency phenomena cannot be simulated, such as diffraction, occlusions
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and wave superpositions.

Wave methods solve numerically the wave equations, giving more ac-
curate results than geometrical methods since the wave equations model all
sound propagation phenomena, except air absorption. These methods are
classified in two large groups according to the work domain: frequency and
time-based. Wave methods in the frequency domain are suitable for room
acoustic analysis, for a given frequency. This means they are suitable for
steady-state simulations; but in cases where impulsive analysis is required,
a simulation could be obtained frequency by frequency, increasing the com-
putational cost severely, and finally the inverse Fourier transform might be
used.

An alternative is the use of wave-based methods in the time domain or
discrete-time methods: they are based on approaching the wave propaga-
tion through time and space discretization, creating a recursive algorithm
which provides an acoustic variables distribution in all discretized space po-
sitions in every discrete time step. With these methods, impulsive analysis
are obtained with an unique recursive algorithm, simplifying considerably
the computational cost. The most popular discrete-time methods for room
acoustic simulation are the finite-difference time-domain (FDTD) method
and the Digital Waveguide Mesh (DWM) method. A survey of the suitabil-
ity of discrete-time methods has shown how interesting results and advances
are being carried out using these methods.
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AN INHOMOGENEOUS BOUNDARY VALUE PROBLEM allows us to mathe-
matically describe the sound field in a room (see Chap. 2). If the partial
differential equation that models the sound propagation is solved under
specific conditions, an analytical solution of the entire sound field would be
obtained. However, this can only be done in a few highly idealized cases,
with reasonably moderate effort. The rooms which can be found in daily
life are more or less irregular in shape, not only because of the walls, but
also of furniture, columns, balconies and other wall irregularities. There-
fore, alternative methods to the analytical solution have been developed to
approach the solution.

As has been mentioned in Chap. 3, among the different proposed meth-
ods, the wave-based methods [Savioja, 1999| provide the most accurate
solutions since they solve the wave equation numerically. Due to reasons
explained in Sec. 3.4, time (or discrete-time) domain methods are most
suitable for room acoustic simulation, since they allow broadband and im-
pulsive signal analysis with just one simulation and involving a reasonable
computational cost.
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4.1 Introduction

In this chapter, a review of these discrete-time methods used in room acous-
tic simulation is presented. Since this thesis is focused on some of them,
it pays special attention to the Finite-Difference Time-Domain (FDTD)
method and the Digital Waveguide Mesh (DWM), and a detailed overview
of the mathematics lying behind these methods is presented.

It will be seen how from the basis of the sound propagation model ana-
lyzed in Chap. 2, it is possible to develop some algorithms able to simulate
sound wave propagation in a particular scenario. It will also be shown how
accurate the proposed methods are, since they consist of a numerical ap-
proach to the wave equation and no assumptions about wave behavior are
made, as is the case of geometrical methods. Limitations of these methods
are also presented, paying some attention to computational cost and the
dispersion effects.

Furthermore, similarities and differences between the FDTD and the
DWM methods are analyzed through the next pages, arriving at a hybrid
method, which is one of the most used solutions for sound wave propagation
simulation in room acoustics through wave-based methods.

This chapter is structured as follows: the first section deals with the
Finite-Difference Time-Domain method. Next, mathematical concepts un-
derlying the Digital Waveguide Mesh method are reviewed. After that,
Sec. 4.4 demonstrates equivalence of these two methods in homogenous and
inhomogeneous media; the differences between both models are also pre-
sented, arriving at hybrid models (Sec. 4.5). The next section shows how
these methods are able to simulate low frequency properties of sound waves
in the presence of obstacles, without any special modification of the algo-
rithms. In Sec. 4.7, some basic aspects of the Wave Digital Filters (WDF)
are introduced which, although they are not used as a sound simulation
method itself in this thesis, they would play a basic role in Chap. 5. Fi-
nally, the chapter is summarized.
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4.2 The Finite-Difference Time-Domain (FDTD)
method

The finite difference method is based upon an approximation of the defini-
tion of a mathematical derivative. For a given continuous function f(x), its
derivative is defined as

df(x) _ . ot Az) — f(x) (4.1)

dr  Armo (r+Az) —x

Y

T Az

Figure 4.1. The definition of the derivative, df (x)/dx, of the
function f(x)

Equation 4.1 becomes exact when Az tends to zero. However, in finite
calculations, the increment Az cannot tend to zero and an approximation
should be done. Then, the next equality is assumed

df(x) _ flz+ Az) - f(z)
i A +e(Ax), (4.2)

where ¢(Ax) is a shorthand notation for the reminder term, which tends to
zero as the increment.

The particular approach of Eq. 4.2 is known as forward difference for-
mula |Jordan, 1950]. Also, there exist other finite difference approaches,
such as backward difference formula (Eq. 4.3) and central difference for-
mula (Eq. 4.4)
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df(z) _ flz) = f(z - Ax)

prai Ay +e(Ax), (4.3)
df(z)  flz+ Ax) — f(z — Azx)
I = SAx + e(Ax?). (4.4)

It has to be noted how the central approach of the derivatives has an
error term e(Ax?) which tends to zero faster than the forward and backward
approach; then, the approach of Eq. 4.4 is more accurate than the others.

By applying the central difference approach twice, it is possible to arrive
at the central difference approach of the second derivative

2 T T xTr) — T Tr — AT
de;(Q) :f( +A ) 2£;2)+f( A )—i-E(AwQ). (4_5)

The finite difference method consists on substituting the derivative of
continuous differential equations by the finite difference approaches without
the error term e.

In the case of PDEs, the partial derivatives follow the same scheme for
the multidimensional functions. Let us consider the function f(z,t), the
first and second derivative for each one of their variables are

of(x,t)  _ flz+Az,t) - flz — Az,t) (4.6)
Ox - 2Ax ’ '
of (x,t) flz, t+ At) — f(z,t — At)

o 2At ’ (47)
FPflx,t) fle+Axt) = 2f(x,t) + f(z — Az, 1) (48)
Ox? - Az? ’ '
Pfx,t) flo,t+At) —2f(x,t) + f(x,t — At) (4.9)
ot? B At? ' '

Based on the introduced finite differences approach, the standard FDTD
is defined as a second order central finite difference approximation to the
derivatives involved in the wave equations. The sound field variables, pres-
sure and particle velocity components, are staggered, following the electro-
magnetic case in the so-called Yee’s cell [Taflove, 1995]. In the acoustic
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case, the pressure is situated in the center and each one of the particle ve-

locity components is situated in the external face of the cell, according to
Fig. 4.2.

a: p(7,n)
y b: u, (FHAAE,n+%)
----- ZF c: u, (FAAT,nt5)
T L d: u, (F+BAZn+%)
=L e
_____ i Y
B R pm—
: ' y

Figure 4.2. Yee’s cell for the acoustic FDTD algorithm.

In the original algorithm [Botteldooren, 1995|, the Euler (Eq. 2.31) and
conservation of mass equation (Eq. 2.30) are the equations used. Now,
applying the above ideas, the finite difference approach of the linearized
homogeneous Euler equation (Eq. 2.31) is

Up(T-LAX, n+1) — uy (F-LAX, n-1)

po A = EpFmA%n) (4 10)
FIAY nad) —uy (Fo1AF. n_1 SN s Ao

pO'LLy(I' 1 y,n+2)Atuy(r LAY, n-1) _ _pEm pA(y Ag.m) (4.11)
FoIAZ nal) — u(F—LAZ. n_1 . -

ooz Z’m?)AtuZ(r 1A%,n-3) = _pENPEAZN) -y 1)

whereas the linearized homogeneous conservation of the mass equation (Eq. 2.30)
is
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p(f‘, n+ 1) — p(fa n) — —p002 u$(f'+%Ai7 n+%) — uﬁ(f‘_%Afg 7’L+%)
At Ax
(B 3AF, n+1) — uy (- JAF, n+1)
—poc
Ay
o uy (F+1AZ, n+§)A— u,(T-1AZ, n+§)’ (4.13)
z

where the notation p(r,t) = p(iAz, jAy, kAz,nAt) = p(¥,n) is used. Fur-
thermore, in the following, the notation Ax = (Az,0,0),Ay = (0,Ay,0)
and Az = (0,0, Az) is used as well.

After some algebraic manipulations of these equations, the acoustic
FDTD method is defined

Uz (F-3AX, nt3) = ug(T-3A%,n-3)
At o
- pOAm(p(r,n)—p(r—Ax,n)% (4.14)
uy(T-3Ay, n+3) = uy(T-3Ay,n-3)
At o
- m(p(r,n)—p(r—Ay,n)), (4.15)
u,(F-3Az,n+3) = u.(f-3AZ n-3)
At o
- pOAZ(p(r,n)—p(r—Az,n)), (4.16)
pEn+1) = pEmn) (4.17)
2At
_ Pozx (ug(T+L1AX, n4+1) — ug (F-1AX, n+3))
2At
Py (F AT ) -y (- AT )
2At
_ POZZ (uz(T+3AZ,n+l) — uy(F-1AZ,n+d)).

These equations are updated in time by using a leap-frog scheme. First,
u’s at time level n+1/2 are computed from p’s at time level n and previous
u’s at time level n—1/2. Then, p’s at time level n+1 are computed from u’s
at time level n + 1/2 and previous p’s at time level n. This process repeats
itself until the temporal simulation is completed. Note that the leapfrog
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Figure 4.3. Particle velocity and pressure propagation of a
gaussian source simulated by the FDTD method.

scheme does not introduce dissipation and is reversible in time because of
its central symmetry in both time and space. It may happen that a scheme
built from symmetric and reversible units may lose any appearance of sym-
metry, but Roe has shown that such a scheme is nevertheless reversible [Roe,
1998]. Figure 4.3 presents a broadband gaussian source propagation which
has been simulated by using the FDTD method and the pressure and the
particle velocity vector are drawn at different times.

When a finite difference scheme is used substituting the derivatives on
an ODE or PDE, it is mandatory to demonstrate its:
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e (Consistency: a finite difference scheme tends to the differential prob-
lem when the increments decrease.

e Convergence: a finite difference approximation converges, when the
increments decrease, to the original differential equation solution.

e Stability: bounded variations in the initial conditions produce boun-
ded variations in the solution.

All these properties can be demonstrated through the LaxU-Richtmyer
equivalence theorem [Strikwerda, 1989]. Although the scope of this the-
sis is not to demonstrate each one of these points for the FDTD method,
some comments about the dispersion and stability are presented in the next
sections since they will be addressed many times in the next chapters.

4.2.1 Grid Dispersion

With any discretized solution to wave type equations, one should be con-
cerned about grid dispersion. Grid dispersion is the fact that waves in a
numerical grid travel at speeds slightly different than in a real space [Mal-
oney and Cummings, 1995|. Furthermore, this grid dispersion tends to be
frequency and angle dependent. Therefore, it is difficult to calibrate for, and
the best strategy is to try to minimize the amount of grid dispersion. To
solve the dispersion relation, a general plane wave propagating throughout
the grid is assumed.

Py Ug, Uy, Uy X el (Wt=hez—kyy—k=2) (4.18)

where k,, k, and k. are the components of the numerical grid wavenumber
k. Using Eq. 4.18 to reduce Eqs. 4.14-4.17 expressions to:
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; At
[1- e_]wm] uy(T-1AX,n+l) = “oohr | 1—e JkIAm} p(t,n),  (4.19)
[1- e_j“’m] uy(T-1Ay,n+l) = — At 1 — =ik Ay} p(t (4.20)
T poAy
—jwAt s _1AG 1 At —jk Az
[1—e Ju(F-1AZ,n+l) = _poAz —e ] p(T (4.21)
WAL . o AL [k, Ax < 1Az
(2 — 1] p(T,n) = —poc Al e/l 2t — 1} Uy (T-1AX, nt1)
x
At 1o
—pQCQ—Ay eIku By _ 1} uy(T-1 Ay, n+l)
JAN A - -
—pOCZ—A elk=z _ 1] uy(T-1AZ, n+l).
z L
(4.22)

Then, substituting Eqgs. 4.19-4.21 into Eq. 4.22 yields after some alge-
braic manipulation

2
. 9 LAY . o [ kzAx
[sm (wAt) <Am> sin (2
(AN L, (R Ay) (et
Ay sin” | —5— X, ) sin

In general, p(¥,n) # 0 and thus

p(r,n) =0. (4.23)

)

At A
sin?(wAt) = <6At> sin? <k$2 m> (4.24)

x
At)? ky A At k. A
(50) e (52« (52) = (%57),
This is the dispersion relation for the discretized solution; it is identical
to the dispersion relation for the FDTD technique applied to Maxwell’s
equation. For a uniform grid (As = Az = Ay = Az), is commonly re-

written in the form
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in2 Eg = ﬂ‘t i in2 7rcosozE + @ 2sir12 T Co ﬁg
S 2)\0 o AS ° )\n AS ° )\n

At A
<CA;> sin? <7T COS’)/)\:) , (4.25)

where )¢ is the wavelength in real space, A, is the numerical wavelength,
and cos «, cos § and cos~y are the direction cosines of the propagating plane
wave.

Dispersion is one of the most important handicaps of the FDTD method
and through the literature, several solutions and /or improvements have been
proposed, such as [Wagner and Schneider, 2005]; however, to deal with this
particularity of the method is out of the scope of this thesis. On the other
hand, a complete framework of this topic can be found in [Tam and Webb,
1992].

A compromise solution for presenting results with a reduced dispersion
is to limit maximum frequency of analysis up to a normalized frequency of
fmax = 0.25fs [Duyne and Smith, 1993]. In the following, results will be
presented using a normalized frequency scale.

4.2.2 Stability

Another important criteria is the stability of the algorithm. The stability
relation is derived in a similar way. Again, a general plane wave propagated
throughout the grid is assumed

D, Uz, Uy, Uy X ge—j(kmm—&—kyy—i-kzz). (4.26)

Substituting Eq. 4.26 in Eqgs. 4.14-4.17, system equation formed by
Eqgs. 4.27-4.30 is obtained
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At T
[1- ¢ u,(F 1A%, ned) = — i | 1— ke Aﬂ p(E,n),  (4.27)
[1- 571} uy(F-1Ay,n+l) = — At — eIk y} p(¥ (4.28)
poAy
-1 = 1A% 1 At e JkzAz
[1— ¢ u(F-1AZ,n+l) = — poAz ]p (4.29)
= 2 At 7 ko Az = =
- 9 = - 0 - T —3 9 b}
[€ — 1] p(F,n) poc” X et 1] u (F-1A%,n+1)
x L ]
At 1o 1
— poc2—Ay [eikuBy _q uy(T-1 Ay, n+1)
At :
— pOCQA— IR A% 1|, (F-LAZ,n+l)
z L ]
(4.30)

Again, substituting Eqs. 4.27-4.29 into Eq. 4.30 yields after some ma-
nipulation

€2 —2464+1=0, (4.31)

where

cAt\? . o [ kzAz
A=1-2 <Ax> sin < 5 >
cAt\? ., ky Ay cAt\? |, (kAz
-2 <Ay> S1n ( B -2 TZ S1n 9 . (432)
The solution of Eq. 4.31 is

E=A+/A2 1. (4.33)

An unstable solution will occur if |§] > 1. This only occurs when
|A| > 1; thus

et > — (4.34)
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However, when |A| <1, then |£| = 1 and the grid is stable; thus

cAt < —— (4.35)

This condition is known as the Courant—Friedrichs—Lewy condition
[Courant et al., 1928], or Courant condition for short, and it determines
the relation between the temporal and spatial increment to assure the sta-
bility of the algorithm. For practical considerations, the condition is fixed
as an equality, and considering homogeneous meshes (Axz = Ay = Az), the
stability condition becomes

Az =V NeAt, (4.36)
where N is the dimension of the mesh.

4.2.3 The FDTD method in a homogeneous medium

Although the FDTD method is considered an efficient method, it is true
that the memory and computational requirements are still high. It must
be considered that for each discretized point (and for each time step) in a
3D simulation, four variables must be stored. In applications such as room
acoustic simulation, the particle velocity is not necessarily computed since
human hearing is only sensitive to pressure changes. This implication helps
to build a more efficient method.

This modification is obtained using the wave equation in an homoge-
neous medium !. As detailed in Sec. 2.3.1, this equation is obtained when
the mass conservation and Euler equations (Eq. 2.30 and 2.31) are combined
in order to give a pressure-dependent equation (Eq. 2.32).

Using a central finite difference scheme for second order derivatives
(Eq. 4.5) and assuming Courant stability condition (Eq. 4.36), Ax = v/3cAt,
the FDTD method is simplified to

'One has to try to not confuse the homogeneous wave equation (no source term is
included) for wave equation in a homogeneous medium (medium properties, i.e., speed
of sound and air density, are constant).
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pEn+l) = %[p(f’ + AR )+ p(F — AZ,n) +p(F+ AF,n)  (4.37)
+ p(t—Ay,n)+p(T+ Az,n) + p(f — Az,n)] — p(¥,n —1).

Savioja et al. proposed this version of the FDTD method, which is more
appropriate for its use in room acoustics simulation [Savioja et al., 1994].
Aspects such as stability and dispersion remain the same as in the original
FDTD method. If particle velocity is necessary, it can be obtained from the
local use of the discretized Euler equation (Eq. 4.14). In this thesis, this
version will be indicated as Savioja’s approch, in order to be differentiated
from the Botteldooren’s approach (see Sec. 4.2).

From the inhomogeneous wave equation (including source term s(r,t)),
the finite difference approach becomes

1
p(F,n+1) = g[p(f‘ + Ax,n) + p(f — Ax,n) + p(f + Ay,n)
+ 3EAs(F,n). (4.38)

4.2.4 The FDTD method in an inhomogeneous medium

In this subsection, the FDTD method is obtained for an inhomogeneous
media, for reasons which will arise in Sec. 4.4. This inhomogeneity in a
medium is related to a variable density as a function of the position.

Let us consider the linearized conservation of mass and Euler equations
with a variable density

vy + po(r)c®V - u(r,t) = 0, (4.39)
po(r) aug;, D 4 p(e,t) = 0. (4.40)

The single partial differential equation for the acoustic part of the pres-
sure results when one takes the time derivative of Eq. 4.39 and inserts it
into the divergence of Eq. 4.40. In this way, the time derivative of the
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particle velocity is expressed in terms of the pressure. The resulting equa-
tion [Bergmann, 1946] is

(1 . 1 O*p(r,t)
V- (™)~ g =0 44D

It should be noted that if the ambient density is independent of posi-
tion, the equation is reduced to the wave equation of linear acoustics. For
the purpose of this thesis, the finite-difference approximation of the spa-
tial derivatives proposed by Boore [Boore, 1972] or by Kelly [Kelly et al.,
1976] is used. However, in order to avoid using long equations, following
mathematical developments are presented for a 2-D mesh

o ™)~ .
1 <p(f' + A)i7 nl) —~p(r, n) _ p(f', TL) — p(lf _~Ai7 n)) ’
Az? po(F+3AX) po(F-3AX)
1

1 (p(f'"i_AS’an) —p(f‘, TL) _p(fvn) _p(f'_A5’7n)>
) po(F-3AY) ’

where

po(f:;Asa) - % ( po(F i AR) T potf)> : (4.43)
po(flé AR % ( Potf) MPYE ! Ai)> , (4.44)
po<f+1;A5r> N % <po(f i Ay) T potf)) : (4.45)
Po(f—léﬁf’) - % (pol(f) MG i Ay)) ' (4.46)

In the same way, the ambient density could be defined at a point T as
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1 1 1 1 1 1
paa“4<paﬁ@Ai>+pai¢Ai>+pMﬁaA9>+paigay0'
(4.47)
In accordance with the finite-differences approach of the spatial deriva-
tives, Eq. 4.42, and the standard time derivative approach used during this
work, the finite-difference approximation of the heterogeneous wave equa-
tion can be written as

po(F+3A%)  po(F-3A%)  po(T+3AY)  po(T-3AY)

. 1 1 1 1
— r,n = — + p —~ + p —~ + p p
p(F,n) <po(r+éAX) po(F-3A%)  po(T+3AY) po(r—éAy))

2 r r T _
~ @t = 2En) +p(Fn—1) =0, (4.48)

where the Courant formula has been assumed following Eq. 4.36.

In accordance with Eq. 4.47, Eq. 4.48 is reduced to the form

p(F + A, n) p(f —Ax,n)  pE+Ay,n)  pE—-Ay,n)
po(F+3AX) po(T-3A%) — po(T+3Ay) — po(F-3AY)
— (pE.n+ 1) +pE.n—1) =0, (4.49)
po(T)

and solving p(T,n + 1), it leads to

(p(;+Ag,n) 4 PE=ARn) | p(E+AFm) p(f—Ay,n))
- _ po(F+3A%) * po(F-3A%)  po(F+345) © po(F—5A7)
p(t,n+1) = T n 1 n T i 1
po(F+3A%) ' po(F-3A%) ' po(F+54¥) ' po(F—35AY)
— p(Tt,n—1). (4.50)

Using the definition of specific acoustic impedance, Z = pgcy,, Eq. 4.50
can be expressed in terms of impedance by multiplying the numerator and
denominator for the speed of sound ¢,:
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(p(f'—l—Ai,n) + p(T—Ax,n) + p(F+Ay,n) + p(f'—ASf,n))

_ Z(FE+1A%) T ZE-1A%) ' Z(F+iAy) | Z(F-1iAy)
p(T,n+1) = T n = n T n =
Z(F+34%) | Z(F-1A%) | Z(F+3Ay) | Z(F-3A9)
— p(T,n—1). (4.51)

It should be noted how for a constant impedance Z(t) = Z, Eq. 4.51
becomes Eq. 4.37, after changing a factor 1/2 for 1/3, in account of the
change from 2-D to 3-D.

4.3 The Digital Waveguide Mesh (DWM) method

The theory of the DWM is based on decomposing the solution to the wave
equation into travelling (or diverging and converging) waves, in a similar
fashion to the d’Alembert solution of the wave equation [Pierce, 1994]. In an
ideal lossless medium, the wave equation can be implemented by means of
pure delays, and the total sound field is obtained by adding these travelling
wave components.

The basis of the DWM arises from the Digital Wave Guide (DWG)
method proposed to solve the 1-D wave equation [Smith, 1992]. In the
simple 1-D case, the d’Alembert solution is

Yz, t) =~ (z —ct) + bt (2 + ct). (4.52)

This can be seen as a decomposition into a direct wave ™, and a reflected
wave ¥, in a medium with the speed of sound c. Each travelling wave can
be simulated by a shift register using pure or fractional delays [Laakso et al.,
1996]. In this way, the digital waveguide model is obtained by sampling both
space and time. Spatial sampling points are known as scattering junctions
in the technical literature [Murphy et al., 2007].

In the multidimensional case, the possible wave directions are an infi-
nite number. In order to simplify the method, the first approach has been
to consider only the characteristic directions, derived from the cartesian
DWM [Duyne and Smith, 1993|. In Fig. 4.4(a), the scattering junction
p(ts,n) of a generic DWM, at a discrete time step n, is illustrated. This
junction is linked by means of bi-directional unit-delays to N neighbouring
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Figure 4.4. (a) Scattering junctions scheme in a digital
waveguide mesh. (b) Implementation of a 2-D Cartesian DWM
with digital signal processing theory.

scattering junctions defined with subindex &, p(Tx,n), where k = 1,..., N
(see Fig. 4.4(a)). The discrete pressure value p(t s, n), is located at the cen-
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tre of the figure, and is surrounded by N neighbouring scattering junctions,
which are represented by p(f.,n) (k =1,...,N). As shown in Fig. 4.4(b),
a generic scheme can be implemented as a cartesian 2-D DWM based on
digital signal processing theory where scattering junctions are joined using
digital delays, represented by z7!.

For a given scattering junction at position rj, let the signal piﬁ(n)
be an incoming signal from the neighbouring junction situated at r, and
pjﬁ(n) be an outgoing component. Note that delay lines p}iﬁ(n) and pjﬁ(n)
join p(fs,n) and p(f.,n) (see Fig. 4.4(a)). As the delay elements are bi-
directional, the pressure is defined as

p(ts,n) = p}“ﬁ(n) +pj,.(n), Ve € [1,N]. (4.53)

In a similar fashion, the particle velocity have an incoming, uj .(n), and
outgoing signal, uy ..(n), decomposition 2. Note that these particle velocity
have a non specified direction; it will depend on the direction given by the
link between the positions r; and ry, these directions are not necessarily
related to the cartesian ones [Duyne and Smith, 1993, 1995].

In a lossless medium, the Kirchhoff laws, or conservation of mass and
momentum (and thus, energy), must hold

1. The sum of incoming particle velocities is equal to the sum of outgoing
particle velocities at each junction (conservation of the mass flow).

2. The pressures in all crossing waveguides are equal at the junction
(equilibrium of pressure).

Furthermore, let us consider only plane waves. According that assump-
tion, let us define the scattering junction port impedance, Z;,, as the spe-
cific impedance that exists in the link between the scattering junction in
positions ¥; and T, defined as

2Qriginal texts about DWM use scalar volume velocity instead of particle velocity
vector. The volume velocity represents the time rate of change of the volume enclosed by
the surface of its outward-normal velocity and that it is related to, i.e., loudspeakers. This
variable could be used for 1-D simulation of strings or tubes (one propagation direction
is assumed); but in 2-D or 3-D cases, there does not exist any surface of propagation.
Then, it is more rigorous if the particle velocity is used instead, although the final theory
does not change indeed.
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+
pr.(n)  py.(n)
Ly = 2t o I (4.54)
a uin n) uJ’H(n)

Furthermore, note Z;, = Z, ;.

—
Then, for a given direction J, k equal to the one formed by a given link
between the scattering junction at positions ry and 1, the particle velocity
component is calculated as

~ (n) — vt (n
Pk )ZJ’:’J,K( ) — uj,(n) — u},(n). (4.55)

Uﬂ(f],n) =

From the first Kirchhoff law it follows that

N —
R ) (4.50)
JK

Z
k=1 k=1 i

and using Eqs. 4.53 and 4.56, the following expression is achieved

+
J

N N
Z Z Pty ﬁ“(n) . (4.57)

According to these rules, the sound pressure at a given scattering junc-
tion is obtained as

n)
2, pJZK"
p(Esn) = —Sx—7 (4.58)
ZHZI ZJ’H

From the second Kirchhoff law the reflected component can be obtained
as

Py (n) = p(Es,n) —pj (). (4.59)

In the next time step, the outgoing components are incoming in the
opposite direction. This can be expressed as
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Py () =p, ,(n—1), (4.60)

where p_ ;(n) represents the outgoing delay line with respect to the scat-
tering junction p(¥,,n) that links with p(¥ 7, n).

It has to be noted how this method has been generalized in a N-port
mesh. This generalization allows the creation of complex mesh structures,
giving different and better grid dispersion and improved efficiencies. The
main framework of this work can be found in [Bilbao, 2001, 2004] , highly
oriented to plate and membranes modeling. To review these alternative
meshes is far from the scope of this thesis. From now on, the scheme followed
throughout this thesis will be the cartesian one, which means N = 4 in a 2-D
mesh and N = 6 in a 3-D mesh, what is obtained is a DWM in a cartesian
axis. Regarding stability and dispersion, this scheme follows exactly the
same properties as the FDTD method. In fact, as will be shown in Sec. 4.4,
both methods are equivalent in results, but with different computational
characteristics.

4.3.1 Plane waves in the DWM model

One of the main considerations in most of the assumptions of this thesis
is that only plane waves must be considered. This can be assumed if the
source is considerably separated from the impedance surface [Butov, 1981].
On the other hand, the DWM methods also assumes that plane waves are
travelling in the medium. For that reason, some considerations should be
made about this point.

Let us assume an incident plane wave travelling in x < 0 towards = =
0. This plane wave has, for a given discrete position and time step, an
amplitude p;(T,n) and a particle velocity vector associated w;(T,n) (see
Fig. 4.5 for details). Now, consider the pressure in a scattering junction
p(ts,n) located close to an interface with some boundary condition and
where the plane wave has struck [Kuttruff, 4th edition, 2000]|. According to
this and the second Kirchhoff law (Sec. 4.3) and Sec. 2.4.1.3

p(Es,n) = pi(f5,n) + pr(ts,n) = pj,.(n) +pj,.(n) Ve € [1,N]. (4.61)

One has to consider that Eq. 4.61 does not necessarily imply that p;(¥7,n) =
p7,.(n) or py(fs,n) = p}_(n). One should realize that observing Fig. 4.3,
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Figure 4.5. A travelling plane wave in a DWM simulation.
The particle velocity components are calculated as a vector
projection of the components over the links between scattering
Junctions.

where in case p;(¥y,n) = p;,.(n) could be considered, this would mean all
outgoing x components would be propagated with the same value and all
incoming components would be constant and they would not depend on the
neighboring junctions. Another example is when an incident plane wave
travels; in that case, the term p,(T;,n) will be removed from Eq. 4.61;
in that case, there exists incoming component (see Sec. 4.3), and thereby
incoming and outgoing DWM components cannot be strictly identified with
incident and reflected wave components. Of course, it should be emphasized
how this equivalence would become true in the multidimensional case: in a
1-D case, there must be defined p;(t;,n) = pj . (n) and p,(f;,n) = piﬁ(n).

Regarding the particle velocity components in the DWM, uzs (T, n),
they are calculated through Eq. 4.55. In that case, the particle velocity
in the DWM can be related directly to the plane wave particle velocity
just using a simple vector projection over the DWM axis. For instance,
the total particle velocity over z-component (see Fig. 4.5) is determined by
ug(Ty,m) = Uz (t7,n). Then, this plane wave particle velocity component
can be related to the DWM particle velocity component as
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~ ~ — ~ J’_ ~
: — p(Fy, p;,(Es.n) —p},(Fs,n
ug(Ty,n) = pifs,n) = pr(fs,n) cosf = 1 ) —Pi ) (4.62)
poc A

It must be taken into account that the equality in Eq. 4.62 could not
be completely accurate, due to the dispersion error, which depends on the
plane wave frequency and angle [Fontana and Rocchesso, 2001]. However, if
high enough oversampling is employed (Eq. 4.36), the error can be assumed
negligible. With this technique, Eq. 4.62 can be considered valid up to a
fixed frequency. In practice, 2xoversampling is commonly used [Duyne and
Smith, 1993|.

4.4 Equivalence between the FDTD and DWM meth-
ods

As has been mentioned throughout this thesis, both FDTD and DWM,
in cartesian coordinates, are equivalent [Duyne and Smith, 1993]. In this
section, this equivalence is demonstrated through a 2-D mesh in an inho-
mogeneous medium defined according Eq. 4.58 and expressing in terms of
finite differences (Eq. 4.51). Usually, this equivalence is demonstrated for
a homogeneous medium [Murphy, 2000, Duyne, 2007|. However, through
some simple modifications, this equivalence can be generalized.

Let us consider the mesh notation of the Fig. 4.4b). Then, the scattering
junction pressure at the position r; can be calculated through Eq. 4.58. By
using Eq. 4.59 and Eq. 4.60, it may be found

p}:n(n) = p/:,J(n_ 1)
= p(ts,n—1) _pzj(n_ 1)
= p(Tts,n—1) —p;ﬁ(n—Q)
= p(Te,n—1) —p(fj,n—2)+pin(n—2). (4.63)
Returning to the definition of the pressure in a scattering junction as

a sum of the incoming pressure components, Eq. 4.58, let us substitute the
Eq. 4.63 on it.
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Noting that
F)n2)
ZNzl p(Es,mn
e = p(Egn—2), (4.65)
Em:l 2k
+
N pJ,n(n_Q) ~
Zn:l Zjk p(rJa n-— 2) (4 66)
SN L 2 ’ ’
R= ZJYN
a final expression obtained is
2 ZK: 1 I‘%,n 1)
p(ty,n) = 1 —p(Fs,n - 2). (4.67)
Yok=1 70,

With a simple inspection of Fig. 4.4, the next terms between Eq. 4.67
and Eq. 4.51 can be identified:

p(t1,n) = p(T+Ax,n), (4.68)
p(ta,n) = p(T - Ay,n), (4.69)
p(t3,n) = p(T— Ax,n), (4.70)
p(ty,n) = p(T+ Ay,n). (4.71)
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At this point, an interesting question arises: are the FDTD and the
DWM equivalent in an inhomogeneous media? The unstaggered nature of
the DWM situates the impedance (also the particle velocity components)
at the same position as the pressure, however the FDTD does not (see
Sec. 4.2). However, what might be considered is that each delay line has
a constant impedance, at both sides of the delay. Then, one can force the
equivalence

Zs1 Z(F+1AX), (4.72)
Zj2 = Z(I-3Ay),
i3 = Z(f‘—%Ai),
Zia = Z(f‘—i—%AS/).

It should be remembered that the impedance in a DWM is a delay line
property, not from the scattering junction itself, since one can be linked
to a different delay line with different media properties. This can also
provide problems in the interface position of two different media and an
important lack of accuracy can be made in the simulation. Let us consider
a simple case where Z(f — AX) # Z(T), the doubt arises when one has to
define Z(¥-1AX). A simple way to face the problem consist of averaging
both values and to assume a linear transition of the densities, but it can
be fairly inaccurate in some cases [Yefet and Petropoulous, 1999, Beggs,
2001]. However, this is not problematic in the room acoustic case, where
the medium could be considered homogeneous, except scenarios where there
exist a considerable gradient of temperature.

According to Eqgs. 4.72, the equivalence between the FDTD and DWM
in an inhomogeneous medium is demonstrated. Then, the same equivalence
for the homogenous media case is straightforward.

Since these methods are equivalent and as indicated in Sec. 3.4.1, during
the last years, a new nomenclature has arisen to identify both methods:
whereas the method based on incoming and outgoing variables (Eq. 4.58)
is also known as Wave-DWM or W-DWM, the method based on the the
pressure in the scattering junction (Egs. 4.51 and 4.37) is named as the
Kirchhoff-DWM (or K-DWM) [Karjalainen, 2004, Erkut and Karjalainen,
2002b, Valiméki et al., 2006]. In accordance with this definition, the K-
DWM and the Savioja’s FDTD methods (see Sec. 4.2.3) are equivalent,
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whereas the DWM (according Sec. 4.3) and the W-DWM are also equivalent.
As long as this new nomenclature has been widely used in room acoustic
modeling and physical modeling-based digital sound synthesis, from now on
in this thesis and unless otherwise indicated, the FDTD will be only used for
the Botteldooren’s approach (see Sec. 4.2); and the DWM acronym will be
specified if it corresponds with the K- or W- approach, being the K-DWM
equivalent to Savioja’s approach.

Besides this equivalence between both approaches, several different
properties differentiate between them [Karjalainen, 2004]:

1. K-DWM
e K-DWM is quite more efficient than W-DWM.

e It can incorporate non-frequency dependent losses, just modify-
ing the wave equations.

e It does not assume initial conditions or the propagating wave
shape; then, they appear as a result of the numerical approxima-
tion of the wave equation.

2. W-DWM

e Digital signal processing theory is suitable to be used in W-DWM
(frequency-dependent boundary conditions, frequency-dependent
losses, ... ).

e W-WDM avoids spurious responses to specific excitations [Smith,
1998].

A deep comparison of both methods can be found in [Bilbao, 2001,
Erkut and Karjalainen, 2002a, Karjalainen et al., 2003].

However, an aspect that has not been analyzed of the equivalence be-
tween both methods is that regarding particle velocity. The DWM method
always assumes a plane wave propagation (Eq. 4.54), but this is hard to
assume near a point source. However, the FDTD method does not assume
any wave shape (Eqs. 4.14-4.16). Despite the results of the pressure sim-
ulation, if one simulates the particle velocity vector of a point source (see
Fig. 4.6), some differences can be observed at positions situated near the
source, but when the components are situated at a certain distance from
the source, no differences are observed. In a relatively large simulation,
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this does not cause any inaccuracy of the methods. Although this point is
far from the scope of this thesis, it could be an interesting contribution to
understand these methods with more detail.
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Figure 4.6. Simulation of the particle velocity vector through
FDTD method (grey arrow) and DWM method (black arrow).

4.5 Hybrid models

Since both approaches are equivalent in results but with different advan-
tages, it is desirable to find a method which combines the advantages of
both K- and W-DWM: in terms of efficiency, K-DWM reduces the compu-
tational cost considerably, whereas the W-DWM has traditionally been used
to adapt boundary conditions to the DWM [Savioja et al., 1995, Huopaniemi
et al., 1997]. The use of KW-pipes [Smith, 2004, Karjalainen and Erkut,
2004, Murphy and Beeson, 2007] has permitted the creation of hybrid mod-
els combining the advantages of both methods. These KW-pipes are a
signal transformation allowing the interface of two meshes built with dif-
ferent methods. A wave should travel from one mesh to another with no
energy losses in the interface.

The idea behind these models is, given two scattering junctions one
of which belongs to the K-DWM, p(¥x,n), and the other one belongs to
the W-DWM, p(t,,n), to find a suitable transformation for the energy
transition without loss of the wave propagation, taking into account that
p(Tr — Ax,n) = p(fy,n) and p(t, + Ax,n) = p(Tg, n), according Fig. 4.7.
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Figure 4.7. Generic scheme of a 1-D hybrid model.

In the particular case of room acoustic simulation, a hybrid model is a
very interesting solution. An hybrid model based on the use of KW-pipes al-
lows us to obtain an efficient model using the K-DWM as the main method,
but the use of a W-DWM in the interface with the boundary conditions
permits the inclusion of frequency-dependent models with a highly reduced
complexity. More details about the boundary conditions will be addressed
in Chapter 5.

There exist three approaches to the hybrid model: Smith [Smith, 2004]
proposes an analysis on the equivalence between both schemes through a
formulation based on Space State Systems (SSS); this conversion allows the
conversion of the state variables of a K-DWM (FDTD in the original) to the
corresponding wave variables in a W-DWM. Recently, Murphy and Besson
have proposed a highly versatile approach to this problem, giving a solution
to mix both methods in an hybrid triangular DWM [Murphy and Beeson,
2007], which gives a highly efficient hybrid model.

However, the most popular approach to this problem has been the one
proposed by Karjalainen and Erkut [Karjalainen and Erkut, 2004|. Origi-
nally, their KW-pipe has been designed to simulate a string (1-D), consisting
of half string with a Kirchhoff Digital Waveguide (FDTD in the original)
and a Wave Digital Waveguide (DWG in the original), according to the
matrix transformation of Eq. 4.73.

<p(§§,’l;z(7i)1)) = G 1__Z;z> ' <p(;’;’:(;)l)> . (@)

From Fig. 4.7 and Eq. 4.37, p(,n) is directly updated as



88 Discrete Time-based Methods for Room Acoustic Simulation

However, this KW-pipe also allows the creation of a cartesian hybrid
mesh, just interfacing through the pipe, one to one, the contiguous scatter-
ing junctions, as shown in Fig. 4.8. It is true for curved boundaries, where
the perimeter of the structure being modelled (such as a drum membrane)
is not normal/parallel to the axes of the mesh structure, but this KW-pipe
could be inappropriate and less accurate than the proposed one in [Murphy
and Beeson, 2007, Laird et al., 1999|; however, under the scope of this the-
sis, only cartesian axis-based meshes are considered and the efficiency and
simplicity of this KW-pipe has been noted as the appropriate one.

The key point on the use of hybrid mesh lies in the design of more
efficient mesh, since it is possible to define the air propagation in a K-
DWM due to its efficiency and the boundaries through W-DWM at the

discretized points where there exist walls (see Sec. 5.2.1 for details).

4.6 Sound propagation simulation through discrete-
time methods

Throughout this chapter, the mathematical formulation of the FDTD and
DWM (including both K- and W-DWM) methods from physical principles
of the sound propagation has been deduced. It is reasonable to think that
most of the wave propagation phenomenons may appear during the simu-
lation, except air sound absorption.

Through this section, a few examples of the most common wave phe-
nomenons are simulated with those methods, demonstrating the suitability
of the methods for room acoustic simulation.

The first example concerns the multilayer transmission and reflection.
Variations of the density or the speed of sound at different areas of the
space under analysis give as a result a set of reflections and transmissions
in the interface between the different specific impedances. Let us consider
two different media, with specific impedance Z; and Z5. The proportion of
the absorbed energy is |R|?, where R is calculated by
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Figure 4.8. Functional block diagram of a hybrid mesh con-
sisting of a generic multidimensional K-DWM and W-DWM,
interfaced by a KW-pipe. The impedances have been expressed
in terms of their correspondent admittances. (Reproduced with
permission of the authors of [Murphy and Beeson, 2007])



90 Discrete Time-based Methods for Room Acoustic Simulation

=Po
209
Po

p
(4
p

Figure 4.9. Different screenshots of a sound wave propaga-
tion through two different layers with different specific impe-
dance given by changes in density.
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whereas the transmitted energy through the interface is 1 — |R[?. In room
acoustic simulation in cases where a large size room is analyzed, it should
be considered that gradients of temperature could appear, changing the
specific impedance at different areas.

Let us consider a simulation through the K-DWM method in an inho-
mogeneous medium, with two different densities, p; = pp and pa = 2pg 3.
Figure 4.9 shows a simulation at different time steps, where the reflection
and transmission through different specific impedances is observed.

Another interesting phenomenon is diffraction, which is defined as the
bending of waves around small obstacles and the spreading out of waves
beyond small openings . Let us define a homogeneous 2-D mesh with
a sampling frequency fs=20 kHz and speed of sound ¢ = 341 m/s, and
according Eq. 4.36, each discretized point has a size of 1.2 cm?. Let us also
define a square obstacle of 24 cm? (20x 20 cells). Under these conditions, two
simulations are carried out with two different monochromatic point sources
with frequency f1 = 200 Hz (\;=1.7 m) and f» = 2500 Hz (A\;=0.13 m).
Note that A; is bigger than the size of the obstacle; then, what is expected
is that the wave passes through the obstacle and apparently, it is almost

3Since the equivalence between both FDTD and DWM methods has been demon-
strated, the validity of the simulation demonstrating those sound propagation phe-
nomenons in this section is also for the W-DWM and FDTD method.

4Small compared to the wavelength
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“Invisible” to the wave (see Fig. 4.10(a)). However, f, has a wavelength
smaller than the obstacle; then, a shadow effect occurs at an opposite point
to the source position in regard to the obstacle (see Fig. 4.10(b)).

A common example of the sound diffraction effect is the one which ap-
pears in noise barriers, which are frequently used to mitigate the impact of
traffic on roadside communities. The screening performance of barriers is
dominated by the sound that is diffracted by the top of the barrier. A 2-D
simulation under the same conditions as the previous example but with a
broadband pulse coming from a point source is carried out, including a bar-
rier. Figure 4.11 shows a screenshot of the simulation where the diffractions
are evident around the top of the barrier.

Another known effect of diffraction is the one due to the propagation
of a wave through a small opening, which results as a consequence of each
particle of a sound wave emitting outward in a spherical fashion ° (see
Fig. 4.12).

Finally, the (constructive or destructive) superposition of waves is an
inherent property of the simulation through these methods, giving as a result
a tool for the analysis of room modes [Kuttruff, 4th edition, 2000]|. With
the same conditions as the previous simulations, a broadband point source
radiates and since hard walls are included at boundaries (see Sec.5.2.1), a
set of reflections occur producing interference between the waves at different
positions; the simulation is shown in Fig. 4.13 at different time steps.

However, it should be mentioned that the dispersion of these methods
(see Sec. 4.2.1) produce a misalignment between the room modes result-
ing from the simulation and those expected, especially at high frequen-
cies [Duyne and Smith, 1993, 1995].

The importance of showing these effects lies, not only in the possibility
of observing and analyzing the wave propagation effects and their evolution
in time, which is an evident advantage over frequency-based wave methods,
but also in the accuracy of the discrete-time methods with a relatively
reduced computational cost. Special attention should also be paid to the
fact that the geometrical methods do not include these effects in a direct

5This effect is known as a Huygens’s principle, stating the wavefront of a propagating
wave of sound at any instant conforms to the envelope of spherical wavelets emanating
from every point on the wavefront at the prior instant (with the understanding that the
wavelets have the same speed as the overall wave).



92 Discrete Time-based Methods for Room Acoustic Simulation

Figure 4.10. Simulation of the diffraction effects due to an
obstacle at two different frequencies, (a) fr=200 Hz and (b)
f2=2500 Hz.

way, and to include them require a considerable computational effort.

Figure 4.14 shows an example of the suitability of these methods for
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Figure 4.11. Simulation of the effect of edge diffraction in a
noise barrier.

room acoustic simulation. In this figure, the enclosure shape has been
limited by absorbing walls with A=0.75 (details will be given in Chap. 5).

Some details about the computational cost should be mentioned in this
section. According the DWM/FDTD theory presented in this chapter, the
limiting frequency for a given element size and 3-D simulations with a cer-
tain accuracy, is calculated as

2c 394

fmax:mm’E-

(4.76)

It could be interesting to compare it with a FEM simulation: this
frequency limit is calculated through (see Sec. 3.3.1)

e T
T 6Ar Az’

showing the conclusion the FDTD/DWM algorithm is more efficient than
the FEM algorithm regarding the memory storage 8. Furthermore, it should

(4.77)

5This conclusion should be assumed with some restrictions, since both limits are
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Figure 4.12. Simulation of the diffraction effects of a sound
wave propagation through an small opening.

be remembered FEM algorithm needs a simulation for each frequency, whereas
FDTD/DWM just need one in order to obtain a simulation in a certain fre-
quency band.

Regarding the computational time, Campos gives a formula for the
estimation of that time of a 3-D mesh, based on acoustic characteristics of
the room under analysis [Campos, 1999] 7

Tar = 0.42 x 10 x V' x RTgp x fa, X tn, (4.78)

where

calculated assuming different accuracy criteria, given in [van der Geest and McChulloch,
1998] and [Duyne and Smith, 1993]. A comparison between both methods with an unique
criteria should be proposed.

"Although as far as the author of this thesis knows, this document remains unpub-
lished; however, the formula is reported by Murphy [Murphy, 2000].
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RT60

f.sn

Figure 4.13. Simulation of the sound propagation where
boundaries include hard walls. In the different time steps, it
is observed the interferences between the wavefronts, in a con-
structive and destructive way.

Total model computation time in seconds,

Volume of acoustic space to be modeled in cubic meter,
Reverberation time [Kuttruff, 4th edition, 2000| measured
in seconds,

Normalized sampling rate (fmaz/44100),

Average computation time per junction per 44100 iterations,
in seconds.
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Figure 4.14. Wave propagation simulation of a 2-D enclosure
by using the K-DWM method at different time steps.

4.7 Wave Digital Filters

In this section, the Wave Digital Filter (WDF) theory [Fettweis, 1986] is
introduced. Although it has been used as a room acoustic sound field simu-
lation method (see Sec. 3.4.2), this is not the concern of this thesis. However,
as will be seen in Chap. 5, WDFs will be proposed in this thesis to define
frequency-dependent boundary conditions. In this section, paying special
attention to the digital filter transformation into a WDF system.

4.7.1 A WDF variables approach

WDFs appear as a discretization process of complex systems, where each
network element is discretized separately by a bilinear transformation [Proakis
and Manolakis, 1998]. They provide an approach to digital filter structures
that are analogous to analog filter structures that have a certain desirable
properties. The main reason for using WDFs is the capacity to avoid poten-
tial computational problems, e.g., delay-free loops or potentially unstable
implicit equations in the interconnection of the network elements [Szczupak
and Mitra, 1975]. The delay-free loop problem is a computational handi-
cap in the implementation of discrete systems. Basically, it occurs when the
computation of some values requires knowledge of the same value. A digital
structure with delay-free loops is physically impossible to achieve due to the
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finite time required to carry out all arithmetic operations on a computer.

To avoid these delay-free loop problems can be done by using the so-
called wave variables,

a(n) =

v(n) + Zpi(n) (4.79)
b(n) = wv(n)— Zyi

(n) (n), (4.80)

where the variables a(n) and b(n) represent the outgoing and incoming wave
variables, respectively, and propagation information is inherent in them;
whereas v(n) and i(n) represent, in the original [Fettweis, 1986], the voltage
and intensity. The Kirchhoff variables, v and ¢ can be expressed in terms
of the wave variables as

o) = 2 (4.51)
i(n) = W (4.82)

The proper choice of the port resistance Z, makes it possible to sepa-
rate the design of the elements from the definition of their interaction by
appropriate adaptor elements [Petrausch et al., 2005a]. Here, the nomencla-
ture Z,, is used instead the classic R for the resistance in order not to create
confusion with the reflection factor. The source of instability, a delay-free
loop, is avoided using this variable conversion [Fettweis, 1986].

4.7.2 Wave digital elements

Not being in the scope of this thesis to deal deeply with WDFs; it is inter-
esting to review some of their characteristics; however, a deep review of this
topic can be found in [Bilbao, 2001].

As mentioned in Sec. 4.7, the WDFs arise from the bilinear trans-
form [Fettweis, 1986], given by

2 1—z1

S—>Ktl+z—1’

(4.83)
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where s is the Laplace variable. It is important to mention that the time-
domain interpretation of the bilinear transformation is called the trapezoid
rule for numerical integration |Bilbao, 2001].

To see how the WDF works, let us consider circuit elements such as a
resistor (R), inductor (L) and a capacitor (C'), whose electrical expressions
are, respectively

o(t) = Ri(t), (4.84)
o) = Ld’d(f), (4.85)
o(t) = é /_ i(r)dr, (4.86)

or in the Laplace transformed domain

V(s) = RI(s), (4.87)
V(s) = sLI(s), (4.88)
Vis) = Is(é) (4.89)

After using the bilinear transformation (Eq. 4.83) in Eqs. 4.87-4.89 and
expressing them in the discrete-time domain, the following expression are
obtained

v(n) = Ri(n) (4.90)
2L . .

v(n) = At (i(n) —i(n—1)) —v(n —1), (4.91)
At .

v(n) = Yol (i(n) +i(n—1)) +v(n—1). (4.92)

Now, let us use the WDF variable transformation (Eqgs.5.27 and 5.28)
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bn) = Z (a(n) + b(n)) — a(n) (4.93)
b(n) = Ziit (a(n) —b(n) —a(n —1)+b(n—1)) —a(n)

— a(n—1)=bn—1), (4.94)
b(n) = Z;gt (a(n) —b(n)+an—1)—=b(n—1)) —a(n)

+ a(n—1)+b(n—1). (4.95)

Then, if a choice is made for each one of these equations: Z, = R for
Eq. 4.93, Z, = 2L/ At for Eq. 4.94 and Z, = At/2/C for Eq. 4.95, for each

case, what is obtained is

b(n) = 0, (4.96)
b(n) = —a(n-—1), (4.97)
b(n) = a(n-—1). (4.98)

It has to be noted how, with the WDF variables transformation and
the proper choice of port resistance Z,, the delay-free loop is avoided and
no instantaneous feedback appears.

4.7.3 Wave digital element interconnection

So far, basic elements have been converted to WDFs; however, it is reason-
able to need to build more complex systems. This can be done through
interconnecting basic elements in a combination of parallel and serial struc-
tures, in the same fashion as analog filtering, through the so-called port
adaptor.

Let us consider L wave digital elements, each one with their variables
ai(n) and by(n), and an impedance port Z,,. Following the steps given in
[Bilbao, 2001], it is possible to find the equations relating the input and the
output wave variables at the kth port for both types of connection as
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7, AL
S
b(n)
o1
a(n)

Figure 4.15. (a) WDF representation of a resistor with re-
sistance R, (b) WDF representation of a inductor with in-
ductance L and (c¢) WDF representation of a capacitor with
capacitance C.

27,
bk(n) = ak(n) — 72%:1 me mg_l am(n), (4.99)
5 M
be(n) = —ag(n)+ Sy mgl Yy, am(n), (4.100)

where k =1... M and Y}, =1/Z, . Equation 4.99 works for serial connec-
tion, whereas Eq. 4.100 is for parallel connection. It is a common practice
to represent these adaptors using the blocks of Fig. 4.16

These adaptors allow us to build complex structures as a combina-
tion of wave digital elements as serial and/or parallel interconnections. For
example, let us consider a resistor R and inductance L, defining a serial in-
teraction and a parallel interaction. In accordance with Eq. 4.96 and 4.97,
each one of those elements is defined in terms of wave variables, with a
wave digital resistance Z,r = R for the resistor and a wave digital resis-
tance Zp;, = 2L/At for the inductor. Then, it is possible to represent a
slightly complex WDF structure of a serial and parallel filter represented
in Fig. 4.17. More complex filters can be defined through more elaborated
combinations of elements.

In this thesis, only 2-port adaptors are used. In accordance with Eq. 4.99
and 4.100, they can be arranged in matrix form as
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Figure 4.16. (a) General diagram of a serial WDF 4-port
adaptors. (b) General diagram of a parallel WDF 4-port adap-
tors.

z_].

-1
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Figure 4.17. (a) Analog and wave digital structure of a serial
filter formed by a resistor R and an inductor L. (b) (a) Analog
and wave digital structure of a serial filter formed by a resistor
R and an inductor L.
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( ZQEQ ) = < _(1’Y+ ’ —(1_; 7) > < Z;EZ% ) (4.101)
( Z;EZ? ) = ( 117 1__77 ) ( Z;EZ; ) (4.102)

where Y= (Zp2 — Zpl)/(Zpg + Zpl).

Being the most simple adaptor, it is direct to build the adaptor in a
more practicable way, using the corresponding wave flow diagram in the
Kelly-Lochbaum form [Markel and Gray, 1976| for both configurations (see
Fig. 4.18).

Zn Ly Zp Zyo
I I
a; (n) — by(n) a (n) e by(n)
[ ] - [ ] =
by (n) X — by (n)

et R ey B

Figure 4.18. Wave flow diagram in Kelly-Lochbaum form of
(a) serial and (b) parallel adaptor.

4.8 Discussion

In this chapter, it has been presented how, from the physical formulation
of the sound propagation it is possible to build discrete-time methods able
to simulate the wave propagation and their characteristic phenomena. This
chapter deals with the mathematic fundamentals of some of these methods,
particularly the Finite-Difference Time-Domain (FDTD) method and the
Digital Waveguide Mesh (DWM) method.

The original FDTD method is based on a staggered distribution of the
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pressure and particle velocity components and their values are updated un-
der the so-called leapfrog scheme. However, since the variable of interest in
room acoustic simulation is the pressure, the FDTD method uses the wave
equation in order to considerably reduce the computational cost and mem-
ory storage, and only pressure values are calculated in the algorithm. In
each time step, each discretized pressure value is updated from the neigh-
boring and previous discrete pressure values.

On the other hand, the DWM method decomposes the signal into in-
coming and outgoing pressure components. In a cartesian grid, these pres-
sure components travel along characteristic directions. From neighboring
pressure components, the pressure at each discretized point is updated as a
linear combination of the incoming components.

It is possible to demonstrate how both methods are equivalent in homo-
geneous and inhomogeneous media. Although the results from simulating
the same scenario with both methods are the same, different aspects such
as efficiency and suitability for boundary condition definition distinguish
them.

However, this equivalence allows the creation of hybrid models, where
different areas of the whole mesh can be implemented with each one of the
methods and it is possible to take advantages from each paradigm of these
areas in particular.

The importance of these methods lies in the accuracy and the simplicity
to implement the algorithms, having advantages over geometrical methods,
since the sound wave propagation phenomena such as diffraction, interfer-
ence, ... (except for the air absorption) appear without any extra effort
in their implementation, assuring the accuracy of these methods for room
acoustic purposes.

Finally, the Wave Digital Filters (WDF) are introduced, not as sound
field simulation method, but also as a method for discretizing continuous
system. They provide an approach to digital filter structures that are anal-
ogous to analog filter structures that have a certain desirable properties.
These digital filters will have a fundamental role in next chapter.
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Frequency-Dependent Boundary
Conditions for Discrete-Time Methods

THE SOUND PROPAGATION IN ROOM ACOUSTICS IS THE CONSEQUENCE OF
A BOUNDED MEDIUM, where the walls, ceiling and floor reflect part of the
energy striking on them, as has been presented in Chap. 2. The resulting
sound field is the addition of each one of the reflected waves appearing.
Moreover, each reflected wave is reflected again in a different wall.

Summarizing, a particular room acoustic sound field (apart from posi-
tion and characteristics of sources) is mainly the consequence of

e Room geometry: The position and number of the walls determine
the number of reflections. Furthermore, the relative distance between
source and walls, and also with the distance between walls, determines
the amplitude and the phase of the reflected waves.

o Absorbing properties: In each one of the reflections, the reflected walls
contains a fraction of the incident energy. These reflections are de-
pendent of the wall material properties, being in the general case,
frequency-dependent absorbing.

Then, the particular wall distribution and the material used in each
one of the walls gives a characteristic sound field distribution |[Kuttruff, 4th
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edition, 2000|. Therefore, the proper definition of the room in terms of the
wall absorbing properties is fundamental to obtain accurate simulations.

The use of the discrete-time methods, apart from many other advan-
tages (see Chap. 4), simplifies considerably the geometry definition in sim-
ulation: the characteristic regular discretization on these methods makes it
easy to decide what cells do or do not belong to the boundaries, compared
with other methods. However, to define impedance boundary conditions
and particularly, the frequency-dependent one, is not a simple task with
these methods, nor in the electromagnetic approach [Beggs et al., 1992,
Maloney and Smith, 1992, Sullivan, 1992| neither in the acoustic field sim-
ulation [Ozyériik and Long, 1997, Fung and Ju, 2004].

5.1 Introduction

In room acoustics, the reflections are mostly considered as either specular
or diffuse (or a combination of both). As mentioned in Sec. 3.4.1, several
solutions to diffuse surfaces have been successfully proposed [Murphy et al.,
2008b]. However, specular reflections are not accurately modeled. For that
reason, it is necessary to propose a method for including, in a simple and
efficient way, realistic models of impedance on the simulation such as the
locally reacting impedance model (see Sec. 2.4.1.3). Such a model would
improve the accuracy of the whole acoustic simulation model. The locally
reacting model is particularly important because it facilitates the modelling
of specular reflections, since the impedance value is not dependent on the
wave angle of arrival and it has a considerable advantage over models that
take explicit account of the mechanical properties of the surface [Pierce,
1994, Kuttruff, 4th edition, 2000].

Those impedance boundary conditions in the discrete-time methods
should require the following characteristics:

e Efficiency: the space discretization of a whole volume such as an
ordinary room requires a huge amount of memory, and the sound field
calculation over that mesh, has a considerable computational cost. It
would be desirable if the boundary condition presence in a simulation
did not excessively increase these computer resources.

e Accuracy: the model must accomplish the impedance physical law
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properties, i.e., in terms of frequency and angle of arrival.

e Stability: the model should be stable for the longest range of impe-
dance boundary condition parameters, being desirable to be uncondi-
tionally stable.

This chapter deals with the problem of the impedance boundary condi-
tions definition in the discrete-time methods, with special emphasis on the
frequency-dependent case. In this chapter, contributions regarding the re-
alization of boundary conditions in these numerical methods are presented
together with several simulations demonstrating the suitability of these new
algorithms. The chapter is mainly divided in two large sections: the first
section deals with the boundary conditions in the DWM method, whereas
the second deals with the FDTD method. In the DWM section (Sec. 5.2), a
review of the current state-of-the-art of the boundary conditions is first pre-
sented. In Sec. 5.2.2, an analysis of the effect of choosing the reflection factor
as a boundary condition is presented, and during Sec. 5.2.3 and Sec. 5.2.4
some new algorithms which solve the specular reflection in a DWM are in-
troduced. In Sec. 5.3, a similar structure is followed for the FDTD method,
with a review of the previous methods (see Sec. 5.3.1) and the introduction
of a new method 5.3.2. In Sec. 5.4, although the scope of this thesis is not to
validate physically the proposed algorithms, a first approach to assure the
certainty of one of them is presented. Finally, the chapter is summarized.

5.2 Boundary conditions in the DWM method

In this section, a review of the state-of-the-art boundary conditions imple-
mentation in DWM methods is made, and an analysis will be presented
of the limited accuracy of the current methods for frequency-dependent
boundaries. After this, some solutions are proposed in order to define lo-
cally reacting impedances as boundary conditions in the DWM method.

5.2.1 Previous approaches

The first approach to the boundary condition in room acoustics for a DWM
is presented by Savioja et al. [Savioja et al., 1996b|, where the starting
point appears in the definition of 1-D digital waveguide boundaries [Smith,
1992, 1996]. Let us consider the scattering (air) junctions at the edge of a
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boundary as in Fig. 5.1, where p(fp,n) , and this is connected to a “dummy”
boundary scattering junction p(rp,n), having a different admittance Yp,
from the admittance of the air Yj;. This “dummy” junction is useful to
define the boundary condition since the change of admittance is the reason
to produce a reflection R defined through Eq. 2.70, but with an angle § =
0 [Murphy and Beeson, 2007]:

Y, —Yp
Y +YE

R

(5.1)

Boundary Dummy
Junction Junction

p(ib TL) p(?D} n)

EXn

Figure 5.1. Interaction between a digital waveguide and
boundary filters.

The boundary junction value is calculated as

p(tp,n) = (14+ R)p(t;,n—1) — Rp(tp,n — 2). (5.2)

Although this method was originally proposed for the W-DWM, it is
expressed in a more efficient way for the K-DWM, Eq. 5.2.

As an example, a 1-D simulation with a length L is carried out with
a R = 0.5 on one side, and a perfectly reflecting boundary condition on
the other side (Fig. 5.2). The simulation is presented each 100 time steps
and displaced one dB in respect to the previous one. In these results, it
can be observed how the wave component which strikes on the right side is
returned with half of its energy.

It is important to note how this method only works for frequency-
independent boundary conditions (see Sec. 4.3), since the admittances of
the scattering junction are defined as frequency-independent. This equation
gives an exact solution for this 1-D case, except for the R = 0 case, where
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Figure 5.2. Example of a 1-D simulation with a constant re-
flection factor R = 0.5 condition at position x = 0 and hard
wall at x = L. Fach simulation represents the pressure solu-
tion at instant +100At and it has been displaced -1 dB.

some undesirable reflections appear. However, as referenced at Sec. 3.4.1,
this is not a common handicap for the room acoustic simulation, except in
cases where it is desirable to simulate the effects of open windows or doors;
since this is not a common practice, no more approaches to this topic are
made in this thesis.

Then, a logical solution to the multidimensional mesh problem is to
directly adapt this solution, where p(f,n) is the scattering junction situ-
ated as a perpendicular neighbor [Savioja et al., 1999|. Since this method
defines the boundary condition in terms of the impedance (or variation
of the impedance), what is expected from this method works as a locally
reacting impedance model. This has been analyzed in great detail by Kel-
loniemi et al. [Kelloniemi et al., 2004]. In this work, a detailed study of
the angle behaviour has been made and improved through spatial filtering.
This has also been adapted to improve nearly anechoic conditions in the
K-DWM |Kelloniemi et al., 2005].

This scheme, based on a K-DWM, is valid only for constant impedances
since the specific impedances defined on a DWM are non frequency-dependent.
However, the use of a W-DWM allows the incorporation of frequency-
dependent boundary conditions [Huopaniemi et al., 1997]. It consists of
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the use of a time convolution of the boundary junction outgoing compo-
nent pg,.(n) (or pf5(n)) by a digital filter representation of the reflection
factor r(n) (R(z) in the z-transformed domain), calculating the pressure at
p(Tp,n) (see Fig. 5.3) as

p(¥p,n) = (8(n) +r(n)) *pp (1), (5:3)
which is consistent with the definition of reflection factor (Eq. 2.65).
Boundary
Junction

PB,r (1)
b

rJ7 p(fB)n) _ R(Z)
PBr (n)

Figure 5.3. Interaction between DWM and frequency-
dependent boundary filters

21 z1

Z *1

For example, a 1-D simulation with a length L is carried out with a
frequency dependent reflection factor of a hard block layer of porous ma-
terial impedance, given at Sec. 2.4.1.4. This reflection factor corresponds
with an angle of incidence null, according to Eq. 2.69, from the analyti-
cal expression of the impedance. This boundary condition is situated at
x = 0 and the presentation scheme is the same as Fig. 5.4. In this case, a
frequency-dependent boundary condition causes a modification not only in
the energy of the striking pulse, but also in its original wave shape.

At this point, the work of Rochesso and Smith [Rochesso and Smith,
2003] should be mentioned, where a generalized Digital Waveguide Net-
work is defined. This implies the definition of multivariable complex wave
impedances, such as those deriving from multivariable lossy waveguides.
This helps to build a mesh with different properties in the space, even with
frequency dependent properties, implemented in practice using digital fil-
ters. However, these networks have not been tested in the locally reacting
impedance sense.
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Figure 5.4. Example of a 1-D simulation with a frequency
dependent reflection factor condition given by a hard-backed
layer of porous material in one side. . Fach simulation repre-
sents the pressure solution at instant +100At and it has been
displaced -1 dB.

As has been seen in Sec. 4.5, this leads to the current tendency in dis-
crete time-based room acoustics modeling, which is the use of hybrid models,
where a K-DWM (or only pressure-dependent FDTD, see Sec. 4.2.3) is used
to model the propagation (air) space and W-DWM is used to incorporate
the boundary conditions [Savioja et al., 1994, Kelloniemi, 2006, Murphy
et al., 2007|, through a suitable adaptor between paradigms |Karjalainen
and Erkut, 2004, Murphy and Beeson, 2007|. For this reason, the use of W-
DWM at the boundaries and a K-DWM in the space is a common practice,
giving an efficient and versatile hybrid method (see Sec. 4.5).

Although this approach is very common and popular, many authors
have noticed that a right correspondence of the use of the reflection fac-
tor as boundary condition does not exist with a locally reacting impedance
model : non accurate specular reflection appears with this method in a
multidimensional mesh [Murphy, 2000, Fontana, 2003|]. The main reason
for this discrepancy is based on the reflection factor digital filter: as de-
tailed in Sec. 2.4.1.3, a locally reacting surface with a specific impedance
of Z(w) has a plane wave reflection factor that depends on the angle of
incidence |[Kuttruff, 4th edition, 2000|, according to the Eq. 2.70. Since
the angle of incidence 6 is generally unknown, normal incidence is usually
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assumed [Huopaniemi et al., 1997|. In other words, with a given analytical
impedance model (or with an impedance determined experimentally), the
reflection factor filter is obtained by assuming that 6 is zero. From now on,
during this thesis, this method will be called Huopaniemi’s method * 2.

The reflection factor filter used as a boundary condition has no knowl-
edge about this angle. However, one can design a filter that takes into
account the reflection, R(#',w), in accordance with Eq. 2.70 for a certain
angle of incidence, §’. This angle acts as a parameter in the filter design.
A more detailed analysis of the consequences using the reflection factor as
a boundary condition is introduced during Sec. 5.2.2.

The contribution proposed by Kelloniemi [Kelloniemi, 2006] has to be
emphasized, who has used an interpolated K-DWM mesh [Savioja and
Valimaki, 2003] and the boundary conditions interact through a more ef-
ficient KW-conversor, based on |[Karjalainen and Erkut, 2004]. This has
really been the first application of the boundary conditions in a 3-D room
acoustic simulation. However, same limitation is achieved when a reflection
factor is used as a boundary condition, such as Huopaniemi’s method.

In the next section (Sec. 5.2.2), an analysis of the consequences of using
the reflection factor as a boundary condition in a multidimensional simula-
tion is carried on.

5.2.2 Physical interpretation of the use of the reflection factor as a
boundary condition

In this section, original results about the analysis of the reflection factor as
boundary conditions in a W-DWM are presented [Escolano and Jacobsen,
2007]. The main concern of this section is to demonstrate if Huopaniemi’s

'The authorship of this method is, depending on the consulted literature, from
Huopaniemi or Savioja. Both are authors of [Huopaniemi et al., 1997], which is the
first work where frequency-dependent boundary conditions for the W-DWM are pre-
sented. Previous work from this text, written by Savioja [Savioja et al., 1995, 1996a,b],
has introduced the frequency-independent boundary condition; however, is a main con-
cern of this thesis to deal with frequency-dependent conditions and the first author has
been chosen to denominate the method in this thesis.

2In some texts, this method is called Digital Waveguide Filters [Fontana, 2003|, how-
ever it is the personal conviction of the author of this thesis that this name does not
necessarily represent the physical interpretation of the model, since a reflection filter is
used as a boundary condition. As will be shown in Sec. 5.2.4, alternative methods can be
used giving improved results and they could also be named as Digital Waveguide Filters.
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method corresponds with any physical impedance model, such as the locally
reacting impedance model (Sec. 2.4.1.3).

In order to analyze the behaviour of the impedance model in a DWM, a
semi-infinite impedance boundary surface is considered at r g, with the same
structure such as the presented one in Fig. 5.4. The rest of the boundaries
are assumed to be non-reflecting. Consider an incident broadband plane
pressure wave p;(r,t), and the corresponding particle velocity component
Uy, (r,t) = pi(r,t) cos8/(poc).

If the impulse response of a reflection factor obtained in the simula-
tion R(6,w) is defined as #(#,n) in the discrete-time domain, the reflected
pressure is a time convolution, p,(tp,n) = p;(¥p,n) * #(0,n). Information
about the reflected component could be extracted from the finite difference
method [Botteldooren, 1995].

Let us consider the finite difference formulation of the Euler equation of
motion to calculate u, (¥, n) (see Eq. 4.14). However, the staggered nature
of the FDTD method could be problematic to calculate the particle velocity
in a DWM. For that reason, an approach using a backward finite difference
is used to calculate the particle velocity component

ugy(Tp,n) = uy(tp,n—1) — ploii(p(f'B,n) —p(tp — Ax,n)). (5.4)

By decomposing the pressure p(fp,n) into incident and reflected compo-
nents centered at rp, Eq. 5.4 becomes

. . 1 At - ) - -
uz(Tp,n) = ux(rB,n—l)—%ﬂ(pi(r]g,n)*(d(n)—i—r(@,n))—p(rB—AX, n)),
(5.5)
where §(n) is the delta Dirac function. This expression can easily be sepa-
rated into direct and reflected parts (in the absence of reflection, only the
incident part exists). In this case, it is the reflected part that is interesting,

1 At
po Azl
The fraction At/Ax can provide some information if certain algebraic mod-

ifications are made. Assuming equality in the Courant formula (Eq. 4.35),
the fraction At/Ax becomes

(tp,n) *7(6,n). (5.6)

Uy, (va n) =
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At = Ay

Am_c\/( 1 )2+(1 )2 /A Ay

Az Ay

(5.7)

The fraction Ay/+/Az2 + Ay? can be seen to be identical with the cosine
of the angle « that forms the diagonal direction with respect to the mesh
coordinate system. After these algebraic transformations, Eq. 5.6 becomes

v (g, m) = —LEB *PO) (5.8)
poc

Note Eq. 5.8 is similar to the expected from the theory, u, (¥p,n) =
—p(Tp,n) * 7(0,n) cos0/(poc); however, it is clear the dependence of the
reflected component of the particle velocity does not depend on the angle
of arrival and its value is constant with the angle of incidence. Taking into
account the independence of the reflection factor filter with 6, the result is
consequent.

Finally, the total particle velocity component (incident plus reflected)
in z-direction at rg becomes

. (T, n (Tg,n)*7(0,n

uz(Fp,n) = pifpn) cos — pi(Fp,n) *7(0,n) cos a. (5.9)
poc poc

In order to determine the resulting reflection factor it is necessary to calcu-

late the specific impedance (the ratio of the pressure to the particle velocity)

at rp in the Fourier transformed domain,

Z(w) = Pp,w) _ Pi(f"B’w)(l“?(e’w)) . (5.10)
Ul®5,w) — py(ip,w)(est — R0)cona)

Solving for the reflection factor ]%(0, w) of the DWM in Eq. 5.10 gives

Z(w) cos @ — poc

. A1
Z(w) cos a + poc (5.11)

R(O,w) =

However, the impedance Z(w) realized by a filter based on Eq. 2.70 and a
given value of ¢’ is
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poc 14+ R(¢,w)
Z(w) = .

(@) cosf' 1 — R(0",w)
Finally, substituting Eq. 5.12 into Eq. 5.11, one obtains a relation between

the reflection factor assumed in the filter design, R(#’,w), and the actual
reflection factor obtained in the simulation, R(6,w),

(5.12)

. R(9/7w)(cos€ +1)+(COSG _1)

R(0,w) = e T (5:13)
R(9,7w)(cos¢9’ - 1) + (COSQ’ + 1)

To summarise, Eq. 2.70 (also Eq. 5.12) is the analytical expression for
the plane wave reflection factor, Eq. 5.11 is the reflection factor obtained
by the DWM expressed in terms of the desired impedance, and Eq. 5.13 is
the reflection factor obtained by the DWM expressed in terms of the actual
angle of incidence 6, the filter parameter #’, and the diagonal angle in the
mesh «. Equation 5.13 shows that the best agreement is obtained when the
angle of incidence, the angle selected in the filter design, and the diagonal
angle in the mesh are the same (see Fig. 5.5 for details). Note, however,
that « is determined by the mesh; on the other hand, at least the impedance
model can be improved at some angles by using §’ = « (see Sec. 5.2.2.1). It
can be concluded that according to the DWM impedance model (Eq. 5.11)
the obtained reflection factor depends on the angle of sound incidence, but
not in the same manner as a real locally reacting impedance surface does.

5.2.2.1 Examples

To examine the behavior of Huopaniemi’s method in a W-DWM approxi-
mation respect to a locally reacting impedance, some implementations have
been made. A 2-D rectangular mesh with 900x900 cells (Az = Ay) is
designed with a boundary filter at x = 0, and the other boundaries are
absorbing boundary conditions [Murphy and Mullen, 2002]. The sampling
frequency is 80 kHz, and the excitation is a Ricker wavelet pulse [Vetterli
and Kovacevic, 1995] with a bandwidth of 20 kHz. These parameters have
been selected so as to reduce the effects of dispersion in the DWM. The
impedance is modeled as a hard-backed layer of porous material, which is
described by Delany and Bazley’s expressions [Delany and Bazley, 1970] and
detailed in Sec. 2.4.1.4 for a 0.1 m layer of porous material with a flow resis-
tivity of 1000 kg/m?3/s. In this example, the reference spectrum responses
used are the ones obtained directly from the theoretical reflection factor
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R(0,z)

Figure 5.5. Structure and relation between the different an-
gles tnvolved in the boundary condition analysis in a DWM.

(see Fig. 2.6). The coefficients of the digital filter are defined according to
Yule-Walker’s algorithm with an IIR digital filter of 60th order using the
analytical response of the reflection factor through Eq. 2.70.

As mentioned in the foregoing, the boundary filter can be designed with
one degree of freedom, the parameter . In the literature this parameter
has invariably been selected as 0; in other words, the reflection factor that
occurs for normal incidence has been used. However, as shown above, a
better approximation to a locally reacting surface model is obtained, at least
for some angles, by choosing ¢’ = «, which in this case means o = 7/4.
In the particular case, when 6§ = ¢’ = «, the reflection factor measured
is exactly the same as the designed filter. Both designs are presented in
Fig. 5.6.

In order to determine the reflection factor in the mesh, both a point
source that generates the sound field and an observation point are arranged
such that the angle of incidence can be varied. The point source has been
placed far enough from the boundary surface for the plane wave reflection
factor to be indistinguishable from the spherical reflection factor [Butov,
1981|. The difference between the incident and reflected spectrum must
be compensated for geometrical propagation losses; in the 2-D case this is

/7.
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Figure 5.6. Measured reflection factor with (a) 6'=0 and (b)
0" = /4 for different angles of incidence. Predicted reflection
factor according Eq. 5.13 with (c) 8'=0 and (d) ' = w/4. The
solid wide line indicates the transfer function for the selected
The solid wide line indicates the

boundary condition R(0',w).
transfer function of the used filter.

Figure 5.6(a) shows different reflection factors obtained in a DWM when
0'=0. The figure demonstrates that the resulting reflection factors disagree
with the reflection factor assumed in the filter design and there is an evident
dependence with the angle of arrival; however, this dependence is far from
the expected (see Fig. 2.6). For the different angles of incidence, a behavior
similar to that of the filter can be observed: some similar distribution of
ripples and their shape, but there is a different tendency for each one of the
reflection factors to situate the average level of these ripples. In addition to
these differences small frequency shifts can be discerned. These frequency
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shifts are not only due to the inherent (artificial) dispersion of the DWM
algorithm, which is more evident at high frequencies (the strongest disper-
sion occurs for normal incidence), but also, there exist differences due to the
method itself, as it can be observed at low frequencies. On the other hand,
Fig. 5.6(c) shows the simulation obtained through Eq. 5.13: through simple
inspection it is evident there exists a considerable agreement with measure-
ments. Some differences appear from the dispersion, since this equation
does not include it. However, the most important source of error comes
from those reflection factor values which are near to the 0 dB and when
0 =~ 0; these misalignments can be observed in this simulation, giving as
a result a reflection factor higher than 0 dB, although they are lower than
3 dB. What it is evident is that these values are not possible, since it would
mean an amplification of total reflective walls of normal incident waves, and
this is not possible. Despite these inaccuracies, the proposed model shows
an important agreement with the measurements.

Figure 5.6(b) represents the case where ' = 7/4. It can be seen that the
differences between the results and the design for most angles of incidence
are moderate except for the highest angle of incidence. Note that in the
case of an angle incidence of § = 7 /4, then R(f,w) = R(#’,w), and this is
confirmed by the results (see Eq. 5.13). Furthermore, it is well-known that
the dispersion of the DWM method is minimized for the incidence angle
« and then, the agreement with the expected is maximum. The predicted
reflection factor under this design is also presented in Fig. 5.6(d). As in
the previous example, there are evident similarities between the prediction
model and the measurements, although same inaccuracies appear in this
example as well; however, it should be emphasized these differences are due
to frequency shifting, not due to the spectrum shape, which is nearly the
same.

Both figures demonstrate that the general model for boundary condi-
tions in the DWM method do not correspond to a locally reacting surface,
although a reflection factor that depends on the angle of incidence occurs.
The deviations from the behavior of a locally reacting impedance surface
could be predicted from Eq. 5.13.

5.2.3 Realization of a LRI model in a DWM based on angle detection

According to Sec. 5.2.2, the main error caused by using the reflection factor
as a boundary condition is a lack of plane wave angle of arrival information.
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A first approach to solve this problem could be to detect the angle of arrival.
In the following contribution of this thesis, the intensity vector information
is used to detect the plane wave angle of arrival. With this information,
the right reflection factor filter is determined. However, as will shown later,
this information is not enough to obtain the right filter: some modifications
should be made.

5.2.3.1 Angle detection

Here a plane wave is considered as the incident wave in a 2-D space. The
angle of incidence can be calculated from the z- and y-components of the
incident intensity vector (Eq. 2.49),

T(r,w) = é?R{P(r,w)U*(r,w)}, (5.14)

where P(r,w) is the spectrum of the sound pressure and U(r,w) is the
spectrum of the particle velocity vector, as follows,

f(w) = arctan <ZEZ;> . (5.15)

A finite difference approximation to Euler’s equation of motion, Eq. 4.14
and 4.15, can be used for determining the particle velocity components [Bot-
teldooren, 1995|. However, the total particle velocity is not the quantity of
concern; it is the component associated with the incident wave that is re-
quired. In the W-DWM this can very easily be obtained because the sound
pressure is naturally decomposed into incident and reflected components.

Consider a boundary surface parallel to the y-axis. The incident z-
component of the particle velocity component, since ug . (n) = ug 5(n)
according to Fig. 5.7, may be calculated as

At

DAL [pé,r(n) —p ()| (5.16)

ug,(n) =ug,(n—1) -

)

This pressure value is the one that travels from the mesh to the reflec-
tion digital filter through the delay line (see Fig. 4.4). Equation 5.16 could
be seen as a finite difference Euler’s equation with a backward difference to
the temporal derivative, applied to incident components.
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Figure 5.7. Scattering junction distribution used for the re-
alization of a LRI based on angle detecion.

After checking Eq. 5.16, more simplicity could be expected if Eq. 4.54
is used; however, it is the author’s experience that some errors can be found
if a point source is not far enough to be considered as plane wave and the
plane wave assumption of Eq. 4.54. For that reason, it works better to
use Eq. 5.16 since no wave shape is assumed. The proof of Eq. 5.16 is in
checking the plane wave case. When a plane wave arrives at this position,
Eq. 5.16 becomes Eq. 4.55. This is possible to demonstrate, if a plane wave
is considered, after some algebraic modifications as follows:

After using Eq. 4.59, Eq. 5.16 yields
_ B At ) N
g, (n) = g, (n = 1) = = |pp,(n) = p(Es,n) +pYp(n)],  (5.17)
POAT

and by using Eq. 4.60, it could be determined

pyp(n) =pp s (n) =pg,(n—1). (5.18)

)

Inserting Eq. 5.18 into Eq. 5.17, and now grouping terms in Eq. 5.17,
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it yields

N At At [ _ )
) = 0= 1) = E gt = )| = EE [ () = ptem)].
(5.19)

In Sec. 5.2.2, it was shown how the delay line impedance is calculated
as Z = \/2poc = poAx/At. Then,

At

up,(n—1)— poApr]g”"(n_ 1) =ug,.(n—1) —ugvr(n— 1) = uB—ﬂ;(fB, n—1)
(5.20)
the equation is rearranged as
_ N At _ -
up,.(n) = UB—ﬂi(I'an —-1)— AT P, (n) —p(Esn)|. (5.21)
+

Finally, if p5 .(n) = p(¥B,n)—pj ,.(n) is considered, what it is obtained
is

_ - At - - At
i ) = [ B = 1) = S ) = il = S0 o),
(5.22)
and this equation is equivalent to write
up,(n) = ug,(Fp,n) — uf (n), (5.23)

demonstrating the suitability of the proposed method to calculate the inci-
dent component of the particle velocity for plane waves. It should be noted
how this is possible to define since the interaction with the boundary condi-
tion is done through a 1-D link. Regarding the particle velocity component
parallel to the surface, the total component is a straightforward calculation
for the junction.

On the other side, since there exists a 1-D connection between the
mesh, there is no link between the scattering junction situated inside the
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boundary, T'p, in the y-direction (e.g., in the parallel direction to the wall,
see Fig. 5.7). One may think about to calculate the y-component by us-
ing the gradient between consecutive boundary junctions in that direction;
however, it requires to know the total pressure at those junction and they
depend on reflected component at the same time. The easiest way is to
assume this component could be calculated from the gradient between scat-
tering junction in r; and rj,. It should be taken into account that this
component does not change after reflection.

Let us note now Eq. 5.15 requires working in the frequency domain;
in principle each frequency component might arrive with a different angle.
The approach here is to use a window of N samples at each boundary
scattering junction rp and for each sound field component, such as pressure
and particle velocity components. It should be noted that the data can be
modified with the usual windows (e.g. Hamming or Hann).

In each time step the window is shifted one sample; 7 indicates the dis-
crete temporal displacement of the window. Applying a the Fourier trans-
form to each window, P(¥p,w, 7), Ug .(fp,w, T) and U—>(f'3,w T) are ob-

tained, where Uy . is the incident component in z- dlrectlon Note that this
approach correbpondb to applying a short-time Fourier transform [Proakis
and Manolakis, 1998] with a window of N components and an overlap of
N — 1 terms over the sound field components. This procedure provides a
spectrum of the different components for each time step, with a frequency
resolution related to N.

According to Eq. 5.15, the two components of the intensity are used to
obtain the angle of incidence at each position on the boundary rp,

0(tp,w, T) ~ arctan ( (5.24)

R{P(Tp,w, T)UJJy(I'J#U )}
%{P(rB,w,T)UBjr(f'BawvT)}>

For each displacement 7 of the time window, the results make it possible to
determine the reflection factor for each frequency according to Eq. 2.70. Fig-
ure 5.9 shows examples of spectrograms with different angles of incidence.
The data of each shift register have been windowed with a Hamming win-
dow. At each position of the spectrogram an arrow indicates the intensity
vector.

Once the angle 6 is obtained, the reflection factor filter is obtained ac-
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of the absolute value of the intensity vector.



124 Frequency-Dependent Boundary Conditions for Discrete-Time Methods

cording Eq. 2.69 at each 7 step. The method described in the foregoing can
be expected to give good results. However, this solution will be extremely
computationally expensive because a digital filter representing the analogue
reflection factor is determined at each time step and each boundary point
(see Fig. 5.8(a)). A more efficient solution should be found.

Consider a plane wave that strikes the boundary with the same angle
of incidence at all frequencies. This case is not unrealistic, because the first
reflections in a room correspond to a set of waves with the frequency content
of the source impinging on the walls. In this proposed model, it is assumed
that 0(fp,w,n) ~ 0(¥p,n), and this angle is selected from the frequency at
which the maximum absolute value of the intensity, |I(f5,w, 7)|max, Occurs
in each time step for (see Fig. 5.8(b)). This modification makes it possible
to define a reflection factor for each angle of incidence before the simulation
(off-line) and to apply it at each time step. As can be observed in Fig. 5.9,
this assumption is consistent with plane waves, where the vector arrows
are nearly the same at all frequencies. This algorithm can be improved
if discrete angles are considered ( = kAO,Vk € N), and then a discrete
number of filters would be required.

5.2.3.2 Filter compensation

It has been demonstrated in Sec. 5.2.2 that there is a difference between
the reflection factor assumed in the filter design, R(#',w), being 6" and
the one obtained in the simulation, R(G,w), where 6 is the “true” angle
of incidence, when Huopaniemi’s method is used. This difference can be
calculated analytically from Eq. 5.13.

Since the method previously outlined makes it possible to estimate
one can design the filter accordingly, that is, 8 = 6. Equation 5.13 now
becomes

- 2R(0,w)
R(,w) = . 5.25
) R )+ (D) o

It is apparent that even when information about the angle of inci-
dence is available and used in the filter design there are differences be-
tween the analytical theory and the result. However, this effect can be
avoided by redesigning the boundary filter such that the resulting reflec-
tion factor becomes identical to the desired analytical expression, that is,

A~

R(f,w) = Rana(f,w), which gives
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Figure 5.9. Spectrograms of different angles of incidence: a)
0 degrees, b) 15 degrees, c) 80 degrees and d) 45 degrees.

Rana(e’w)(cosa + 1)

cos

2 — Rana(0,w) (522 —1)°

cos 0

R(O,w) = (5.26)

In other words, if the boundary filter is designed according to Eq. 5.26
where Rapn, is given by Eq. 2.70 then the resulting reflection factor actually
behaves as the analytical expression.
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5.2.3.3 Examples

In order to examine the accuracy of the proposed model, a 2-D simulation
study has been performed. The mesh consists of 1500x1500 cells, where
the boundary condition simulating a frequency-dependent impedance is im-
plemented on one side, and the remaining boundaries are considered ab-
sorbing [Murphy and Mullen, 2002|. The size of the cells is determined
from the Courant formula (Eq. 4.36). The sampling frequency is 80 kHz,
and the represented bandwidth correspond to a normalized frequency of
0.25% fs [Duyne and Smith, 1993]. The measured reflection factors are ob-
tained again as the ratio of the spectrum of the reflected signal to the
spectrum of the incident plane wave for different angles of incidence. The
set-up of these example are mostly equal to the one appeared in Sec. 5.2.2.1.

The impedance boundary condition is in accordance with the example
in Sec. 2.4.1.4. The coefficients of the digital filter are determined using
Yule-Walker’s algorithm with an IIR digital filter of 60th order using the
analytical response of the analytical reflection factor (see Fig. 2.6). Note
that the impedance spectrum obtained by the digital filter design should
be as accurate as possible. Even small differences between the reference
impedance and the digital filter design can give rise to significant differences
between the physical (or theoretical) reflection factor and the one obtained
by the digital impedance. The analysis windows are Hamming and they are
based on 128 samples.

Figure 5.10 compares the analytical reflection factor with the results of
the simulation for various angles of incidence (0, 15, 30 and 45 degrees),
both without and with the suggested compensation method. As can be
seen the compensation reduces the difference between the desired and the
obtained reflection factor significantly. As expected, compensated and un-
compensated results are identical for this particular case when 6 = «, cf.
Eq. 5.13.

Regarding the size of the windows, the larger the size, the higher the
computational cost. However, note that high resolution is not needed, be-
cause only the maximum value of the intensity, |I(f5,w, T)|max, is used.

However it should be mentioned that the suggested method only works
in cases where a single angle of incidence is enough to describe the reflection.
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Figure 5.10. Refiection factors obtained without filter com-
pensation (dotted line) and with filter compensation (dashed
line) compared with analytical results (solid line) for a) 6 =0
degrees, b) 0 = 15 degrees, c) 6 = 30 degrees and d) 6 = 45
degrees.

5.2.3.4 Limitations of the method

The main advantage of this method lies in the possibility of improving the
accuracy of the results when Huopaniemi’s method is used. Since the main
handicap of this method lies in the lack of information of the angle of arrival,
a simple method for detecting this angle is proposed.

The results show a good agreement with the expected ones and it makes
this angle of arrival independent in each scattering junction. However, it
should be said there are a set of serious limitations for a practical imple-
mentation in a simulation system:
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e [t only works when only one plane wave arrives in each one of the
boundary junctions at the same time. In case several waves with dif-
ferent angles of arrival strike on the surfaces, each scattering junction
will process the information according to the total particle velocity
component as a linear combination of those arriving waves.

e It requires a constant update of the filter coefficients of each filter
in accordance with the detected angle of arrival. This considerably
increases the computational cost. Furthermore, time-varying digital
filters can provide errors and distortions occurring during parameter
transitions [Mourjopoulos et al., 1990].

e The angular dispersion distorts the particle velocity components and
thus, it can lead to errors in the angle detection. These errors can be
especially problematic for those reflection factors which, for a given
impedance, are very sensitive to changes in this angle.

e The main handicap lies in the assumption of the plane wave inci-
dent component as the outgoing component for a particular scatter-
ing junction. As has been said in Sec. 4.3.1. Direct identification
in the multidimensional case for the plane wave components and the
outgoing/incoming variables does not exist. However, the reason for
making this equivalence in this algorithm is due to the fact that the
boundary junction is connected through a 1-D junction and it has
been calculated through the gradient of the outgoing components and
not directly with the outgoing particle velocity components. It has
been probed how this approach works for detecting the angle of arrival
for a plane wave with only an incident component.

Although it could be thought the angle detection could be a direct im-
provement for Huopaniemi’s method, due to these presented reasons, this
makes it very difficult to extend the algorithm in a real room acoustic sim-
ulation. Thus, it is necessary to find a new algorithm able to considerably
reduce the computational cost and increase the accuracy of the boundary
conditions.
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5.2.4 Realization of a LRI model in a DWM based on mixing modeling
strategies

Since the modification of Huopaniemi’s method is neither accurate in most
senses nor efficient, it is necessary to find another point of view to solve
the problem. According to Sec. 5.2.2, the main problem with this method
in a multidimensional mesh lies in the non-physical boundary description,
since a reflection factor is used to determine the portion of reflected energy
without taking into account the angle of arrival.

However, in Sec. 2.4.1.3, it was seen how in a locally reacting impe-
dance, the impedance is independent of the plane wave angle of arrival.
Therefore, it seems logical that using the impedance to describe a bound-
ary condition, the reflecting waves would have a description according to
Sec. 2.4.1.3. However, so far, this has not been done yet, since only pressure
or incoming/outgoing components are involved in a DWM method.

Therefore, a combination of different methods may be the solution.
Thus, the proposed method is based on the interaction between different
paradigms: the impedance is modeled with a Wave Digital Filter (WDF) [Fet-
tweis, 1986] (see Sec. 4.7 for details) and with the proper interaction model,
it is coupled to the sound field space, a Digital Waveguide Mesh. In this
section, a review of the employed mixing modelling strategy is presented.
In the next subsection, the proper model of the impedance is introduced
and finally, the whole system is analyzed, demonstrating how the proposed
realization is able to simulate a locally reacting impedance.

5.2.4.1 Mixing modeling strategy

The mixing modeling strategy is a recent trend in digital sound synthesis
by physical modeling, using different paradigms to simulate various parts
of musical instruments [de Sanctis et al., 2003, Karjalainen et al., 2003,
Rabenstein et al., 2007|. Although in room acoustics this tendency is not
usual, i.e., just by mixing both K- (at the mesh itself) and W-DWM (at the
boundaries) using KW-converters to mix both methods [Karjalainen, 2004,
Murphy and Beeson, 2007| could be seen as an example of this mixing
modeling.

The interaction between the different parts assume continuous transi-
tions from one side to the other, and is no fracture and discontinuity at the
models interface appear. This seamless transition exists when all derivatives
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below a certain number 3, are equivalent at both sides of the interface [Pe-
trausch, 2007].

Based on this concept, this contribution addresses the coupling of a
DWM method with a digital filter representing the impedance, rather than
the reflection factor. The mixing modeling strategy for this coupling is
the one proposed by Petrausch and Rabenstein [Petrausch and Rabenstein,
2004, 2007]. They propose the use of WDFs ports as a common interface
between different blocks.

WDFs appear as a discretization process of complex systems, where
each network element is discretized separately by a bilinear transforma-
tion [Proakis and Manolakis, 1998|. The main reason for using WDFs as
a common interface is the capacity to avoid potential computational prob-
lems, e.g., delay-free loops or potentially unstable implicit equations in the
interconnection of the network elements [Szczupak and Mitra, 1975]. This
can be done by using the so-called wave variables. Originally, Fettweis [Fet-
tweis, 1986] defined these variables as voltage-current (see Sec. 4.7.1), but
considering the impedance analogy |Beranek, 1954| they can be used as
acoustic variables.

In the adaptation it has to be taken into account this forces wave vari-
ables to have a directional component. Then, it is convenient to express
WDF variables in a vectorial way

a(®,n)T = Ip(¥,n)+ Zyu(F,n)T, (5.27)
b(F,n)T = Ip(F,n) — Zyu(F,n)T, (5.28)

where I = [1,1]7 is all-ones vector. The variables a(¥,n) and b(¥,n) rep-
resent the outgoing and incoming wave variables, respectively, and prop-
agation information is inherent in them at position r, since each vector
component of these wave variables depends linearly on one of the particle
velocity components. That means a(¥,n) = [a;(F,n), ay(T,n), a.(T,n)] and
b = [by(T,n), by (T,n),b,(f,n)] and these are vectors with dimensions as the
pressure. In the multi-dimensional case, Z,, does not correspond with the
physical characteristic impedance of the medium; it must be calculated in
order to achieve this wave decomposition, as will be shown later.

3This number is calculated as min(ni, n2), where nq, and ns are the maximum order of
the spatial derivative of each one solutions of the models involved into the entire model.
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In case just one component is used, it results as

an(tp,n) = p(t,n)+ Zyuy(t,n), (5.29)

by(tp,n) = p(T,n) — Zyu,(t,n). (5.30)

The subindex n indicates that wave variables have the same direction
as the component of the particle velocity u,(¥,n) = u(f,n)-n. In the same
way, the Kirchhoff variables, p and wu,, can be expressed in terms of the wave
variables as

pEm) = o) ; bl ) (5.31)

g (Fm) = o) = ba(En) (5.32)

27,

The proper choice of the port resistance Z, makes it possible to separate
the design of the block elements from the definition of their interaction by
appropriate adaptor elements [Petrausch et al., 2005a]. Here, the nomen-
clature Z, is used instead the classic R for the resistance in order to not
create confusion with the reflection factor. The separation and interaction
in WDF terms ensures an unconditionally stable model provided if both
parts, the DWM method of the sound field and the digital filter realiza-
tion of the impedance, are independently stable. Once delay-free loops are
removed, the discrete-time domain system can be computed iteratively.

5.2.4.2 Impedance model

As stated above, the coupling between digital filters representing the im-
pedance with WDF ports in this study has been realized using a certain
model [Petrausch and Rabenstein, 2004]. This solution is based on a State
Space Systems (SSS) approach, which states that any linear system can be
expressed in terms of an SSS.

In the present case , let us consider a filter Z(z), where z is the z-
transform variable, a single input, u,(T,n), and a single output p(¥,n) are
related as follows,
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Figure 5.11. (b) Digital Filter scheme representing a certain
impedance. (c) Interaction of a second order IIR filter with
wave digital filter ports.

z(t,n+1) = az(r,n)+ bu,(t,n),
p(t,n) = cz(t,n)+ du,(T,n).

(5.33)
(5.34)

The vector z(n) is the system state. For this situation, a is a matrix, b
and ¢ are vectors, and d is a scalar (see |[Proakis and Manolakis, 1998] and

Fig. 5.11(a) for more details).
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Delay-free loops in the interconnection of the SSS with WDF are avoided
by the following procedure: Eq. 5.34 is inserted into Eqgs. 5.29 and 5.30, and
then is forced to Z, = d (see |Petrausch and Rabenstein, 2004]| for details).
Then, b(n) becomes independent of w,(n), avoiding instantaneous feedback
and sources of instability. Thus,

Un(Fm) = zid(an(f,n)—gz(f,n)), (5.35)
bo(E,n) = ca(f,n). (5.36)

As an example, a second order IIR filter in a canonical observable form
that represents the impedance is adapted to WDF ports. According to state
space theory, a second order IIR digital filter is represented as an SSS by
the equations

co — c1da

2(Fn+1) = ( :Z; (1) )z(f', n) + ( e = cody >un(f',n)
p(F,n) = (1 0)z(f,n)+co-un(t,n). (5.37)

The digital filter that represents the impedance expressed in terms of WDF
ports is shown in Fig. 5.11(c). Note that the specific impedance of the
medium is always the independent term of the filter numerator polynomial,
Cp.

Since these variables do not necessarily appear explicit in a scattering
junction of a mesh, let us define the upper-index f in order to indicate that
pf (¥,n) and ul, (T, n) are the output and input of the digital filter at position
r.

5.2.4.3 Maodel description

In this section, the complete system is presented. The parts forming the
whole system are explained in detail. Then, an analysis of the complete
system will demonstrate its locally reacting impedance behaviour.

The most convenient and straightforward way to consider the behaviour
at the boundary of a mesh structure is to set a boundary junction as having
one other neighbour [Murphy, 2000]. This can be done by connecting a
junction specifically situated just in the interface of the boundary itself,
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Figure 5.12. (a) Termination of a waveguide mesh due to the
boundary resulting in a reflection, where the boundary condi-
tion is expressed in terms of the reflectance R. (b) Scheme
of the proposed model, where the boundary condition is ex-
pressed in terms of the impedance Z.

rp [Savioja et al., 1996b|]. However, so far, the boundary condition has
been expressed in terms of a reflection factor [Escolano and Jacobsen, 2007],
where a constant angle of incidence is always assumed (see Fig. 5.12(a)); the
presented method proposes expressing it in terms of the impedance function
itself (see Fig. 5.12(b)), which is constant for any angle of incidence. Below,
a frequency dependent impedance is assumed, giving a generalization of the
boundary problem.

However, this interaction between the DWM and the impedance filter
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Z(z) cannot consist of a direct connection for two main reasons: the first is
related to the difference in the nature of the variables of each part; whereas
the DWM is based on wave variables (there is a causal relationship between
the incoming and outgoing wave components), the impedance is in terms
of Kirchhoff variables (the impedance is defined as a ratio of two physi-
cal and observable variables). The second reason is the one mentioned in
Sec. 5.2.4.1, where the main source of instability in the coupling of two dig-
ital system is the delay-free loops. Fortunately, both handicaps are solved
using a common interaction in terms of WDF.

It has to be noted how, in the proposed method, the DWM see the
boundary condition as reflection factor as well, since the entrance to the
boundary are wave variables. However, the main difference lies in the
boundary condition definition, where the proposed method implicitly takes
into account the angle of arrival, since the normal particle velocity compo-
nent to the boundary is the entrance to the filter, whereas the method of
Fig. 5.12(a) assumes a certain unique angle for defining the reflection factor
filter, giving a non physical model (see Sec. 5.2.2).

At this point, the complete model is introduced in Fig. 5.13 at a bound-
ary junction rg. Once the conversion of the impedance filter in WDF ports
has been solved in Sec. 5.2.4.2, the DWM variables have to be converted as
well. In the part of Fig. 5.13, labeled as DWM-WDF converter, this process
is carried out. This is done by just identifying the DWM variables with
WDF variables through a simple scaling factor [Karjalainen, 2003, 2004]:

a(rtp,n)

v o(m) = 22 (539
pp.(n) = b(rg’n), (5.39)

where p}, _(n) and pj _(n) are the incoming and outgoing components trav-
eling from the position ¥5 towards the impedance filter Z(z) 4.
Once both parts of the system are converted to WDF variables, it must

be taken into account that each part has a different port resistance. This
means that both parts cannot be directly connected. In order to couple these

4The incoming and outgoing wave directions will be defined from that scattering
junction. Therefore, one has to assume there could have some changes in the wave
variables definitions when they are compared with adaptors (see Sec. 4.7.3).
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Figure 5.13. The complete proposed system. The DWM is
connected with a digital filter realization of the impedance
through a variables adaptation, in order to avoid instabilities.
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two WDFs and avoid instabilities, it is necessary to use a two-port adaptor
(labeled as impedance adaptor in Fig. 5.13) to adapt both WDF impedances
and avoid direct feedback loops. This adaptor, known as parallel adaptor in
WDF literature [Bilbao, 2001], relates wave variables to different impedance
ports (see Sec. 4.7.3 for details). A matrix description for a parallel adaptor
of two WDF ports, M (subindex for the mesh) and I (subindex for the
impedance), is

< C;jfw(g;%) > - < L 4ny 1__77 ) < bbﬂfg;z ’:)) ) . (5.40)
where ¥ = (Zpr — Zpar)/ (Zo1 + Zpar).

In the particular case of the specific impedance of the mesh, Z,,/, it
can be identified as the specific impedance of the medium pgc,,, where ¢, is
the (numerical) speed of sound in the mesh. It must be considered that the
speed of sound in the mesh is not necessarily the same as the theoretical
speed of sound ¢. Assuming a homogenous discretization of the mesh (Az =
Ay), the speed of sound in the mesh can be calculated as ¢, = Ax/At.
In accordance with the Courant condition (see Eq. 4.35) and assuming this
condition as equality, after some simple algebraic manipulations, the specific
impedance of the DWM is

Zpnt = pocvV'2. (5.41)

It has to be noted how this equivalence is true and constant in a fre-
quency free-dispersion range. It has been assumed that this algorithm is per-
formed on up to a quarter of the sampling frequency, as stated in Sec. 4.3.1,
where the numerical speed of sound can be considered constant.

With the convenient arrangement of those cited elements, the whole
mesh with a boundary condition is presented in Fig. 5.13. The boundary
condition is connected to the DWM through a dummy junction. However,
in this case, the DWM variables that connect this dummy junction to the
impedance is converted to WDF variables through a simple scaling factor.
These WDF ports are adapted in order to avoid reflections due to the port
impedances mismatch. Once the WDF ports have adapted their impedance,
they are conveniently filtered by a digital filter that represents the local
impedance.
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5.2.4.4 Analysis of the system

In this section, the system presented in Sec. 5.2.4.3 is being analyzed in
detail to demonstrate analytically that this model (Fig. 5.13) works as a
locally reacting impedance. This analysis is carried out in two directions:
from the DWM variables to the digital filter and vice versa.

For the purpose of this analysis, let us consider the following example:
a second order IIR digital filter modeling a discrete point rp of a plane
surface with a normal vector in the n-direction and an impedance with
impulse response z(¥p,n) . Let us define ap/(rp,n) and by (rp,n) as the
outgoing and incoming WDF variables obtained from the dummy junction
to wave variables, according to Eqs. 5.38 and 5.39. These variables have a
specific impedance Z,s. Then, they are adapted to the WDF specific impe-
dance of the digital filter Z,; [Petrausch and Rabenstein, 2004, through the
adapter (see Eq. 5.40). Then, a more suitable transformation of the adaptor
equation should be made, where the WDF port variables in the impedance
(ar(fp,n) and br(rp,n)) are obtained in terms of the WDF port variables
in the mesh at position rg. With some simple algebraic manipulations,
such wave variables become

ar(fg,n) = ay, - ap(Tp,n) + aj; - ba (T, n), (5.42)
b[(f‘B,’I’L) :aL-aM(f'B,n)—ka&-bM(f‘B,n), (5.43)

where o, = (Zpamr + Zpr)/(2Zpm) and oy, = (Zpnr — Zpr) [ (2Zpur)

Inserting Eqgs. 5.38 and 5.39 into Eqgs. 5.42 and 5.43, WDF variable at
the filter entrance can be obtained as a function of the DWM variable of
the dummy junction

ar(Fp,n) = (p}(Ep,n) + pp(Fp,n)) + ”A; (pp(EB,n) — ph(Fp,n)) (5.44)
ij

ZpM

bi(tp,n) = (p5(Tp,n) + pg(ts,n)) — (pp(tB.n) — pk(TB,n))(5.45)

Finally, from Eq. 5.44 and 5.45, and in accordance with Fig. 5.13 and
Eq. 5.32, the input of the filter is calculated as
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aI(f'B,n) — b[(f’B,n) N PE;VZ(”) _pJBg?z(n)
27,1 Zpnt '

(5.46)

In accordance with the equivalence of the plane waves in a DWM stated
in Sec. 4.3.1, and particularly, with Eq. 4.62, the entrance in the digital
filter matches with the n-component of the particle velocity, which contains
inherent information regarding the angle of arrival 8

ar®pn) —bi(Epn) _ pilfsn) =peEom) 0 g
2Zp[ poC

where p;(fp,n) and p,(f¥p,n) are the incident and reflected plane wave
components (see Sec. 2.4.1.3).

It should be considered that Eq. 4.62 can be applied to the dummy
junction without any change in its formulation, since only the normal com-
ponent of the wall can be applied to the dummy junction, being consequent
with Eq. 5.46.

Now, the next step is to demonstrate that the output of the filter
pf(Fp,n) is directly the pressure at the junction p(Fp,n). According to
Fig. 5.13 and WDF theory, and taking into account Z,; = ¢ (see Sec. 5.2.4.2):

al(f'Bv n) = pf(f'Ba n) + ZPI ’ u?é (IN‘B, n)? (548)
bI(f‘Ba 7’L) = pf(f‘B7 n) - ZPI ’ u’{z(f‘Ba 7’L) (549)

The inverse of Egs. 5.42 and 5.43 can be useful for calculating the WDF
ports in the mesh, ap/(Tp,n) and by (Tp,n)):

G,M(I'B,n) - aI_
bM(f'an) = Oé;_

-aI(f'B,n)—i—a}'-bI(f'B,n), (5.50)

-a[(f‘B,n)—i-Oé[_ ~b[(f‘B,TL), (5.51)

where a;r = (Zpr + Zpm)/(2Zp1) and of = (Zpr — Zpm)/(2Zp1).

Inserting Eqgs. (5.48) and (5.49) into Egs. (5.50) and (5.51), the following
equations are obtained:
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ar(Fp,n) = pl(Ep,n) + Zpas - ud(Fp,n), (5.52)

bu(Fp,n) = p! (Fp,n) — Zpn - wh(Fp,n). (5.53)

Once these equations are converted into DWM variables through the
scaling factors, they become:

pf(fB,n) + ZpMqu(f'B,n)

Pp.(n) = 5 , (5.54)
F(Ep.m) — Zopiid (B
() = ZATE) = Tt ) (5.55)

Then, these variables are related to the pressure pg(n) just by adding
both

p(Ep,n) = pj; . (n) + pp . (n) = p! (Ep, n). (5.56)

An alternative way to demonstrate the validity of the model is to cal-
culate the reflection factor in the boundary scattering junction. Taking
into account that the impedance is, in general, expressed in the frequency
domain, the uppercase variables are used to denote the amplitude corre-
sponding to a particular frequency w. This can be done using the impedance
definition in this scattering junction Z(rp,w) and Egs. 5.52 and 5.53

P(rp,w) Ay (T, w) 4+ By (T, w)

Z(r =——' " =7
(F5,) Un(tp,w) PM A0 (F,w) — Bar(Fp,w)

. (5.57)

Through the adaptor equations 5.50 and 5.51, the impedance can be
expressed in terms of the WDF ports in the impedance filter

~ A[(f‘B,W)+B[(f'B,W)
7 =7
B(rB7W) p]AI(f‘B7w)_BI(f‘Baw),
that is directly Z, the digital filter definition (see Fig. 5.13). Moreover, with

Egs. 5.44 and 5.45, the impedance can be expressed in terms of the wave
variables P3 _(w) and Py _(w)

(5.58)
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Py (@) + P} (w)

Pl;,z<w) - Pg,z(w)

ZB(f‘B,w) = ZpM (559)

Using the equivalence with the plane wave variables, Eqgs. 4.61 and 4.62,
this is expressed in terms of incident and reflected plane wave components
Pi(tp,w) and P.(Tp,w) (see Sec. 2.4.1.3)

pPocC Pi(f'B,w) + Pr(f'B,w)
cosd Pi(rp,w) — P (Tp,w)

ZB(f'B,w) = . (5.60)

Now, by means of the definition of the reflection factor in the plane
wave, Eq. 2.65

poc 1+ R(Tp,w)
cosf1— R(tg,w)’

Zp(Ttp,w) = (5.61)

which agrees with the definition of a locally reacting impedance, Eq. 2.70.

5.2.4.5 Examples

In order to demonstrate the validity of the proposed method in a cartesian
mesh, some examples are presented. They correspond to the simulation of
a frequency-dependent impedance surface, where the measured reflection
factor is analyzed and compared with the theory at different angles. With
the same set-up, some simulations are carried out with an interpolated
cartesian mesh as well. Finally, some additional issues are addressed.

Experimental set-up:

The experiment presents the effect of one impedance surface when plane
waves strike it at different angles of incidence. Let us consider a 2-D mesh
with 2000%x 1000 cells in a cartesian topology, where the boundary condition
is implemented in the middle of the largest side and with a length of 1000
cells. The rest of the boundaries have been treated with absorbing boundary
conditions [Murphy and Mullen, 2002| to reduce the presence of reflections
coming from the limits of the mesh. The size of the cells is determined using
the Courant formula, Eq. 4.35, as an equality. The sampling frequency is
80 kHz, and from now on the frequency axes are presented normalized to
the sampling frequency. Regarding to the source bandwidth and position,
same guidelines than the ones used in Sec. 5.2.2.1 have been followed.
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In these simulations, the reflection factors are obtained and they are
analyzed and compared with theoretical results as a function of the angle
of incidence. These measured reflection factors are obtained as a difference
between the spectrum of an incident plane wave source and the measured
reflected signal. A total-field /scattering-field formulation has been used in
order to minimize undesirable reflection effects [Umashankar and Taflove,
1982, Mur, 1981]. This formulation consists of carrying out two simulations
with the same sources, but one with the proposed boundary condition and
the other one without it. The scattering/reflecting field consists of the
difference between both simulations. Also, a proper analysis window size
according to the length of each one of the reflected impulse responses has
been chosen in order to avoid the presence of undesirable reflections.

The frequency-dependent boundary condition is again modeled as a
hard-backed layer of porous material (see Sec. 2.4.1.4).In accordance with
the locally reacting impedance definition, Eq. 2.70, the theoretical reflection
factor can be theoretically calculated for different angles. In this case, the
angles of arrival under study € are 0, 15, 30, 45, 60 and 75 degrees. These
theoretical reflection factors are indicated in Fig. 2.6.

The presented model is realized and compared not only with the ex-
pected reflection factors obtained analytically, but also with Huopaniemi’s
method.

The coefficients of the digital filter that represent the impedance have
been modeled using an IIR digital filter of 60th order whose coeflicients
have been calculated according to Yule-Walker’s algorithm using the ana-
lytical response of the absolute value impedance. Figure 2.5 also presents
the complex components of the filter approach used to simulate the impe-
dance. In the case of Huopaniemi’s method, the reflection factor has been
calculated from the locally reacting impedance definition and assuming a
normal incidence (6’ = 0). The corresponding digital filter coefficients have
been calculated using a 60th order IIR filter using Yule-Walker’s algorithm
as well, the response being represented in Fig. 5.14. From the discussion
addressed in Sec. 2.4.1.4, the reflection factor used as a reference is the one
obtained from the approached impedance spectrum and represented in the
corresponding figure.

Analysis of results:

In accordance to the simulation configuration described above, a set
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Figure 5.14. Module of the reflection factor used for
Huopaniemi’s method [Huopaniemi et al., 1997], calculated as-
suming an angle of arrival of 0 degrees.

of simulations have been performed. In Fig. 5.15, the reflection factors at
the specified angles are presented. The reflection factor obtained according
to the proposed method (solid line) is compared with the results obtained
following Huopaniemi’s method (dashed line) and with the expected theo-
retical results (dot-dashed line). Although Huopaniemi’s method has some
dependence on the angle of arrival, it is too far from a locally reacting im-
pedance [Escolano and Jacobsen, 2007|. However, the results obtained from
the proposed method show an evident agreement with the expected results.
It is true that some errors appear for high frequencies, but they are expected
since for frequencies near to 0.25, the dispersion effects are presented for
most angles of propagation, except for § = 45 degrees (Fig. 5.15d)). For this
particular scenario, dispersion is minimized, since this angle, in the partic-
ular case of a homogenously discretized mesh, is the same as the one that
forms the diagonal direction with respect to the mesh coordinated system.
At this angle, the inherent angular dispersion is minimized, independently
of the oversampling used to reduce the frequency dispersion, and for that
reason there is a high level of agreement between theory and results. For
very low frequencies some discrepancies appear, but they are dependent on
the window analysis size and the signal truncation.

This method shows great efficiency since it only requires the definition of
just one filter, the impedance filter, even when the reflection factor is largely
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Figure 5.15. Reflection factors calculated with the proposed
method for the cartesian mesh (solid line), for the interpo-
lated cartesian mesh (dotted line) and with Huopaniemi’s
method [Huopaniemi et al., 1997] (dashed line), compared with
the expected theoretical reflection factor (dot dashed line), for
the angles: (a) 0 degrees, (b) 15 degrees, (c) 30 degrees, (d)
45 degrees, (e) 60 degrees, (f) 75 degrees.
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dependent on the angle of arrival and the spectrums are highly different
between them. This is one of the advantages with respect to Huopaniemi’s
method, because even with prior knowledge of the angle of arrival, as shown
in Sec. 5.2.3, it would be necessary to define a digital filter for each one of
the possible angles. This would increase the computational cost and even
in that case, the proper results would not be assured.

However, one of the main problems with this implementation is the
efficiency of the W-DWM itself (see Sec. 4.3). Fortunately, the global effi-
ciency of the system can be augmented using a hybrid mesh in the fashion
of [Karjalainen, 2004] and [Murphy and Beeson, 2007|. As pointed out in
Sec. 4.3, generally, a hybrid mesh consists of a K-DWM realization of the
entire geometry and an interface with a W-DWM at the boundaries. The
proposed method can be included in this hybrid mesh by simply coupling the
model of Fig. 5.13 with a K-DWM via the KW-pipe proposed in [Erkut and
Karjalainen, 2002b| (or with a more efficient version of this converter |Kel-
loniemi, 2006]) or the one in [Murphy and Beeson, 2007|, more appropriate
for the triangular DWM case.

At this point, some new simulations have been carried out under a
hybrid mesh. However, since the KW-pipes have caused no errors [Kar-
jalainen, 2004, Murphy and Beeson, 2007|, the simulation carried out with
this mesh has provided exactly the same result as using a W-DWM for the
entire mesh. For that reason, no additional results are reported. Never-
theless, an interesting additional advantage of using KW-pipes is to couple
an interpolated cartesian mesh [Savioja and Véliméki, 1997]. The inter-
polated mesh itself does not reduce the frequency dispersion; however it
spreads the angular dispersion evenly and then, combining it with warp-
ing filtering, the dispersion is reduced considerably [Savioja and Valiméki,
2000]. The application of this mesh to room acoustic simulation has been
frequently used [Kelloniemi et al., 2005, Kelloniemi, 2005a|. These results
are also presented in Fig. 5.15 (dotted line) and it can be observed how
this mesh, with any additional consideration for the boundary condition,
is directly coupled to the proposed boundary condition. However, not just
one dummy junction has to be taken into account in this case, but also the
dummy junctions situated in the diagonal in respect to the scattering junc-
tion py, with their respective weights, according to [Savioja and Valiméaki,
1997]. The results show how for high frequencies some differences exist in
respect to the theory, similar to the cartesian mesh; however the spectrum
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shape is still highly similar. These results demonstrate how the use of the
proposed method is also suitable for alternative mesh geometries, such as
the interpolated cartesian mesh.

It should be mentioned that the idea of interfacing these paradigms has
already been proposed by Karjalainen [Karjalainen, 2003|, where in order
to achieve a 1-D simulation, an interface between FDTD (or K-DWM),
DWG and WDF was proposed. However, that work has demonstrated how
this sort of interfacing provides additional advantages in a multidimensional
simulation. In fact, this coupling system permits the direct definition of a
locally reacting impedance to the FDTD method, taking into account the
fact that it is also a pending problem for this method. This problem has so
far only been approached in the room acoustic field by Kowalczyk and van
Walstijn [Kowalczyk and van Walstijn, 2007], for non-frequency dependent
boundary conditions or a simple spring-mass system |[Kowalczyk and van
Walstijn, 2008|.

Another important feature to be considered is the linearity of the sys-
tem. This is assured by the linearity of the digital filter and the interaction
with the DWM. Let us assume two different plane waves with a different
angle of arrival. If Huopaniemi’s method is used with prior knowledge of the
angle of arrival, it will be problematic because just one degree of freedom
exists in the digital filter design and then, one of the plane waves would
be filtered with an improper reflection factor filter. However, with the sug-
gested method, this is not a problem because the impedance is constant
with the angle of arrival and the system linearity permits the acquisition of
a composition of reflected waves as if each one were obtained separately.

It should be noticed that this model makes sense in a multidimensional
simulation, where the concept of the angle of arrival appears. In case of 1-D
simulations, the Eq. 2.70 has § = 0 and then, the same results are obtained
with the previous approach as with the proposed model. However, in this
particular case, the use of Huopaniemi’s approach is more efficient than the
presented one |Karjalainen, 2004], since the coupling with the digital filter
representing the reflection factor does not need any kind of adaptation.

In Sec. 5.4, a real scenario is simulated by using the boundary condition
algorithm developed during this section, and compared with real measure-
ments, showing a great agreement between results.
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5.3 Boundary conditions in the FDTD method

Throughout this thesis, it has been commented several times how the FDTD
approach (Botteldooren’s approach, see Sec. 4.2) is not a really common
technique for using in room acoustics, since the computational cost is dras-
tically higher than the K-DWM approach. However, it remains popular for
some acoustic applications such as aeroacoustics and outdoor sound propa-
gation. Furthermore, during the last few years, some publications have ap-
peared with some interesting contributions to the use of the FDTD in room
acoustics, with special emphasis on the boundary treatment. However, few
of them have been focused on the locally reacting impedance problem.

For that reason, it is worth trying to contribute to the FDTD method
and how to define an efficient algorithm for locally reacting impedance mod-
eling in a similar fashion to that presented in Sec. 5.2.4.

In this section, a short overview of the boundary condition implementa-
tion for the FDTD method is presented. During the next section, a method
for the locally reacting impedance implementation is proposed [Escolano
et al., 2008a].

5.3.1 Previous approaches

The impedance boundary condition in discrete-time method in acoustics,
particularly for the FDTD method, has been reached in different ways for
different acoustic topics, such as aeroacoustics [Ozyoriik and Long, 1997,
Fung and Ju, 2004], outdoor sound propagation [Dong et al., 2000, Heutschi
et al., 2005, Ostashev et al., 2005, Escolano and Pueo, 2007| and room acous-
tics [Botteldooren, 1995]. All those methods are based on modifications of
Eqgs. 4.14-4.17 in the boundary edges.

Since the total pressure, and also the particle velocity components ap-
pear during the algorithm, it is much more easier to work directly with the
impedance. This method, considering a discrete time signal representation
of the pressure and particle velocity, defines a relation between them as
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N-1
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P(e?) = —"=0 U(e) -, (5.62)
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where the frequency response of the impedance has been approximated by
using rational expression. This approximation of the frequency response use
to be seen as a IIR filter, which is usually carried out using Prony [Parks and
Burrus, 1987|, Yule-Walker [Friedlander and Porat, 1984] or Padé [Ostashev
et al., 2007] algorithms.

The IIR filter structure in the frequency domain has a corresponding
equation in the time domain [Proakis and Manolakis, 1998]. This difference
equation,

N M-1
p(n) = Z cpu(n—n') -0 — Z dpp(n —m'), (5.63)
n/=1 m/=1

can easily be incorporated in the discrete time model, such as in [Ozyoriik
and Long, 1997, Heutschi et al., 2005]. However, such a method requires
storing both the sound pressure and the particle velocities at different time
steps as coeflicients, which leads to a significant increase of the required
computer memory, since for each position N particle velocity and M — 1
pressure data points at the boundary cells must be stored from previous
time steps. Furthermore, using such a function in a recursive convolution
or using differential methods can be very time-consuming (see [Sullivan,
1992| for a detailed comparison of such methods).

Some proposed methods for boundary conditions have been focused on
the room acoustic simulation: Olensen [Olesen, 1997] modified the FDTD
formulation including a constant absorbing coefficient, but no analysis about
the dependence with the angle of arrival has been presented. Suzuki [Suzuki
et al., 2007] and Jeong [Jeong et al., 2007] implement frequency-dependent
boundary conditions assuming a damper-spring-mass model of the wall im-
pedance. Unfortunately, both not analyze the behaviour of their models
in the locally reacting sense, only in the normal direction to the wall. In
this sense, Kowalczyk and van Walstijn offer a similar method based on the
same wall assumptions; however, the main contribution lies in the analysis
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of the method in terms of the locally reacting impedance model [Kowalczyk
and van Walstijn, 2008].

These considerations lead to the conclusion that an implementation of
an FDTD simulation incorporating frequency dependent boundary condi-
tions will require significant computer resources and conditionally stable
impedance boundary conditions [Fung and Ju, 2004]. One has to consider
this modifies the Eqs. 4.14-4.17; it can be complicated to obtain a general
expression for an indeterminate number of coefficients; and stability is not
easy to ensure.

5.3.2 Proposed method

In this section, an algorithm for implementing a locally reacting impedance
in an FDTD mesh based on the mixing modeling strategies (see Sec. 5.2.4)
is presented. The scope of this model is to link the FDTD method with a
rational representation of the impedance by means of a wave digital variable
decomposition of both paradigms. Following a similar scheme than as the
previous section, a WDF representation of the digital filter interacts with
the wave propagation medium, which is represented in this case through
the FDTD method. The separation and interaction in WDF terms ensures
an unconditionally stable model when both parts (the FDTD model of
the sound field and the digital filter representation of the impedance, see
Sec. 5.2.4.2) are independently stable. The only source of instability, an
implicit equation, is avoided using this variable conversion.

Then, following the same procedure than in Sec. 5.2.4, FDTD variable
decomposition into WDF should be presented. It involves determining in-
coming and outgoing wave components at interface points of the FDTD
simulations.

5.3.2.1 Interaction between FDTD and wave variables

The scope is to find a WDF decomposition at the interface point rp in
the incoming and outgoing components, where the sound pressure and the
particle velocity components at rp are unknown at the actual time step.
These values depend on neighbouring values of the pressure and the particle
velocity calculated using the FDTD algorithm. They are found by means
of the FDTD discretized version of the Euler equation, Eq. 4.14-4.16.

As an example, a surface interface with a normal vector in the z-
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direction component is considered. Let the medium be at x < xp. The ob-
jective is to find p(Tp,n) and u;(rp,n) by means of b, (¥p,n) and a,(rp,n),
using Eqs. 5.29 and 5.30. The particle velocity component u, (5, n) cannot
be obtained directly from the FDTD scheme due to the staggered distri-
bution of the variables. One possibility could be to determine this quan-
tity as a temporal and spatial average of surrounding and previous points;
cf. Eq. 4.14. However, although this approach would seem to be reason-
able, a set of different approximations of (7, j,n) have been implemented
and compared, and the results show that the case where the medium is
at © < zp, the approximating u,(fp,n) by u,(fp-iAX,n+l) is a better
solution. In case the medium is at z > zp, uy(Tp,n) ~ ux(Fp+iAX, n+l)
should be used.

First b,(tp,n) is calculated. Note that the outgoing component de-
pends on the pressure and the particle velocity at the interface at the present
time step, but still remains unknown. In the z-direction, Eq. 4.14 is used.
Solving for the pressure gives

Az

p(tp,n) =p(Tp — Ax,n) — POE<'UJ$(I~'B_%A§7 n+3) = ug(Fp-3AX, n—3))
(5.64)

Inserting Eq. 5.64 into Eq. 5.29 gives, with Z, = poAz/At,
by(tp,n) =p(Tp — AX,n) + Zp - uz(Fp-LAX,n-1). (5.65)

This particular value of Z, = v/2pgc with cAt = Az/+/2 (cf. the Courant
condition, Eq. 4.35) ensures that the outgoing component depends only on
previous and known values of the pressure and the particle velocity and
not on the boundary condition. The incoming component is obtained as
the outgoing component in the other block. It is assumed that a,(¥p,n) is
known. Once the wave variables at interface points are known, Eqs. 5.31
and 5.32 are used to obtain both the pressure and the particle velocity at
these points at instant n. The same process is necessary for calculating the
y and z-component.

In case the normal component of the wall nn has n, and n, # 0, Eq. 5.31
may raise a double (or triple) representation of pressure. One can average
all pressure values; however, it can produce dissipation problems ®. A simple

5A scheme without dissipation can be used to integrate from given data at t = 0 to a
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solution consist of just calculating the particle velocity components through
Eq. 5.32 and then, obtaining the pressure by using Eq. 4.17.

The approach used for the spatial average of the particle velocity in-
troduces some errors (undesirable reflections). One way of reducing these
errors would be to use a more accurate approximation of the finite differ-
ences in the Euler equation. A third order finite difference approximation
provides a good trade off between accuracy and computational cost [Strik-
werda, 1989],

. 4 . 1 . -
p(tp,n) = gp(rB — Ax,n) — gp(I‘B — 2A%,n) (5.66)
Az - - 4 -
— poE(um(rB—%Ax,nJr%) - gux(rB—%AX, n-1)
1

+ gux(f'B—%Ai, n-3)).

Following the same procedure used in deriving Eq. 5.65, the outgoing
component is achieved as

_ 4 - 1 . .
by(tp,n) = gp(rB —X,n) — gp(rB — 2Ax,n) (5.67)

4 - 1 -
— Zp(—gum(rB—%Ax,n—%) + gum(I‘B—%AX, n-32)),

with Z, = V2poc. The two methods are compared in Sec. 5.3.2.3.

It should be emphasized that although third order approaches (and
more generally, all approaches of odd order) are dispersive, this approach
is only used at the boundary points and does not affect the propagation
properties of the FDTD method used to simulate the sound field.

A demonstration of the performance of this approach is made through a
1-D FDTD simulation. This mesh, with a length L, is connected to a WDF
resistor (see Sec. 4.7.2) with the same port variable as the one calculated
in the FDTD mesh (see Fig. 5.16(a)). A gaussian source with a band-
width of 0.25f, is propagated through the line and when it arrives at the

solution at ¢ = T', and then, with time reversed, integrated back to ¢ = 0 to recover the
data exactly (apart from roundoff errors).
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boundary linked to the WDF ports, what it is expected is a non reflection,
since both parts are adapted in impedance. However, the signal/reflection
ratio for both approaches, the second and third order ones, have been mea-
sured. For the second order finite differences the ratio is around -27 dB (see
Fig. 5.16(b)). However, using the third order finite differences approach this
ratio has been reduced to about -38 dB (see Fig. 5.16(c)). Unfortunately,
this error seems to be frequency dependent, and it increases when the band-
width also grows; however, it should be noted how the presented example
has been limited to the conventional bandwidth used in room acoustics.

5.3.2.2 Coupling model

In a similar fashion to the one in Sec. 5.2.4, the proposed method consist in
to plugging in a impedance filter realized through a WDF| see Sec. 5.2.4.2.

In the coupled model, each block sees the other block as a WDF port.
In order to couple two WDFs and avoid instabilities, it is necessary to use a
two-port parallel adaptor to adapt the impedance and avoid direct feedback
loops (see Sec. 4.7.3). Once the interaction between the models has been
specified, the frequency dependent FDTD model is shown in Fig. 5.17 for
both approaches.

5.3.2.3 Examples

Some simulations have been carried out in order to examine the perfor-
mance of the proposed method of realizing a frequency dependent impe-
dance boundary condition. Examples in a 2-D mesh are presented. The im-
pedance model selected for these experiments is again a hard-backed layer
of porous material according to Sec. 2.4.1.4.

All the FDTD results presented here are based on a homogeneous dis-
cretization, with Az = Ay. The sampling frequency is 80 kHz and the
spatial sampling has been determined from Eq. 4.35. In order to avoid
reflections from the walls others than the one under test, absorbing bound-
ary conditions have been implemented. In these cases, a Perfect Matched
Layer |Yuan et al., 1997] boundary condition has been chosen. Following
the same set-up as in the previous examples (see Sec. 5.2.2.1, 5.2.3.3 and
5.2.4.5), the source is a gaussian pulse covering up to at least the frequency
0.25f5.

The FDTD model is again tested by determining the reflection factor
and comparing with the analytical expression result based on a locally re-
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Figure 5.16. (a) 1-D setup for the determination of the er-
ror produce for the FDTD adaptation to wave variables. (b)
Signal /reflection ratio for a second order approach. (c) Sig-
nal/reflection ratio for a third order approach.
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Figure 5.17. The Complete model of the proposed imple-
mentation by using (a) a second order and (b) a third order
approach. The FDTD mesh and the impedance digital filter
are implemented separately. A two-port parallel adaptor con-
nects the two different models.
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acting impedance (see Fig. 2.6), following the same conditions for the source
definition than in the Sec. 5.2.2.1.

It can be seen that in the second (dotted line) and third (solid line)
order approach results shown in Fig. 5.18 there are similar to the analytical
solution (dashed line) at all angles (0, 15, 30, 45, 60 and 75 degrees). How-
ever, there are also some deviations. The differences are partly due to the
angle dependent artificial dispersion of the FDTD method [Taflove, 1998|
(even though the frequencies have been selected for minimal dispersion ef-
fects); this effect can be observed in Fig. 5.18(d), which corresponds to an
angle of incidence of 45 degrees, and the error is very small (in the FDTD
mesh used here, this is the angle with no dispersion). However, the most
significant source of error is due to the WDF approach in the FDTD mesh
as described in Sect. 5.3.2.1: undesirable reflections can appear depending
on the incident waveform. Because of such reflections some differences be-
tween theoretical and observed reflection factor levels occur, especially with
the second order approach. This second order deviates considerably from
the level of frequency response in the theoretical one, at least for angles
between 0 and 45 degrees. It is also observed how these errors decrease
when @ is increased. However, there exists a higher agreement when the
third order approach to the wave variables is used. The maximum differ-
ence can be seen to be about 2 dB in most of the results until the frequency
0.125f,; from this frequency in advance some more important deviations
occur with angles near to the normal directions, although, they seem to
be no longer than 6 dB in the frequency 0.25f;. On the other hand, the
high agreement with the expected reflection factor in the rest of angles of
arrival in the entire frequency range, confirming the validity of the method
can be observed. Then, it is worth emphasizing that the results follow a
locally reacting model without any artificial modification of the boundary
condition filter.

So far the model has been tested in an idealized situation where one
single plane wave is incident on an impedance wall. However, in realis-
tic situations several plane waves may well be incident simultaneously. In
Fig. 5.19 is shown a case where two simultaneous plane waves strike the
impedance surface at angles a; = 30 degrees and ao = 60 degrees.

In order to validate the linearity of the proposed method, three sim-
ulations are carried out, two in which the two plane waves are launched
separately, and a third one where the two plane waves are incident at the
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Figure 5.18. Reflection factor calculated with a 2-D FDTD
mesh using a second order(dotted line) and a third order (con-
tinuous line) approach, compared with the theoretical reflec-
tion factor (dashed line), for the angles: a) 0 degrees, b) 15
degrees, ¢) 30 degrees, d) 45 degrees, e) 60 degrees, ) 75 de-
grees.
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Figure 5.19. Set-up used for analyze the linearity of the pro-
posed method.

same time. These analysis are done in the time-domain. Two different cases
are presented, a first one where sources have a broadband 0.125f; and the
other one with 0.25f;. These bandwidth have been selected since the re-
sults shown higher agreement in frequencies up to 0.125f,, whereas from
this frequency up to 0.25f,, some noticeable differences appear.

These impulse responses waveforms are more sensitive to the inherent
dispersion. For this reason the impulse responses represented in Fig. 5.20
and Fig. 5.21 have been represented following a minimum-phase consider-
ation (which means that they have the same magnitude response as the
original systems; however, the energy is concentrated near the start of the
impulse responses and they have minimum group delay) and only delays
relative to the time difference of arrival have been taken into account; pos-
sible effects of the FDTD mesh angular dispersion are not considered in this
time domain analysis.

Firstly, the results are analyzed for the bandwidth of 0.125f;. In
Fig. 5.20(a), the results at receiver 1 appear (see Fig. 5.19). In all the
presented impulse responses the results from the simulations (continuous
lines) are compared with the expected theoretical results (dotted lines).
Fig 5.20(a.1) shows the impulse response when only the plane wave at
a1 = 30 degrees is emitted, and Fig 5.20(a.2) shows the impulse response
with the plane wave at ay = 60 degrees. Fig. 5.20(a.3) shows the impulse
response that results when both plane waves strike the boundary at the
same time. The linearity is demonstrated when the result is compared with
Fig. 5.20(a.4), that is, the result obtained if both independent plane waves
are added (Fig. 5.20(a.1) and Fig. 5.20(a.2)). Comparing Figs. 5.20(a.3)
and 5.20(a.4) shows that there is no difference between them. As well as
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Figure 5.20. 0.125 Impulse responses obtained in the simula-
tion (solid line) versus theoretical results (dotted line) by using
a gaussian source with broadband 0.125f,: a) at the receiver
1: a.l) with plane wave at a1 = 30 degrees, a.2) with plane
wave at aa = 60 degrees, a.3) both plane waves at the same
time, a.4) adding both separated plane waves; b) at receiver
2: b.1) with plane wave at as = 60 degrees, b.2) with plane
wave at a1 = 30 degrees, b.3) both plane waves at the same
time, b.4) adding both separated plane waves. Each impulse

response is shifted -20 mPa.
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Figure 5.21. 0.25 Impulse responses obtained in the simula-
tion (solid line) versus theoretical results (dotted line)by using
a gaussian source with broadband 0.25f,: a) at the receiver 1:
a.1) with plane wave at a1 = 30 degrees, a.2) with plane wave
at ap = 60 degrees, a.3) both plane waves at the same time,
a.4) adding both separated plane waves; b) at receiver 2: b.1)
with plane wave at az = 60 degrees, b.2) with plane wave at
a1 = 30 degrees, b.3) both plane waves at the same time, b.4)
adding both separated plane waves. Each impulse response is

shifted -20 mPa.
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the agreement between the linear combination of the simulated impulse re-
sponses, those results agree with the expected ones. The same agreements
are found in the receiver 2 (Fig. 5.20(b)).

It can be seen that there is no significant difference between the results
and the expected theoretical results. The comparison between the results
when the two plane waves appear at the same time and the result of adding
the corresponding separate results demonstrates again the linear behaviour:
there is no difference between the results.

However, from the results obtained for a source with bandwidth 0.25 f,
some disagreement are expected to be found, according to the spectrum
responses (see Fig. 5.18). The same procedure followed as with the previous
source is followed. In this case, the linearity is also demonstrated, as it
is expected. However, some of those awaited differences in the impulses
responses can be observed, particularly the impulse response coming from
the source situated at angle # = 30, which agrees with its corresponding
spectrum.

5.4 Experimental evaluation of boundary conditions
in a DWM

In this section, the scope is to validate through experiments and measure-
ments the accuracy of those boundary conditions in a DWM, not only
through comparison with analytical models |[Kelloniemi, 2006|, but also
through comparison with measurements obtained in real scenarios, in a sim-
ilar fashion to [Tsingos et al., 2002]. These comparisons do not appear in
the technical literature for the DWM topic, focused on the boundary condi-
tions, and they will result in valuable information to determine the accuracy
of the model and particularly, for the frequency dependent boundary con-
ditions. They may result in a key information to determine the accuracy
of the model and particularly, for the frequency-dependent boundary con-
ditions [Escolano et al., 2008b|. In this section, the validated boundary
conditions are proposed in Sec. 5.2.4.
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5.4.1 Measurement set-up

The real scenario is built with two sandwich panels over a grass floor. The
materials of the panels are made with a core of expanded polystyrene and a
skin layer (at both sides) made with pressed aluminium. Both panels have
dimension of 150x120x5 cm and they have been arranged in Fig. 5.23. A
scheme of the distribution with their corresponding distances can also be
found in Fig. 5.22.

Figure 5.22. Scheme and measures of the scenario. All dis-
tances are given in centimeters.

A sound source (a dodecahedral loudspeaker) is situated at 1 m far
from panel 1. The source impulse response consist on a Maximum Length
Sequence [Rife and Vanderkooy, 1989] with order 16 and a sampling fre-
quency of 48 kHz. The microphones are also situated 1 m away from panel
1, but at the opposite side than to the loudspeaker. Under these conditions,
a measurement in the indicated position is carried out and the results will
be presented later.

The next step after this measurement is to characterize the materials
introduced in the scenario. This means to measure the impedance function
of the materials presented in the scenario. For this purpose, the method
proposed by Takahashi et al. is used, where two close microphones are
arranged to determine the reflection factor and impedance under a locally
reacting surface assumption |Takahashi et al., 2005]. The first microphone
is situated at 15 mm from the panel and the second one is situated at 17
mm from the panel as well. Measuring with this setup at different angles (0,
15, 30 45 and 60 degrees), the impedance is obtained through an average
of these results (see [Takahashi et al., 2005] for more details). Once the
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Figure 5.23. Different pictures of the real scenario used dur-
ing the measurements, including the position of the loudspeaker
and the microphone.
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spectrum of the impedance is achieved, through the Yule-Walker algorithm,
the coefficients of an IIR digital with order 30 are updated [Proakis and
Manolakis, 1998|. The amplitude (solid line) and phase (dashed line) of the
achieved filter are represented at Fig. 5.24.

Phase (radians)

Magnitude (dB)

0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (xm rad/sample)

Figure 5.24. Amplitude and phase of the corresponding filter
representation of the panel impedance. The solid line repre-
sents the amplitude and the dashed line, the phase.

Regarding the grass floor, the impedance filter has not been defined
through only measurements, but also, a well-known model of the grass floor
impedance has been used instead [Attenborough, 1992, Taherzadeh and Li,
1997], whose results have been validated through numerous examples in the
technical literature. A fifth order is enough to achieve the corresponding
IIR filter through the Yule-Walker algorithm.

5.4.2 Simulation set-up

Now, a DWM simulation following the same physical structure as in the
experiment (see Sec. 5.4.1) is going to be carried out (see Fig. 5.22). Two
simplifications have been performed: first, no transmission factors in the
panels have been taken into account; and the second one is not to consider
depth in the panels. Besides that, a decimation of the sampling frequency
has been carried out, since this frequency determines the minimum size
of the discretization step and the higher one is the sampling frequency,
the more computational cost and memory require the simulation. Then,
measurements have been downsampled to 40 kHz in order to match the
simulation.
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A simulated scenario with 200x200x200 cells has been implemented
with a regular discretization in a cartesian mesh. The size of the discretiza-
tion cell corresponds with 1.48 cm? according to the Courant condition
(Eq. 4.35). Some absorbing boundary conditions are used at the bound-
aries. In this case, the Higdon condition [Higdon, 1986] gives a very good
results and since it needs only pressure variables, it results in a proper
candidate for these simulations. Through the algorithm of Sec. 5.2.4, the
boundary conditions of the panels and the grass floor have been included
in the simulation through their corresponding filters. The main algorithm
is supported by a K-DWM, but a transformation to W-DWM is used at
boundaries [Karjalainen, 2004], and the corresponding impedance filter is
connected to their precise scattering junctions.

Since the inherent dispersion of the mesh modifies the spectrum of
the results, it is necessary to solve this handicap. A common solution is
to present the results up to a quarter of the sampling frequency [Duyne
and Smith, 1993|. From now on, the results are presented in a normalized
frequency scale in respect to the sampling frequency, where the maximum
frequency corresponds with 0.25.

5.4.3 Discussion of the results

In Fig. 5.25, the results through simulation and measurement are obtained.
These results are expressed by means of the spectrum of the impulse re-
sponse recorded in the microphone position. Regarding the measurements,
some precautions have been taken into account due to some walls and ob-
jects, even although situated sufficiently far away from the measurement
setup, were presented during the measurement process. However, by con-
sidering the distance to those significant objects, it has been possible to
determine the size of a proper window analysis which mostly contains the
signal influenced by the panel and the grass floor.

It can be observed how the results show a high level of agreement.
Most important differences seems appear at low frequencies. It has to be
observed that these errors may appear due to the measurement process
of the impedance, where the very low frequencies could not be correctly
measured because of the finite length between both microphones [Jacobsen,
2002]. Beside the fact some differences exist, to conclude about the validity
of the boundary condition is reasonable to accept.
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Figure 5.25. Spectrum of the impulse responses obtained
through simulations (solid line) and measurements (dashed
line).

Regarding the DWM dispersion, some expected deviation of the fre-
quencies of the simulation compared with the measurements is observed.
These deviations are visible since a tendency exists to move the high fre-
quencies to low frequencies. However, since the simulation has been ban-
dlimited to the normalized frequency 0.25, the deviation is acceptable and
confirms the validity of the simulation.

5.5 Discussion

This chapter deals with the boundary condition definition in discrete-time
methods, focused on specular reflections with a frequency-dependence. Con-
tributions to this topic are introduced to both DWM and FDTD methods,
composing the two sections into which this chapter has been divided.

The use of the DWM, and particularly the K-DWM, has been con-
sidered as advantageous from the boundary condition point of view. The
common boundary conditions in the DWM method are defined by using re-
flection factor filters (Huopaniemi’s method); however, in multidimensional
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simulations this is problematic since the reflection factor is dependent on
the plane wave angle of arrival and those filters have no information about
it. The process is simplified by assuming a normal incidence for the filter
realization.

An analysis of the effect of choosing the reflection factor as a boundary
condition is introduced and how it works according to the plane wave angle
of incidence. It has been observed how the measured reflection factor has
some dependence on this angle, however, results shown how far they are
from the locally reacting impedance.

According to this, two different solutions are offered: the first one con-
sist on detecting the angle of arrival and perform a time-varying reflection
factor digital filter according to this detected angle; and a second option
consist into plug in an impedance filter which is independent of the plane
wave direction and it matches with the locally reacting impedance defini-
tion.

The first method could be seen as an evident solution of Huopaniemi’s
method and results shown a good agreement with the expected from the-
ory, but its computational cost makes it very difficult to implement in a
complete room acoustic simulation program. On the other hand, the use of
an impedance as a boundary condition produces a highly accurate solution
with a reduced computational cost. This second option consists on the use
of Wave Digital Filters as a common interface between the impedance filter
and the DWM method. The advantage of this method is that the stability
is assured if both elements are separately stable, because of delay-free loops
(implicit equations) are avoided. The proposed method is able to model a
locally reacting impedance without introducing any substantial increase of
the computational cost.

Following this model, it is also possible to define a frequency dependent
absorbing boundary conditions in a FDTD mesh. The FDTD mesh and the
boundary conditions (also an impedance model defined by means of a digital
filter) are implemented separately and joined using an interface based on
Wave Digital Filters. Another important feature is that the definition of
the digital filter can be designed with highly efficient structures, reducing
considerably the computational cost of the whole algorithm.

Finally, in order to check the accuracy of these methods in a real sce-
nario, some experimental measurements have carried out and compared
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with the same simulated scenario. This comparison shows an elevated de-
gree of similarities between both results, outperforming the state-of-the-art
methodologies.
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Directive Sources
in Discrete-Time Methods

THE DISCRETE-TIME METHODS ARE ONLY ABLE TO DEAL WITH POINT
SOURCES, as has been shown in Chap. 4. Also plane waves could be de-
fined as a “continuous” array of point sources with suitable phase. In the
particular case of the FDTD method, it is also possible to introduce dipole
sources just by defining the corresponding source function through a par-
ticle velocity component source (see Sec. 4.2). However, in practical and
more general problems, sources are too far to be represented as monopole
or dipole sources and more complex source modeling is required.

Sound source modeling aims to achieve realistic sound inside a virtual
environment with characteristics resembling those of a real source. One
of these characteristics is the directivity [Savioja et al., 1999], whose ef-
fects over the sound perception of the virtual room becomes highly signifi-
cant |[Dalenbéck et al., 1993, Otondo and Rindel, 2004].

Furthermore, in order to obtain information regarding the directivity of
real sources as a function of the angles in a 3D space and also as a function
of the frequency in the bandwidth of interest, complex facilities are required,
e.g. anechoic chambers and measuring set-up [Flanagan, 1960, Huopaniemi
et al., 1999]. However, directivity diagrams of sources for discrete frequen-
cies are more common and they are available in technical literature [Fletcher
and Rossing, 1991, Ochmann, 1995]. Nowadays, available public data-bases
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on this topic are not widespread; however, it must be highlighted a com-
pleted data-base of musical instruments directivities has been announced
on the middle of next year 2009 [Lokki and Savioja, 2008].

6.1 Introduction

Sound source modeling has been an important topic which has been ad-
dressed in other room acoustic simulation methods, such as image-source
methods [Huopaniemi et al., 1994|, ray-tracing [Vigeant et al., 2004] or
FEM [Ochmann, 1999|. Although some time-domain formulations exist
[Kropp and Svensson, 1995], complex directive sources have only been pro-
posed, very recently, in a particular discrete-time method - the W-DWM
method [Hacithabiboglu et al., 2007|; however, this is not a generalized
method that can be used in the rest of the methods, since it uses the proper
weights of the outgoing components of the scattering junction where the
source is situated, and it only allows frequency-independent implementa-
tions, being specially suitable for dipole and quadrupole representation. A
method able to solve more complex problems (frequency dependent direc-
tivity) and able to deal with more efficient discrete-time methods, such as
K-DWM, should be proposed [Svensson, 2004]. Unfortunately, the current
state-of-the-art is not more extensive that this short paragraph, with the
exception of, at this moment, an unpublished forthcoming paper [Hacihabi-
boglu et al., 2008b].

In this thesis, and particularly in the current chapter, some meth-
ods have been proposed of incorporating directive sources for discrete-time
methods, based on the information obtained in the directivity diagrams for
discrete frequencies [Escolano et al., 2007| and also extended for broadband
sources with variable directivity as a function of the frequency.

This chapter is summarized as follows: Sec. 6.2 introduces a method
for synthesizing sinusoidal directive sources, and several examples will sup-
port it, including an analysis of the dispersion effect occurring when the
method is applied to different discrete-time methods (see Sec. 6.2.2). Sec-
tion 6.3, deals with the extension of the previous method for sources with
a determined bandwidth and examples will be presented with constant and
variable directivity. Finally, this chapter is summarized.
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6.2 Sinusoidal directive sources

As mentioned in the introduction, in the current section a method is pro-
posed which tries to simulate the behavior of a directive source when it is
used in discrete-time simulations. To accomplish this task it uses an array
of basic sources (monopoles) placed around the position of the directive
source to be synthesized (see Fig. 6.1(a)). The method is based on the
combination of an array of monopoles with different amplitudes and phases
in order to reproduce a desired sound field at given points [Wang and Wu,
1997]. If such points are selected for spherical distribution in a far field, the
resulting pressure pattern is directly the directivity diagram of the source.

@) (b)

Figure 6.1. (a) Source-receiver points distribution. (b) Space
sampled distribution of source-receiver points

Therefore, the objective is to obtain the proper combination of signals
that excite the source distribution in order to obtain the desired angle-
dependent behavior. However, the space sampling process forces the source
and receiver points to be located at discrete positions (see Fig. 6.1(b)), but
it will be shown that this will not cause any problems. Next, the algorithm
is mathematically formulated in terms of the wave propagation.

Let us consider a sinusoidal 3D time-varying sound field (Eq. 2.1)

p(r,t) = P(r,wo)efj“’ot, (6.1)

where P(r,w,) = ||P(r,w,)||e?4F*wo) is defined as the complex pressure
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amplitude of the sound field in a position r for the angular frequency w,
(see Sec. 2.2).

Also, let us define source matrix position ry = [Fg,...,Ts, .-+, Tsy]t
and receiver matrix position r, = [rp,..., Ty .. .,rTM]T, where upper-
index T indicates transposed vector. Note that for this purpose, r, must
correspond to a circular distribution as shown in Fig. 6.1(a). The pressure
at a point r,, is calculated as a weighted sum of the pressure sources as

N wo
t_ jwot €
P(r,,, ,w,)e ¥ = g P(rs,,wo)e 1ot —m ——.

n=1

From now on, let us define for simplicity ||rs, — .|| = |[Tsnrml |-

The weights that relate the pressure distribution of the sound field
to the sound sources are related to the three-dimensional Green’s func-
tions [Pierce, 1994]. In Eq. 6.2, Green’s function for point sources in an
unbounded sound field is employed. Assuming a far field approximation
(“2[|rs, r,n || > 1), or equivalently a plane wave approach, Green’s function
can be simplified. This simplification is made assuming that in a far field
||rs,rn]| is & constant K, and Eq. 6.2 is expressed as

P(ry,,wo) ~ KSD ZP rs,,Wo)€ o llrsn, Tm” (6.3)

where K3p = 4n K. However, this constant can be avoided in the equations
taking into account that the directivity is expressed in relative terms. This
simplification has the advantage of the formulation remaining the same
in the 2D case, in a far field [Abramowitz and Stegun, 1970|, where the
constant changes to Kop = 4777 /j/Two K /(2¢).

The summation of Eq. 6.3 can be expressed in matrix form as

P, = CP,, (6.4)

where Pg = [P(rs,,wo); - - -, P(Tsy,wo)]T and Py = [P(ry,,wo), - - -, P(Try,, wo)] 7T,
and then the matrix C of Green’s functions is defined as
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echOHl‘sl,rlH ejuTOHrSNquH

C= : : . (6.5)

eijOHrSLTJMH 6J'WTOHI'SN,TJM||

In that problem, P, is a known data: it represents the angular pressure
distribution around the sources, according to the directivity diagram. De-
spite directivity diagrams being expressed in terms of absolute values and
P, being a complex number, this is not a handicap, as will be shown later
in the results.

In general, Eq. 6.4 cannot be solved as P, = C™'P,., because it nor-
mally corresponds to an under- or overdetermined system (the number of
sources and the angular resolution, i. e., the number of receivers - which are
not usually the same). In these cases, an approximate solution is usually
obtained in a least squares sense. This can be carried out by means of the
Minimum Least Square method, i.e. by means of the pseudo inverse [Rao
and Mitra, 1971]. Eq. 6.6 shows the solution expression where matrix c’c
is always square:

P,=(C"C)"'C"P,. (6.6)

It must be taken into account that the point source distribution af-
fects the sound field resolution. For a proper solution, the distribution of
point sources must comply with a relation between distances to properly
synthesize the field. This relation depends on the frequency. In this way, it
is possible to correctly synthesize a sound field between a maximum fiax
and a minimum frequency fui, in a given distribution of sources [Williams,
1999]

Cc

Jmax Vi # J, (6.7)

2Hr81,8j||min
C

Jmin Vi F . (6.8)

2Hr3i75j||max

The application of the proposed algorithm to the different paradigms
(FDTD, DWM, TLM, ...) is straightforward: pressure values p(r,t) are
given into discretized spatial points ¥ in a particular time step t = nAt; in
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the sequel, r, and r, must be considered as the discrete point position of
sources and receivers (see Fig. 6.1(b)).

Once the pressure values P are calculated at the point sources (am-
plitude and phase), the discrete-time excitation signals must be achieved.
For each point source of the array, when a sinusoidal signal with a given
frequency w, is employed, it is calculated by

P(Ers 1) wmwe = R P(Fr,, , wo) |/ Con B EPErm ey (6.9)

In case of a K-DWM/FDTD mesh (Eq. 4.38), this result can be directly
incorporated into the equation as a source term just applying a scalar factor
or as predefined pressure points [Schneider et al., 1998a|, having transparent
source in both cases. In a W-DWM, since this DWM approach assumes an
initial wave shape, the result of Eq. 6.9 is included directly in the recursive
iteration of this algorithm.

6.2.1 Examples

At this point, some examples of synthesis of directive sources are presented
in order to validate the proposed algorithm.

Simulation Set-Up:

To carry out the following experiments, the K-DWM method has been
selected because it is one of the most efficient methods. The Higdon method
[Higdon, 1987] has been selected and implemented into the mesh boundaries
in order to minimize the effects of the associated reflections.

In these examples, a 2-D mesh has been used. Simulations have been
developed for two frequencies, 500 and 2000 Hz. Due to the effects of the
inherent dispersion in K-DWM, the sampling frequency fs has been selected
as 20 times the maximum frequency to be simulated, f;=40 kHz. According
to the Courant formula(Ax = v/2cAt), each cell represents 0.012 m?2.

The source points are distributed in a staircase circle, taking space sam-
pling into account. The set-up is composed of 12 sources forming a circle
with a radius of 0.096 m (around 8 cells of distance over the center point) for
the frequency of 500 Hz and 12 sources for the frequency of 2000 Hz (around
30 cells of radius); this set-up is accomplished with Eqs. 6.7 and 6.8. This
selection implies that the first distribution allows the synthesis of frequen-
cies between approximately 450-900 Hz and the second distribution around
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1700-3300 Hz.

The receiver points have been placed in a circle with a 10\ ¢ ra-
dius around the central point in order to guarantee a far field conditions,
where Apax 18 the maximum wavelength of the synthesized field. A mesh
of 500x500 cells has been used to accommodate the receiving points and
leave some free space.

Results:

According to the mathematical development presented during the present
section, the complex amplitude of the sources is calculated. Since the di-
rectivity diagram does not give any information about phase, a zero-phase
or random-phase at receiver can be assumed, giving nearly the same results
in absolute value terms. In all of the following experiments, a zero-phase
has been considered for P,.

In the first example, let us consider a distribution of pressure for a given
frequency w; = 27500 rad/s with an angular resolution of A@ = 7/4. The
directivity data is defined in an anticlockwise manner as Prl( dB):[O, -3, -7,
4, -5, -10, -4, -1].

Fig. 6.2(a) shows, in the form of a continuous line, the expected di-
rectivity diagram and, in the form of a dotted line, the one obtained. A
high level of agreement exists between the expected and the obtained re-
sults, and it is difficult to differentiate between the two. However, note
that in the radiated sound field (Fig. 6.2(b)), sharp variations in the direc-
tivity between the eight data angles occur. When input information has a
low angular resolution, this effect is more noticeable. When representing
these results with a higher angular resolution, as shown in Fig. 6.2(c), some
non-expected irregularities arise.

In cases with low angle resolution information, a possible solution could
be to interpolate the original directivity in the unknown angles of the dia-
gram, obtaining more angular resolution and then applying the algorithm.
Fig. 6.3) shows the results obtained by increasing the angular resolution (5
degrees) and interpolating data with spline functions [Ahlberg et al., 1967].
It shows how the results follow a much smoother change and in a more
expected way, as real sources. However, as expected, some differences exist
between the results obtained with a lower and a higher directivity angular
resolution, due to the characteristics of the Minimum Least Square Method.
This is manifested as a directivity curve that does not pass exactly through
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Figure 6.2. (a) Comparison between the expected (gray-
continuous line) and the obtained (black-dotted line) diagram
directivity in a discrete-time method. (b) Obtained radiated
sound field simulated in a K-DWM mesh. (c) Obtained direc-
twity diagram measured with a higher angular precision (dots
indicate points used in the calculations)
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Figure 6.3. (a) Directivity diagram obtained increasing the
angular resolution by interpolation of the data of Fig. 6.2. (b)
Obtained radiated sound field simulated in o K-DWM mesh.

the expected points of the original directivity diagram. There is a trade-
off between the smoothness of the curve and the precision at the reference
points when the number of receivers increases.

It is also possible to find in the literature examples of directivity di-
agrams with a higher angular resolution. For instance in the next exam-
ple, a directivity diagram of a baffled kettledrum is used |Fleischer, 1998],
with a selected frequency of 500 Hz, corresponding to the mode (31) (see
Fig 6.4(a)). The number of sources is the same as the previous example (12
sources), but the angular resolution of the directivity diagram is 10 degrees
(36 receivers). In Fig 6.4(a) the high similarity between the theoretical and
the obtained directivity diagram can be observed and Fig 6.4(b) shows the
sound field produced for the configuration of sources calculated by means
of a K-DWM simulation.

One of the main advantages of discrete-time methods is their capacity to
deal with broadband results, allowing several discrete frequency directivities
to be carried out in a unique simulation. In order to show this, let us
consider a directivity at two frequencies, one is P, at w; = 27500 rad/s,
and the new one, for wy = 272000 rad/s, is P,,«g(dB):[O7 -10, -12, -4, 0,
-6, -5, -2|. The results in Fig. 6.5 show the sound field produced as the
combination of both signals. This property allows the creation of complex
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Figure 6.4. (a) Comparison between the expected (gray-
continuous line) and the obtained (black-dotted line) directivity
diagram of baffled kettledrum in a discrete-time method. (b)
Obtained radiated sound field simulated in a K-DWM mesh.

directive sources as a result of the combination of the single directivity
diagram for different frequencies in a unique simulation.

(a) (b)

Figure 6.5. (a) Comparison between the expected (gray-
continuous line) and the obtained (black-dotted line) dia-
gram directivity for two different frequencies in a discrete-time
method. (b) Obtained radiated sound field simulated in o K-
DWM mesh.
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It should be noted that the pressure sources mentioned in this work
correspond to hard sources (the sources are not affected by the surrounding
points). The influence in cases of transparent sources and realistic bound-
ary conditions (partial reflections and frequency-dependent boundary con-
ditions) should be analyzed.

6.2.2 Influence of the mesh dispersion

Results presented in this section have the scope of testing the same example
in different meshes and to determine the viability of the proposed method
as a function of the frequency and the dispersion of the mesh used. A
short description of the dispersion properties of the methods appearing in
this section can be found in Appendix A. For this purpose, common source
positions are used: 12 monopoles, with a circular distribution and separated
with an angle of 45 degrees. However, according to the theory presented,
the frequency of the source is dependent of the separation between sources
(Eq. 6.7 and 6.8). For that reason, the ratio of the source distribution will
be selected in order to be able to correctly synthesize the sound field.

Results in all figures show the same directivity at different frequencies
that have been shifted vertically 3 dB to elucidate the details, whereas am-
plitude scales have been suppressed purposely. The directivity vector used
again is p,qgy = [0, =3, =7, —4, =5, =10, —4, —1], which means that the di-
rectivity has an angular resolution of A§ = 7/4. The sampling frequency
for all meshes is 40 kHz and the spatial sampling frequency is determined by
the specific condition that assures the mesh stability. The spatial sampling
will be homogeneous for all directions. Considerations with the boundary
conditions have been taken into account, truncating the temporal sequence
before the reflected wave appears.

The results presented for each mesh represent the directivity for the
frequencies 0.5, 1, 2, 4 and 5 kHz. It must be taken into account that as
frequency increases, the distance between sources decreases. Then, there is
a maximum synthetical frequency for a given temporal sampling frequency
and hence, for the spatial sampling frequency. Additionally, in order to
share the same criteria for all meshes, 5 kHz has been determined as the
maximum frequency for all simulations !. At the same time, each directivity

Tt could be expected to analyze the directivity up to a higher frequency, i.e. a
normalized value of 0.25 (f/fs) for the DWM. However, since not all the methods share
the same cell size, the one with more restriction in terms of minimum distance between
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Figure 6.6. Directivity results for (a) DWM, (b) TDWM and
(c¢) ULS. Dotted lines represent the expected results, whereas
continuous lines are the result at the following frequencies: (1)
0.5 kHz, (2) 1 kHz, (3) 2 kHz, (4) 4 kHz and (5) 5 kHz.Graphs
are shifted vertically 3 dB to elucidate the details and ampli-

tude scales are suppressed purposely.
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Figure 6.7. Directivity results for (a) Interpolated Digital
Waveguide Mesh and (b) FTM. Dotted lines represent the
expected results, whereas continuous lines are the result at
the following frequencies: (1) 0.5 kHz, (2) 1 kHz, (3) 2 kHz,
(4) 4 kHz and (5) 5 kHz. Graphs are shifted vertically 3 dB
to elucidate the details and amplitude scales are suppressed
purposely.

(continuous line) is compared with the expected result (dotted line).

Figure 6.6(a) represents the results obtained with a K-DWM simula-
tions, under the considerations specified above. The influence of the dis-
persion is notable. This dispersion is frequency and angle dependent and
although the error is not excessive in the highest frequencies, the error com-
pared to low frequencies is higher. In this example, the maximum error is
around 2 dB. However it can be observed how a significant dependence on
the results exists with the frequency, where the directivity achieved increases
its error when frequency grows.

cells should be chosen. In this particular case, the Upwind Leapfrog Scheme has a higher
size for a given sampling frequency [Kim, 1997]. It allows synthesizing a directivity with
a maximum frequency of around 0.125 (f/fs).
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As mentioned before (see Sec. 3.4.2), one of the most popular alterna-
tives to reduce the dispersion in a DWM is the use of the Triangular DWM
(TDWM). This dispersion is lower and the dependence on the angle is also
quite lower. Fig. 6.6(b) shows the results of TDWM in which, compared to
the results in a DWM mesh, a clear improvement can be seen. The maxi-
mum error obtained, that also appears at the highest frequencies, is around
1 dB. It is also observed how the results keep approximately the expected
shape, and no increasing errors seem to appear when frequency increases.
This is because the TDWM remains mostly angular independent.

The use of the Upwind Leapfrog scheme has a clear advantage with re-
gard to the decrease of the dispersion and the use of higher spatial sampling
frequency. On the implementation of the directive sources, there is an ad-
vantage due the reduced dispersion, giving the results shown in Fig. 6.6(c),
the errors are lower than in the case of the DWM implementation. However,
due to the higher spatial sampling frequency for a temporal given sampling
frequency, it allows synthesizing more compact directive sources at low fre-
quencies, higher distance between cells, but the highest frequency is lower
than that achieved in a DWM or TDWM mesh.

One of the most interesting results achieved in this work is related
to the interpolated Digital Waveguide Mesh. As already stated, the main
advantage of this mesh is that the dispersion has no angle dependence.
Fig. 6.7(a) shows how the results are highly improved compared to the
previous cited meshes. Even for high frequencies, the agreement with the
theory is high. This agreement is because, although there is a phase error,
it remains the same in all directions. This phase error does not affect the
directivity pattern representation, usually given in absolute value. It can
be observed how it is very similar to that obtained through the TDWM,
since both methods propagate the wave almost evenly.

Finally, one of the most interesting properties of the FTM mesh for
room acoustic simulation is due to its free dispersion, which has as a con-
sequence the mesh with the lowest error. Fig. 6.7(b) shows how very low,
even negligible error appears. It could be assumed, in this case, the error is
more dependent on the minimum-least square method than that produced
by the mesh itself.

These results show how the influence of the inherent mesh dispersion
can affect the achievement of directive sources. However, it can be observed
that the angular dispersion is more critical than frequency dispersion for this
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purpose, since error phase is constant with the angle. In summary, efficacy
of the proposed algorithm is independent of the discrete-time method used.

6.3 Broadband directive sources

In Sec. 6.2, an algorithm for sinusoidal directive sources has been presented;
then, just one frequency is simulated. However, real sources in room acous-
tics usually have a determined bandwidth and its directivity is not constant
with the frequency. For that reason, it is necessary to modify the previous
algorithm in order to synthesize broadband directive sources [Escolano and
Lopez, 2008|.

For a given sampling frequency (the one used to discretize the mesh),
let us consider a source with certain cut-off frequency 2. The source band-
width can be discretized in a uniform distribution of L + 1 frequencies
w = [wo,...,w,...,wr], where wy, equals to 27 fs/2. The number of fre-
quencies L + 1 can be considered as samples of the Fourier Transform of a
signal which would be the impulse response of a each source.

In a similar fashion to the sinusoidal algorithm, let us define Green’s
function matrix for specific frequency w; as C(wy)

ej%HrSLTHH @j%”rsNVHH
C(w) = : : : (6.10)

e]THrsl,T]\/]H e]THrsN,T]\/IH

For each frequency, a certain directivity in terms of the pressure at a
far field position, P,(w;), is defined. Then, through a pseudo inverse of
Green’s matrix C(w;) , in an equivalent way such as Eq. 6.6, the amplitud
and phase of the sources, P(wy), is solved.

Once this process is repeated for each one of the frequencies given at
w, it is possible to define the next matrix

2Without loss of generality, a source could be assumed as low-pass filter.



184 Directive Sources in Discrete-Time Methods

P(rg,,wo) -+ P(rs,wr) Plrs,wr—1)* -+ P(rs,wi)”
P, = : : : : . :
P(I'SN,WO) e P(rsN,WL) P(rSNawal)* e P(rSNawl)*
(6.11)

where in each file, new elements have been added in order to obtain a
Hermitian vector 2 4 per file. Each row represents the solution of Eq. 6.6
for a given frequency w; and each file represents the spectrum of one of the
monopole sources ry, , P(rs,,w).

The next step is to apply the inverse discrete time Fourier transform
on each one of the files, giving as a result the matrix

p(rs;,no) -+ p(rs;,nar—1)
p, = : : : (6.13)

p(rsy,no0) - p(Tsy,n2r—1)
where each file represents the impulse response of a source, p(rs, ,n) and
n € [no,...,ny,...,nar+1]. These impulse responses allow a given original

source s(n) to be radiated with a particular directivity through the use of
the convolution

s(rs,,n) = s(n) * p(rs,,n). (6.14)

The main advantage of this algorithm lies in the fact that different di-
rectivities for each one of the frequencies can be defined and then, to design
complex sound sources. However, according to Eqs. 6.7 and 6.8, for a given
source position distribution, it is only possible to synthesize a determined
broadband. In the low frequencies, it is not really a handicap, since most
of the real sources radiate omnidirectionally. It is also necessary to mod-
ify the sampling frequency of the calculated impulse responses (by over- or
downsampling) in case it does not agree with the one of the simulation.

3Hermitian vector is a sequence ax with k = 0, 1,..., N satisfying
S(ap) =0 and ap=an_p fork=1,...,N, (6.12)

where S(ap) denotes the imaginary part of ag. It follows that a, /2 is real if n is even.

4Tt says that the spectrum of every real signal is Hermitian. Due to this symmetry,
all negative-frequency spectral samples of a real signal may be discarded and regenerate
them later if needed from the positive-frequency samples.
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Some negative effects related to the circular nature of the discrete
Fourier Transform could appear [Oppenheim et al., 1999]. In order to
avoid those effects, impulse responses of the directivity filters should be
long enough to assure they tend to zero at both sides (i.e., using an suffi-
ciently high number of points in the FFT process).

This means the number of frequencies L + 1 should be increased, by
using an interpolation function. A window function can also be used, al-
though it produces a loss in frequency resolution, but if one has an enough
frequency resolution, this does not really matter.

6.3.1 Examples

In this section, several examples of the suitability of the method for broad-
band directivities are presented. The next simulations are obtained in a
K-DWM, with a sampling frequency fs=40 kHz in a 2-D mesh conformed
by 900 x 900 spatial sampling. Let us consider a directivity pattern with an
angular resolution A0 = /4 with p,qp) = [0, -2, -5, -3, -4, -9, -3, -1].
The first example consists of a constant directivity for a particular band-
width. In order to synthesize this directivity, 12 sources homogeneously
distributed in a circle shape are situated at a radius of 0.14 m. This dis-
tance between sources, determines a bandwidth between 590 and 1500 Hz.
Figure 6.8 shows and compares the broadband results obtained. The results
are presented normalized in respect to the pressure level obtained in direc-
tion 0Z. It can be observed how there exists a high agreement with respect
to the expected. The highest differences could be found near to the highest
possible frequency, but they are lower than 1 dB.

Let us consider the same directivity pattern, but this time synthesized
through a circle shaped source distribution situated at a radius of 0.058 m.
The bandwidth is now between 1.47 and 3.75 kHz. Figure 6.9(a) shows the
results in a similar way to the previous one. However, it can be observed
how, due to this example now working in a higher frequency range, some
higher errors appear in the results. According to the results of Sec. 6.2.2,
errors are more related to the angular dispersion, than due to the frequency-
dependent dispersion. A simple solution could be the use of the interpolated
K-DWM, since it spreads the angular dispersion evenly (see Appendix A).
Figure 6.9(b) shows the same example, but using the interpolated mesh. It
can be observed how the results are improved and variations with respect
to the theoretical references are decreased.
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Figure 6.8. Broadband directivity results (solid line) ob-
tained in a K-DWM grid. The dotted line represent the ex-
pected values.

In a similar fashion to the analysis of sinusoidal directive sources, it is
necessary to check what happens in the rest of the directions. Figure 6.10
shows the same results as Fig. 6.8, but represented with a higher angu-
lar resolution A@ = 7/36. This means no modifications over the previous
results, just that more angles are represented. It can be observed how a con-
siderable number of lobes and noticeable transitions between the directivity
of close frequencies appear, becoming unnatural. It can be seen how this
apparition of lobes is more related to the Minimum Least-Square method
than for the simulation process in Fig. 6.11 which represents the same re-
sults as in Fig. 6.9 (but also with more angular resolution), where (a) is the
result with the conventional K-DWM method and (b) with the interpolated
one. In a dynamical range which covers the maximum and minimum level
of the variations with respect to the direction 0%, no relevant differences
could be found between both simulations, demonstrating how the influence
of the mesh characteristics (dispersion) does not affect the distribution of
those undesirable lobes.

These lobulation effects appear when the directivity information is mea-
sured with a small angular resolution. A simple idea to solve these effects,
already addressed in Sec. 6.2.1, is to interpolate the values at angular po-
sition, and then, to apply the proposed algorithm, having now a higher an-
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Figure 6.9. Broadband directivity results (solid line) ob-
tained in a (a) K-DWM grid and (b) interpolated K-DWM
grid. The dotted line represent the expected values.

gular resolution. Figure 6.12 shows the same directivity pattern as Fig. 6.8
after a spline interpolation with an angular resolution Af = 7 /36. The
results show how the obtained directivity is now practically constant and
no considerable differences can be observed, giving to the proposed method
a considerable feasibility to define directivity sources in a K-DWM. It is
straightforward to confirm this method is also applicable to the rest of
discrete-time methods, such as FDTD, W-DWM or FTM.

The main advantage of this method lies on the fact that different di-
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Figure 6.10. Same directivity results of the Fig. 6.8, mea-
sured with an angular resolution of A§ = 7/36.
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Figure 6.11. Same directivity results than Fig. 6.9, measured
with an angular resolution of Af = 7/36, for (a) a K-DWM
and (b) interpolated K-DWM.
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Figure 6.12. Same directivity results than Fig. 6.8 after a
spline interpolation of the directivity pattern with an angular
resolution Af = 7/36.

rectivities at different frequencies according to the different measurements
could be defined, including soft transitions between the original data. Let us
consider an example: being a K-DWM grid with the same characteristics as
the previous one but using the next directivity patterns: at a frequency w =
27500 p,(gp)(27500) = [0, -2, -5, -3, -4, -9, -3, —1]; at a frequency w =
27500, p,(gp)(271000) = [0, -2, -9, =3, -8, —1, —12, —5] and finally, at a
frequency w = 272000, p,gp)(272000) = [0, —8,—10,-3,0,—5, —4, —1].
Since the angular resolution is quite low, the directivities are interpolated
through the use of spline functions in order to achieve A§ = 7/36. Fur-
thermore, since the number of known of frequencies is also fairly reduced,
the rest of the frequencies are interpolated, using 1024 frequency samples to
represent the whole spectrum. This time, the interpolation function used
is linear, since the splines could create elevated and unnatural values. The
null frequency and the maximum frequency as omnidirectional have been
also considered °.

Two source point distributions are used for synthesizing this frequency-

Real sources are omnidirectional at low frequencies and directional at high frequen-
cies; however, these values are selected in order to shown the feasibility of the method in
the frequency range of the example.
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Figure 6.13. (a) Theoretical directivity pattern obtained
through a circle shape source distribution with a radius
0.058 m. (b) Same directivity results obtained through the
proposed method in a K-DWM.

dependent directivity. Both distributions again consist of a circle shape
source distribution, one with a radius of 0.058 m (between 1.47 and 3.75 kHz);
and the other one with a radius of 0.14 m (between 0.59 and 1.5 kHz). Fig-
ure 6.13(a) represents the expected pattern using the circle of sources with
a radius of 0.058 m, whereas Fig. 6.13(b) represents the results. The ele-
vated agreement between both graphics can be observed. Also, Fig. 6.14(b)
shows the results with the other source distribution, which is compared to
the theoretical directivity pattern. Again, the agreement is elevated. If
each simulated directivity is subtracted from their corresponding expected
pattern, an error distribution is achieved. Their corresponding error distri-
butions are presented in Figs. 6.15 and the maximum error is estimated at
no higher than 4+3 dB, although these errors are located in a few points,
the average error being nearly inappreciable.

It is also interesting to shown how the impulse response is propagated.
Both source configurations are calculated to emit a gaussian pulse according
this directivity. Figure 6.16 shows both mentioned source configurations
at different time steps. It can be observed how impulse responses have
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Figure 6.14. (a) Theoretical directivity pattern obtained
through a circle shape source distribution with a radius 0.14 m.
(b) Same directivity results obtained through the proposed
method in a K-DWM.

their gaussian shape when they reach a certain distance (far-field condition)
and it is also noticeable the level difference as a function of the angle of
propagation, being the directivity accurate in their corresponding frequency
band, according to the source distribution used in each example.
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Figure 6.15. Error distribution obtained as the difference be-
tween the expected directivity and the results for a circle shape
with radius: (a) 0.058 m and (b) 0.14 m.
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Figure 6.16. Impulse response generated by the directive
sources for the source distribution in a circle shape with ra-
dius: (a) 0.14 m and (b) 0.058 m. These impulse responses
are presented at different time steps.
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6.4 Discussion

Directive sources in time-domain methods remain as an unsolved problem,
and certainly, a very few attempts have been proposed. This should be an
important concern in discrete-time methods for room acoustic simulation,
since not only the position of the sources, but also their radiation patterns
have a considerable influence in the total sound field obtained in a partic-
ular room. However, so far, the radiating sources in discrete-time methods
are considered as point sources, e.g. monopoles, and this can produce an
important lack of accuracy in the final result. Unfortunately, there is very
little literature related to this topic for discrete-time modeling.

In this chapter, it has been demonstrated how it is possible to create
a certain directivity pattern with the suitable combination of monopole.
Given a certain monopole distribution, a directivity could be calculated
considering amplitudes and phases of each monopole in order to obtain a
particular far field pressure distribution. The first presented approach to
this problem has only considered sinusoidal sources. Since this algorithm is
based on the use of monopoles, it works for all those discrete-time methods.
Differences in the final results are strongly influenced by the dispersion of
each of these methods, being angular dependent dispersion the more decisive
parameter.

Although the achieved directivity using the proposed method for sinu-
soidal sources gives an accurate solution, this method itself is not enough
for real simulations, since sources have a width spectrum. For that reason,
it should be extended for broadband sources.

From the basis of this method, an extension to a broadband frequency
directivity pattern has been presented. For this method, the goal is to cal-
culate a suitable impulse response of each monopole, obtaining not only
accurate results but also smooth transitions between directivities for con-
secutive frequencies.



Conclusions
and Future Research Lines

Calvin: [ think we’ve got enough information now, don’t you?
Hobbes: All we have is one “fact” you made up.

Calvin: That’s plenty. By the time we add an introduction,

a few illustrations and a conclusion, it will look like a Ph.D thesis.
(Yukon Ho!, B. Watterson, 1989)

As concluding remarks, a brief description of the conclusions and con-
tributions of this thesis is presented, referencing the journal articles and
conference papers that have been published from this work, as well. Fi-
nally, some proposed guidelines for future research lines are indicated (some
of them have already started).

7.1 Summary and conclusions

Despite there existing a firmly established acoustic theory in room acous-
tics, it is not possible to find analytical expressions able to describe the
whole acoustic phenomena occurring in a room as a function of position
and time, see Chap. 2. For that reason, some simplifications should be ap-
plied to this room acoustic theory in order to perform computer simulations.
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These computer simulations have a considerable interest for engineers and
architects, and also for the entertainment industry, as well as virtual reality
applications.

Room acoustic simulation, as treated in this thesis, comprises the al-
gebraical method approach to solve the inhomogeneous wave equation, and
the way to define the boundary conditions. the ones which characterize the
scenario under analysis. Depending on which method is selected to perform
the simulation, there exists a way to define those boundary conditions and
sound sources, see Chap. 3.

In this thesis, the use of discrete-time modelling is justified since it al-
lows relatively efficient simulations with a high level of accuracy, since it
corresponds to a discretized solution of the wave equation. Furthermore,
defining these methods in the time domain, one only needs just one simu-
lation to calculate the impulse responses of the entire room, see Chap. 4.
And although a considerable number of advances and contributions exist
to these methods of room acoustics during the last fifteen years, there is a
notorious lack of solutions for some types of boundary conditions and sound
sources modeling.

The main motivation of this thesis, has been to contribute to discrete-
time methods presenting algorithms to, on the one hand, perform specular
boundary conditions in a locally reacting impedance sense, see Chap. 5; and
on the other hand, how to define directive sources, see Chap. 6.

Regarding boundary conditions, this thesis deals with the locally react-
ing impedance concept, meaning impedance value is fixed and its value is
independent of the plane wave angle of arrival, which simplifies considerably
the boundary definition. The main trend is to describe the wall effects using
the W-DWM and of plugging in a digital filter representing a reflection fac-
tor. However, this is not accurate, since the reflection factor is dependent of
the angle of arrival and, in order to simplify computer complexity, a normal
incidence is assumed. In order to improve this method, two techniques are
proposed: first, to detect the angle of arrival in each iteration and calculate
a suitable reflection factor filter for that time step; or as a second option,
to plug in an impedance filter, which is independent of the angle of arrival.
According to the results, this second option gives the most accurate solu-
tions with a considerable small computational cost, and then, it arises as the
most interesting solution according with its low complexity requirements.
In a similar fashion to this second option, an algorithm for locally reacting
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impedances in the FDTD method is also proposed. In order to validate the
results obtained through the contributions of this thesis concerning to the
boundary conditions, the results are compared with analytical expressions
derived from a semi-empirical equation of a hard-backed layer of porous
material impedance.

Considering the sound sources/excitation modeling so far, point sources
have been commonly used in these simulation methods; however, real sound
sources do not spread their acoustic power evenly and the final pressure dis-
tribution depends not only on the source positions but also on their spread
characteristics. In this thesis, a suitable distribution of monopoles (point)
sources is used to perform a given directivity pattern. This method, al-
though initially proposed for sinusoidal sources, has also been extended to
broadband sources. The main advantage of this proposed method lies in its
ability to represent a frequency-dependent directivities with considerable
accuracy and even with smooth transitions between the different directivi-
ties at consecutive frequencies.

7.2 Contributions of this thesis

In this thesis, the main contributions can be highlighted as follows:

e A deep analysis of previous implementations for representing frequency-
dependent boundary conditions using the reflection factor in the DWM
method is presented. This allows the identification and fully under-
stand of its behaviour as a function of the plane wave angle of arrival
and to verify how this corresponds with realistic boundary conditions,
see Sec. 5.2.2.

e The main drawback of the boundary filtering used so far in the DWM
method, lies in its lack of information about the angle of arrival, in
order to realize the locally reacting impedance model. A method based
on detecting this angle of arrival is proposed in order to improve the
specular behaviour of the walls based on the use of reflection filters,
see Sec. 5.2.3.

e An alternative and more accurate method for frequency-dependent
modeling of boundary conditions is also proposed for the DWM method.
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This is based on the use of an impedance filter defined through Wave
Digital Filters, instead of a reflection factor filter. Using this algo-
rithm, the boundary conditions are modelled as a locally reacting
impedance without any additional computational cost, see Sec. 5.2.4.
It has been also compared with measurements in a real scenario, see
Sec. 5.4.

e In a similar fashion to the previous contribution, an algorithm for an

efficient implementation of a frequency-dependent boundary condition
in the FDTD method is also proposed, see Sec. 5.3.

e Directive sources could be defined as a linear combination of point

sources. An algorithm based on a least-squares method for recon-
structing the acoustic pressure field is introduced for sinusoidal waves
and then extended for broadband sources, see Sec. 6.2.

e Since the proposed method considers point sources, it is suitable for

broader implementations beyond the FDTD and DWM methods. It
has been analyzed in different methods and how the particular disper-
sion characteristics of each method could modify the simulated sound
source distribution, see Sec. 6.2.2.

e However, since the numerical methods used in this thesis are based

on the time domain, the full capacity of those methods for broad-
band simulation is not employed. Furthermore, real sources in room
acoustics usually have a certain bandwidth and their directivity is not
constant with the frequency. For that reason, the previous algorithm
is extended in order to synthesize broadband directive sources, see
Sec. 6.3.

Some parts of this program of research have been presented previously,

at conferences and in journal papers. These publications are listed as fol-

lows:

Journal articles

e J. Escolano and F. Jacobsen, “A note on the physical interpretation

of frequency dependent boundary conditions in a digital waveguide
mesh”, Acta Acust. united with Ac., 93(3), pp. 398-402, May/Jun,
2007.
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e J. Escolano, J. J. Lopez and B. Pueo, “Directive sources in acoustic

discrete-time domain simulations based on directivity diagrams”, J.
Acoust. Soc. Am., 121(6),pp. EL256-EL262, Jun, 2007.

e J. Escolano, F. Jacobsen and J. J. Lopez, “An efficient realization of

frequency dependent boundary conditions in a finite-difference time-
domain model”, J. Sound Vibr., 316, pp. 234U-247, 2008.

e J. Escolano, J. J. Lopez and B. Pueo, “Broadband directive source

simulation in discrete-time methods”, J. Acoust. Soc. Am., (submit-
ted).

e J. Escolano, J. J. Lopez and B. Pueo, “Locally reacting impedance

simulation in a digital waveguide mesh by means of mixing modeling
strategies for room acoustic simulation”, Acta Acust. united with Ac.,
(submitted).

Conference articles

J. Escolano and J. J. Lépez, “Broadband directive sources modeling
for acoustic discrete-time domain methods” (abstract), J. Acoust. Soc.
Am., 123(5), pp. 3798, May 2008.

e J. Escolano, J. J. Lopez, B. Pueo and M. Cobos, “A note on the

implementation of directive sources in discrete time-domain dispersive
meshes for room acoustic simulation”, 128th AES Convention New
York, USA, Oct 2007.

e J. Escolano, B. Pueo, J. J. Lopez and M. Cobos, “Empirical eval-

uation of the frequency-dependent boundary conditions in a Digital
Waveguide Mesh”, 124th AES Convention Amsterdam, Netherlands,
May 2008.

e J. J. Lopez, J. Escolano and B. Pueo, “Simulation of complex and

large rooms using a Digital Waveguide Mesh”, 123th AES Convention
New York, USA. Oct 2007.

e J. J. Lopez, J. Escolano and B. Pueo, “On the implementation of a

room acoustics modeling Software using finite difference time domain
methods”, 122th AES Convention Vienna, Austria. May 2007.
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e J. Escolano and F. Jacobsen, “Physical interpretation of the frequency

dependent boundary conditions in a digital waveguide mesh”, 13th
International Congress on Sound and Vibration (ICSV’06), Vienna,
Austria, July 2006.

7.3 Future research lines

From the conclusions of this work, some new and challenging research lines
could be proposed, being some of them already open. Future work may
follow the lines listed here:

To evaluate the proposed boundary condition algorithms in more effi-
cient meshes, such as triangular and hexagonal DWM, and even in a
warped-interpolated mesh. The current trend in room acoustic simu-
lation is to use these types of meshes, since they considerably reduce
dispersion and then, it is possible to use a lower oversampling factor.
This makes them more suitable for room acoustic simulation.

To analyze the effects due the use of multidimensional KW- convert-
ers [Murphy and Beeson, 2007] to plug-in the proposed boundary con-
dition based on a impedance in K-DWM.

At the end of the writing process of this dissertation, Prof. Kar-
jalainen |[Karjalainen, 2008| has published a journal paper which ex-
plores alternative methods to realize consolidated impedances through
WDFs. Although the results obtained in this paper could improve
the efficiency of the model proposed in this thesis, they have been not
considered under a matter of time. However, the importance of these
contributions may help to open new research lines.

To include not only reflections, but also effects due to transmission loss
for a locally reacting impedance, in order to simulate thin solid slabs,
plates or blankets. Although in developing this thesis only reflection
from walls was assumed, there are some cases where a substantial por-
tion of the energy goes through the boundaries, and this transmitted
energy modify the total sound field, i.e., curtains.

Regarding the sound source modeling, since multipoles can be de-
fined as a combination of monopoles situated close enough, a formu-
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lation based on multipoles decomposition through spherical harmonics
should be introduced. It could provide a more compact formulation
of directive sources and improve the directivity at higher frequencies.

Since this thesis is mostly a theoretical approach to the boundary
conditions problem and the sound source modeling in discrete-time
methods, a next step will be to compare the results obtained with
the proposed algorithms in simulated room, and then to evaluate the
performance of these algorithms in real scenarios. Although a first
approach to verify the accuracy of one of the proposed method for
boundary conditions has been already presented, all the proposed al-
gorithms should be compared with measurements in real rooms, and
then to determinate how close those simulations are to real world
situations.

To develop an end-user software, suitable to perform room acoustic
simulations, including multi-process of parallelization. This is an ac-
tive research and development line in order to provide the Waverb
software [Lopez et al., 2007a,b|, which will include all the algorithms
introduced in this thesis.

To perform psychoacoustic evaluations of computed room acoustics
which include these proposed methods: boundary conditions and di-
rective sound sources. One of the final aims of these simulation algo-
rithms is to provide a psychoacoustic aceptable result; then, it should
be demonstrated there are no artifacts in these algorithms which could
be perceived as an anomaly in the listening to these simulations.
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A note on the dispersion
of some discrete-time methods

In this appendix, a brief note about some of the most used discrete-time
methods for room acoustic simulation is presented focusing on their dis-
persion characteristics. In this thesis, dispersion has been defined as the
difference between the theoretical and the resulting speed of sound during
the simulation. It use to be an angle and frequency dependent function,
specially affecting high frequencies.

It is not the intention of this appendix to deal with the mathematics
behind the dispersion analysis of these methods, but to present some simu-
lations. Some references addressing a deeper analysis of the methods’ mesh
dispersion are included in this appendix.

In Fig. A.1, the same gaussian broadband point source has been simu-
lated through the different methods and represented in a logarithmic scale
from 0 to -150 dB, where 0 dB has been specified as the maximum level of
the propagated signal:

o Digital Waveguide Mesh: The formulation of the dispersion of this
method has been detailed in Sec. 4.2.1. Dispersion of the (K- and W-)
DWM is represented in Fig. A.1(a). It can be observed how dispersion
is maximized in the cartesian directions, whereas is minimized in the
diagonal direction, establishing an evident angular dependence (see
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Figure A.1l. Pressure wave propagation simulated through:
(a) a DWM mesh, (b) Triangular DWM, (c) Upwind Leapfrog
Scheme, (d) Interpoled DWM and (e) Functional Transforma-
tion Method. The results are scaled with a logarithmic repre-
sentation in dB, in order to emphasize the dispersion effects.
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Ref. [Murphy, 2000, Duyne, 2007]| for more details.).

Triangular Digital Waveguide Mesh (TDWM): In Sec. 3.4.1, TDWM
has been cited as an alternative DWM structure proposed in order
to reduce the dispersion of the cartesian DWM. Figure A.1(b) shows
an example of an implemented TDWM and the high reduction of the
dispersion can be observed, even being almost not angle dependent.
Accordingly [Fontana and Rocchesso, 1995, TDWM exhibits a high
frequency dispersion error not exceeding 15 % along all directions,
while the cartesian DWM has almost 30 % of error along the axes in
high frequencies. A detailed comparison between the triangular and
cartesian dispersion has been reported in Refs [Campos and Howard,
2005, Hacihabiboglu et al., 2008a]

Upwind Leapfrog Scheme: This method has a more compact sten-
cil compared with the classical leapfrog scheme for the FDTD/DWM
method. Clustering the stencil around the preferred directions (char-
acteristics), it enables high accuracy with a low order of operations.
The most important advantages are related to the increment of the cell
size for a given sampling frequency in respect to the classic leapfrog
scheme of the FDTD method, and the reduction of the error disper-
sion (see Fig. A.1(c) for details). A detailed analysis of the dispersion
can be found at Refs. [Thomas, 1996, Kim, 1997].

What is observed is a similar result to the DWM simulation, but the
minimum dispersion occurs on the cartesian axis, whereas it is max-
imized along the diagonal directions. However, as cited in Sec. 3.4.2,
the main advantage of this method lies in the efficiency of the method
compared with the original FDTD/DWM scheme.

Interpolated Digital Waveguide Mesh: The scope of this technique is
to decrease, at least, the angular dispersion of a DWM [Savioja and
Vilimaki, 2003]. It takes into account the values of the cells not
only in the cartesian directions, but also in the diagonal directions
through suitable weight factors. This method does not reduce the
dispersion substantially, however, its dispersion has (almost) a non
angular dependence (see Fig. A.1(d)).

This mesh is not usually used by itself; it requires a pre- and post-

process based on the use of warping filtering [Savioja and Véliméki,

2003|(d).
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o Functional Transformation Method: Some details about this method
have appeared in Sec. 3.4.2. One of the main advantages of this
method is that it is free of dispersion, as illustrated in Fig. A.1(e).
Although this free dispersion characteristic has been reported by the
authors [Petrausch and Rabenstein, 2005al, it can be observed some
artifacts not reported so far. However, these artifacts appear since
50 dB below from the signal reference.
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In this appendix, some considerations about the develop of computer soft-
ware for room acoustic simulation based on discrete-time methods is pre-
sented. Although a front-end software is far from the scope of this the-
sis, some of the first efforts to develop the Waverb software [Lopez et al.,
2007a,b] is presented, a DWM-based software which would include the con-
tributions of this thesis. It should be noted from the literature, with the
exception of the Roomweaver software [Beeson and Murphy, 2004| (now re-
named as RenderAIR [Murphy et al., 2008a|, developed in the Intelligent
Systems Group,/ Audio Lab, University of York, UK 1), there is no other
front-end software based on discrete-time methods for room acoustic simu-
lation. This appendix cannot be considered as a contribution itself, but also
it provide some guidelines followed in order to start with the development
of a front-end software. These guidelines concern about some aspects such
as the mesh definition and computational considerations.

B.1 Mesh definition

YURL: http://www.elec.york.ac.uk/intsys/
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A meshing algorithm takes the 3D model defined by its faces and vertex
and maps it inside mesh composed by the cells that conform the object
(in this case, room interiors). In the last few years, different algorithm
variations have been attempted [Srisukh et al., 2002, Su et al., 2004] for the
same topic. They are designed for the objects used in electromagnetism,
but there are no references in the acoustic field. This algorithm presented
here is based on those previously published works, but in the case of large
and complex enclosures, special care and consideration has been taken to
produce the models successfully.

The algorithm has different stages:

o Import of the CAD file: Loads the vector object from the CAD file
and stores faces and vertex in the corresponding data structure. So
far, the present software only imports OBJ© files, but any file can
be employed by means of a format conversion using any available
software.

e Boundary box: The object is scanned in order to accommodate the
small boundary box. This is important because the size of the ma-
trix variables that will contain the acoustic variables will have a size
directly related to the box, and the memory has to be allocated.
Through the Courant formula (see Eq. 4.35), cell sizes are obtained,
and thus, the matrix size of the mesh is N, x N, x N,. The most
important role of the meshing algorithm is the identification and clas-
sification of interior cells on the object. This is made in the two next
steps:

1. Plane section: The procedure to find such cells needs to simplify
the 3-D to a 2-D problem. For this purpose, an object intersect-
ing process is performed. This is done via a series of intersecting
perpendicular planes to one of the axis with a AX (or Ay ei-
ther Az) increment. Fig. B.1(a) shows a visual example of the
procedure, where the z-axis has been chosen for the commented
cuts, although any other axis would be valid. For this process,
it is necessary to evaluate the eventual cut of such as plane with
all sides of the object. If the plane intersects only one side, the
cut segment is stored in a list. Once the process is finished, the
intersection resulting polygon is configured.
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2. Polygon Filling: The procedure to obtain the inner polygon cells
is a classic procedure of computer graphics. Basically, a ray
scanning is performed, where a single ray, parallel to the z-axis,
is traced for each Ay , thus obtaining the cuts with the polygon.
The result of the presented process is shown in Fig. B.1(c). Such
an example is very simple, but there can eventually be objects
presenting concavities or in the cut, there would appear more
than a single polygon. For these situations, it is necessary to
count the number of rays that cut on the polygon in such a way
that when the number is odd, the cell is outside the polygon,
whereas when it is even, the cell is inside. In Fig. B.2, the r;
ray intersects the polygon three times so the cell is inside the
object. The same occurs for r3 ray since it only cuts once. On
the contrary, ro ray lays within the object, as shown in Fig. B.2.

e Boundary cells identification: During the process of plane sectioning
and polygon filling the cells are labelled as pertaining or not to the
object. In order to take into account the boundary conditions, it would
be desirable to label the cells in the boundary as a third category, in
a reference to those boundary cells which are in contact with the
air. This would help in the DWM recursion process when applying
boundary condition algorithms. During the filling process, it is not
possible to find all the cells in the boundary so a scanning process in
the three axes is carried out. This process can find every boundary
cell, even in concave volumes, or volumes with holes.

B.1.1 Verifying the mesh modeling

DWM code users need to be able to view and inspect their models after the
meshing process to verify that the resulting grid accurately represents the
object under study. Sometimes the CAD model may present small errors,
such as tiny holes on the surface because of CAD design faults and some
rays may escape in the scanning process. A visual verification of the mesh
is very advisable to avoid such little errors that may ruin the process. To
add this function, the developed software has the option to generate a file
that contains the 3D mesh model that can be loaded with any 3D viewer of
CAD software. To create a 3D verification file, one must proceed so:

e Scan the generated mesh, looking for cubes that pertain to the edge
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Figure B.1. Stages in the process of mesh generation.

(previously labeled).

e Generate the faces of each small cube, referencing to the correspondent
vertexes.

e Save the face and vertex information according to the syntax of the
selected fileformat (.OBJ in that case).

Fig. B.3 shows and example exported by our software. It can be ob-
served that the developed algorithm for meshing can manage objects with
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Figure B.2. Concave polygon filling procedure.

holes.

Figure B.3. Example of mesh with hole.

B.1.2 Example

In this section, some graphics concerning the meshing process when it is
applied on a real room are presented. In this case, the CAD model belongs
to the Rodrigo concert hall, in the Palau de la Musica, Valencia (Spain)
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(see Fig. B.4). A more detailed view of this auditorium can be observed in
Fig. B.5.

Figure B.6 shows a verification of the meshing process, where the cell
size has been augmented for clarity.
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Figure B.4. CAD model of the auditorium.

B.2 Graphical user interface

The developed software so far, has a graphical user interface (GUI) in order
to interact with the user, define all the parameters, execute the different
tasks and show the status and the relevant information related to the sim-
ulation. Figure B.7 shows the main window of the GUI. It was decided to
design a single screen in which to define the main parameters, instead of
using different emerging windows that are hidden after each variation. This
allows the user to always have a view of the main simulation parameters.

There are other windows devoted to more specific configurations, such
as the management of the material database and the material index associ-
ated to the room geometry file that has been loaded.

The execution actions are represented by buttons on the left side of the
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Figure B.5. Two views of the auditorium (stage and stalls)
synthesized from the CAD model.
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Figure B.6. Mesh of the auditorium (the cell size for this
picture is smaller than the used in the simulation for clarity).

window. Buttons for loading the 3-D file defining the room, for generating
the mesh and for executing the simulation can be observed. In order to add
more functions, this software has the option to save a file containing a 3-D
model of the mesh which has been created. This file can be loaded with
any 3-D CAD software viewer in order to verify that the created mesh is in
accordance with the original CAD file.

Finally, there are a set of buttons to export the simulation results. It is
possible to export the impulse response, which has been obtained between
the defined source position and a set of listening positions. In this way, this
software stores the pressure values for every defined point for each time step
to create the room impulse response between the source and such points.
Furthermore, the program can export pressure maps at different planes,
perpendicular to the axis. In this GUI version, up to four planes can be
defined. Such exportation can be done to ASCII format, to MATLAB®
compatible files or to VTK® files.

The software also allows to modify and visualize the configuration pa-
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rameters related to the DWM simulation. It is also possible to define certain
characteristics such as the bandwidth simulation limit or the oversampling
applicable, which could be applied to minimize the inherent dispersion of
DWM. Before starting the simulation or even before creating the mesh, it
could be seen the mesh size for a given selected cell size. In this way, one
can know a priori if the mesh is too large for the memory and power of the
computer being used. In this sense, a window reports the available memory
resources and the memory needed in the simulation.

Once the meshing is done, the program shows the number of active cells
among those that comprise the mesh shoebox. Also, it offers an efficiency
percentage of the memory use, i.e. the ratio between the room volume and
the shoebox volume that contains the room. Additionally, one could check
the number of cells that are located in the boundaries and, therefore, they
will be treated in a special manner.

There are other areas in the window to configure both source posi-
tions and its excitation signals. If a delta function d(n) is selected, its
bandwidth will be half the sampling frequency and thus, there will be dis-
persion. However, to obtain with the selected bandwidth, the Gaussian or
sinc signal option must be clicked; both have the -6 dB bandwidth selected
in the respective box. In addition, a wavelet signal can be used, with an
octave bandwidth, centered in the mentioned frequency. This signal can be
of interest when a room is studied in a given single octave. Moreover, it is
possible to employ a user-defined excitation function via a script code. Fi-
nally, while the software is running, it allows iterative showing of a snapshot
of a pressure map using a pseudocolor scale.

B.3 Parallelization process

The huge amount of computer power necessary to simulate large acoustical
spaces limits the DWM use in personal computers (PC). However, computer
power in PCs continues to grow following Moore’s law [Moore, 1965]. Dual
core microprocessors are typical today, quad core processors have just been
introduced in the market and multiple core processors are in the sort term
plans of CPU manufacturers. So in the coming years, personal computers
will be able to manage acoustical simulations using DWM up to reasonable
frequencies and for large rooms without problems.
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Figure B.7. Graphic User Interface for Waverb software.

However, at the moment, when a big enclosure is to be simulated up
to a reasonable frequency using DWM, the numerical power and also the
memory capacity of a PC is not enough. A simple but effective solution
could be to divide the whole mesh into smaller volumes and computing
them simultaneous. In these cases, parallel computing is one interesting
solution.

The DWM algorithm (see Sec. 4.3) is easy to parallelize, only dividing
the mesh into as many smaller blocks as processors are available. Each
processor computes the DWM recursion only for the cells of the block.

The division into blocks can be carried out by splitting the mesh in slices
on one axis, or into two or three. Depending on the number of processors or
the parallel architecture used, one can be more interesting than the other.
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B.3.1 Parallel architectures

The classification of the parallel architectures in computer science may be
very complex [Roosta, 2000]. In the following, the simplest classification,
oriented to affordable computers or superb computers is presented. The
aim is to understand which alternatives could be used to split the problem
of a DWM recursion.

e Shared Memory Model: A set of processors (or cores) shares the same
main system memory. Thus, all have access to the same data and
the problem division is straightforward, since there is no communica-
tion between them, except from the synchronization of the different
threads.

o (luster of Computers: This model uses different computers connected
to a high speed net. It is usual to employ low cost computers. In cer-
tain steps of the algorithm, when communication between them is
necessary, a message parking system is employed. The most popular
ones are the MPT [Snir et al., 1995] and the PVM [Geist et al., 1994].
As a drawback, this architecture presents two side effects: on the one
hand, the software complexity arises because of all the communica-
tion procedures and, on the other hand, the algorithm is slowed down,
since a great amount of time is wasted in each communication itera-
tion. In the DWM case, in each temporal iteration, processors must
communicate the value of the contact cells, since DWM recursion has
dependency on adjacent cells.

o Supercomputers: This is the most complex case, in which very so-
phisticated architectures, vectorial processors, shared and not shared
memory, ..., may coexist. The supercomputer power may simulate
large models at high frequencies and at very high speed. In any case,
the arise in the capacity of the current PC and the use of the previous
approaches are still on the run.

B.3.2 Hardware and software used in the experiments

In the implementation of the DWM simulation software, special care
has been taken to profit of the complex math instructions present in
modern CISC CPU (x86 architecture). A C/C+-+ compiler using ad-
vanced SS3 and x64 instructions has been employed. Some critical
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parts of the code have been implemented directly in the assembler
for maximum performance. The algorithm has been implemented for
parallel use inside the same PC (shared memory), so it can split the
recursion between the different CPU cores present in the computer.
The mesh can be split in one of the long axes, or even two or three.
It has been tested for 8 cores, using a bi-processor motherboard con-
taining two Quad-Core Intel© Xeon®© 5300 processors, but it has been
prepared to use more cores when available. An improved version of
the software that can split the problem into a cluster of PCs using
MPI is being developed.

B.4 Computational cost and memory requirements

Both, memory requirements and computational cost of the DWM recursion
are related to the size of the cell. The Courant formula gives the size of the
cell according to the sampling frequency, see Eq. 4.35. However, just the
accomplishment of the Nyquist criteria (fs = 2fmax) is not enough. The
frequency-dependent dispersion, that it is inherent to the DWM method
must be taken into account. According to the previous texts of this thesis,
a solution is based on using a 2xoversampling, with a f; = 4 fihax. This is
computationally costly, but it allows a visualization on-line of the simula-
tion. In this work, this technique has been chosen, in order to analyze the
suitability of DWM in computational extreme conditions. In accordance
with that, a table has been composed, that relates the number of cells per
cubic meter and the maximum simulation frequency. This table helps to
easily calculate the number of effective cells that an enclosure needs, for a
given volume.

Freq. (Hz) | 250 | 500 | 1000 | 2000 | 4000 | 8000 | 16000
Cells/m®> | 5 | 39 | 313 | 2.5-10° | 2-10* | 1.6-10° | 1.3-10°

Table B.1. Number of cells per cubic meter as a function of
the maximum frequency considered

However, as described in Sec. B.1, for efficiency in memory addressing,
the size of the mesh would be the size of the minimum boundary box.
According Eq. 4.37, the pressure at present time step, and the pressure at
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the two times steps before needs to be stored. Assuming the use of single-
precision floating-point arithmetic for pressure (4 bytes) and adding the
matrix of labels per cell, the total memory in bytes needed is

Memory = Cells x (4 x 3+ 1) (B.1)
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