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SUMMARY 23 

• Carpel development and evolution is a central issue for plant biology. The 24 

conservation of genetic functions conferring carpel identity has been widely studied 25 

in higher plants. However, although genetic networks directing the development of 26 

characteristic features of angiosperm carpels such as stigma and style are 27 

increasingly known in Arabidopsis thaliana, little information is available on the 28 

conservation and diversification of these networks in other species. Here, we have 29 

studied the functional conservation of NGATHA transcription factors in widely 30 

divergent species within the eudicots. 31 

• We determined by in situ hybridization the expression patterns of NGATHA orthologs 32 

in Eschscholzia californica and Nicotiana benthamiana. VIGS-mediated inactivation 33 

of NGATHA genes in both species was performed and different microscopy 34 

techniques were used for phenotypic characterization. 35 

• We found the expression patterns of EcNGA and NbNGA genes during flower 36 

development to be highly similar to each other as well as to those reported for 37 

Arabidopsis NGATHA genes. Inactivation of EcNGA and NbNGA also caused severe 38 

defects in style and stigma development in both species.  39 

• These results demonstrate the widely conserved essential role of NGATHA genes in 40 

style and stigma specification and suggest that the angiosperm-specific NGATHA 41 

genes were likely recruited to direct a carpel specific developmental program. 42 

 43 

Key words: gynoecium, VIGS, Eschscholzia californica, Nicotiana benthamiana, NGATHA, 44 

style and stigma, carpel evolution. 45 

  46 



INTRODUCTION 47 

The carpel is the female reproductive organ specific to the angiosperms, or flowering plants. 48 

Carpels enclose the ovules, providing numerous benefits in reproductive efficiency over the 49 

naked ovules typically present in the gymnosperms These benefits include support for 50 

pollination and incompatibility mechanisms, and, after fertilization, fruit development, which 51 

in turn protects the developing seeds and ensures seed dispersal. For these reasons, the 52 

carpel was probably of vital importance to the success of the angiosperms (Scutt et al., 53 

2006). 54 

Carpels are complex structures comprising several specialized characteristic tissues. At 55 

maturity, the carpel is basically divided into an apical stigma, a style and a basal ovary. The 56 

stigma is composed of cells specialized in the reception and germination of the pollen 57 

grains. The style is a highly vascularized tissue containing at its center a transmitting tract 58 

through which the pollen tubes grow to reach the ovules. The basal ovary forms a chamber, 59 

with single or multiple locules, that prolongs the transmitting tract towards the ovules that 60 

develop from placental tissues. At the base of the ovary, the gynophore, a pedicel-like 61 

structure, connects the gynoecium to the flower. Despite this basic plan of organization, 62 

there is a great diversity in carpel morphology among the angiosperms. The term gynoecium 63 

is most commonly used to name all carpels in a flower, that may occur as single carpels, 64 

multiple unfused carpels or multiple fused syncarpic carpels (Ferrandiz et al., 2010).  65 

Regulatory networks underlying gynoecium patterning have been extensively studied in 66 

Arabidopsis, and many genes required for the development of the different characteristic 67 

tissues within the carpel have already been identified in the last few years. Carpel identity in 68 

angiosperms is specified by C-function genes in a widely conserved manner, as defined by 69 

the ABC model of floral organ identity (Coen & Meyerowitz, 1991), and  in Arabidopsis this 70 

http://en.wikipedia.org/wiki/Flower


function is provided by the MADS-box gene AGAMOUS (AG) (Yanofsky et al., 1990). Once 71 

carpel identity is established, the genetic pathways controlling gynoecium patterning and the 72 

development of the carpel specific tissues are successively activated (reviewed in Balanzá 73 

et al., 2006; Ferrandiz et al., 2010; Reyes-Olalde et al., 2013). Two other transcription factor 74 

genes, CRABS CLAW (CRC) and SPATULA (SPT) are required to bring about the full carpel 75 

development program (Alvarez & Smyth, 1999). CRC function is required to ensure the 76 

correct growth of the carpels, apical gynoecium closure and style development, while SPT 77 

function is mainly needed for appropriate development of transmitting tissues. The plant 78 

hormone auxin also plays a central role in the establishment of the apical-basal polarity. 79 

Nemhauser et al. (2000) have proposed that an auxin gradient spans the gynoecium 80 

primordium with a maximum at the apex inducing the differentiation of stigma and style, an 81 

intermediate level at the central domain promoting the development of the ovary, and a 82 

minimum at the bottom specifying gynophore formation. While the exact nature of this 83 

gradient has not been experimentally validated yet, it is clear that an apical maximum of 84 

auxin present during carpel primordia development is critical to ensure apical gynoecium 85 

closure and the development of the style and the stigma (Sundberg & Østergaard, 2009; 86 

Larsson et al., 2013). Other transcription factors have also essential roles in the specification 87 

of apical tissues. The NGATHA (NGA) factors are required to direct apical gynoecium 88 

development in Arabidopsis (Alvarez et al., 2009; Trigueros et al., 2009). The NGA genes 89 

from Arabidopsis (referred to as AtNGA) form a small subfamily of four members within the 90 

RAV clade of the B3-domain transcription factor family and act redundantly to specify style 91 

and stigma identity. AtNGA function is intimately linked to auxin as it has been shown that 92 

auxin-biosynthetic enzymes of the YUCCA (YUC) family are specifically downregulated in 93 

the apical gynoecium domain of nga loss-of-function mutants (Trigueros et al., 2009). Also 94 

STYLISH1 (STY1) has been identified as a direct activator of YUC4 in the apical region of 95 

the Arabidopsis gynoecium (Sohlberg et al., 2006). STY1 belongs to the SHI/STY family of 96 



zinc-finger transcription factors, and while single mutants only show subtle defects in style 97 

development, this phenotype is gradually enhanced when combined with mutations in other 98 

members of the SHI/STY family, leading to a complete absence of style and stigma in shi/sty 99 

high-order mutant combinations (Kuusk et al., 2002; Kuusk et al., 2006).  100 

There is a wealth of evo-devo studies across higher plants mainly focused on questions 101 

related to the evolutionary origin of the carpel and in particular, the conservation of the major 102 

elements of the ABCE model that specify carpel identity (Bowman et al., 1989; Bradley et 103 

al., 1993; Pnueli et al., 1994; Mena et al., 1996; Davies et al., 1999; Pan et al., 2010; Yellina 104 

et al., 2010; Dreni et al., 2011). However, very little information is available in other 105 

angiosperm species about the role of the genetic functions in the lower regulatory 106 

hierarchies directing carpel morphogenesis and development. Conducting comparative 107 

studies on distant angiosperm species could lead to a better understanding of the different 108 

molecular pathways involved in apical carpel development, moreover it could shed some 109 

light on the morphological diversity and innovations of gynoecia. 110 

 111 

In this work, we have studied the functional conservation of the small NGA gene family, 112 

characterizing the expression patterns and the phenotypes caused by the downregulation of 113 

the NGA genes in two distant species, the basal eudicot Eschscholzia californica and in the 114 

core eudicot asterid lineage, Nicotiana benthamiana. This work represents the first study of 115 

the role of the NGA genes outside the Brassicaceae and demonstrates a highly conserved 116 

NGA function in apical gynoecium development across eudicots. In this context, we also 117 

discuss the possible evolution of the different genetic networks known in Arabidopsis to take 118 

part in the apical gynoecium morphogenesis.  119 

 120 

MATERIAL AND METHODS 121 



Plant material and growth conditions  122 

E. californica and N. benthamiana plants were grown in the greenhouse, at 22°C (day) and 123 

18°C (night) with a 16-h light/8-h dark photoperiod, in soil irrigated with Hoagland no. 1 124 

solution supplemented with oligoelements (Hewitt, 1966). E. californica germplasm used in 125 

this study (acession PI 599252) was obtained from the National Genetic Resources Program 126 

(USA). 127 

Cloning and sequence analysis  128 

The partial coding sequence of EcNGA gene was isolated by RT-PCR on cDNA of young 129 

flowers of E. californica using the degenerate primers EcNGAdegFOR/EcNGAdegREV 130 

designed from the conserved motifs of NGA homologs from other species (B3 domain and 131 

the NGA-II motif). The 3'end of EcNGA was then isolated by RT-PCR using the primers 132 

EcNGAFor2 and RT (sequence added to the oligodT primer used for retrotranscription). 133 

Finally, the 5'end of EcNGA was amplified by TAIL PCR using the random nested oligos 134 

AD1, AD2 and AD3 and the specific nested oligos EcNGATAIL1, EcNGATAIL2, 135 

EcNGATAIL3. The full-length CDS sequence has been deposited in Genbank under the 136 

accession number KF668646. A BLAST search against N. benthamiana draft genome 137 

sequence v0.4.4 (solgenomics.net) identified two genomic sequences corresponding to NGA 138 

homologues that we named NbNGAa and NbNGAb. The corresponding CDS were cloned, 139 

and sequences were deposited in Genbank under the accession numbers KF668647 140 

(NbNGAa) and KF668648 (NbNGAb). The deduced amino acid sequences alignments 141 

were analyzed using the Macvector 12.6 software. See table S1 for primer sequences. 142 

In situ hybridization.  143 

RNA in situ hybridization with digoxigenin-labeled probes was performed on 8-m paraffin 144 

sections of E. californica and N. benthamiana buds as described by (Ferrándiz et al., 2000). 145 



The RNA antisense and sense probes were generated from a 409 bp fragment of the 146 

EcNGA cDNA (positions 549 to 957), from a 707 bp of the NbNGAa cDNA (positions 472 to 147 

1178) and from a 698 bp fragment of the NbNGAb (positions 589 to 1286). NbNGAa and 148 

NbNGAb probes had 58% identity, a low sequence similarity that likely precluded cross-149 

hybridization. Each fragment was cloned into the pGemT-Easy vector (Promega), and sense 150 

and antisense probes were synthesized using the corresponding SP6 or T7 polymerases.  151 

Virus-Induced Gene Silencing (VIGS)  152 

The same regions of EcNGA, NbNGAa and NbNGAb coding sequence used for in situ 153 

hybridization were used for the VIGS experiments. In the case of the single gene constructs, 154 

a Xba1 restriction site was added to the 5' end of the PCR fragment and a BamH1 restriction 155 

site was added to the 3' end. The amplicon was digested by Xba1 and BamH1 and cloned 156 

into a similarly digested pTRV2 vector. For the double gene construction the fragment of 157 

NbNGAb coding sequence was introduced into the pTRV2-NbNGAa vector using the EcoRI 158 

restriction site. The four resulting plasmids, pTRV2-EcNGA, pTRV2-NbNGAa, pTRV2-159 

NbNGAb and pTRV2-NbNGAa-NbNGAb were confirmed by digestion and sequencing, 160 

before being introduced into the Agrobacterium tumefaciens strain GV3101. The 161 

agroinoculation of E. californica seedlings was performed as described (Pabon-Mora et al., 162 

2012). The Agroinoculation of N. bentahamiana leaves was performed as described 163 

(Dinesh-Kumar et al., 2003).  164 

Quantitative RT-PCR 165 

Total RNA was extracted from flowers in anthesis with the RNeasy Plant Mini kit (Qiagen). 166 

Four micrograms of total RNA were used for cDNA synthesis performed with the First-Strand 167 

cDNA Synthesis kit (Invitrogen) and the qPCR master mix was prepared using the iQTM 168 

SYBR Green Supermix (Bio-rad). The primers used to amplify EcNGA (qEcNGAFor and 169 



qEcNGARev), NbNGAa (qNbNGAaFor and qNbNGAaRev), NbNGAb (qNbNGAbFor and 170 

qNbNGAbRev) and NbYUC6 (acc. number NbS00044296g0003.1, qNbYUC6For and 171 

qNbYUC6Rev) generated products of 81 bp and did not show any cross-amplification. 172 

Results were normalized to the expression of the ACTIN gene of E. californica (according to 173 

Yellina et al, 2010) amplified by EcACTFor and EcCTRev, and to the Elongation Factor 1 174 

(EF1) gene of N. benthamiana (accession number AY206004), amplified by qNbEF1For and 175 

qNbEF1Rev. The efficiency in the amplification of the genes of interest and the 176 

corresponding reference gene was similar. Three technical and two biological replicates 177 

were performed for each sample. The PCR reactions were run and analyzed using the ABI 178 

PRISM 7700 Sequence detection system (Applied Biosystems). See Table S1 for primer 179 

sequences. 180 

Scanning electron microscopy (SEM) and histology  181 

VIGS-treated plants were analyzed by cryoSEM on fresh tissue under a JEOL JSM 5410 182 

microscope equiped with a CRIOSEM instrument CT 15000-C (Oxford Instruments, 183 

http://www.oxford-in- struments.com). Young buds were collected for histological analyses, 184 

fixed in FAA (3,7% formaldehyde, 5% acetic acid, 50% ethanol) under vacuum and 185 

embedded into paraffin. Sections 10 µm thick were stained in 0.2% toluidine blue solution, 186 

and observed under a Nikon Eclipse E-600 microscope (http://www.nikoninstruments.com). 187 

For vascular clearing, anthesis gynoecia from wild-type and VIGS-treated lines were fixed, 188 

cleared in chloralhydrate, mounted according to Colombo et al., (2010), and viewed under 189 

dark-field microscopy. 190 

 191 

RESULTS 192 



Identification of NGA genes in E. californica and N. benthamiana 193 

The NGA genes of Arabidopsis belong to the RAV subfamily within the plant-specific 194 

superfamily of B3-domain transcription factors (Swaminathan et al., 2008). The RAV 195 

subfamily contains two well-supported classes: Class I genes code for one B3 and one AP2 196 

DNA-binding domains, while Class II genes do not possess the AP2 domain. NGA genes 197 

form a separate clade within class II RAV genes, which also contains a sister clade of three 198 

genes named NGA-like (Romanel et al., 2009). In addition to the B3 domain, all RAV genes 199 

share one conserved motif that has been shown to have repressor activity (Ikeda & Ohme-200 

Takagi, 2009). In addition, the four NGA genes are characterized by possessing intronless 201 

ORFs that encode two additional conserved motifs flanking the RAV-repressor domain that 202 

appear to be specific to the NGA clade and that we have named as NGA-I and NGA-II motifs 203 

(Trigueros et al., 2009).  204 

To search for the homologues of NGA in E. californica we designed degenerate primers 205 

based on the conserved motifs of NGA homologues from other species. One putative NGA 206 

gene, named EcNGA, was amplified from cDNA of young buds of E. californica. The 207 

complete coding sequence of EcNGA was subsequently amplified by TAIL PCR and by the 208 

use of an adapted oligodT primer. The predicted EcNGA protein sequence possessed the 209 

typical structure of the NGA clade, including a single B3 domain, the RAV-repressor domain 210 

and NGA-I and NGA-II motifs (Fig. 1). Repeated attempts to identify additional NGA genes 211 

from E. californica were unsuccesful. This fact, reinforced by the presence in the database of 212 

a single NGA gene from Aquilegia caerulea, a phylogenetically related ranunculid species 213 

for which extensive EST databases are available (Kramer & Hodges, 2010), strongly 214 

suggested the existence of only one NGA gene in the E. californica genome.  215 

To identify NGA homologues from N. benthamiana we performed a BLAST search against 216 

the draft genome sequence that has been released recently (Bombarely et al., 2012). This 217 



search retrieved two genomic regions that encoded intronless ORFs with the predicted 218 

structure of NGA genes, comprising the B3 domain, the RAV-repressor domain and the 219 

NGA-I and NGA-II motifs. From genomic sequences, primers were designed to isolate the 220 

corresponding ORFs from floral cDNA, which we named as NbNGAa and NbNGAb. 221 

 222 

NGA gene expression patterns are highly similar in Arabidopsis, E. californica and N. 223 

benthamiana 224 

To characterize the expression pattern of the NGA genes identified in E. californica and N. 225 

benthamiana we performed RNA in situ hybridization on young flower buds. EcNGA 226 

transcripts could be detected in the developing flowers from very early stages of 227 

development. In stage 3 E. californica buds (according to Becker et al, 2005), EcNGA 228 

transcripts were detected in all flower organ primordia except the expanded sepals (Fig. 2a). 229 

In stage 5 EcNGA accumulated in the apical part of the developing petals, stamens and 230 

carpels (Fig.2b). A similar pattern was observed in stage 6 with an additional expression 231 

domain in the placental region (Fig.2c). At later stages, EcNGA was mostly present in the 232 

developing ovules and in the growing apical gynoecium, with a remaining expression at the 233 

distal end of the petals (Fig. 2d-e). This expression pattern was very similar to those 234 

described for the four Arabidopsis NGA genes throughout flower development (Alvarez et al, 235 

2009; Trigueros et al, 2009). 236 

In N. benthamiana, NGA genes showed highly similar expression patterns, which also 237 

paralleled those described for AtNGA and EcNGA genes. In stage 2 buds (as defined in 238 

Mandel et at., 1992), the NbNGA genes were detected in the floral meristem and more 239 

strongly in the distal end of the developing sepal primordium (Fig.2f). This distal expression 240 

was observed at later stages in all floral organ primordia. (Fig.2g). At later stages, the 241 



NbNGA expression was mainly detected in the apical gynoecium, the placentae and the 242 

anthers (Fig. 2h-i). In the preanthesis mature flower, NbNGAa and NbNGAb were almost 243 

exclusively expressed in the transmitting tract and in the developing ovules (Fig. 2j) (Fig. 244 

S1). 245 

Since AtNGA genes are also expressed in vegetative tissues, we compared by quantitative 246 

PCR the expression levels of EcNGA, NbNGAa and NbNGAb in leaves, young floral buds 247 

and anthesis flowers (Fig S2). We found EcNGA and NbNGA genes to be expressed in all 248 

analyzed tissues, similarly to what had been described for AtNGA genes (Trigueros et al, 249 

2009) 250 

In summary, EcNGA, NbNGA and AtNGA genes showed remarkably similar expression 251 

patterns during flower development, mostly confined to the distal end of developing floral 252 

organs, placentae and ovule primordia, and in the apical gynoecium at stages where style 253 

and stigma formation takes place.  254 

 255 

Silencing of EcNGA in E. californica using VIGS greatly alters style and stigma development  256 

Flower morphogenesis in E. californica has been previously described (Becker et al., 2005). 257 

The flower at anthesis (stage 11) comprises a first whorl of two sepals fused into a caplike 258 

structure, four bright orange petals arranged in two whorls, and several whorls of stamens in 259 

variable number (from 18 to 34). The central pistil consists of two fused carpels with 260 

placentae developing internally to the carpel fused margins. The pistil comprises a cylindrical 261 

ovary, a short style and four long stigmatic protrusions (Fig.3a and Fig. S4). These stigmatic 262 

protrusions originate at stage 7, when two stylar lobes start to grow above the valves and 263 

then two shorter ones develop above the placentae (Fig. S2). These protrusions elongate 264 



rapidly until post-anthesis stages, and are covered by stigmatic papillae, which also line the 265 

hollow internal style and the placentae (Fig 3i-j, Fig 4a-g, Fig. S4).  266 

The expression pattern of EcNGA suggested that this gene could have similar roles in flower 267 

development to those of AtNGA genes in Arabidopsis. To investigate the function of EcNGA 268 

in E. californica we used Virus Induced Gene Silencing (VIGS) to reduce its transcript levels. 269 

This method results in transitory downregulatation of a specific gene via modified plant 270 

viruses and it has been shown to efficiently direct the degradation of endogenous mRNAs in 271 

E. californica and other species (Ratcliff et al., 2001; Constantin et al., 2004; Hileman et al., 272 

2005; Wege et al., 2007).  273 

For our analyses, a total of 120 E. californica seedlings were inoculated with the TRV2-274 

EcNGA construction (Table 1). To evaluate the efficiency of the VIGS treatment we 275 

measured by quantitative RT-PCR the level of expression of EcNGA on flowers from 5 276 

different treated plants showing altered phenotypes. In these plants expression of EcNGA 277 

was reduced to 15-50% of wildtype level (Fig. 3o), indicating that the VIGS treatment was 278 

highly effective. To detect morphological abnormalities associated with EcNGA 279 

downregulation, we chose the three first flowers of each inoculated plant. No visible 280 

phenotypes were observed in sepals, petals or stamens. However, 18% of the flowers 281 

displayed pistils with defects in style and stigma development. The weakest phenotypes 282 

corresponded to gynoecia with one or two small supplementary stigmatic protrusions (Fig. 283 

3h). Intermediate phenotypes were characterized by the reduction and altered distribution of 284 

the stigmatic papillae (Fig. 3c,l) and the frequent proliferation of misshapen stylar protrusions 285 

of irregular length that precluded stylar closure (Fig.3d,e,f,k). The most severely affected 286 

gynoecia completely lacked stigmatic tissue and most stylar lobes, with ovaries terminating 287 

apically in irregular indented structures (Fig.3g,h,m,n). Histological sections of EcNGA-VIGS 288 

pistils showing intermediate to strong phenotypes revealed that the papillar cells lining the 289 



internal style were severely reduced, leaving an open gap along the style, but were not 290 

significantly affected in the placental domains (Fig 4h,n). Vascular strands, which in wildtype 291 

pistils run as parallel veins along the stigmatic protrusions, were defective in the VIGS-292 

treated gynoecia, bifurcating abnormally at the distal end of the apical lobes (Fig 4o-q). 293 

 294 

NbNGAa and NbNGAb are both involved in carpel and perianth development 295 

We used again VIGS-mediated downregulation of gene expression to investigate the role of 296 

the two NGA genes identified in N. benthamiana. We generated three different TRV 297 

constructs designed to either specifically inactivate NbNGAa, NbNGAb or both genes 298 

simultaneously. Twelve plants were inoculated with each construct (Table 1). To evaluate 299 

the efficiency and the specificity of each treatment, we measured the level of expression of 300 

NbNGAa and NbNGAb by quantitative RT-PCR on flowers from five different treated plants. 301 

NbNGAa was strongly reduced in the NbNGAa-VIGS flowers whereas the expression of 302 

NbNGAb was not significantly altered, indicating that the TRV2-NbNGAa construct was gene 303 

specific (Fig 5o). Likewise, the expression of NbNGAb was significantly reduced in the 304 

NbNGAb-VIGS flowers compared to the wild type, whereas the expression of NbNGAa was 305 

practically unaffected. Quantitative RT-PCR in flowers of NbNGAa-NbNGAb-VIGS plants 306 

confirmed that both genes were strongly downregulated (Fig. 5o).  307 

The wild type flower of N. benthamiana at anthesis is composed of a first whorl of five 308 

sepals, a second whorl of five white petals fused in a long tubular corolla, a third whorl of five 309 

stamens whose long filaments are adnately fused to the petals, and finally a bicarpellate 310 

gynoecium in the central fourth whorl. The N. benthamiana mature pistil comprises a short 311 

bilocular ovary with central placentation and a very long and thin style of approx. 3 cm, 312 

capped by a round wet stigma (Fig.5a,e,j). 313 



In plants inoculated with the TRV2-NbNGAa vector, 63% of the flowers displayed an 314 

abnormal phenotype in the apical part of the pistil (Fig. 5b,f,k; Table 1). Style length was 315 

reduced (from a few mm to 1 cm shorter) and the stigma was not properly fused leaving a 316 

small central hole. In some cases the top part of the style and the stigma were bent (Fig. 317 

5f,k). In histological sections we could observe that the transmitting tissue of the internal 318 

style was greatly reduced, leaving a hollow canal (Fig. 6c,d). Vascular development in the 319 

affected styles was also perturbed, with stylar veins terminating below the stigma instead of 320 

reaching the apical end as in the wildtype pistil (Fig. 6h,i). TRV2-NbNGAb treatment 321 

produced similar effects in gynoecium development, only stronger and in a higher proportion 322 

(Table 1). 74% of the NbNGAb-VIGS flowers showed affected pistils (Fig 5c,h). Style length 323 

was greatly reduced, up to 30-50% of its wildtype length, strong style and stigma fusion 324 

defects were frequent, and the transmitting tract at the internal style was severely reduced 325 

(Fig.5h, Fig 6e). Stylar veins showed irregular patterning and terminated at varying lengths 326 

within the style (Fig 6j) Finally, in plants where both NbNGA genes were downregulated, the 327 

gynoecium phenotype was greatly enhanced. 83% of the NbNGAa-NbNGAb-VIGS gynoecia 328 

completely lacked style development and the ovary directly terminated in a distorted stigma 329 

at the apical end (Fig. 5j,l. Fig. 6f,g; Table 1).  330 

In addition to gynoecium phenotypes, the NbNGA-VIGS treatment also affected the 331 

development of other floral organs. The three TRV2-NGA contructs produced similar defects 332 

in sepal development, with around 60% of the flowers in the treated plants developing 333 

serrated sepals (Fig. 5n). In the NbNGAb-VIGS plants an additional phenotype was 334 

observed in 38% of the flowers: at anthesis, petal length was reduced and the corolla did not 335 

fully expand (Fig. 5c). This phenotype was greatly enhanced by TRV2-NbNGAa-NbNGAb 336 

treatment, as 53% of the flowers at anthesis displayed a closed corolla with short greenish 337 

petals (Fig. 5d). 338 



In summary, the phenotypes of NbNGAa-NbNGAb-VIGS flowers strongly resembled those 339 

of nga quadruple mutants in Arabidopsis, which also lack style and stigma development and 340 

develop short green petals and short sepals  (Alvarez et al., 2009; Trigueros et al., 2009).  341 

To test whether NbNGA downregulation also produced similar effects on putative NGA 342 

targets identified in Arabidopsis, we analyzed the expression of a N. benthamiana YUC gene 343 

in the apical domain of NbNGAa-NbNGAb-VIGS pistils. YUC genes encode flavin 344 

monooxigenases involved in auxin synthesis and it has been previously reported that nga 345 

mutants fail to activate the expression of several YUC genes in the apical gynoecium 346 

(Trigueros et al., 2009), which likely affects auxin synthesis and accumulation in nga pistils. 347 

Through BLAST search in the N.benthamiana genome, we identified a sequence highly 348 

related to AtYUC2 and AtYUC6. Quantitative RT-PCR on cDNA extracted from excised 349 

styles and stigmas of preanthesis N. benthamiana flowers showed a significant reduction of 350 

the expression of this YUC gene in the NbNGAa-NbNGAb-VIGS apical gynoecia (Fig. 6k), 351 

strongly supporting the conserved role in style morphogenesis of NGA genes and their 352 

downstream effectors involved in auxin synthesis.  353 

 354 

DISCUSSION 355 

In this work, we have studied the functional conservation of a small gene family which has 356 

been shown to be essential for style and stigma development in Arabidopsis, characterizing 357 

the expression patterns and the phenotypes caused by the downregulation of the NGA 358 

genes in two distant species, the basal eudicot E. californica and the solanaceaeous core 359 

eudicot N. benthamiana. This work represents the first study of the role of the NGA genes 360 

outside the Brassicaceae and demonstrates a highly conserved NGA function in apical 361 

gynoecium development.  362 



 363 

NGA function is conserved across eudicots.  364 

The four NGA genes of Arabidopsis act redundantly to direct the development of the apical 365 

domain of the gynoecium, as nga quadruple mutants completely lack stigma and style and 366 

have very reduced transmitting tissues in the apical regions. This redundancy is likely based 367 

both in the similar activities of the NGA proteins, as revealed by the equivalent phenotypes 368 

caused by the overexpression of any of them in Arabidopsis, and the similarity of their 369 

spatio-temporal expression patterns throughout plant development (Alvarez et al., 2009; 370 

Trigueros et al., 2009). In this study we have characterized a single NGA gene from the 371 

basal eudicot E. californica and two NGA genes in the core sudicot N. benthamiana, 372 

NbNGAa and NbNGAb. Our studies have shown a remarkable conservation of NGA 373 

expression patterns in flowers of these two species and of Arabidopsis, each of them 374 

belonging to a different clade within the eudicots, mainly associated with the distal domains 375 

of growing floral organ primordia, the ovules and the apical domain of the gynoecium in the 376 

preanthesis flower. These observations strongly indicate that the regulatory regions of these 377 

genes, even across distant taxa and after several independent gene duplication events, 378 

have not diverged significantly and probably contain multiple redundant elements that confer 379 

robustness to the corresponding expression patterns. 380 

Silencing of the NGA homologues by VIGS technology further demonstrates their conserved 381 

key role in style and stigma development both in E. californica and N. benthamiana. The 382 

psitils of E. californica VIGS-EcNGA plants displayed a range of phenotypic defects that 383 

strongly affected the development of the apical domain and in extreme cases caused the 384 

absence of stigma, style and apical transmitting tissues and produced altered vascular 385 

development. Very similar phenotypes were observed in N. benthamiana plants when the 386 

two NbNGA genes were downregulated. Thus, NGA loss-of-function in Arabidopsis, E. 387 



californica and N. benthamiana precluded the development of the same set of tissues in the 388 

gynoecium, despite the evolutionary distance of these three eudicot species.  389 

In addition to their role in gynoecium development, the NGA genes in Arabidopsis have a 390 

more general function in the regulation of lateral organ growth. In the nga quadruple 391 

mutants, sepals and petals are shorter and wider than in wildtype flowers and rosette leaves 392 

are also wider and more serrated, consistent with the reported expression of AtNGA genes 393 

in the distal domain of growing leaves and floral organs (Alvarez et al., 2009; Trigueros et 394 

al., 2009). In this work, we have shown that the expression of NGA genes in distal floral 395 

organ primordia is conserved in E. californica and N. benthamiana. Moreover, 396 

downregulation of NbNGA genes resulted in shorter serrated perianth organs, indicating that 397 

the role of NGA genes in floral organ growth is also conserved. No phenotypic defects were 398 

observed in the leaves of N. benthamiana VIGS-treated plants or in perianth or leaves of E. 399 

californica, which may suggest that NGA genes do not share these roles with their 400 

Arabidopsis homologues. However, it seems more likely that the residual activity of NGA 401 

genes in the inoculated E. californica or N. benthamiana plants could be sufficient to 402 

preclude leaf phenotypic defects. Actually, while double or triple mutant combination of nga 403 

mutations in Arabidopsis already display conspicuous phenotypes in style and stigma 404 

development, only quadruple mutants have obvious defects in perianth or leaf development, 405 

supporting the idea of the gynoecium functioning as the ‘‘canary in a coalmine’’ whereby 406 

carpel development could be especially sensitive to minor defects in patterning factors that 407 

do not strongly affect the development of other organs (Dinneny & Yanofsky, 2005). 408 

We have also shown that the specific inactivation of each of the NbNGA genes caused 409 

much weaker but similar phenotypic defects, demonstrating the dosage-dependent 410 

functional redundancy of NbNGAa and NbNGAb in N. benthamiana, another feature also 411 

shared by the AtNGA genes. Thus, NGA genes in Arabidopsis and N. benthamiana appear 412 



to have retained both regulatory regions and protein activities, undergoing little or no sub- or 413 

neofunctionalization. Published phylogenies of the B3 transcription factor family, the likely 414 

presence of a single gene in E. californica or Aquilegia, as well as the copy number and 415 

position of the NGA genes in the Arabidopsis genome are consistent with the existence of a 416 

single ancestor of NGA genes previous to monocot/dicot divergence. Interestingly, database 417 

mining in species for which genome sequence is available indicate that NGA homologues 418 

are frequently found in several copies (at least three in Oryza sativa, two in Populus 419 

thricocarpa or two in Vitis vinifera; Alvarez et al., 2009; Trigueros et al., 2009).  The retention 420 

of multiple copies of NGA genes in different species from distant taxa, together with the high 421 

degree of conservation of both regulatory sequences and function across and within species 422 

that we have shown in this work, may suggest that maintaining multiple copies of mostly 423 

equivalent NGA proteins could be beneficial for reproductive success, maybe buffering 424 

against dominant-negative mutations and/or ensuring the availability of NGA factors for 425 

participation in multimeric transcriptional complexes. 426 

 427 

The NGA genes and the evolution of carpel structures.  428 

Carpel identity in angiosperms is specified by C-function genes, as defined by the ABCE 429 

model of floral organ identity. Members of the AGAMOUS (AG) lineage of the MADS box 430 

gene family have been shown to carry out this function across angiosperms (Bowman et al., 431 

1989; Bradley et al., 1993; Pnueli et al., 1994; Mena et al., 1996; Davies et al., 1999; Pan et 432 

al., 2010; Yellina et al., 2010; Dreni et al., 2011), but putative AG orthologs have also been 433 

found in gymnosperms, where they are expressed in reproductive organs like their 434 

angiosperm counterparts (Rutledge et al., 1998; Jager et al., 2003; Zhang et al., 2004; Groth 435 

et al., 2011). Thus, the C-function appears to be conserved since the common ancestor of 436 

seed plants and predates the origin of the angiosperm carpel, suggesting that additional 437 



gene functions must have evolved to specify the distinctive features of this organ.  438 

In this work we have demonstrated the conserved essential role of NGA genes in the 439 

specification of style and stigma, distinctive characters of angiosperm carpels. Phylogenies 440 

of B3 domain transcription factors show that class I genes from the RAV subfamily (those 441 

encoding both AP2 and B3 domains) are already present in bryophytes. In contrast, NGA 442 

genes, which belong to class II and are defined by the single B3 domain and the three 443 

characteristic C-t motifs, can only be found in angiosperms and likely originated by 444 

duplication of AP2-B3 RAV genes and subsequent loss of the AP2 domain. Interestingly, 445 

NGA genes in Arabidopsis have been listed as putative targets of AG (Gomez-Mena et al., 446 

2005). We can thus speculate that angiosperm specific RAV-derived NGA genes could have 447 

been recruited downstream of the C-function and by neofunctionalization they could have 448 

provided a new role in the specification of style, stigma and transmitting tissues.  449 

 450 

A conserved program for style and stigma development? 451 

Molecular studies in Arabidopsis have shown that apical gynoecium patterning is a complex 452 

process where many genes with highly redundant functions are involved, and that at least 453 

partially depends on YUC-mediated auxin biosynthesis at the distal end of the growing pistil 454 

primordium (Cheng et al., 2006; Sohlberg et al., 2006; Trigueros et al., 2009). Although 455 

comparative studies in distant angiosperm species assessing conservation of these relevant 456 

gene functions for style and stigma development are still scarce, the results presented here 457 

as well as other published studies suggest that the genetic network operating in Arabidopsis 458 

might be broadly conserved. 459 

First, our work highlights the central role of the NGA genes in style and stigma development 460 

across eudicots. Moreover, we have shown that in N. benthamiana YUC expression in the 461 



apical gynoecium is also reduced by NGA downregulation, suggesting that the NGA-YUC-462 

auxin module could be part of a conserved network directing style and stigma 463 

morphogenesis.  464 

Likewise, in Arabidopsis, the SHI/STY genes have been shown to participate in these 465 

functions and to be intimately related to the NGA factors (Alvarez et al., 2009; Trigueros et 466 

al., 2009). In addition to displaying similar mutant phenotypes, AtNGA and SHI/STY genes 467 

share similar expression patterns and, when simultaneously over-expressed, NGA3 and 468 

STY1 are able to direct ectopic style development (Alvarez et al., 2009; Trigueros et al., 469 

2009). Moreover, STY1 is a direct activator of YUC4 (Sohlberg et al., 2006; Eklund et al., 470 

2010a), and this connection of SHY/STY genes with auxin biosynthesis pathways seems 471 

largely conserved among land plants, as it has been demonstrated by the reduction in auxin 472 

levels and the reproductive organ developmental phenotypes caused by SHY/STY 473 

inactivation in the bryophyte Physcomitrella patens (Eklund et al., 2010b; Landberg et al., 474 

2013). While the specific role of SHY/STY in carpel development has not been explored in 475 

detail in species other than Arabidopsis, it has been described recently in the monocot 476 

Hordeum vulgare that mutants in the short awn2 gene, a member of the SHY/STY family, 477 

show defects in style and stigma morphology (Yuo et al., 2012). Thus, it would appear that 478 

SHY/STY genes could also have a conserved function both in driving auxin synthesis as well 479 

as style and stigma development.  480 

Other factors with putatively conserved roles in apical gynoecium development have also 481 

been described. CRC orthologs have been identified in a wide range of angiosperm species 482 

(Yamaguchi et al., 2004; Fourquin et al., 2005; Lee et al., 2005; Orashakova et al., 2009). 483 

CRC belongs to the YABBY family, specific to seed plants. Phylogenetic studies on the 484 

family are still partial due to the scarcity of gymnosperm sequences, but they suggest that 485 

CRC genes would be specific to angiosperms (Yamada et al, 2011; Bartholmes et al, 2012). 486 



In general, the characterization of expression patterns and of phenotypic defects associated 487 

with downregulation of CRC orthologs are consistent with an ancestral role in conferring the 488 

identity to carpel specific tissues in angiosperms, including style and stigma, while other 489 

roles such as nectary specification could have been derived in eudicots (Yamaguchi et al., 490 

2004; Lee et al., 2005; Fourquin et al., 2007; Ishikawa et al., 2009; Yamada et al., 2011). 491 

Finally, in dicot species, some PLE-subclade MADS-box genes also have been recently 492 

shown to have a conserved role in style and stigma development (Colombo et al., 2010; 493 

Fourquin & Ferrandiz, 2012; Heijmans et al., 2012).  494 

All this evidence suggests that the major factors involved in style and stigma differentiation 495 

identified in Arabidopsis may form an ancient module with conserved functions, where some 496 

ancestral genetic routes, like the SHY/STY-auxin pathway already present in bryophytes, 497 

might have been coopted to direct style and stigma development by the acquisition of 498 

angiosperm-specific functions like CRC or NGA, although much deeper comparative 499 

analyses of these functions in evolutionary meaningful species will have to be undertaken to 500 

confirm this hypothesis. 501 
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Fig. S1 In situ expression analyses of NbNGAb in N. benthamiana. 

Fig. S2  Expression level by real-time PCR analysis of EcNGA  and NbNGAa  in different 

organs. 

Fig. S3 Negative controls for in situ hybridizations (sense probes). 

Fig. S4 Developmental series of E. californica pistils and flowers. 
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FIGURE LEGENDS 

Figure 1: Amino acid alignment of the conserved domains in the NGA homologues from 

different species. 

(a) B3 DNA binding domain, (b) NGA-I domain, (c) RAV repressive domain and (d) NGA-II 

domain. Amino acid sequences of AqNGA (Aquilegia caerulea NGA homologue) and 

AmbNGA (Amborella trichopoda NGA homologue) were deduced from the following EST 

sequences DR951353 and FD442133 respectively. 

 



Figure 2 :In situ expression analyses of homologues of NGA in Eschscholzia californica and 

Nicotiana benthamiana flowers. Control hybridizations with sense probes are shown in Fig 

S3. 

(a to e) Longitudinal sections of E. californica flowers probed with EcNGA. (a) At stage 3 

EcNGA transcripts are detected in all flower organ primordia except in the developing sepals 

(S). (b) At stage 5, EcNGA accumulates in the apical part of developing organs in the three 

inner whorls (arrows) (c) At stage 6, EcNGA expression is still present at the top of the 

petals, stamens and carpels. In addition EcNGA transcripts begin to accumulate in the 

placental region of the carpel where the ovules will further develop (arrow). (d and e) At 

stage 7, EcNGA expression concentrates in the developing style (Sty) and in the ovules 

(Ov).  

(f to j) Longitudinal sections of N. benthamiana flowers probed with NbNGAa. (f) At stage 2, 

NbNGAa is expressed in the floral meristem (FM) and more strongly at at the tip of the 

developing sepals (S, arrows). (g) At stage 6, NbNGAa transcripts are detected at the apical 

region of each developing floral organ (arrows). (h) At the moment of style inception, 

NbNGAa expression accumulates in the apical gynoecium (arrow), in the placenta (P) and in 

the stamens (Stm). (i and j) In mature flowers, NbNGAa is strongly expressed in the inner 

part of the style (transmitting tract, TT) and in the developing ovules (Ov). Scale bar: 100 

µm. 

 

Figure 3.  Phenotypes of Eschscholzia californica plants inoculated with pTRV2-EcNGA. 

(a) Wild type pistil at anthesis, comprising a cylindrical ovary, a short style and four long 

yellow stigmatic protrusions. (b to h) EcNGA-VIGS pistils at anthesis displaying an alteration 

of their apical region development. (b) A weak phenotype characterized by the development 



of a supplementary stigmatic protrusion (arrow). (c to f) Examples of intermediate 

phenotypes: (c) Modification of the distribution of the stigmatic tissue along the four 

protrusions, the green zones correspond to style tissue (arrows); (d and e) Presence of an 

increased number of stigmatic protrusions with irregular lengths; (f) EcNGA-VIGS pistil 

presenting an enlarged and opened style with a great reduction of stigmatic tissue (f). (g and 

h) Strong phenotypes: total lack of stigmatic tissue. (i to n) Scanning electron microscope 

pictures of apical regions of pistils at anthesis. (i) Wild-type stigmatic protrusions entirely 

covered by papillae cells. (j) Tip of a wildtype stigmatic protrusion fully covered by the typical 

globular stigmatic cells. (k) EcNGA-VIGS pistil displaying an intermediate phenotype with the 

presence of several stigmatic protrusions of different shape and size partially covered by the 

papillae cells. (l) Tip of a stigmatic protrusion from a EcNGA-VIGS pistil displaying an 

intermediate phenotype revealing the absence of stigmatic tissue. (m and n) Two examples 

of EcNGA-VIGS pistil with strong phenotypes, note the total lack of stigmatic protrusions and 

of papillae cells. (o) Expression level by real-time PCR analysis of EcNGA in TRV2-EcNGA 

flowers. The error bars depict the s.e. based on two biological replicates. (***) indicates 

significantly different (P < 0.005) from WT control according to a t-test . Scale bar: 500 µm; 

except in (j) and (l) scale bar: 100 µm. 

 

Figure 4: Phenotypic characterization of Eschscholzia californica pistils from plants 

inoculated with pTRV2-EcNGA. 

(a to g) Consecutive sections of E. californica wild-type pistil at anthesis. (a to f) Transversal 

sections from the stigmatic protrusions to the ovary. (g) Longitudinal sections of the whole 

wild-type pistil. Note the presence of the four stigmatic protrusions with stigmatic papillae 

developing adaxially (arrow) (a and b), of a dense transmitting tract inside the style (c, d and 

g) which continues inside the ovary (e, f and g). (h to n) Consecutive sections of EcNGA-



VIGS pistils at anthesis. (h-m) Transversal sections of an EcNGA-VIGS pistil displaying an 

intermediate phenotype. Note the disorganization of the stigmatic tissue (arrow) (h and i) 

and the greatly reduced transmitting tract present inside the style and leaving an opened 

canal (j and k); the ovary shows a similar structure to the wild-type (l and m). (n) Longitudinal 

section of an EcNGA-VIGS with a weak phenotype and showing the limited amount of 

transmitting tract developing inside the style. (o to q) Observation of the vasculature in 

cleared whole mount pistils. (o and p) In the wild-type pistil the vasculature strands run as 

parallel veins along the stigmatic protrusions, (p) note the closer view of a protrusion final tip. 

(q) Three EcNGA-VIGS pistils with intermediate phenotypes displaying abnormal 

bifurcations of the veins at the distal end of the apical lobes (arrows). Scale bar: 500 µm. 

 

Figure 5 : Phenotypes of Nicotiana benthamiana plants inoculated with pTRV2-NbNGAa, 

pTRV2-NbNGAb, or pTRV2-NbNGAa-NbNGAb. 

(a-d) Top view of N. benthamiana flowers. (a) Wild-type flower at anthesis, note the five 

expanded white petals and the central stigma (arrow) surrounded by the five stamens. (b) 

NbNGAa-VIGS flower. Note the absence of stigma in the centre. (c) NbNGAb-VIGS flower 

with reduced petals and no stigma visible. (d) NbNGAa-NbNGAb-VIGS flower displaying 

abnormal sepals and greenish not fully developed petals. (e to i) Gynoecium of N. 

benthamiana flowers. (e) Wild-type gynoecium characterized by an ovoid ovary, a long style 

and a flat stigma. (f) NbNGAa-VIGS pistil presenting a reduced style and a bended stigma. 

(g) Close-up of the wild-type ovary and beginning of the style. (h) NbNGAb-VIGS gynoecia 

presenting a short style not fully fused and an abnormal opened stigma. (i) Examples of 

NbNGAa-NbNGAb-VIGS gynoecia with extremely reduced styles and deformed stigmas. (j 

to l) N. benthamiana stigma. (j) Top view of a wild-type stigma: symmetrical, circular and flat. 

(k) Top view of an asymmetric and not fully fused NbNGAa-VIGS stigma. (l) Lateral view of a 



NbNGAa-NbNGAb-VIGS stigma showing an opened and highly deformed structure. (m and 

n) Top view of N. benthamiana sepals. (m) wild-type sepals. (n) NbNGAa-NbNGAb-VIGS 

very serrated sepals. (o) Expression level by real-time PCR analysis of NbNGAa and 

NbNGAb in TRV2-NbNGAa, TRV2-NbNGAb or TRV2-NbNGAa-NbNGAb flowers. The error 

bars depict the s.e. based on two biological replicates. (*) indicates significantly different (P < 

0.05) and (***) significantly different (P<0.005) from WT control according to a t-test . Scale 

bar: 500 µm. 

 

Figure 6:  Phenotypic characterization of Nicotiana benthamiana pistils from NbNGA-VIGS 

inoculated plants. 

(a and b) Apical part of the N. benthamiana wild-type pistil: (a) Stigma and style longitudinal 

section, (b) Style transversal section. Note the presence of a transmitting tract tissue filling 

the wild-type style and stigma (arrow). (c and d) Apical part of an NbNGAa-VIGS pistil: (c) 

Stigma and style longitudinal section, (d) Style transversal section. Note the presence of an 

opened canal in the NbNGAa-VIGS style and the greatly altered transmitting tract (arrow). 

(e) Longitudinal section of the apical part of an NbNGAb-VIGS gynoecium revealing the 

absence of transmitting tract in the unfused style (f-g) Transversal sections of the apical 

region of an  NbNGAa-NbNGAb-VIGS gynoecium displaying highly modified style tissue with 

a total lack of transmitting tract development. (h-k) Vascular patterning in N. benthamiana 

style and stigma (h) In the wild-type pistil the stylar veins reach the apical stigma (arrow). (i 

and j) In NbNGAa-VIGS (i) or NbNGAb-VIGS pistil (j) the stylar veins terminate below the 

stigma (arrows). Scale bar: (e, h-k) 500µm, (a-d, f and g) 100 µm. (k) Expression level of 

NbYUC6 gene by quantitative PCR in wild-type and NbNGAa-NGAb-VIGS style tissue. For 

each biological replicate, style-stigma tissue was excised from more than 50 anthesis 

flowers from different wild-type or VIGS-treated plants. The error bars depict the s.e. based 



on two biological replicates. Asterisk (*) indicates significantly different (P < 0.05) from WT 

control according to a t-test . 

 

 

 

 

TABLES 

Table 1. Summary of the VIGS experiments on Nicotiana benthamiana and Eschscholzia 

californica plants 

 
VIGS construct 

N° plants 
inoculated 

(dead) 

N° plants 
with 

phenotype 

N° flowers/ 
plant 

observed 

N° flowers/ 
plant with 
phenotype  

N° total 
flowers with 
phenotype  

% flowers 
with 

phenotype 

N. benthamiana       

TRV2-NbNGAa 12 (2) 10 20 9-14 126/200 63% 
TRV2-NbNGAb 12 (1) 11 20 11-17 162/220 74% 
TRV2-NbNGAab 12 (1) 11 20 14-19 182/220 83% 
Empty vector 6 (1) 0 20 0 0/100 0% 

E. californica       

TRV2-EcNGA 120 (34) 23 3 0-3 46/258 18% 
TRV2-EcPDS 60 (18) 12 - - - - 
Empty vector 60 (16) 0 2 0 0/88 0% 
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