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Throughout this paper the letters R, N and w will denote the set of all real num-
bers, the set of all positive integer numbers and the set of all nonnegative integer
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Introduction and preliminaries

numbers, respectively.

Recall that if X is a (nonempty) set, a function f : X — RU{oco} is said to be

proper if there exists € X such that f(z) < oc.

In [7, Theorem 1.1], Ekeland proved his celebrated variational principle in the
realm of complete metric spaces. Later on, Weston [14] (see also [13]) showed that
an easy consequence of Ekeland’s Variational Principle, the so-called weak form of

Ekeland’s Variational Principle, characterizes the metric completeness.



Quasi-metric versions of Ekeland’s Variational Principle and its weak form have
been obtained in [1, 3, 10]. In particular, Cobzag proved in [3] the following nice
result.

Theorem 1 (Ekeland Variational Principle [3, Theorem 2.4]). Suppose that (X,d)
is a T1 quasi-metric space and f : X — RU{oc} is a proper bounded below
function. For given € > 0 let x. € X be such that f(z.) < inf f(X) +e.

If (X,d) is right K-sequentially complete and f is d-lsc, then for every A > 0 there
exists z = z.» € X such that

(a) f(2) + 5d(z, 7)) < f(ze);
(b) d(z,z.) < A,
(c) f(z) < f(z) + $d(x,2) for all z € X\{z}.

Taking A = 1 in Theorem 1, Cobzag deduced the following.

Corollary 1 (Ekeland Variational Principle-weak form [3, Corollary 2.7]). Let
(X,d) be a right K-sequentially complete Ty quasi-metric space. Then, for every
proper bounded below d-lsc function f: X — RU{oo} and for every € > 0 there
exists y. € X such that

(i) f(ye) < inf f(X) +&;
(1) f(ye) < f(x) +ed(z,y.) for all x € X\{y.}.

In this note we shall prove that the converse of Corollary 1 holds. Thus, we
obtain a characterization of right K-sequential completeness which, on one hand,
solves a question raised in [3, Remark 2.11], and, on the other hand, generalizes
the aforementioned characterization of metric completeness, due to Weston, to the
quasi-metric framework. In fact, we shall prove the result in the realm of (non
necessarily 7)) quasi-metric spaces by using suitable modifications of the lower
semicontinuity of f and of condition (ii) in Corollary 1. Connections with quasi-
metric versions of Caristi’s fixed point theorem will be also considered.

In the rest of this section we recall some notions and basic properties on the
theory of quasi-metric spaces which will be used in the sequel. Our main references
will be [4] and [9].

A quasi-metric on set X is a function d : X x X — [0,00) such that for all
ry,z€ X : (1) z =y < d(r,y) =dy,z) =0; (ii) d(z, z) < d(z,y) + d(y, 2).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.

Each quasi-metric d on X induces a Tj topology 74 on X which has as a base
the family of open balls {By(z,7) : * € X, ¢ > 0}, where By(x,e) = {y € X :
d(z,y) < e} forallz € X and € > 0.



If 7, is a T} topology on X, we say that (X, d) is a T} quasi-metric space.

Given a subset A of a quasi-metric space (X, d), we shall denote by A the closure
of A with respect to 74.

If (X, d) is a quasi-metric space and f : X — RU{oco} is a proper function, we
say that f is d-1sc whenever f is 74-lower semicontinuous on X.

A sequence (x,,),en in a quasi-metric space (X, d) is said to be right K-Cauchy
if for each € > 0 there exists ng € N such that d(z,,x,) < € whenever nyg <n <m
(see e.g. [4, 9, 11]).

A quasi-metric space (X, d) is said to be right K-sequentially complete (right
K-complete in [3]) if each right K-Cauchy sequence in (X, d) is 74-convergent in X.

The Sorgenfrey quasi-metric space (see e.g. [4, Example 1.1.6]) is a well-known
example of a right K-sequentially complete 77 quasi-metric space.

We conclude the section with the following well-known fact (see e.g. [12, Lemma
1]) which will be used in the proof of our main result.

Lemma. Let (x,)nen be a right K-Cauchy sequence in a quasi-metric space (X, d).
If (zn)nen has a Tq-cluster point © € X, then (z,)nen 1S T4-convergent to x.

2 The results

We start this section by introducing a generalization of the notion of lower semi-
continuity which is inspired in the concept of sequential lower semicontinuity and
that will be crucial in the rest of the paper.

Recall (see e.g. [5, Chapter 1] or [6, Chapter 1]) that a proper function f : X —
RU{o0} on a topological space (X, 7) is said to be sequentially lower semicontinuous
if whenever (x,)nen is a sequence in X that 7-converges to some z € X, we have
f(z) < liminf, o f(x,).

It is well known ([5, Proposition 1.3]) that if (X, 7) is first countable then a
proper function f : X — R U {oc} is lower semicontinuous if and only if it is
sequentially lower semicontinuous. Therefore, lower semicontinuity and sequential
lower semicontinuity are equivalent concepts for quasi-metric spaces.

Now let (X, d) be a quasi-metric space. We say that a proper function f : X —
RU{oo} is nearly lower semicontinuous (nearly d-lsc, in short) if whenever (z,,)nen
is a sequence of distinct points in X that 74-converges to some z € X, we have
f(z) < liminf, . f(x,).

Clearly, a proper function f : X — R U {occ} on a T} quasi-metric space (X, d)
is (sequentially) d-Isc if and only if it is nearly d-lsc.

However, this equivalence does not hold for quasi-metric spaces, in general. An
easy example is as follows: Let X = {0, 1} and let d be the quasi-metric on X such
that d(0,0) = d(0,1) = d(1,1) = 0 and d(1,0) = 1. Then, every proper function



f: X — RU{oo} is nearly d-Isc, whereas the function f defined on X as f(0) =1
and f(1) = 0 is not d-lsc.

Next we prove the main result of this paper.

Theorem 2. For a quasi-metric space (X,d) the following conditions are equiva-
lent:

(1) (X, d) is right K-sequentially complete.

(2) For every self mapping T of X and every proper bounded below nearly d-lsc
function ¢ : X — RU{oo} satisfying d(Tx,x) + p(Tz) < ¢(z) for all x € X,
there exists z = zp,, € X such that ¢(z) = p(Tz2).

(3) For every proper bounded below nearly d-lsc function f : X — RU{oo} and
for every € > 0 there exists y. € X such that

() Flyr) < inf F(X) + o
%) flye) < f(x) 4+ ed(z,ye) for all v € X\{y.}, and f(y.) < f(z) for all
T E Yey-

Proof. (1) = (2). Let T be a self mapping of X and ¢ : X — RU {co} a proper
bounded below nearly d-1sc function such that d(Tz,z) + p(Tx) < ¢(x) for all
r e X.
For each x € X let
Az ={ye X :d(y,z) +oy) <p(r)}, and ()= infp(A;).
Then {z,Tz} C A, and i(z) < p(z) for all x € X. Take xy € X such that
©(xg) < 00. Thereis x; € A,, such that p(z1) < i(xg)+1. In particular, p(z;) < oo.
Similarly, there is x5 € A,, such that ¢(xs) < i(x1) + 27! Following this process
we obtain a sequence (T, )e, in X such that
(Il> Tnt1 € Awnv
(L) @lzn) < oo,

and

(Is) P(Tns1) — 27" <ii(wy) < p(2n),
for all n € w.
We are going to show that (z,)ne, is a right K-Cauchy sequence in (X, d). By
conditions (I;) and (I3) we have
(IT) A(Tny1,Tn) < 0(Tn) — @(Tny1),

for all n € w.
By condition (II), (¢(2,))new i a non-increasing sequence of real numbers
bounded below, so it converges to [ := inf,c, ¢(x,).
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From condition (II) and the triangle inequality we deduce that

d<xmaxn) < 90(1:71) - (p(xm)a
whenever m > n. Hence, (z,)ne is a right K-Cauchy sequence in (X, d).

Without loss of generality, we distinguish the following two cases.

Case 1. The sequence (z,)new is eventually constant. Then, there is ny € w such
that x,, = x,, for all n > ng. By condition (I3), ¢(x,,) — 27" < i(xn,) < ©(Tp,)
for all n > ng. Therefore, taking limit when n — oo, i(z,,) = @(z,,). Since
Txp,, € Ay, we have i(2,,) < o(Tp,) < ©(Xny), 50 ©(Txp,) = (Tn,)-

Case 2. =z, # x, for all n,m € w with n # m. Since (X,d) is right K-
sequentially complete, there exists z € X such that lim, ., d(z,z,) = 0.

We shall prove that ¢(z) = ¢(T'z). To this end, we first note that ¢(z) < (
because ¢ is nearly d-lsc.

Let n € w be fixed. Given € > 0 there exists m > n such that d(z,z,,) < .
Then

d(z,z,) d(z,Zm) + d(zpm, z,) < €+ @) — p(Tm)

<
< e+ ()O(xn) - (p(Z)
(The last inequality holds because ¢(z) <1 < p(z,)).
Since £ was arbitrarily chosen, we deduce that d(z,z,) < ¢(x,) — ¢(2), and

thus z € A, for all n € w. Consequently i(x,) < ¢(z) < ¢(z,) for all n € w. Since,
by condition (I3), I = lim,,_, i(x,), we conclude that [ = p(z).

Let show now that ¢(7T'z) = [, which will imply ¢(z) = ¢(T'2).
Indeed, since z € A,, we obtain

d(Tz,xn) < d(T2,2) + d(z,20) < 9(2) = 9(T2) + p(xn) = ¢(2),
for all n € w. This implies that Tz € A, , and thus i(z,) < ¢(T2) < ¢(x,) for all

n € w, which for n — oo yields ¢(Tz) = .

(2) = (3). We shall proceed by contradiction. Suppose that there exist a proper
bounded below nearly d-lsc function f: X — RU {oo} and an € > 0 such that the
conclusion of (3) fails. Putting

A={y e X: fly) <inf f(X) + ¢},

it follows that for every y € A one (or both) of the following conditions holds:
(c1) there exists z, € X\{y} such that f(y) > f(z,) + ed(z,, ).
(c2) there exists z, € {y}\{y} such that f(y) > f(z,).
Note that if z, satisfies (c1), then d(z,,y) > 0, so f(y) > f(x,).
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Therefore, in both cases, x, € A whenever y € A.

Now fix an yp € A and define T : X — X by Tz = y, for all x € X\ A, and
Ty = x, for all y € A.

Define now ¢ : X — RU{oo} by ¢(z) = oo for all z € X\ A, and ¢(y) =
e f(y) for all y € A.

In fact we make a selection - take for instance z, satisfying (c1) if both of the
conditions (c1) and (c2) are satisifed.

It is clear that ¢ is proper and bounded below.

Moreover, it is nearly d-Isc. Indeed, let (x,),en be a sequence of distinct points
in X that 74-converges to some x € X. Then, for each n € N, ¢(z,) = oo or
o(z,) =e 1 f(x,). If z € A, from the fact that f(z) < liminf,_, f(z,), it imme-
diately follows that ¢(x) < liminf, . ¢(x,). If x € X\A, from the near d-lower
semicontinuity of f we deduce that =, € X\ A eventually, so there is ny € N such
that ¢(x) = ¢(x,) = oo for all n > ny.

Next we show that d(Tz,z) + o(Tz) < p(z) for all x € X.

For each x € X\ A, we have d(Tx,z) + p(Tz) < 0o = p(x).

Now let y € A. If z, € X\{y}, we obtain (recall that z, € A),

d(Ty.y) +p(Ty) = d(wy,y) + & f(2,) < (f(y) = flay) +e " flzy) = o(y).
If x, € {y}\{y}, we obtain (recall again that z, € A),

d(Ty,y) +o(Ty) = d(zy,y) +e " f(xy) =" f(z,) = o(y).

Thus, we have shown that d(T'z,z) + ¢(Tx) < ¢(x) for all z € X. However
o(x) # ¢(Tz) for all x € X. This contradiction concludes the proof.

(3) = (1). We shall proceed by contradiction. Suppose that (X,d) is not
right K-sequentially complete. By the above lemma, there exists a right K-Cauchy
sequence (T,)ne, in (X, d) without 74-cluster points, and we can assume, without
loss of generality, that z,, # x,, for all n,m € N with n # m, and that d(x,41,x,) <
2=+ for all n € N.

Define f : X — R as f(x,) = 2™V for all n € N, and f(y) = 2 for all
y € X\{z, : n € N}. Then f is nearly d-lsc. Indeed, let (yx)ren be a sequence of
distinct points in X that 74-converges to some y € X. Then, there is ky € N such
that y, € X\{z, : n € N} for all & > ky. Hence f(yx) = 2 for all k& > ko, and
consequently f(y) < f(yx) for all k > k.

Now define A :={z € X : f(z) <inf f(X)+ 1}. Then A = {z,, : n € N}, and,

for each n € N, we have

f(xn+1) + d(xn-l-hxn) < 27" + 2—(n+1) < 2—(n—1) = f(xn)a



which contradicts condition (ii’) from (3) for f as defined above and € = 1. The
proof is complete. W

Corollary 2. For a Ty quasi-metric space (X,d) the following conditions are
equivalent:

(1) (X,d) is right K-sequentially complete.

(2) For every self mapping T of X and every proper bounded below d-lsc function
o : X = RU{oo} satisfying d(Tx,x) + o(Tx) < ¢(z) for all x € X, there exists
2=z, € X such that z =Tz, i.e., T has a fized point.

(3) For every proper bounded below d-lsc function f : X — RU{oo} and for
every € > 0 there exists y. € X such that

() f(y-) <inf f(X) +¢;
(ii) f(y.) < f(x) 4+ ed(x,y.) for all x € X\{y.}.

Proof. (1) = (2). By Theorem 2, (1) = (2), there exists z € X such that
©(Tz) = p(2). Hence d(T'z, z) = 0. Since (X, d) is T} we conclude that Tz = z.

(2) = (3) and (3) = (1) follow directly from the aforementioned fact that a
proper function f: X — R U {oco} on a T} quasi-metric space (X, d) is d-Isc if and
only if it is nearly d-lsc, and Theorem 2, (2) = (3) and (3) = (1), respectively. W

Remark. (1) = (2) in Corollary 2, which was proved by Cobzag [3, Theorem 2.12]
in a multivalued version, provides the celebrated Caristi’s fixed point theorem [2]
in case that (X, d) is a metric space with ¢ : X — [0, 00). Note that, in that case,
the equivalence (1) < (2) in Corollary 2, provides the well-known characterization
of the metric completeness obtained by Kirk in [8].

The following example shows that condition “nearly d-lsc” cannot be replaced
with “d-Isc¢” in Theorem 2.

Example 1. Let d be the quasi-metric on N given as d(n,n) = 0 for all n € N;
d2n — 1,2m — 1) = 0 for all n,m € N with n > m; d(2n,2m — 1) = 0 for
all n,m € N with 2n > 2m — 1, and d(n,m) = 1 otherwise. Then (N,d) is
not right K-sequentially complete because (2n — 1),en is a right K-Cauchy se-
quence that is not 74-convergent in X. Now let f : N — RU {oco} be a proper
bounded below d-lsc function and let ¢ > 0. Since d(2n,2n — 1) = 0 and f is
d-lsc, we have f(2n) < f(2n — 1) for all n € N. Hence, there exists £ € N such
that f(2k) < inf f(X) + . Thus f(2k) < f(n) +¢ = f(n) + ed(n,2k) for all
n € N\{2k}. Consequently f satisfies conditions (i) and (ii’) from (3) in Theorem
2, with y. = 2k (observe that {2k} = {2k}).




We conclude with an easy example which shows that (1) = (2) in Corollary 2,
cannot be generalized to right K-sequentially complete quasi-metric spaces. It also
shows that condition (3) in Theorem 2 cannot be replaced with condition (3) in
Corollary 2, not even for f d-lcs.

Example 2. Let X be the set of all ordinals less than the first uncountable or-
dinal number w;. Let d be the quasi-metric on X given as d(z,y) = 0 if y < =z,
and d(z,y) = 1 otherwise. Clearly (X, d) is right K-sequentially complete because
every non-eventually constant right K-Cauchy sequence (z,)nen 1S T4-convergent
to the element of X, sup{z, : n € N}. Define T': X — X as Tz = z + 1 for
all z € X. Then T has no fixed point. However, d(Tz,z) = 0 for all x € X, so
d(Tz,x) = p(x) —p(Tx) for all x € X, where the function ¢ is the zero function of
X. Therefore, the implication (1) = (2) in Corollary 2, cannot be generalized to
right K-sequentially complete quasi-metric spaces. Finally, define f(x) = 0 for all
x € X. Obviously, f is a (proper) bounded below d-lsc function on X. Take ¢ = 1.
Then f(x) < inf f(X)+e¢ for all x € X. However, given x € X, one has d(z,z) =0
whenever = < z, so f(z) = f(z)+ed(z, x) whenever x < z. Consequently condition
(3) of Theorem 2 cannot be replaced by condition (3) of Corollary 2.
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