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THE SUPPORT LOCALIZATION PROPERTY OF THE

STRONGLY EMBEDDED SUBSPACES OF BANACH

FUNCTION SPACES

P. RUEDA AND E.A. SÁNCHEZ PÉREZ

Abstract. Motivated by the well known Kadec-Pe lczynski disjointifi-
cation theorem, we undertake an analysis of the supports of non-zero
functions in strongly embedded subspaces of Banach functions spaces.
The main aim is to isolate those properties that bring additional in-
formation on strongly embedded subspaces. This is the case of the
support localization property, which is a necessary condition fulfilled
by all strongly embedded subspaces. Several examples that involve
Rademacher functions, the Volterra operator, Lorentz spaces or Orlicz
spaces are provided.

1. Introduction

Let (Ω,Σ, µ) be a finite measure space. Let X(µ) be an order continu-
ous p-convex Banach function space X(µ) in the sense of [11, p.28]; in this
case we have that X(µ) ⊆ L1(µ) continuously. A subspace S of X(µ) is
called strongly embedded —in L1(µ)— if the restriction of the inclusion map
X(µ)→ L1(µ) to S is an isomorphism onto its range. The canonical exam-
ple of such a subspace is the one generated by the Rademacher functions
in Lp[0, 1], that is isomorphic to `2 (for each 1 ≤ p < ∞) by Kintchine’s
inequalities (see Example 3(2)). The study of these and related subspaces of
Banach function spaces has a long tradition (see for instance [2, 6, 7, 10] and
the references therein). One of the main tools for analyzing these subspaces
is the classical Kadec-Pe lczynski disjointification method, that establishes
that for subspaces of order continuous Banach function spaces, the follow-
ing logical disjunction is given: either the subspace is strongly embedded in
L1(µ), or it contains a normalized sequence of (almost) disjoint functions
(see [6, Th.4.1]). Of course, these statements are not mutually exclusive for
every order continuous Banach function space over µ: a subspace of L1[0, 1]
being generated by a sequence of disjoint norm one functions satisfies both
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statements. The analysis of such problem was initiated in the paper [9], in
which subspaces of spaces Lp[0, 1], 1 < p < ∞, were studied. The require-
ment of p being bigger than one is relevant for both cases to be exclusive;
we will show in this paper that p-convexity for p > 1 is the key requirement
for getting such a result (see Proposition 1), and this will motivate a new
property regarding the supports of the functions of a particular strongly em-
bedded subspace. For the case of spaces not being p-convex for any p > 1, it
can be easily shown that the two cases of the Kadec-Pe lczynski dichotomy
can be satisfied simultaneously in certain subspaces. Besides the L1[0, 1]
case, already mentioned, we will show concrete examples (see the comments
after Proposition 1).

Thus, the idea of this paper is to provide a new descriptive property
for subspaces of order continuous Banach function spaces with non trivial
p-convexity —the support localization property, SLP for short— that is
satisfied by all the strongly embedded subspaces. We say that a subspace S
of a Banach function space has the support localization property if there is
a δ > 0 such that for each finite family of functions in S the characteristic
functions of their supports χA1 , ..., χAn satisfy that δn ≤ ‖

∑n
i=1 χAi‖X(µ).

We will center our attention in the case that X(µ) is a space Lp(m) of
p-integrable functions with respect to a vector measure m. This is not a real
restriction of the general case of p-convex order continuous Banach lattices
with a weak unit since these spaces are order and norm isomorphic to Lp

spaces of vector measures (see for example [5] or [13, Prop.3.30]). Therefore,
the results concerning spaces of integrable functions with respect to a vector
measure, as some in the present paper, can be applied to all order continuous
Banach lattices with a weak unit and non trivial convexity. This is the
reason for the recent effort that has been made by several authors in order to
characterize strongly embedded subspaces of Lp spaces of a vector measure
(see [2]) and also the related class of the subspaces of a space that are fixed by
the integration map (see [14]): the integration! structure of the Lp spaces
provides an additional tool for analyzing strongly embedded subspaces of
general Banach lattices. However, we will also show that although the classes
of strongly embedded subspaces and the one of the subspaces that are fixed
by the integration map do not coincide on the spaces Lp(m), both of them
satisfy the support localization property under the assumption that p > 1.

A related property that we will consider on a set of functions S —easier
to understand from the point of view of the properties of the supports of the
functions in S—, is the finite local support property, that is, the existence of
a finite class A of measurable sets of positive measure such that the support
of each (non-null) function in S contains at least a set of A.

The paper is organized as follows. After giving some preliminar material
in Section 2, we introduce the support localization property and show that
every strongly embedded subspace S of Lp(m) has it. The support local-
ization property is related to the existence of an associated finite class A of
sets of positive measure such that the support of each (non-null) function in
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S contains at least a set of A. In Section 4 we prove that every subspace of
Lp(m) fixed by the integration map is strongly embedded and thus satisfies
the support localization property. Especial attention is paid to examples.
These involve Rademacher functions, the Volterra operator, Lorentz spaces
or Orlicz spaces.

2. Preliminaries

Our notation is standard; for 1 ≤ p ≤ ∞ we write p′ for the extended
real number satisfying 1/p + 1/p′ = 1. Throughout the paper, E will be
a Banach space, BE its unit ball and SE its unit sphere; (Ω,Σ) will be a
measurable space and m : Σ → E a (countably additive) vector measure.
For the definition of Banach function space we follow [11, Def.1.b.17, p.28], in
the particular case of finite measure: given a finite measure space (Ω,Σ, µ),
an order ideal X(µ) of L1(µ) is a Banach function space —called a Köthe
function space in [11]— if it is a Banach space endowed with a norm ‖·‖X(µ)

that is compatible with the µ-a.e. order. If the measure µ is not finite but σ-
finite, the requirement X(µ) ⊆ L1(µ) is substituted by the local integrability
of the functions in X(µ). The space X(µ) is order continuous if for each
sequence in it decreasing µ-a.e. to 0, the corresponding sequence of the
norms of the functions converges to 0 too. A Banach function space X(µ)
is p-convex for 1 ≤ p < ∞ if there is a constant K > 0 such that for each
finite set of functions f1, ..., fn ∈ X(µ),

‖
( n∑
i=1

|fi|p
)1/p‖X(µ) ≤ K

(
n∑
i=1

‖fi‖pX(µ)

)1/p

.

In the same way, X(µ) is said to be p-concave if the reverse inequality holds
for some K > 0. A normalized sequence (fi)i of a Banach function space
is said to be almost disjoint if there is a disjoint sequence (zi)i such that
limi ‖fi − zi‖ = 0.

Let us introduce now some notions regarding vector measures and inte-
gration. Let E be a real Banach space and let (Ω,Σ) be a measurable space.
Given a countably additive vector measure m : Σ → E, we write R(m) for
its range. Its variation |m| is defined as

|m|(A) := sup
π

∑
B∈π
‖m(B)‖,

where the supremum is computed over all finite measurable partitions π of
A ∈ Σ. We write ‖m‖ for its semivariation, that is defined by ‖m‖(A) :=
supx∗∈BE∗

|〈m,x∗〉|(A), A ∈ Σ, where 〈m,x∗〉 is the scalar measure given by
〈m,x∗〉(A) := 〈m(A), x∗〉. The reader can find in [4, 13] more information
on vector measures and integration; see also [1] and the references therein
for more information on the semivariation. It is known that there exists
x∗ ∈ E∗ such that m is absolutely continuous with respect to |〈m,x∗〉|, that
is m(A) = 0 whenever |〈m(A), x∗〉| = 0. Such a measure 〈m,x∗〉 is called a
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Rybakov measure for m; a fixed Rybakov measure µ for m will be considered
through the paper. For the aim of simplicity we will assume as usual that
the element x∗ appearing in the definition of µ satisfies that ‖x∗‖ = 1. If
1 ≤ p <∞, a (scalar) measurable function f is said to be p-integrable with
respect to m if two requirements hold: (1) |f |p is integrable with respect
to all measures |〈m,x∗〉|, and (2) for each A ∈ Σ there exists an element∫
A |f |

pdm ∈ E such that 〈
∫
A |f |

pdm, x∗〉 =
∫
A |f |

pd〈m,x∗〉, x∗ ∈ E∗. For
the case p = ∞, Lp(m) is simple defined as L∞(µ) for a Rybakov measure
µ for m (obviously all Rybakov measures give the same space). The space
Lp(m), 1 ≤ p < ∞, is then given by the linear space of all µ-equivalence
classes of measurable real functions defined on Ω that are p-integrable with
respect to m. It is a Banach function space over µ when the a.e. order and
the norm

‖f‖Lp(m) :=
(

sup
x∗∈BE∗

∫
Ω
|f |p d|〈m,x∗〉|

)1/p
, f ∈ Lp(m),

are considered. It is an order continuous p-convex Banach function space
—with constant K = 1— (see [16, Proposition 5]). Moreover, it is known
that each order continuous p-convex Banach lattice with a weak unit is
isomorphic in order and norm to an Lp space of a vector measure (see [5]
and [13, Ch.3] for this and for more information on these spaces).

A version of Hölder’s inequality for these spaces is also available: if f ∈
Lp(m) and g ∈ Lp′(m), ‖fg‖L1(m) ≤ ‖f‖Lp(m) · ‖g‖Lp′ (m). The integration

operator Im : L1(m)→ E is given by

Im(f) =

∫
Ω
f dm, f ∈ L1(m).

General information on the properties of Im can be found in [13] and the
references therein. Since for all p > 1 the inclusion Lp(m) ⊆ L1(m) always
holds —as a consequence of Hölder’s inequality—, the integration map can
be considered also as an operator Im : Lp(m)→ E.

3. Strongly embedded subspaces of Lp(m).

Let µ be a finite (scalar) measure. As we said in the introduction, a
subspace S of a Banach function space X(µ) is strongly embedded if S can
be found isomorphically in L1(µ). Since S is always continuously included
in L1(µ), being strongly embedded is equivalent to saying that there is a
δ > 0 such that

∫
Ω |f |dµ > δ for all norm one f ∈ S. The most popular

example of such a subspace is the linear span of the Rademacher functions,
that we shall denote R. Using Kintchine’s inequalities, it is shown that R
is strongly embedded in the spaces Lp[0, 1] for 1 ≤ p <∞. It is well-known
that this subspace is also strongly embedded in other spaces. For example,

consider the closure G of L∞ in the Orlicz space LM2 with M2(t) := et
2 − 1.

If X(µ) is a symmetric (or rearrangement invariant) Banach function space
over Lebesgue measure ([0, 1],B, dx) and G ⊂ X(µ), then it is proved in [15]
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that X(µ) contains a copy of `2 generated by R. On the other hand, other
examples of strongly embedded subspaces of Banach function spaces are
available in the mathematical literature. For instance, given 1 < p < s < 2,
consider a sequence (fi)i of independent and identically-distributed s-stable
random variables in Lp[0, 1]; the linear span is isometrically isomorphic to `s

in this space and in L1[0, 1]. The reader can find more examples of strongly
embedded subspaces of symmetric spaces in [12], where several examples of
such subspaces are explained (see Theorem 4.3 in this paper).

Let us recall the Kadec-Pe lczynski theorem regarding the behavior of
the sequences in order continuous Banach function spaces (see [6, Th.4.1]).
Consider the fixed Rybakov measure µ for m. Suppose that S is a subspace
of Lp(m), p ≥ 1. Then we have that

(1) there is a δ > 0 such that
∫

Ω |f |dµ > δ for all norm one f ∈ S, or
(2) there is a sequence (fk)k of norm one elements of S that is almost

disjoint.

Thus, it may happen that either S is a subspace also of L1(µ) or it contains
an almost disjoint normalized sequence. A priori, both situations can be
given simultaneously, as it happens for instance for subspaces of L1(µ) that
are generated by a normalized sequence of disjointly supported functions in
L1(µ). Next result shows that these situations are mutually exclusive when
p > 1.

Proposition 1. Let p > 1 and consider a subspace S of Lp(m). Then the
following are equivalent.

(1) S is strongly embedded in L1(µ), where µ is a Rybakov measure for
m.

(2) S does not contain an almost disjoint sequence of norm one func-
tions.

Proof. (1) ⇒ (2). Assume that (2) does not hold, that is, there exists a
sequence (fi)i of norm one elements in S which is almost disjoint. By (1), S
is isomorphic to a subspace of L1(µ), the isomorphism given by the inclusion
map. Then there is a constant δ > 0 such that

δ <

∫
Ω
|fi|dµ ≤ ‖fi‖L1(m) ≤ ‖m‖(Ω)1/p′‖fi‖Lp(m) = ‖m‖(Ω)1/p′ ,

where Hölder’s inequality for functions in the space L1(m) has been used.
Choose a subsequence (fik)k and a disjoint sequence (gk)k in Lp(m) such
that for each k ∈ N, ‖fik − gk‖Lp(m) ≤ 1/2k. Note that∣∣1− ‖gk‖Lp(m)

∣∣ =
∣∣‖fik‖Lp(m) − ‖gk‖Lp(m)

∣∣ ≤ ‖fik − gk‖Lp(m) ≤ 1/2k.

In particular, ‖gk‖Lp(m) ≤ 2 for each k.

Since the gk’s are pairwise disjoint then,
∑∞

k=1 |gk| = (
∑∞

k=1 |gk|p)
1/p. By

the p-convexity of Lp(m) and taking into account that p > 1 we obtain for
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every n,

δn ≤
∫

Ω

n∑
k=1

|fik |dµ ≤
∥∥∥ n∑
k=1

|fik |
∥∥∥
L1(m)

≤
∥∥∥ n∑
k=1

(|fik − gk|+ |gk|)
∥∥∥
L1(m)

≤ ‖m‖(Ω)1/p′
n∑
k=1

‖fik − gk‖Lp(m) +
∥∥∥(

n∑
k=1

|gk|p)1/p
∥∥∥
L1(m)

≤ ‖m‖(Ω)1/p′
n∑
k=1

1

2k
+
∥∥∥( n∑

k=1

|gk|p
)1/p∥∥∥

Lp(m)
· ‖m‖(Ω)1/p′

≤ ‖m‖(Ω)1/p′ +
( n∑
k=1

‖gk‖pLp(m)

)1/p
· ‖m‖(Ω)1/p′ ≤ (1 + 2n1/p)‖m‖(Ω)1/p′ .

Consequently,

δn1/p′ ≤
( 1

n1/p
+ 2
)
‖m‖(Ω)1/p′

which is impossible since the right hand tends to 2‖m‖(Ω)1/p′ as n tends to
infinity. Thus, the sequence (fi)i cannot be almost disjoint, and (2) holds.

For (2) ⇒ (1), just apply the Kadec-Pe lczynski result to the subspace S.
�

The requirement on the p-convexity of the space for p > 1 is needed.
Counterexamples to the proposition can be easily found by considering lat-
tice copies of `1 inX(µ). For instance, take a non atomic finite measure space
(Ω,Σ, µ) and consider a disjoint partition (Ai)i of non-null measurable sub-
sets of Ω. Let us write µi for the restricted measure to Ai and take a family
{X(µi) : i ∈ N} of Banach function spaces over µi such that the correspond-
ing inclusions X(µi) ↪→ L1(µi) have norm one and

∑∞
i=1 ‖χAi‖X(µi) < ∞.

Define X(µ) :=
⊕

i,1X(µi), that can be written as a Banach function space
over µ with the obvious identification of the functions with their components
in each Ai. It can be identified isometrically and in the order with a space
L1(m), but not with an Lp(m) space for any p > 1, since it is not p-convex.
equence (χAi)i gives a counterexample for this property, since χΩ belongs to
the space. Also, t The subspace of X(µ) generated by the sequence (χAi)i
is strongly embedded in L1(µ), and clearly it contains a disjoint sequence.
An example of such a space is given by considering X(µi) = Lp(µi), after

renorming these spaces by ‖ · ‖X(µi) = µ(Ai)
1/p′‖fχAi‖Lp(µi). This example

shows that there are more cases besides L1(µ) spaces for which the two op-
tions in the Kadec-Pe lczynski’s dichotomy are not mutually exclusive. Other
easy examples can be constructed by considering disjoint p-sums of L1(µ)
spaces, for p > 1.

Let us show now some examples of spaces to which the previous result
can be applied.
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Example 2. Let 1 ≤ r < ∞ and let Lr[0, 1] be the Lebesgue space of r-
integrable functions. Let us write ([0, 1],B([0, 1]), dx) for the corresponding
measure space. Consider the Volterra operator Vr : Lr[0, 1]→ Lr[0, 1], that
is given by Vr(f)(t) :=

∫
[0,t] f(x)dx. It defines a countably additive vector

measure νr by νr(A) := Vr(χA), A ∈ Σ (see Example 3.26 and Example
3.49 in [13]). In the case of r = 1, the space L1(ν1) coincides with L1(|ν1|)
and so it is an L1 space of a scalar measure, although the integration map
is far from being of finite rank (in fact, it is not even weakly compact, see
Example 3.49(iv) in [13]). Then (1) and (2) of Proposition 1 cannot be
exclusive for L1(ν1), but it is so if S is a subspace of Lp(ν1), 1 < p < ∞,
since it coincides (topologically and in the order) with Lp(|ν1|). However,
for r > 1 the space L1(νr) does not coincide with L1(|νr|), and so gives
a different Banach function space over any Rybakov measure for νr (see
Example 3.26 in [13] for the description of this space). Proposition 1 can
then be applied to subspaces of Lp(νr) for every 1 < p <∞.

Example 3. Consider the Lebesgue measure space ([0, 1],B([0, 1]), dx). Take
1 < p <∞ and consider two vector measures defined as follows.

(1) The first case is defined simply as m : Σ→ L1[0, 1] given by m(A) :=
χA, A ∈ B([0, 1]). In this case, it is well-known that the integration operator
is the identity map, L1(m) = L1[0, 1] and so Lp(m) = Lp[0, 1]. Moreover,
Lebesgue measure can be considered in fact as a Rybakov measure µ for m,
and L1(µ) coincides also with L1[0, 1] (see Example 3.61 in [13]).

(2) The second vector measure that we consider takes its values in c0 and is
given by the formula m0(A) := (

∫
A rk−1(t)dt)∞k=1, where r0 = χ[0,1], rj is the

j-th Rademacher function, j ≥ 1, and A ∈ B([0, 1]). A direct computation
shows that L1(m0) and L1[0, 1] coincide; in particular, Lebesgue measure is
also equivalent to m0.

In both cases, let R0 be the Rademacher functions and R the subspace
generated by R0 in L1[0, 1]; due to Kintchine’s inequalities, this space can
also be found (isomorphically) in Lp[0, 1]. Therefore, Proposition 1 implies
that R does not contain an almost disjoint sequence of functions.

Consider a Banach function space X(µ) over a finite measure µ. Exam-
ple 3 concerning Rademacher functions is our motivation to analyze what
happens with the supports of the functions of the strongly embedded sub-
spaces of a Banach function space X(µ). We will see that being R strongly
embedded is deeply related to the fact that the support of each Rademacher
function is [0, 1] and so, to the fact that the support of Rademacher functions
intersect on a set of positive measure.

Consider a Banach function space X(µ) over a finite measure µ.

Definition 4. We say that a subset S of X(µ) has finite local support if
there is a finite disjoint class of sets A1, ..., An with positive measure such
that for each 0 6= f ∈ S there is i0 ∈ {1, ..., n} such that Ai0 ⊆ supp{f}.



8 P. RUEDA AND E.A. SÁNCHEZ PÉREZ

Trivially, R0 has finite local support. A more sofisticated property related
to the supports of the functions in a set S that will give us information on
the strongly embedded subspaces is the support localization property:

Definition 5. Let S be a subspace of X(µ). If there is a constant 0 < δ such
that for every finite set of non zero functions f1, ..., fn ∈ S, the characteristic
functions of their supports χsupp{f1}, ..., χsupp{fn} satisfy that

(1) δn ≤ ‖
n∑
i=1

χsupp{fi}‖X(µ),

we will say that S has the support localization property (SLP for short).

Remark 6. The following immediate property provides some additional
information and will be used several times: A subspace having the support
localization property cannot contain a disjoint sequence. To see this, suppose
that there is a disjoint normalized sequence (fi)i in an arbitrary subspace
S of Lp(m). If Ai is the support of fi for each i, then ‖

∑n
i=1 χAi‖Lp(m) ≤

‖χΩ‖Lp(m) ≤ ‖m‖(Ω)1/p, and then the left hand side of these inequalities
cannot increase with n.

Note that the inequality (1) applied to each function f ∈ S gives then
δ ≤ ‖χsupp{f}‖Lp(m). An easy calculation shows that ‖m‖(supp{f}) ≥ δp

for all f ∈ S, that is, the SLP implies that the measures of the supports of
all non-zero functions in S must be uniformly bounded below.

Let us show in the next proposition that having finite local support implies
the SLP. A sort of converse under an additional requirement is also true.
Remark 6 will be used in the following proof.

Proposition 7. Let S be a subspace of X(µ).

(i) If S \ {0} has finite local support, then S has the SLP.
(ii) Let S0 ⊆ S \ {0} be such that for each f ∈ S \ {0} and g ∈ S0,

fχsupp{g} ∈ S and assume that S has the SLP. Then S0 has finite
local support.

Proof. (i) Let A1, ..., An be given according to the finite local support prop-
erty for S \ {0}. Consider a finite family of nonzero functions f1, ..., fm ∈ S.
For each i ∈ {1, . . . ,m}, there exists ji ∈ {1, . . . , n} such that Aji ⊂
supp{fi}. Let K > 0 be such that K‖g‖L1(µ) ≤ ‖g‖X(µ) for all g ∈ X(µ).
Then,

mK min
1≤j≤n

‖χAj‖L1(µ) ≤ K
m∑
i=1

‖χAji
‖L1(µ) = K‖

m∑
i=1

χAji
‖L1(µ)

≤ ‖
m∑
i=1

χAji
‖X(µ) ≤ ‖

m∑
i=1

χsupp{fi}‖X(µ).

Consequently, the SLP holds for δ := K mini=1,...,n ‖χAi‖.
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(ii) Assume that S0 has not finite local support. Consider the class of all
families of disjoint non-zero functions of S ordered by inclusion (the “first”
order considered in the arguments below). By Remark 6 each family is
necessarily finite; otherwise we would have a contradiction with the SLP
of S. Besides, a similar argument shows that each chain of families is also
finite. Zorn’s Lemma guaranties that the set M of maximal families in the
class is non-empty.

Define now a different order (the “second” order) in the set M, given by
the following relation: a (finite) set F1 := {h1, ..., hm} ∈ M is less than
a (finite) set F2 = {g1, ..., gk} ∈ M if A = ∪mi=1supp{hi} = ∪ki=1supp{gi}
and the partition of A defined by the supports of the elements of F2 is finer
than the one defined by F1. Again, the chains contain only a finite number
of elements, since otherwise we get a contradiction with the SLP. Applying
Zorn’s Lemma again we obtain a maximal element F = {f1, ..., fn} with
respect to the new order, and also (by the construction) with respect to the
order given in the previous paragraph.

Now recall that we are assuming that S0 has not finite local support.
Therefore, there is a function g ∈ S0 such that supp{fi} is not included in
supp{g} for any i. We have now two possible cases.

a) supp{fi} ∩ supp{g} = ∅ for all i = 1, ..., n. Then the maximality of F
with respect to the first order gives a contradiction with the existence of the
family of disjoint functions F ∪ {g}.

b) There is an index i0 such that supp{fi0} ∩ supp{g} 6= ∅. Then by hy-
pothesis we have that h1 := fi0χsupp{g} ∈ S, and so h2 := fi0 −fi0χsupp{g} ∈
S too. If we consider the family defined by (F \ {fi0}) ∪ {h1, h2}, we get
a contradiction with the maximality of F with respect to the second order
relation. This finishes the proof. �

Part (ii) of this result can be used to prove that having finite local support
and having the support localization property are equivalent properties for
some types of subspaces. For instance, take B the set of all functions with
support equal to Ω. Take also a family of measurable subsets A = {Ai :
i ∈ I} such that for each i, j ∈ I, Ai ∩ Aj ∈ A and consider the subspace S
generated by the pointwise product B ·{χAi : i ∈ I}. Then a straightforward
argument using the result shows that S0 := S \ {0} has finite local support
if and only if S has the support localization property.

Following with our main example, given by R, we have that R0 has
finite local support. However, the above result does not provide a proof of
the fact that R has the SLP. We will prove in the next result that every
strongly embedded subspace of Lp(m) has the support localization property.
In particular, R has the SLP.

Theorem 8. Let p > 1 and consider a subspace S of Lp(m). If S is strongly
embedded then S has the support localization property.
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Proof. If S is strongly embedded in L1(µ), where µ is a Rybakov measure
for m, then there exists δ > 0 such that

δ‖f‖Lp(m) <

∫
Ω
|f |dµ ≤ ‖f‖L1(m) ≤ ‖f‖Lp(m)‖m‖(Ω)1/p′

for every f ∈ S. Consider (gi)i a sequence in S, gi 6= 0 for all i and let
(Ai)

n
i=1 be the sequence of supports of the functions gi. Consider the related

sequence of normalized functions fi = gi/‖gi‖. Obviously, the support of
each such function fi is Ai. By the p-convexity of Lp(m) and taking into
account that p > 1 we obtain for every n,

δn ≤
∫

Ω

n∑
i=1

|fi| dµ ≤
∥∥∥ n∑
i=1

|fi|
∥∥∥
L1(m)

=
∥∥∥ n∑
i=1

|fi|χAi

∥∥∥
L1(m)

≤
∥∥∥( n∑

i=1

|fi|p
)1/p( n∑

i=1

χAi

)1/p′∥∥∥
L1(m)

≤
∥∥∥( n∑

i=1

|fi|p
)1/p∥∥∥

Lp(m)

∥∥∥( n∑
i=1

χAi

)1/p′∥∥∥
Lp′ (m)

≤
( n∑
i=1

‖fi‖pLp(m)

)1/p ∥∥∥ n∑
i=1

χAi

∥∥∥1/p′

L1(m)

≤ n1/p
∥∥∥ n∑
i=1

χAi

∥∥∥1/p′

L1(m)
.

Consequently, δp
′
n ≤ ‖

∑n
i=1 χAi‖L1(m) ≤ ‖

∑n
i=1 χAi‖Lp(m) ‖m‖(Ω)1/p′ .

�

Note that the requirement p > 1 is again needed in the previous result,
although the Kadec-Pe lczynski’s dichotomy works for general order contin-
uous Banach function spaces. For example, take a disjoint sequence (Ai)i of
measurable sets in [0, 1] of non-zero measure, and the subspace S generated
by the characteristic functions of these sets in L1[0, 1]. Obviously, this space
is strongly embedded in L1[0, 1], but there is no δ > 0 such that

δ n ≤
∥∥ n∑
i=1

χAi‖L1[0,1] ≤ 1.

Example 9. Examples and characterizations of strongly embedded sub-
spaces of Lorentz spaces were studied in the classical papers [3] and [6].
More information on the strongly embedded subspaces of Lorentz Lp,q spaces
can be found in [17] (see also [8]). Consider the generalized Lorentz spaces
Λ(W,p) studied in Section 5 of [6]. This is the order continuous Banach
function space (over the Lebesgue measure) of all the (classes of) measurable

functions f on [0, 1] for which (
∫

[0,1] f
∗(t)pW (t)dt)1/p <∞, where f∗ is the
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decreasing rearrangement of f and W is a non-bounded non-increasing func-
tion on (0, 1] which integral equals 1 and W (1) > 0. Then Λ(W,p) ⊆ Lp[0, 1],
and the results in [6] show that a subspace of Λ(W,p) either embeds isomor-
phically into Lp[0, 1] or contains a complemented subspace isomorphic to `p
(see Remark 5.6 in [6]). Therefore, strongly embedded subspaces of these
Lorentz spaces are closely related to the ones of Lp[0, 1]. In particular, for
the case of a subspace S of the Lorentz spaces Lp,q[0, 1], 1 < p < ∞ and
1 ≤ q < ∞ —in fact, for all the subspaces of Lp,q[0,∞)— it happens that
it can be either isomorphic to a strongly embedded subspace of Lp[0, 1] or
contains a complemented copy of `q (Corollary 2.9 in [3]). Therefore, Propo-
sition 1 may be applied to show that the strongly embedded subspaces of
the Lorentz spaces Lp,q[0,∞) with 1 < p <∞ and 1 ≤ q <∞ not contain-
ing copies of `q have the SLP. A similar situation will be shown in the last
example of the present paper, where copies of `q become crucial.

The result for general Banach function spaces can be written as follows.

Corollary 10. If X(µ) is a Banach function space with

i. non trivial convexity and concavity, or
ii. p-convexity for p > 1 and finite cotype, or
iii. type strictly bigger than 1,

then each strongly embedded subspace of X(µ) has the support localization
property.

Proof. First recall that having finite concavity (or finite cotype) implies that
X(µ) is order continuous; this is a consequence of a direct calculation. For
the equivalence between nontrivial concavity and finite cotype in a Banach
lattice see [11, p.74], [11, Prop. 1.f.3], [11, Cor.1.f.9] and in general [11,
Sec.1.f]. Moreover, if the type of X(µ) is > 1, then by [11, Cor.1.f.13] it
is q-concave for some q < ∞ and by [11, Cor.1.f.9], it is also p-convex for
some p > 1. The result is then a consequence of Theorem 8 and the fact
that each order continuous p-convex space is order isomorphic to an Lp-
space of a vector measure m, for which µ is a Rybakov measure (see [13,
Prop.3.30]). �

Let X(µ) be a Banach function space and let Y be a Banach space. An
operator T : X(µ) → Y is disjointly strictly singular if the restriction of T
to any subspace generated by a sequence of non-zero disjoint functions is
not an isomorphism. In [12, Theorem 3.2] the following result is proved.

Theorem 11. [12, Theorem 3.2] If X(µ) is a symmetric Banach space such
that X(µ) 6= L1(µ), then the inclusion i : X(µ)→ L1(µ) is disjointly strictly
singular.

The next corollary shows that a similar result can be obtained for order
continuous p-convex Banach function spaces with weak unit. Note that there
is a subspace Y generated by a sequence of non-zero disjoint functions in
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X(µ) that is strongly embedded in L1(µ) if and only if the inclusion map
i : X(µ)→ L1(µ) is not disjointly strictly singular.

Corollary 12. Let 1 < p <∞. Let m be a vector measure and µ a Rybakov
measure for m. The inclusion map i : Lp(m) → L1(µ) is disjointly strictly
singular.

Proof. If i was not disjointly strictly singular, then there is a subspace Y
generated by a sequence of non-zero disjoint functions in Lp(m) such that
i : Y → L1(µ) is an isomorphism. Then by Remark 6 Y does not have the
SLP, and so by Theorem 8, Y is not strongly embedded, a contradiction. �

4. Applications: subspaces that are fixed by the integration
map

Recently, some effort has been made in order to analyze the subspaces
of the spaces L1(m) that are fixed by the integration map, i.e. those for
which the restriction of this operator is an isomorphism (see [14] and the
references therein). In this section we consider the same property but for
subspaces of Lp(m), 1 < p < ∞, in order to prove that all the spaces that
are fixed isomorphically by the integration map are strongly embedded. In
particular, these have the SLP. We also provide some examples for proving
that both classes of subspaces satisfying these properties do not coincide.

Lemma 13. If m : Σ → E is a Banach space valued (countably additive)
vector measure, then

lim
n

∑n
i=1 ‖m‖(Ai)

n
= 0

for every disjoint sequence of measurable sets (Ai)i in Σ.

Proof. Consider such a sequence of measurable sets and fix an ε > 0. Then,
using the equivalent expression for the semivariation of a vector measure
given in Proposition 11 of [4, Ch.I] we have that for each i there is a mea-
surable set Bi ⊂ Ai such that ‖m‖(Ai) ≤ 2‖m(Bi)‖ + ε/2i. On the other
hand, take a Rybakov measure µ for m, [4, Ch.IX]. Since µ is finite and
the elements in (Bi)i are disjoint, we obtain that limi µ(Bi) = 0. Thus,
limim(Bi) = 0 (see for example Pettis Theorem [4, Th.1,Ch.I]). Now it is
enough to apply Stolz criterium for computing the limit limn an/n, with
an =

∑n
i=1(2‖m(Bi)‖+ ε/2i);

lim
n

an+1 − an
n+ 1− n

= lim
n

2‖m(Bn+1)‖+ ε/2n+1 = 0,

and so limn an/n = 0. Consequently,

lim
n

∑n
i=1 ‖m‖(Ai)

n
≤ lim

n

∑n
i=1(2‖m(Bi)‖+ ε/2i)

n
= 0,

what proves the lemma. �
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Theorem 14. Let p > 1 and let S be a subspace of Lp(m). If S is fixed
isomorphically by the integration map Im : Lp(m) → E, then S is strongly
embedded in L1(µ).

Proof. Consisder a subspace S as in the statment of the theorem. Since it
is fixed isomorphically by the integration map Im : Lp(m) → E, there is a
constant δ > 0 such that

δ‖f‖Lp(m) ≤
∥∥∥∫

Ω
f dm

∥∥∥
E
≤ ‖f‖L1(m) ≤ ‖m‖(Ω)1/p′‖f‖Lp(m)

for all f ∈ S.
Assume that there is a sequence (fi)i in S with ‖fi‖ = 1 for all i, and a

disjoint sequence (gi)i in Lp(m) such that limi ‖fi − gi‖Lp(m) = 0. For each
i, let Ai be the support of gi. For ε > 0 we find a subsequence (gik)k such
that ‖fik − gik‖Lp(m) ≤ ε/2k for all k. As in the proof of Proposition 1, we
can assure that ‖gik‖ ≤ 2 for every k. Then, for each n,

δn ≤
n∑
k=1

∥∥∥∫
Ω
fik dm

∥∥∥
E
≤

n∑
k=1

‖gik‖L1(m) +

n∑
k=1

‖fik − gik‖L1(m)

≤
n∑
k=1

‖gikχAik
‖L1(m) + ε

n∑
k=1

1

2k
‖m‖(Ω)1/p′

≤
( n∑
k=1

‖gik‖
p
Lp(m)

)1/p
·
( n∑
k=1

‖m‖(Aik)
)1/p′

+ ‖m‖(Ω)1/p′ε

≤ 2n1/p
( n∑
k=1

‖m‖(Aik)
)1/p′

+ ‖m‖(Ω)1/p′ε.

Hence,

δn1/p′ ≤ 2
( n∑
k=1

‖m‖(Aik)
)1/p′

+
‖m‖(Ω)1/p′ε

n1/p

and so

δp
′ ≤ 1

n

(
2
( n∑
k=1

‖m‖(Aik)
)1/p′

+
‖m‖(Ω)1/p′ε

n1/p

)p′
.

This contradicts Lemma 13. Therefore, such a sequence (fi)i cannot exist
and Proposition 1 gives the result. �

Example 15. Consider the situation described in Example 3 for r = 1 i.e.
the vector measure m : Σ → L1[0, 1] given by m(A) := χA. We obtain the
following direct consequence of Theorem 14: for p > 1, each subspace S of
Lp(m) = Lp[0, 1] that is fixed by the integration map —that in this case is
simply the inclusion of Lp[0, 1] in L1[0, 1], see Example 3.61 and Corollary
3.66(ii) in [13]—, satisfies the support localization property. For instance,
this is the case of S = R, the space generated by the Rademacher functions,
that is fixed by the integration map when restricted to Lp(m).
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In fact, is not difficult to find subspaces of spaces Lp[0, 1] others than R
that are fixed by the integration map, and so has the SLP. For instance,
Lemma 1.4 in [7] can be used. This result states the following: Let (fn)n
be a weakly null normalized sequence in Lp(µ) for some finite measure µ
and 1 < p < ∞. Suppose that (fn)n is uniformly bounded (that is, there
exists M < ∞ such that |fn| ≤ M . Then, there is a subsequence (fnk

)k
equivalent to the unit vector basis of the sequence space `2. Let (Ω,Σ, µ) be
a finite measure space. Let us show how to get a subspace that can be found
simultaneously in Lp(µ) and Lq(µ), 1 < p ≤ q < ∞. Note that Lq(µ) ⊆
Lp(µ). Take a uniformly bounded normalized weakly null sequence (fn)n in
Lq(µ). Then there is a subsequence (fnk

)k satisfying that is equivalent to
the unit vector basis of `2, and the subspace G generated by (fikj )j is weakly

null also in Lp(µ). Thus, there is a subsequence (fikj )j that is also equivalent

to the unit vector basis of `2, and so it can be found simultaneously in Lp(µ)
and Lq(µ). Consider the vector measure mp : Σ→ Lp(µ) defined as above by
mp(A) := χA. Then L1(mp) = Lp(µ) and Lr(mp) = Lq(µ), for r = q/p ≥ 1,
and each subspace G can be found in both L1(mp) and Lr(mp), being the
inclusion map i : Lq(µ) → Lp(µ) the operator giving the isomorphism. Of
course, the subspace is fixed by the integration map Imp : L1(mp)→ Lp(µ),
that is just the identity map.

Let us finish the paper with some counterexamples regarding the relation
between strongly embedded subspaces and subspaces that are fixed by the
integration map. Our aim is to illustrate that for p > 1 the class of all
the subspaces that are fixed isomorphically by the integration map does not
coincide with the class of all the subspaces that can be found both in L1(m)
and Lp(m).

First, notice the following fact: Let S be a subspace of Lp(m) such that
Im|S is an isomorphism into. Then (S, ‖ · ‖Lp(m)) is also isomorphic to
(S, ‖·‖L1(m)). This is just a consequence of the factorization of Im : Lp(m)→
E through the inclusion Lp(m) ↪→ L1(m).

Example 16. Fix 1 ≤ q <∞. Consider Lebesgue measure space ([0, 1],B, dx)
and an absolutely summable sequence of (non null) positive integrable func-
tions (fi)i ⊆ L1[0, 1] that satisfies that the union of the supports of all of
them covers [0, 1]. Define now the vector measure ν : B([0, 1]) → `q by
ν(A) :=

∑∞
i=1

∫
A fidx · ei ∈ `q, where {ei}∞i=1 is the canonical basis. For

1 ≤ p <∞ the norm for each function f ∈ Lp(ν) is given by

‖f‖Lp(ν) :=
( ∞∑
i=1

(

∫
[0,1]
|f |pfidx)q

)1/qp
.

(1) There are subspaces that are found simultaneously in Lp(ν), L1(ν) and
L1[0, 1] but are not fixed by the integration map. Suppose that (fi)i satisfies
that ‖χ[0,1]−2ifi‖L∞(µ) < 1/2 for all i ∈ N. Then it can be checked that the

norm of L1(ν) is equivalent to the one in L1[0, 1] but the integration map is
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not an isomorphism; this can be easily seen if for example each fi is defined
as 1/2iχ[0,1]. Indeed, the range of the integration map has dimension 1, and
so it cannot be an isomorphism when restricted to any infinite dimensional
subspace. However, Lp(ν) = Lp[0, 1] and the subspaces that can be found
simultaneously in Lp(ν) and L1(ν) —for example, the one spanned by the
Rademacher functions—, are also in L1(ξ) for each Rybakov measure ξ,
since L1(ξ) = L1[0, 1] isomorphically.

(2) There are subspaces that are fixed by the integration map Iν : L1(ν)→
E and that are simultaneously subspaces of L1(ν) and L1[0, 1], but that are
not subspaces of Lp(ν) for p > 1. Assume now that the functions (fi)i are
disjoint and fix a finite subset N ⊂ N. Then there is no infinite dimensional
subspace of functions of Lp(ν) with support in ∪i∈NAi for any 1 ≤ p < ∞
that is fixed isomorphically by the integration map, since all the integrals
of such functions lie in a finite dimensional subspace of `q. However, L1(ν)
contains a copy S of `q(η) that is fixed by the integration map, where the
weight η is defined by η = {ηi}∞i=1 = {(

∫
Ω fidµ)q}∞i=1. S is given by functions

like
∑∞

i=1 λiχAi —where the sets Ai are the support of the functions fi—,
and the norms of these functions in Lp(ν) are given by

‖f‖Lp(ν) :=
( ∞∑
i=1

|λi|qpηi
)1/qp

.

Therefore, S is a subspace of L1(ν) but not of Lp(ν) for any p > 1.

The authors thank the anonymous referee for the careful reading of the
paper and some comments and suggestions that have improved the paper.
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p-convex Banach function spaces, Positivity 17(3) (2013), 775-791.

[3] N.L. Carothers and S.J. Dilworth, Subspaces of Lp,q, Proc. Am. Math. Soc. 104, 2,
(1988), 537-545.

[4] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc.,
Providence, RI, 1977.

[5] A. Fernández, F. Mayoral, F. Naranjo, C. Sáez and E.A. Sánchez-Pérez, Spaces of
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[Enrique A. Sánchez Pérez] Instituto Universitario de Matemática Pura y
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Valencia, Spain, e-mail: easancpe@mat.upv.es


