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Abstract 

To get an insight into the host RNA silencing defense induced  by Citrus tristeza virus 

(CTV) and into the counter defensive reaction med iated  by its three silencing 

suppressors (p25, p20 and p23), we have examined  by deep sequencing (Solexa -

Illumina) the small RNAs (sRNAs) in three virus-host combinations. Our data show 

that CTV sRNAs: i) represent more than 50% of the total sRNAs in Mexican lime and  

sweet orange (where CTV reaches relatively high titers), but only 3.5% in sour orange 

(where the CTV titer is significantly lower), ii) are predominantly of 21- 22-nt, with a 

biased  d istribution of their 5’ nucleotide and with those of (+) polarity accumulating 

in a moderate excess, and  iii) derive from essentially all the CTV genome (ca. 20 kb), 

as revealed  by its complete reconstruction from viral sRNA contigs, but adopt an 

asymmetric d istribution with a prominent hotspot covering approximately the 3’-

terminal 2500 nt. These results suggest that the citrus homologues of Dicer -like 

(DCL) 4 and  2 most likely med iate the genesis of the 21 and  22 nt CTV sRNAs, 

respectively, and  show that both ribonucleases act not only on the genomic RNA but 

also on the 3’ co-terminal subgenomic RNAs and , particularly, on their double-

stranded  forms. The plant sRNA profile, very similar and  dominated  by the 24-nt 

sRNAs in the three mock-inoculated  controls, was minimally affected  by CTV 

infection in sour orange, but exhibited  a significant reduction of the 24-nt sRNAs in 

Mexican lime and  sweet orange. We have also identified  novel citrus miRNAs and 

determined how CTV influences their accumulation. 

 

*Abstract
Click here to download Abstract: Ruiz (CTV-sRNAs) Abstract (PMB-v2).doc

http://www.editorialmanager.com/plan/download.aspx?id=171802&guid=c763e90a-3f9a-45dd-91b9-ab341769e73e&scheme=1


 1 

Citrus tristeza virus infection induces the accumulation of viral small RNAs 

(21- 24-nt) mapping preferentially at the 3’-terminal region of the genomic 

RNA and affects the host small RNA profile  

 

 

Susana Ruiz-Ruiz
1,4

, Beatriz Navarro
2
, Andreas Gisel

3
, Leandro Peña

4
, Luis Navarro

4
, 

Pedro Moreno
4
, Francesco Di Serio

2
, Ricardo Flores

1
 

 

 

1
Instituto de Biología Molecular y Celular de Plantas (Universidad  Politécnica de 

Valencia-Consejo Superior de Investigaciones Científicas), Avenida de los Naranjos, 

46022 Valencia, Spain 

2
Istituto d i Virologia Vegetale (Consiglio Nazionale delle Ricerche), Via Amendola 

165/ A, 70126 Bari, Italy 

3
Istituto d i Tecnologie Biomed iche (Consiglio Nazionale delle Ricerche), Via 

Amendola 122/ D, 70126 Bari, Italy 

4
Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain  

 

 

Author for correspondence: 

Ricardo Flores 

E-mail: rflores@ibmcp.upv.es 

Phone: 34-963877861 

Fax: 34-963877859 

 

 

The two first authors have contributed equally to this work 

 

Keywords: closteroviruses, microRNAs, RNA silencing, small interfering RNAs 

 

Number of words: 6785 (excluding Abstract and  Legends to Figures) 

*Manuscript (incl. title page & abstract)
Click here to download Manuscript (incl. title page & abstract): Ruiz (CTV-sRNAs) (PMB-v2).docClick here to view linked References

mailto:rflores@ibmcp.upv.es
http://www.editorialmanager.com/plan/download.aspx?id=171803&guid=6517a98b-ae9e-403f-8e6e-23fd2fc3838e&scheme=1
http://www.editorialmanager.com/plan/viewRCResults.aspx?pdf=1&docID=5269&rev=1&fileID=171803&msid={D00C6D47-7052-4830-874F-F8E27B5AE0DA}


 2 

Number of Figures: 9 

Number of Supplementary Figures: 3 

Number of Supplementary Tables: 3 



 3 

Abstract 

To get an insight into the host RNA silencing defense induced  by Citrus tristeza virus 

(CTV) and into the counter defensive reaction med iated  by its three silencing 

suppressors (p25, p20 and p23), we have examined  by deep sequencing (Solexa -

Illumina) the small RNAs (sRNAs) in three virus-host combinations. Our data show 

that CTV sRNAs: i) represent more than 50% of the total sRNAs in Mexican lime and  

sweet orange (where CTV reaches relatively high titers), but only 3.5% in sour orange 

(where the CTV titer is significantly lower), ii) are predominantly of 21- 22-nt, with a 

biased  d istribution of their 5’ nucleotide and with those of (+) polarity accumulating 

in a moderate excess, and  iii) derive from essentially all the CTV genome (ca. 20 kb), 

as revealed  by its complete reconstruction from viral sRNA contigs, but adopt an 

asymmetric d istribution with a prominent hotspot covering approximately the 3’-

terminal 2500 nt. These results suggest that the citrus homologues of Dicer -like 

(DCL) 4 and  2 most likely med iate the genesis of the 21 and  22 nt CTV sRNAs, 

respectively, and  show that both ribonucleases act not only on the genomic RNA but 

also on the 3’ co-terminal subgenomic RNAs and , particularly, on their double-

stranded  forms. The plant sRNA profile, very similar and  dominated  by the 24-nt 

sRNAs in the three mock-inoculated  controls, was minimally affected  by CTV 

infection in sour orange, but exhibited  a significant reduction of the 24-nt sRNAs in 

Mexican lime and  sweet orange. We have also identified  novel citrus miRNAs and 

determined how CTV influences their accumulation. 
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Introduction 

Plants, and  other higher eukaryotes, have developed  an RNA -based  antiviral 

silencing response triggered  by double-stranded  (ds) and  highly-structured  single-

stranded  (ss) RNA that elicits its processing by enzymes of the RNase-III class 

(DICER-like, DCL) (Molnar et al. 2005; Qi et al. 2005; Moissiard  and Voinnet 2006). 

The resulting primary virus-derived  small RNAs (vsRNAs) of 21 to 24 nt are 

amplified  into secondary vsRNAs by host RNA-dependent RNA polymerases 

(RDRs) (Dalmay et al. 2000) and , together, they load  and  guide an RNase H -like 

enzyme (Argonaute, AGO) forming the core of the RNA-induced  silencing complex 

(RISC) (Hamilton and  Baulcombe 1999; Vaucheret 2008), against the viral ssRNAs 

(Omarov et al. 2007; Pantaleo et al. 2007). Viruses have reacted  to this defense 

mechanism by encod ing suppressors of RNA silencing in their genomes (Csorba et 

al. 2009; Ding, 2010). Because RNA silencing also regulates plant developm ent 

through small RNAs (sRNAs) of endogenous origin, namely  microRNAs and  small 

interfering RNAs (miRNAs and siRNAs, respectively), with both pathways 

overlapping to some extent, developmental defects incited  by viruses have been 

regarded  as a side effects of their suppressors converging in both pathways, 

although other data ind icate that this may not necessarily occur in all cases (Díaz -

Pendón and  Ding 2008). 

 Citrus tristeza virus (CTV), family Closteoviridae, has the largest monopartite plant 

virus genome, composed  by a (+) ssRNA of about 19.3 kb organized  in 12 open 

read ing frames (ORFs) potentially encod ing at least 17 protein products flanked  by 5’ 

and  3’ untranslated  regions (UTRs) (Bar-Joseph and  Dawson 2008; Karasev et al. 

1995). The two 5’ proximal ORFs are d irectly translated  from the genomic RNA 

(gRNA) and  encode components of the replicase complex, while the 3’ proximal 

ORFs encod ing ten proteins are expressed  via a nested  set of 3’ co-terminal 

subgenomic RNAs (sgRNAs) (Hilf et al. 1995). Three of these proteins (p25, p20 and  

p23) are silencing suppressors in Nicotiana spp. (Lu et al. 2004). Besides, p23, an 

RNA-bind ing protein (López et al. 2000) that controls the asymmetrical accumulation  

of (+) and  (-) CTV RNAs (Satyanarayana et al. 2002), is a pathogenicity determinant 

when expressed  ectopically in several Citrus spp. (Fagoaga et al. 2005; Ghorbel et al. 

2001) and  a likely determinant of the seed ling yellows syndrome incited  by CTV in 
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sour orange (Citrus aurantium L.) and  grapefruit (C. paradisi Macf.) (Albiach-Martí et 

al. 2010). In nature CTV infection is restricted to phloem cells of some species of two  

genera of the family Rutaceae (Moreno et al. 2008), with the virus reaching variable 

titers depend ing on the strain and  the host: the titer in Mexican lime (C. aurantifolia 

(Christm.) Swing.) and  sweet orange (Citrus sinensis L. Osb.) can be ten-fold  higher 

than that in sour orange (Folimonova et al. 2008). Moreover , the citrus relative 

trifoliate orange (Poncirus trifoliata L. Raf.) is resistant to CTV at the whole plant level, 

w ith the resistance being conferred  by the single dominant locus Ctv, which most 

likely blocks virus movement because CTV replicates and  forms virions in 

protoplasts of this species (Albiach -Martí et al. 2004). In add ition to the gRNA and 

sgRNAs, CTV propagation occurs with the accumulation of vsRNAs (Fagoaga et al. 

2006), but there is no detailed  information about their physical properties, relative 

abundance and  d istribution along the viral genome, as well as whether CTV 

infection has any effect on plant sRNAs. Moreover, it is unclear not only for CTV but 

in general, which are the substrates for antiviral DCLs because (+) ssRNA viruses 

may produce dsRNAs during replication of the gRNA as well as during transcription 

of the sgRNAs (Aliyari et al. 2008), and  highly-structured  regions of the ss (+) gRNA 

and  sgRNAs may also be targeted  by DCLs (Molnar et al. 2005; Szittya et al. 2010). 

Supporting this latter view, the highly-structured  leader region of a DNA virus 

transcript has been reported as the major hotspot of vsRNAs (Moissiard  and  Voinnet 

2006). 

 To fill this gap we have analyzed  by Northern-blot hybrid ization, deep 

sequencing and  computational approaches the sRNAs from young stem bark of 

Mexican lime, sweet orange and  sour orange infected  by a severe CTV isolate, as well 

as their correspond ing mock-inoculated  controls. Our data show that the CTV 

sRNAs of 21- 22-nt are extremely abundant in Mexican lime and  sweet orange, 

wherein the accumulation pattern of plant sRNAs is significantly altered, but only 

represent a minor fraction in sour orange. Moreover, CTV sRNAs adopt an 

asymmetric d istribution along the viral gRNA, with a major hotspot covering 

approximately the 3’-terminal 2500 nt. Such a pronounced  uneven d istribution has 

not been reported  in other RNA viruses, includ ing one member of the same family 

(Kreuze et al. 2009). 
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Materials and methods 

 

Plant material and CTV isolate 

 

Samples of young stem bark (3 g) from seedlings mock-inoculated or CTV-infected 

with the severe isolate T318A (GenBank accession number DQ151548) were collected 

3 months post-inoculation (for Mexican lime and  sweet orange) or 12 months post -

inoculation (for sour orange). Plants were grown in an artificial potting mix (50% 

peat moss, 50% sand) and  maintained  in an insect-proof, temperature-controlled 

greenhouse (26-23ºC/ 18-15ºC day/ night). 

 

RNA extraction, purification, and  Northern -blot hybrid ization 

 

Total nucleic acid  preparations were obtained  by phenol-chloroform extraction 

(Ancillo et al. 2007) and  clarified  with methoxyethanol (Bellamy and  Ralph 1968). 

Aliquots were fractionated  by electrophoresis in either denaturing 1% 

agarose/ formaldehyde gels (for CTV gRNA and  sgRNAs) or in 17% 

polyacrylamide/ urea gels (for sRNAs), stained  with ethid ium bromide, and 

transferred  to Hybond -N+ membranes (Roche Diagnostics). The membranes were 

hybrid ized  with d igoxigenin-labeled riboprobes, homologous and  complementary to 

the 3’-terminal gene p23, obtained  by in vitro transcription under the control of the 

promoter of the T7 RNA polymerase. Hybrid izations were performed  at 68°C (for 

CTV gRNA and sgRNAs) or 42°C (for sRNAs) in the ULTRAhyb hybrid ization 

buffer (Ambion). Equal load ing was assessed by UV spectrophotometry, and  by the 

intensity of 4S and  U6 RNA bands after electrophoresis on 5% polyacrylamide/ urea 

gels and ethidium bromide staining or hybrid ization with a d igoxigenin -labeled 

riboprobe complementary to U6 RNA. The relative abundance of some 

representative CTV sRNA was independently assessed  by hybrid ization with the 5’-

rad iolabeled  probes CTV-cld  (5’-TTAAACTCAGGATAAGCTCTAGTGAGCATCA-

3’) and  CTV-chd  (5’-GGAGAACTTCTTTGGTTCACGCATACGTTAAG-3’) 
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complementary to positions 3224-3254 and  19163-19194, respectively, of the T318A 

isolate (Ruiz-Ruiz et al. 2006). Similarly, the relative abundance of two host miRNAs 

and  one sRNA was also independently assessed  by hybridization with their 

complementary 5’-radiolabeled  DNA probes. After overnight hybrid ization the 

membranes were washed  twice with 2X SSC plus 0.1% SDS for 10 min at room 

temperature, and  twice with 0.1X SSC plus 0.1% SDS for 15 min at 42°C.  Membranes 

hybrid ized  with d igoxigenin-labeled  probes were revealed with the 

chemiluminescent substrate CSPD (Roche Diagnostics) and  exposure to X-ray film, 

and  those hybrid ized  with rad iolabeled  probes with a bioimage analyzer (Fujifilm 

FLA-5100). 

 

Quantitative real-time RT-PCR 

 

The viral load  in the bark of each host plant was estimated  by a real-time RT-PCR 

protocol that uses the general primer set PM197F-PM198R and  SYBR Green I for 

specific and  reliable quantitative detection of the CTV gRNA (Ruiz -Ruiz et al. 2007). 

The LightCycler software provided  a plot of the fluorescence intensity against the 

number of cycles, as well as the threshold  cycle (Ct) value using the  automatic 

method . The mean Ct and  the standard  deviation (SD) for each plant sample were 

calculated . Synthesis of the DNA product of the expected  size was confirmed  by 

melting curve analysis and  by electrophoresis in a 2% agarose gel, and  the number of 

CTV gRNA copies in each sample was estimated  by interpolating the ind ividual Ct 

values in an external standard curve. 

 

Deep sequencing of CTV and  plant sRNAs 

 

The protocol for purifying the sRNAs, adapter ligation, RT-PCR amplification, 

library purification, and  high-throughput DNA sequencing on the Illumina Genome 

Analyzer EAS269-GAII (FASTERIS SA, Plan-les-Ouates, Switzerland), has been 

reported  elsewhere (Di Serio et al. 2010). Four bar -coded  samples, correspond ing to 

mock-inoculated  and  CTV-infected  Mexican lime and  sour orange sRNAs, were 

analyzed  in a single read channel. On the other hand , two samples correspond ing to 
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mock-inoculated  and  CTV-infected  sweet orange sRNAs, were analyzed  in single 

channels. 

 

Sequence analysis of sRNAs 

 

The resulting sequences were examined  for the presence of the adapters and , after 

their trimming, they were sorted  into separate files accord ing to their length. For 

further analysis the 18-26 nt reads were pooled  and  each set was analyzed  by BLAST 

(Altschul et al. 1990) against the nucleotide sequence of the CTV isolate T318A and  

plant sequences (particularly of citrus and  close relatives) deposited  in databases. 

Data were normalized  with respect to 18-26 nt reads from CTV-infected sour orange 

sample. A set of perl scripts was developed  to filter, analyze and  visualize the 

mapping data. Sequence assembly of the CTV gRNA from the overlapping CTV 

sRNAs was performed  with the program Velvet (Zerbino and  Birney 2008). 

 

 

Results and discussion  

 

CTV sRNAs (21- 22-nt) constitute a major fraction of the total sRNAs from Mexican  

lime and  sweet orange 

 

Deep sequencing of gel-purified  sRNAs generated  approximately 14.200.000 reads, 

99% of which corresponded  to the four bar -coded  samples (from mock-inoculated  

and  CTV-infected  Mexican lime and  sour orange) run in the same channel, w ith the 

fraction of each sample representing 24-27% of the total number of reads 

(Supplementary Table S1). Dissection of the reads from CTV-infected Mexican lime 

revealed  that, within the range of 18-26 nt, 56.3% w ere CTV sRNAs matching 

perfectly the parental sequence, while this fraction was reduced  to 3.5% in sour 

orange (Fig. 1). To further confirm these data and  d iscard  sequencing artifacts, two 

add itional sRNA samples (from mock-inoculated  and  CTV-infected  sweet orange) 

were subjected  to deep sequencing but in independent channels, generating about 

12.850.000 and  9.933.000 reads, respectively, more than 92% of which contained  the 
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bar-coded bases in 5’ and  the adapter in 3’ termini (Supplementary Table S2). Within 

the range of 18-26 nt, the fraction of reads from the CTV-infected  sweet orange that 

corresponded  to CTV sRNAs matching perfectly the parental sequence was 53.8% 

(Fig. 1), a value very similar to that obtained  for Mexican lime.  

 The quantitative d ifferences observed  in the CTV sRNA profiles are most likely a 

consequence of the higher virus titer in Mexican lime and  sweet orange than in sour 

orange, as estimated  by Northern -blot hybrid ization: the signals generated  by the 

gRNA and  the three more abundant sgRNAs (cod ing for p23, p20 and  p25) were 

clearly less intense in sour orange than in the other two hosts (Fig. 2A). 

 Estimation of the gRNA levels by quantitative RT-PCR confirmed  this view. More 

specifically, the threshold  cycle (Ct) values obtained  for Mexican lime, sweet orange 

and  sour orange were 16.79±0.04, 15.09±0.09 and  23.81±0.07, respectively. The 

amplification products showed  a single melting peak with the Tm value 

characteristic of severe isolates (Ruiz-Ruiz et al. 2007), supporting the amplification 

specificity. Moreover, gel electrophoresis analysis of the amplification products 

showed  a single band  of the expected  size with no primer -d imer formation (data not 

shown). The mean number of CTV gRNA copies, estimated  using an external 

standard , was in the same range for Mexican lime and sweet orange (2.25 x 10
6 
and 

6.99 x 10
6 

molecules per ng of total RNA,
 
respectively), but significantly lower for 

sour orange (2.11 x 10
4 
molecules per ng of total RNA). The mock-inoculated  plants 

d id  not yield  any amplification product and  their melting curve profiles did  not 

d iffer from negative controls (without template or reverse transcriptase). 

 Considering that virus titers in woody plants are usually low, the high level of 

vsRNAs found  in Mexican lime and  sweet orange was unexpected , even in samples 

from young stem bark where the phloem -restricted  CTV accumulates preferentially. 

This abundance is not an artifact of the amplification step preced ing deep sequencing 

because the Northern-blot hybrid ization signals generated  by the CTV sRNAs were 

significantly more intense in Mexican lime and  sweet orange than in sour orange 

(Fig. 2B). In contrast, the dominant 21- and  22-nt sRNAs derived  from Sweet potato 

chlorotic stunt virus (SPCSV), another member of the family Closteroviridae, represent a 

minor fraction of the total sRNAs extracted  from SPCSV-infected  sweet potato, 

although the starting material was leaf tissue (Kreuze et al. 2009). 
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 The CTV sRNAs of 21 and  22 nt were the most prevalent in the infected  samples, 

with those of (+) polarity being in a moderate excess with respect to their (-) 

counterparts (Fig. 3). Assuming that citrus DCLs behave as their Arabidopsis 

homologues, DCL4 and  DCL2 are the best cand idates for generating the 21- and 22-

nt vsRNAs, respectively. Although a surrogate defense role against Turnip crinkle 

virus has been proposed  for DCL2 with respect to DCL4 in Arabidopsis (Deleris et al. 

2006; Qu et al. 2008), recent data ind icate that the effect of DCL4 could  be ind irect 

and  that DCL2 has a prominent contribution (Azevedo et al. 2010). DCL2 also seems 

particularly relevant in infected Mexican lime and  sweet orange, considering that the 

CTV sRNAs of 22 nt are more abundant than their 21-nt counterparts (Fig. 1 and  2); 

the high levels of the vsRN As of 21 and  22 nt, however, were not accompanied  by a  

similar decrease in the levels of the plant sRNAs of the same size (Fig. 1). 

 

CTV sRNAs map preferentially at the 3’-terminal region of the gRNA 

 

Mapping the CTV sRNAs of both polarities revealed in th e three citrus species 

extensive targeting of the gRNA, but with a clear asymmetric d istribution resulting 

in a major hotspot that covers approximately the 3’-terminal 2500 nt (starting at p25 

and  gradually increasing up to p23); however, the hotspot d id  not extend  into the 3’-

UTR (Fig. 4). Furthermore, the hotspot profiles for the 21- and  22-nt (+) CTV sRNAs 

were very similar, as also were those of the 21- and 22-nt (-) CTV sRNAs (data not 

shown), ind icating that specific regions of the RNA substrates are targeted  by the 

same DCLs and  their auxiliary dsRNA-bind ing proteins (Curtin et al. 2008); a 

comparable situation has been recently reported  for some representative plant 

viruses (Donaire et al. 2009) and  viroids (Di Serio et al. 2009; Di Serio et al. 2010). To 

get add itional independent confirmation of our deep sequencing data, ruling out the 

possibility that the d ifferences observed  in the CTV sRNA profiles could  result from 

amplification artifacts, we performed  two Northern -blot hybridization controls. First, 

we assessed  the relative abundance of (+) vsRNAs along the virus genome by 

hybrid izing aliquots of the RNA preparation from CTV-infected  sweet orange with 

eight equalized  1500-nt digoxigenin-labeled  riboprobes spanning the complete viral 

genome; as expected, the strongest signals resulted  from the 3’-terminal 1500 nt and 
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then from the 5’-terminal 1500 nt (Fig. 4, lower panel). And second , we estimated  the 

relative abundance of (+) and  (-) vsRNAs derived  from specific regions of the CTV 

genome. The d igoxigenin-labeled (+) and  (-) riboprobes derived  from gene p23 

generated  intense signals in the positions expected  for the 21- and  22-nt vsRNAs of 

both polarities in CTV-infected  sweet orange and  Mexican lime, but only weak 

signals in CTV-infected  sour orange and  no signal at all in the mock-inoculated  

control (Fig. 5A). Moreover, while hybrid ization with a 5’ rad ioactively -labeled 

oligonucleotide (CTV-cld) complementary to genomic positions 3224-3254 (with a 

low density of vsRNAs) failed  to provide any signal, hybridization with a 5’ 

rad ioactively-labeled oligonucleotide (CTV-chd) complementary to genomic 

positions 19163-19194  (with a relatively high density of vsRNAs) generated  clear 

signals correspond ing to 21- and  22-nt vsRN As only in CTV-infected  sweet orange 

and  Mexican lime (Fig. 5B). 

 To further dissect the CTV sRNA profiles, we analyzed  the density of vsRNAs 

along the ORFs: they showed  the same pattern in the three hosts, peaking at p23 and  

then declining at the 3’-UTR (Fig. 6). Widespread  and  efficient targeting of plant viral 

genomes has been observed  previously (Donaire et al. 2009), with the vsRNAs 

derived from the 3’-terminal region of the largest RNA of Tobacco rattle virus 

(encompassing two genes that are expressed  via two sgRNAs) being somewhat more 

abundant (Donaire et al. 2008). However, the pronounced  asymmetric accumulation 

of CTV sRNAs derived  from the 3’-moiety of the CTV gRNA is unprecedented , even 

in one member (SPCSV) of the same family (Kreuze et al. 2009). 

 The most plausible explanation for this asymmetric d istribution is that the ten 3’-

co-terminal CTV sgRNAs —and particularly their d sRNAs detected  in extracts of 

infected  tissues (Aramburu et al. 1991; Bar-Joseph and  Dawson 2008; Moreno et al. 

1990) and  presumably accumulating in vivo at least transiently as reported  for some 

animal viruses (Weber et al. 2006)— are substrates for the citrus homologues of 

DCL2 and  DCL4. The moderate excess of (+) over (-) CTV sRNAs basically results 

from the regions cod ing for p20 and  p23 (Fig. 4 and  6) and  most likely reflects: i) the 

excess of (+) over (-) strands in infected  cells (Satyanarayana et al. 2002), and ii) the 

higher accumulation of p20 and  p23 sgRNAs detected  by  Northern-blot analysis in 

the same RNA preparations used  for purifying the sRNAs for deep sequencing (Fig. 
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2), in line with previous results (Navas-Castillo et al. 1997). We believe that the 

surplus of (+) CTV sRNAs reflects the in vivo situation and  not the sequestration of 

their (-) counterparts by the viral (+) gRNA and  sgRNAs (Smith et al. 2010), because 

the hybridization signals generated  by the (-) CTV sRNAs d id  not change following 

PAGE under fully denaturing cond itions (7 M urea supplemented  with 40% 

formamide) (data not shown). Yet, the relative decrease in the density of vsRNAs 

derived  from the 3’-UTR (273 nt) demands alternative explanations, including 

protection by proteins involved  in transcription of (-) strands or in translation of the 

sgRNAs that may have special affinity for this region. Supporting this view, very few 

CTV sRNAs were retrieved  from the most 3’-terminal 50 nt (Supplementary Fig. S1). 

On the other hand , a slight over-accumulation of CTV sRNAs mapping along the 5’-

terminal 1000 nt was detected  (particularly in sweet orange) (Fig. 4). 

 

CTV sRNAs of 21 and 22 nt d isplay a bias in their 5’-terminal nucleotide 

 

In Mexican lime, the population of the most abundant (+) and  (-) CTV sRNAs of 21 

and  22 nt was dominated by species with a 5’-terminal C and U (about 40-45 and 

30%, respectively), with those having a 5’-terminal G being underrepresented  (7-

13%). In sour and sweet orange the situation was more balanced, although most 21- 

and  22-nt vsRNAs with a 5’-terminal G were also underrepresented  (15%) (Fig. 7). 

This disproportionate d istribution does not result fr om the base composition of the 

CTV gRNA or the three most abundant sgRNAs, which have a G content around  

25% (data not shown). On the other hand , some of the ten most abundant CTV 

sRNAs detected  in the three hosts were coincidental, but inspection of their  base 

composition and  sequence d id  not reveal any common trait (data not shown). 

Potential factors that may shape the CTV sRNA d istribution and  the lack of a clear 

phasing include the d issimilar accessibility of regions of the correspond ing RNA 

precursors to DCLs and  their auxiliary proteins, the preference of certain AGOs for 

the 5’-terminal nucleotide of their guide sRNAs (Mi et al. 2008; Montgomery et al. 

2008), and  their d ifferential targeting by one or more exoribonucleases. 

 

Complete reconstruction of the CTV gRNA from the assembly of the CTV sRNAs 
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To further assess that most of the CTV gRNA (the largest of a monopartite plant 

virus) is extensively targeted  by DCLs, an attempt was made to reconstruct its 

sequence from the overlapping CTV sRNAs of the sweet orange library, which we 

first mapped  without mismatches onto the sequence of isolate T318A. Computer -

assisted  assembly of contigs revealed  that the complete CTV genome of 19252 nt 

could  indeed  be assembled , with the exception of position 5985 and  a short stretch 

between positions 15739 and  15764. Searching the sweet orange library for reads that 

with one mismatch could  cover these gaps we found  that position 5985, annotated  as 

U in the sequence of isolate T318A (GenBank DQ151548), appears as A in  100% of the 

vsRNAs mapping around  this position; database examination revealed  that all 

deposited  CTV sequences have an A at this position, strongly suggesting an 

annotation error. Also, positions 15739 and  15764, annotated  as C and  G respectively, 

appear as A in 100% of the correspond ing CTV sRNAs. Finally, the U at position 

15761 appears as A in 10% of the CTV sRNAs, ind icating some sequence 

heterogeneity. RT-PCR amplification and  sequencing of this region of isolate T318A 

has indeed  corroborated  our deep sequencing data (Navarro and  Ambrós, personal 

communication). Altogether, these results extend  those previously obtained for 

another closterovirus with a genome approximately half-size (Kreuze et al. 2009), 

and  highlight the potential of the deep sequencing approach used  here to identify 

virus and  even virus variability, because the intrinsic heterogeneity generated  by the 

technique is lower than the genetic variability resulting from replication. 

 

Effect of CTV infection on the miRNAs from the three citrus h osts 

 

To complement these data, we also searched our deep sequencing libraries first for 

miRNAs, and  then for virus-induced alterations of their relative abundance. In 

regard  to the first point, the only previous data on citrus miRNAs have been 

obtained  by searching citrus EST databases for miRNA precursors of 26 miRNAs 

conserved  in Arabidopsis and other plant species, with 13 precursors found  adopting 

fold -back structures similar to those of Arabidopsis. Northern hybridization revealed 

the expression of these 13 citrus microRNAs and  of the other 13 putative miRNAs, 
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with 41 potential mRNA targets identified  by nearly -perfect complementarity with 

15 citrus miRNAs (and  four of these targets experimentally validated  by detection of 

the miRNA-mediated cleavage products) (Song et al. 2007). 

 By comparative analysis of our deep -sequencing citrus libraries with miRNAs 

from other plant species and  searching for their fold -back precursors in EST citrus 

databases, we identified  42 miRNAs from 27 d ifferent conserved  fam ilies 

(Supplementary Table S3); further support for their existence was provided  by the 

identification of some citrus miRNAs* (located  in the opposite arm of pre -miRNA 

hairpins). Out of these 42 miRNAs, 24 are new in citrus, 17 of which belong to 13 

conserved  families with no previous citrus member. Additional examination of our 

sRNAs libraries showed  the presence of all miRNAs previously detected  by 

Northern-blot hybridization in citrus with the exception of miR161, miR163, miR170, 

miR173 and  miR391 (Song et al. 2007), which have been identified  only in  

Arabidopsis (exclud ing miR161 also found in Brassica rapa). 

 Concerning the effect of virus infection on the miRNA relative abundance, we 

restricted  our study to the 28 (of the 42) citrus miRNAs with more th an 10 reads in at 

least one of the three hosts (Supplementary Table S3). The analysis revealed  a 

complex pattern in qualitative and  quantitative terms (Fig. 8). Some miRNAs were 

upregulated  (i.e. miR168 and  miR398) or downregulated  (i.e. miR171a and  miR403) 

in the three hosts, while others d isplayed  a host-specific change (i.e. miR156 with an 

increase of six-fold  log units in Mexican lime, and  miR166b with a four-fold increase 

in sour orange and a three-fold  decrease in sweet orange). The changes in miRNA 

profiles in response to CTV infection were validated  by Northern -blot hybrid ization 

for two of the most abundant miRNAs (Supplementary Fig. S2). Most  of the 28 citrus 

miRNAs examined  target mRNAs cod ing for transcription factors (Song et al. 2007 

and  data not shown). It is worth noting that miR168 (upregulated  by CTV in the 

three hosts, see above) targets the mRNA cod ing for AGO1, which med iates miRNA- 

(Baumberger et al. 2005) and vsRNA-directed  gene silencing (Morel et al. 2002; Qu, et 

al. 2008). Transcrip tional co-regulation of miR168 and  AGO1 mRNA has been 

described  (Vaucheret et al., 2006), with recent data indicating that induction of AGO1 

mRNA and  the ensuing accumulation of AGO1 is a component of the host defense 

response, while the induction of miR168 observed  in several plant-virus interactions 
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is a counter-defense reaction of the virus (Varallyay et al. 2010). It will be interesting 

to examine whether any of the three silencing suppressors of CTV also targets AGO1. 

 

Mapping plant sRNAs reveals a hotspot at the locus Ctv of trifoliate orange 

containing the putative resistance gene 

 

The host sRNA profile was similar in the three mock-inoculated  controls, being 

dominated  by the 24-nt species, in common with other angiosperms (Dolgosheina et 

al. 2008; Morin et al. 2008) (Fig. 1). CTV infection induced  minor changes on the  

relative size d istribution of total (plant and  virus) sRNAs in sour orange, but had  a 

profound  effect in Mexican lime and  sweet orange: while a minor 21-nt peak and  a 

major 24-nt peak were detected  in the mock-inoculated  controls, essentially the 

reverse situation occurred  in their CTV-infected  counterparts, w ith a major peak of 

21- 22-nt and  a minor peak of 24 nt. This relative increase in 21- 22-nt sRNAs might 

result from their specific binding and  stabilization by one or more of the CTV-

encoded  silencing suppressors, as proposed  for other virus-encoded  silencing 

suppressors (Csorba et al., 2009; Ding, 2010), although there are alternative 

explanations. Focusing on plant sRNAs of 24 nt, virus infection produced  in Mexican 

lime and  sweet orange a 2.5-3 fold  reduction whereas the effects on the plant sRNAs 

of 21 and  22 nt were less pronounced  and  essentially absent , respectively (Fig. 1). 

Intriguingly, co-infection of sweet potato with SPCSV and  Sweet potato feathery mottle 

virus (SPFMV, family Potyviridae), producing the synergistic sweet potato virus 

d isease (SPVD), also results in a severe relative reduction of the 24-nt sRNAs 

(essentially derived  from the plant) that has not been observed  in singly-infected 

plants (Kreuze et al. 2009). 

 To get a more precise insight, we first examined  the genomic location of the 24-nt 

plant sRNAs most deeply affected by CTV infection. Unexpected ly, one of these 

sRNAs (5’-CUUAGAAUUGAUUGCAAAGCUGCA-3’), overexpressed  in CTV-

infected  Mexican lime and  sweet orange but not in sour orange, was homologous 

(with a single mismatch) to a fragment of the 282-kb region from the trifoliate orange 

genome containing  locus Ctv for CTV resistance, and  more specifically to the 

putative gene CTV.20 located  within this region (see below). Given the functional  
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relevance of the 282-kb region, we looked  for other plant sRNAs mapping within it. 

Remarkably, 1-4% of all plant sRNAs (depend ing on the species and  on whether it 

was infected  or not) derived  from this region, a value higher than expected 

considering the size of the citrus genome (367 Mb) as well as the sequence d ifferences 

existing between the trifoliate orange and the three citrus hosts here assayed . 

Moreover, the accumulation of 24-nt plant sRNAs with sequences homologous to the 

282-kb region of the trifoliate orange was increased  by CTV infection in sour orange, 

while in Mexican lime and, particularly, in sweet orange was decreased  

(Supplementary Fig. S3). The changes in  sRNA profiles resulting from CTV infection 

were validated  by Northern-blot hybridization for the most abundant 24-nt sRNA of 

locus Ctv (Supplementary Fig. S2). Further analysis revealed  an uneven d istribution 

of the 24-nt plant sRNAs along the 282-kb region, with major peaks mapping at some 

intergenic regions (between the putative genes CTV.5 and  CTV.6, and  CTV.10 and 

CTV.11) and  at the putative gene CTV.20 (Fig. 9). Searching for an explanation for 

this profile we found: i) an inverted  repeat (plus/ minus) of more than 1100 nt and  

89% sequence identity between positions 88901-90066 (intergenic region CTV.5-

CTV.6) and  positions 154117-155302 (intergenic region CTV.10-CTV.11), and  ii) a 

d irect repeat (plus/ plus) of more than 6000 nt and  99% sequence identity within 

CTV.20 between positions 233519-239777 and  241051-247107. Interestingly, there are 

ESTs in databases from d ifferent citrus species with up to 93 and  97% sequence 

identity with these two repeats (data not shown). 

 Sequence analysis of the 282-kb region of the trifoliate orange genome containing 

locus Ctv has pred icted  22 putative genes, including a cluster of seven d isease 

resistance (R) genes, two transposons and  eight retrotransposons (Fig. 9) (Yang et al. 

2003). How these genes, and  particularly the gene(s) providing resistance to CTV, are 

regulated  is not known, but our data suggest that CTV infection might affect 

d ifferentially their expression in highly susceptible hosts (like Mexican lime and 

sweet orange) and  in a host like sour orange with low er virus accumulation. There is 

evidence that RNA silencing modulates the expression of an increasing number of 

endogenous genes, and  that defense mechanisms can be activated  in response to 

attack by pathogens that d isturb RNA silencing (Yi and  Richards 2007). CTV has this 

potential through its three encoded  silencing suppressors, but whether the resistance 
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gene(s) is regulated in such a way remains to be determined. 

 

Conclusions 

Deep sequencing has revealed  that the CTV sRNAs from young stem bark represent  

a minor fraction of total sRNAs in sour orange, but more than 50% in Mexican lime 

and  sweet orange, in which the profile of the 24-nt plant sRNAs and  some miRNAs 

is significantly altered. On the other  hand , the abundance of CTV sRNAs in Mexican 

lime and  sweet orange suggests that it is their function, rather than their synthesis, 

the target of the RNA silencing suppressors encoded  by this virus (p25, p20 and p23). 

Actually, accumulation of siRNAs derived  from a CTV transgene in Mexican lime is 

not sufficient for eliciting protection against the virus (López et al. 2010). It is 

conceivable that some of the intracellular suppressors (p23 and  p20) may block load  

of CTV sRNAs into RISC, thus preventing or attenuating its saturation and  the 

ensuing deleterious effects, or interfere with RISC function through other ind irect 

routes. Finally, the preferential accumulation of CTV sRNAs mapping at the 3’-

terminal 2500-nt of the RNA genome most likely results from the concurrent 

accumulation of this fragment present in  the ten 3’ co-terminal sgRNAs and  their 

d sRNAs; this excess would  overpass a threshold  level and  trigger —as proposed  

with the over-expression of certain transgenes— the plant RNA silencing response, 

includ ing the activation of RDRs (Voinnet 2008; Wassenegger and  Krczal 2006) 

ultimately resulting in the generation of secondary vsRNAs. Therefore, our results 

establish that vsRNAs from CTV, and  presumably from other (+) RNA viruses 

expressing sgRNAs, result from DCLs acting on multiple viral substrates gener ated 

in the course of gRNA replication and sgRNA transcription. 
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Legends to Figures 

 

Figure 1. Size distribution of CTV and plant sRNAs (oran ge and  green, respectively) 

in CTV-infected  and mock-inoculated Mexican lime, sour orange and  sweet orange. 

The histograms compare the d istribution of 18- to 26-nt total sRNA reads. A minor 

contamination of CTV-sRNAs observed  in the mock-inoculated  Mexican lime 

(representing 0.1 % of the total sRNAs of this size) has not been represented . 

 

Figure 2. Northern-blot hybridization of CTV RNAs from mock-inoculated  and  CTV-

infected  Mexican lime, sour orange and  sweet orange. Total RNA preparations were 

fractionated  by electrophoresis in 1% agarose/ formaldehyde gels (for CTV gRNA 

and  sgRNAs) (A), or in 17% polyacrylamide/ urea gels (for CTV and  plant sRNAs) 

(B), electrotransferred  to membranes, and  hybrid ized  with a d igoxigenin -labeled 

riboprobe complementary to the 3’-terminal gene p23. Lanes (1) and  (2) mock-

inoculated  and  CTV-infected  sweet orange, lanes (3) and  (4) mock-inoculated  and 

CTV-infected  Mexican lime, and  lanes (5) and (6) mock-inoculated  and  CTV-infected 

sour orange, respectively. The positions of the CTV gRNA and  the most abundant 

sgRNAs are ind icated  in panel (A), w ith the left lane M of panel (B) correspond ing to 

a 23-nt RNA marker homologous to positions 18692 to 18714 of the CTV gRNA. 

Equal load ing was assessed  by ethidium bromide staining of 4S RN A (A) and  by 

hybrid ization with a digoxigenin-labeled  riboprobe complementary to U6 RNA (B). 

 

Figure 3. Polarity d istribution of the 18- to 26-nt reads perfectly matching plus (blue) 

and  minus (red) CTV sRNAs in the three citrus hosts assayed . 

 

Figure 4. Location and  frequency in the CTV gRNA of the 5’ termini of (+) and  (-) 

vsRNA reads from the three citrus hosts (bars above and  below the x-axis, 

respectively). The preferential d istribution of the reads at the 3’-terminal moiety of 

the gRNA is clearly visible. The ORFs, and 5’- and  3’-UTRs, are ind icated within 

boxes and  with lines, respectively. Note that the read  scale is d ifferent, and  that the 

same numbering is used in the plus polarity (5’3’ orientation is from left to right) 

and  in the minus polarity (5’3’ orientation is from right to left). In the lower panel 
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are shown the signals generated  by the vsRNAs from CTV-infected  sweet orange 

when hybridized  with eight equalized 1500-nt d igoxigenin-labeled  riboprobes 

spanning the complete viral genome. The nucleotide coord inates of the probes along 

the CTV genome are ind icated, and the number of (+) CTV sRNAs reads within each 

of the eight regions analyzed are between parenthesis. Prior to hybrid ization, 

aliquots of the RNA preparation from CTV-infected  sweet orange were fractionated  

by electrophoresis in 17% polyacrylamide/ urea gels and blotted  to membranes that 

were washed  and  then revealed  with the chemiluminescent substrate CSPD and  

exposure to X-ray film. A 23-nt RNA marker, homologous to positions 18692 to 18714 

of the CTV gRNA, was also included  (lane M). 

 

Figure 5. Confirmation by Northern-blot hybridization of the existence and  relative 

abundance of (+) and  (-) CTV sRNAs in CTV-infected  sweet orange (lanes 1), CTV-

infected  Mexican lime (lanes 2), CTV-infected  sour orange (lanes 3), and  mock-

inoculated  Mexican lime (lanes 4). (A) Analysis of total RNA preparations hybrid ized 

with d igoxigenin-labeled  riboprobes complementary and  homologous to the p23 

gene (upper and  midd le panels, respectively). A 23-nt RNA marker, homologous to 

positions 18692 to 18714 of the CTV gRNA, was also included  (lane M). (B) Analysis 

of the same preparations hybrid ized  with 5’-rad iolabeled  oligonucleotides CTV-chd 

and  CTV-cld  for detecting abundant and rare (+) CTV sRNAs (upper  and  midd le, 

respectively). In both instances RNAs were previously fractionated  by 

electrophoresis in 17% polyacrylamide/ urea gels. After hybridization with equalized 

probes, membranes were revealed  with the chemiluminescent substrate CSPD and  

exposure to X-ray film (A), or with a bioimage analyzer (B). Equal loading was 

assessed  by hybrid ization with a d igoxigenin-labeled  riboprobe complementary to 

U6 RNA. 

 

Figure 6. Density (reads per nucleotide) of the (+) and  (-) CTV sRNA reads (18 to 26 

nt) along the ORFs and  the 5’- and  3’-UTRs in the three citrus hosts assayed . 

 

Figure 7. Frequency of the 5’ nucleotide in the CTV sRNAs. The histograms compare 

in the three citrus hosts assayed  the total reads correspond ing to the 21- 22-nt CTV 
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sRNAs of (+) and  (-) polarity (upper and  lower panels, respectively) with d istinct 5’ 

termini. 

 

Figure 8. Effect of CTV infection on the accumulation of specific miRNA from 

Mexican lime, sour orange and  sweet orange. Only  miRNAs with more that 10 reads 

in at least one of the three citrus hosts are considered, and  the expression levels of 

miRNAs are plotted  as log
2
 of fold  change (reads of CTV-infected  versus mock-

inoculated  samples). Some miRNA sequences pred icted  by comparative analyses 

(Song et al. 2007) exhibited  minor variations with respect to those retrieved  from our 

deep sequencing libraries. In particular: i) the miR156 and  miR393 most frequently 

sequenced  in Mexican lime, sweet and  sour orange have an add itional nucleotide at 

the 5’-end  when compared  with the sequence deposited  in the miRbase and  

pred icted, respectively, ii) the most abundant miR166 and  miR172 have their 5’-

termini shifted  one or two nucleotides downstream with respect to those pred icted  

and  deposited  in the miRbase, respectively, and  iii) the prevalent miR166 in the three 

citrus species analyzed  is 21-nt long and does not contain the add itional 3’ nucleotide 

proposed  in some members of this family (csi-miR166a, csi-miR166b, ctv-mir166, crt-

miR166a, crt-miR166b) deposited  in the miRbase (see also Supplementary Table S3). 

 

Figure 9. Mapping of the 24-nt sRNAs from the three mock-inoculated  and  CTV-

infected  citrus host assayed  along the 282-kb region containing the locus Ctv of 

trifoliate orange. The search allowed  up to two mismatches. Abbreviations of the 22 

putative genes (CTV.1 to CTV.22) are accord ing to Yang et al. (2003) and  the 

correspond ing intergenic regions are named as Igr.1 to Igr.21). 
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Supplementary Figures and Tables 

 

Figure S1. Location and  frequency in the 3’ terminal 275 nt of the CTV gRNA of th e 

5’ termini of (+) and  (-) vsRNA reads from the three citrus hosts. Note that essentially 

no reads are observed  mapping at the 3’-terminal 50 nt. Other details as in the legend 

of Fig. 4. 

 

Figure S2. Northern-blot hybrid ization showing the effect of CTV infection on the 

accumulation of two miRNAs (miR166 and  miR319) (Supplementary Table S3) and 

one sRNA (5’-ATGTACTGTTGATGGTGACGTGGC-3’, positions 154866-154899 and 

89318-89337 in the minus and  plus strands of the trifoliate orange locus Ctv) from 

mock-inoculated  and  CTV-infected  Mexican lime, sour orange and  sweet orange. 

Total RNA preparations were fractionated  by electrophoresis in 17% 

polyacrylamide/ urea gels, electrotransferred  to membranes and  hybrid ized  with 5’-

rad iolabeled  probes complementary to the m iRNAs and  sRNA. Lanes (1) and  (2) 

mock-inoculated  and  CTV-infected  sweet orange, lanes (3) and  (4) mock-inoculated 

and  CTV-infected  Mexican lime, and  lanes (5) and  (6) mock-inoculated  and  CTV-

infected  sour orange, respectively. The reads for the miRNAs and  the sRNA in the 

six samples are between parenthesis. Equal load ing was assessed  by hybrid ization 

with a digoxigenin-labeled  riboprobe complementary to U6 RNA and  by ethid ium 

bromide staining of 4S RNA. 

 

Figure S3. Effect of CTV infection on the accumulation of the 24-nt sRNA from the 

three citrus hosts (Mexican lime and  sweet and  sour orange) with homology to the 

282-kb region of the trifoliate orange genome containing locus Ctv (Yang et al. 2003). 

The expression levels of the sRNAs are plotted  as log
2
 of reads per million (rpm). The 

search allowed  up to two mismatches. Black line represents the diagonal (y = x). 

 

Table S1. Length and  reads of sequenced  inserts from mock-inoculated  and  CTV-

infected  Mexican lime and  sour orange. 

 

Table S2. Length and  reads of sequenced  inserts from mock-inoculated  and  CTV-
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infected  sweet orange. 

 

Table S3. Characteristics of the miRNAs retrieved  from the deep  sequencing libraries 

of mock-inoculated  and  CTV-infected Mexican lime, sour orange and sweet orange. 
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