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Photoactive Bile Salts with Critical Micellar Concentration in the 

Micromolar Range 

Miguel Gomez-Mendoza,a M. Luisa Marina,* and Miguel A. Mirandaa,* 

The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic 

acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or 

ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one 

hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling 

properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been 

demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered 

at increasing concentrations (25-140 µM) showed a remarkable non-linear enhancement in the emission 

intensity accompanied by a hypsochromic shift of the maximum and up to three-fold increase in the singlet 

lifetime. The inflection point at around 50-70 µM, pointed to the formation of unprecedented assemblies at 

such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against 

concentration, a marked increase (up to two-fold) was observed at 40-70 µM, indicating formation of new 3β- 

NPX-CA assemblies at ca. 50 µM. An additional evidence supporting formation of new 3β-Dns-CA or 3β-NPX- 

CA assemblies at 40-70 µM was obtained from singlet excited state quenching experiments using iodide. 

Moreover, to address the potential formation of hybrid assemblies, 1:1 mixtures of 3β-Dns-CA and 3β-NPX-CA 

(2-60 µM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior 

compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β- 

NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range 

(up to 60 µM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported 

singlet energies, was revealed, pointing to the formation of extremely fluorescent hybrid assemblies at  5-10 

µM (total concentration). The morphology of the entities was investigated by means of confocal microscopy. 

At 90 µM, 3β-Dns-CA showed disperse assemblies in the µm range. 
 

 

Introduction 

Self-assembled biocompatible molecules constitute an 

emerging research area owing to their potential applications as 

nanomaterials in technology or medicine.1-3 Bile salts (BS) are 

water-soluble natural steroids with a high tendency to 

aggregate in solution due to the cis fusion between rings A and 

B, the hydroxyl groups on the α-face and the carboxylic acid at 

the end of the lateral chain. The aggregation behavior is strongly 

dependent on the number of hydroxyl groups.4 Thus, cholic acid 

(CA), with three hydroxyls, starts forming aggregates at 15 mM, 

while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, 

with two hydroxyls, start aggregating at 5-10 mM; for lithocholic 

acid, with only one hydroxyl group, aggregation is observed at 

lower concentration (2-3 mM).5,6 

Among applications, BS mainly act as biological surfactants7,8 

and have great potential as biomolecules for the preparation of 

nanostructures, since they combine their unique and peculiar 

structural features with the fact that they are inexpensive and 

readily available starting materials. In this context, in the last 

few years it has been proven that even small modifications of 

the molecular structure of BS lead to derivatives with 

uncommon self-assembly properties.9-12 For instance, 

lithocholic acid and some different artificial derivatives of CA 

have been reported to self-assemble into tubules that 

constitute interesting structures for their potential applications 

in nanotechnology.11,13-15 Furthermore, self-assembly of amino 

acid derivatized BS has been widely investigated as a potential 

strategy for the preparation of nanostructured biomaterials 

with a wide range of applications in nanomedicine.16-18 

We have recently demonstrated that derivatization of CA by 

incorporating a dansyl (Dns) fluorophore,19,20  which exhibits a 

   strongly medium-dependent photophysical behavior,  affords 
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valuable reporters to investigate the aggregation of BS.5,21 This 

is achieved by replacement of less than 1% of original BS and 

therefore does not affect the micelle-forming properties of the 

natural BS. 
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Fig. 2. Singlet excited state behavior of 3β-Dns-CA (black) or Chx-Dns (red) in aqueous solution versus concentration (λexc = 390 nm): Top left) changes in the relative emission 

intensities recorded at the corresponding maximum (I/I0); top right) changes in the position of the emission maximum (λmax); bottom left ) changes in the relative singlet lifetime 

(τ/τ0); bottom right) fluorescence spectra (λexc = 390 nm) of Chx-Dns in aqueous solution upon increasing concentrations (25 – 140 µM). 
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Fig. 3. Left) Traces corresponding to 3NPX* monitored at 440 nm upon laser flash photolysis excitation (λexc = 266 nm) and right) changes in the relative triplet lifetime (τ/τ0), in 

deaerated 0.2 M aqueous NaCl at different concentrations. Top) 3β-NPX-CA; Bottom) (S)-naproxen. 
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Fluorescence quenching of self-assemblies based on 3ββββ-DnsCA 

or 3ββββ-NPX-CA 

A further piece of evidence supporting formation of new 3β- 

Dns-CA or 3β-NPX-CA assemblies at 40-70 µM concentration 

was obtained from quenching experiments using iodide (Figures 

4 and S5).22,26 Rate constant values (kq) were determined for 3β- 

Dns-CA and 3β-NPX-CA at two different concentrations: 16 µM 

(still in solution) and 100 µM (forming self-assemblies). For 3β- 

Dns-CA kq decreased from 7.5×108 M−1s−1 to 1.5×108 M−1s−1; 

analogously, for 3β-NPX-CA, kq decreased from 3.1×109 M−1s−1 

to 4.5×108 M−1s−1. The less efficient quenching observed in the 

self-assemblies compared to solution agrees well with 

formation of the new supramolecular entities. 

and their behavior compared to that of the pure photoactive 

derivatives at the same concentrations (Figure 5 and S6-7). 

Experiments conducted with pure 3β-Dns-CA or 3β-NPX-CA 

shown in Figure 5 top and middle revealed a linear increase in 

the emission upon increasing concentrations in the studied 

range (up to 30 µM). By contrast, when 1:1 mixtures were 

subjected to emission experiments, a different behavior was 

noticed (Figure 5 top). In fact, a lower increase in the emission 

was observed for 3β-NPX-CA, while a huge increase was 

experienced in the case of 3β-Dns-CA with concentration in the 

same range (up to 60 µM total). This fact revealed a partial 

intermolecular energy transfer from NPX to Dns consistent with 

their reported singlet energies (355 and 280 kJ mol-1, 

respectively).27 
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Fig. 4. Stern-Volmer plots for the fluorescence quenching of the photoactive derivatives 

upon addition of increasing amounts of KI, recorded in 0.2 M aqueous NaCl at 16 µM 

(solid) or 100 µM (dashed) concentrations of 3β-Dns-CA (top) or 3β-NPX-CA (bottom). 

 

 

 

Photophysical characterization of hybrid assemblies based on 

3ββββ-Dns-CA:3ββββ-NPX-CA  (1:1) 

After investigating the self-assembly behavior of 3β-Dns-CA and 

3β-NPX-CA at concentrations ca. 40-70 µM, much lower than 

the natural bile acids having only two hydroxyl groups (ca. 5 

mM),6 we found it interesting to address the potential 

formation of hybrid assemblies. For this purpose, 1:1 mixtures 

of 3β-Dns-CA:3β-NPX-CA (2-60 µM, total concentration) were 

subjected to steady-state fluorescence experiments (Figure 5), 
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Fig. 5. Emission behavior of 3β-Dns-CA (1-30 µM) (top) and 3 β-NPX-CA (1-30 µM) 

(middle) in aqueous solutions. Insets: Relative emission intensity vs concentration 

recorded at 540 nm (top) or 350 nm (middle); Bottom) Fluorescence emission behavior 

(λexc = 290 nm) of 1:1 mixtures of 3β-Dns-CA: 3β-NPX-CA (2-60 µM, total concentration). 
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Fig. 8. Top) Image obtained from the confocal microscope (λexc = 405 nm) of 3β-Dns-CA 

at 90 µM; middle) emission spectrum (λexc = 405 nm) taken inside the bright assembly 

(3β-Dns-CA at 90 µM); bottom) background emission spectrum obtained in the dark 

region. 
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Experimental section 

Chemicals. NaCl, dansyl chloride, (S)-naproxen, 

cyclohexylamine (Chx-NH2), dimethylsulfoxide and KI were 

purchased from Sigma–Aldrich; Milli-Q® water was used for 

sample preparation. The photoactive cholic acid derivatives 3β- 

Dns-CA    and    3β-NPX-CA    were    prepared    as   previously 

reported.19,20 Cyclohexylamine-Dns (Chx-Dns) was synthesized 

by direct reaction between cyclohexylamine and dansyl chloride 

(80% yield): 1H NMR (300 MHz, CDCl3): δ 1.00-1.80 (m, 10H), 

2.90 (s, 6H), 3.20 (m, 1H), 4.60 (br d, 1H), 7.20 (d, 1H), 7.50-7.65 

(m, 2H), 8.20-8.35 (m, 2H), 8.58 (d, 1H). 

Instrumentation 

Absorption and Emission Equipment. UV spectra were 

recorded on a Cary 300 (Varian) spectrophotometer. Steady- 

state fluorescence experiments were carried out using a Photon 

Technology International (PTI, Germany) LPS-220B fluorometer, 

equipped with a monochromator in the range of 200-700 nm. 

Time-resolved fluorescence measurements were performed 

with a Time Master fluorescence lifetime spectrometer TM 

2/2003 from PTI, using a hydrogen/nitrogen flash lamp as the 

excitation source. The kinetic traces were fitted by one 

monoexponential decay function, using a deconvolution 

procedure to separate them from the lamp pulse profile. 

Laser Flash Photolysis. A pulsed Nd: YAG L52137 V LOTIS TII was 

used at the excitation wavelength of 266 nm. The single pulses 

were ca. 10 ns duration, and the energy was lower than 20 

mJ/pulse. The laser flash photolysis system consisted of the 

pulsed laser, a 77250 Oriel monochromator and an oscilloscope 

DP04054 Tektronix. The output signal from the oscilloscope was 

transferred to a personal computer. 

Confocal Microscope. A LSM 780 AxioObserver from Zeiss was 

used at the excitation wavelength of 405 nm. Emission 

measurements were taken in the region 411-696 nm every 8.9 

nm. All the measurements were performed at room 

temperature and the obtained data were analyzed by means of 

a free software called Fiji. 

Sample Preparation 

New photoactive assemblies at different concentrations were 

freshly prepared by dissolving the specified amount of the 

photoactive derivative (from a stock solution in DMSO) in 0.2 M 

NaCl. 

Photophysical  Experiments 

Emission measurements were performed in the region of 330- 

600 nm with excitation in the range of 200-340 nm under air- 

equilibrated conditions. The triplet lifetimes of 3β-NPX-CA or 

(S)-naproxen were determined in 0.2 M NaCl aqueous solution 

from the monoexponential fitting of the decay traces registered 

at 440 nm under N2. All photophysical measurements were 

performed at room temperature using 10 x 10 mm2 quartz cells 

of 4 mL capacity. 

Quenching Experiments 

The specified volumes of a freshly prepared KI solution (2 M) 

were added to aerated solutions of the photoactive derivatives 

at the indicated concentrations. 

Confocal Microscope Images 

The images were taken from freshly prepared 3β-Dns-CA 

assemblies at 90 µM concentration in 0.2 M NaCl. 
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