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Abstract 

Social network contacts have significant influence on individual travel behavior. 
However, transport models rarely consider social interaction. One of the reasons is the 
difficulty to properly model social influence based on the limited data available. Non-
conventional, passively collected data sources, such as Twitter, Facebook or mobile 
phones, provide large amounts of data containing both social interaction and 
spatiotemporal information. The analysis of such data opens an opportunity to better 
understand the influence of social networks on travel behavior. The main objective of 
this paper is to examine the relationship between travel behavior and social networks 
using mobile phone data. A huge dataset containing billions of registers has been used 
for this study. The paper analyzes the nature of co-location events and frequent 
locations shared by social network contacts, aiming not only to provide understanding 
on why users share certain locations, but also to quantify the degree in which the 
different types of locations are shared. Locations have been classified as frequent 
(home, work and other) and non-frequent. A novel approach to identify co-location 
events based on the intersection of users’ mobility models has been proposed. Results 
show that other locations different from home and work are frequently associated to 
social interaction. Additionally, the importance of non-frequent locations in co-location 
events is shown. Finally, the potential application of the data analysis results to 
improve activity-based transport models and assess transport policies is discussed 
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Introduction 

Travel behavior is nearly always modelled as a set of independent decisions across 
travelers. This approach provides satisfactory results for regularly-scheduled or very 
inelastic activities, like work trips, but ignores the fact that intra- and extra-household 
interactions play a key role in many other trips and activities (e.g., leisure trips) that are 
planned jointly and/or depend on the trips and activities of the social contacts. The 
concept of a ‘full individual daily pattern’, which constitutes the core of the original 
activity-based approach, needs to be expanded to account for the influence of the 
social network. A key issue is incorporating realistic geographic social networks into 
agent-based models, which makes it necessary to characterize the form and statistical 
properties of the underlying social structures and the strengths of their influences. The 
analysis of new data sources, such as online social networks or mobile phone data, 
can help improve the understanding of the interdependencies and co-evolution of the 
social networks and the activity-travel patterns. In recent years, there has been an 
increasing interest in studies related to human mobility patterns (e.g., Brockmann et al. 
2006; Gonzalez et al. 2008; Song et al. 2010a; Gould 2013) and social networks (e.g. 
Onnela et al. 2007; Lazer et al. 2009; Carrasco et al. 2008a; Clifton 2013), some of 
them using different spatiotemporal information from non-conventional, passively 
collected data sources (e.g., GPS, mobile phones, Twitter, etc.). However, only a few 
studies have analyzed both aspects at the same time using mobile phone data records 
(Calabrese et al. 2011a; Cho et al 2011; Phithakkitnukoon et al. 2012; Chen and Mei 
2014). The main objective of this paper is to examine the relationship between travel 
behavior and social networks using mobile phone data. The paper focuses on the 
analysis of the characteristics of the locations shared by social contacts, aiming to 
understand and quantify why and in which degree those locations are shared. 

The structure of the paper is as follows: first, a review of previous work related to the 
interaction between social network, travel behavior and the use of mobile phones is 
presented. Secondly, the scope and contributions of the paper are shown. In the third 
place, the characteristics of the dataset used in this study are described. Fourthly, the 
methodology followed to obtain users’ social network and travel behavior from mobile 
phone data and to analyze the relationship between them is explained. Then, the 
results and main findings are presented, and their application to inform activity-based 
models and assess mobility policies such as carpooling is explained. Finally, the main 
conclusions of the paper and further research avenues are discussed. 

 

Literature review 

Social networks and travel behavior 

It has been recognized that the characteristics of people’s social network influence 
social activities and related travels (Axhausen 2005; Arentze and Timmermans 2006; 
Carrasco and Miller 2006). There is an increasing number of transport studies that are 
including social networks as an important factor to improve travel demand models. 
Earlier applications of social networks in transport planning and travel behavior studies 
date from the beginning of the present millennium. Dugundji and Walker (2005) derived 
a mode choice model using various static associative social networks that group 



individuals by several statistics. Paez and Scott (2005) presented a similar approach to 
estimate the share of telecommuting at a firm in consideration of peer pressure to 
appear at one’s desk. Carrasco and Miller (2006) explicitly included social networks in 
a conceptual model of social activity-travel behavior. Marchal and Nagel (2006) allowed 
cooperative agents in a microsimulation to share information with each other about 
activity locations and about other agents, in order to optimize trip chains. Arentze and 
Timmermans (2006) presented a framework for a multi-agent microsimulation that 
produces a dynamic social network which evolves together with activity-travel patterns. 
Hackney et al. (2006) also studied interdependencies between social networks and 
travel behavior. Silvis et al. (2006) found relations between number of trips and 
locations visited, and the social network size and number of repeated contacts. Molin et 
al. (2007) analyzed the influence of the size and composition of the social network on 
travel demand. Arentze and Timmermans (2008) focused on direct effects of social 
networks on activity-travel interactions. Carrasco et al. (2008a) studied the spatial 
distribution of social activities, focusing on the home distance of individuals. Carrasco 
et al. (2008b) explored the relationships between travel behavior, ICT use and social 
networks. Carrasco and Miller (2009) studied the effects of characteristics of 
individuals’ personal networks and interactions on activity frequency. Hackney and 
Marchal (2009) developed a microsimulation model which incorporated a social 
network on top of a daily activity scheduler. More recently, Hackney and Marchal 
(2011) and Ronald et al. (2012a, 2012b) have taken into consideration the role of social 
networks in travel behavior using an agent-based approach. Habib and Carrasco 
(2011) analyze the effects of social networks on the timing and duration of activities. 
Van den Berg et al. (2013) studied the effects of social networks and 
telecommunications on activity-travel patterns. Moore et al. (2013) studied links 
between personal networks, time use and geographical location of people. Sharmeen 
et al. (2013, 2014) analyzed face-to-face social interaction and geographic 
accessibility. 

Although significant theoretical advances have been made in understanding how the 
social network influences travel behavior, data availability is still a significant limitation 
for this kind of studies. As remarked by Van den Berg et al. (2013), only a few data 
collection efforts have been made so far in order to incorporate social networks in 
models of travel demand. Furthermore, data is usually collected through personal 
surveys which are limited in sample size (hundreds of users) and period of time (few 
days). For instance, Carrasco et al. (2008c) carried out a survey of 350 people and in-
depth interviews of a subsample of 84, and Van den Berg et al. (2013) performed a 
survey combining a questionnaire and a 2-days social interaction diary, obtaining 747 
responses (response rate 20%). On the other hand, non-conventional passively 
collected data from Twitter, Facebook or mobile phones, which provide relevant 
information on social relations and user’s location data, can open an opportunity to deal 
with data limitation problems. In contrast to surveys, these new data sources provide 
location information as well as social interaction of millions of users during long periods 
of time. In terms of mobility, mobile phone data is one of the best sources to obtain 
spatiotemporal information for a long period of time covering a big percentage of the 
entire population (Lane et al. 2010). Additionally, when analyzing social networks, 
mobile phone data have the advantage of providing more relevant face-to-face 
personal relationship information compared to other data sources such as Twitter or 
Facebook (Phithakkitnukoon et al. 2012). Therefore, mobile phones seem to be one of 



the most appropriate data sources to simultaneously analyze social network and travel 
behavior. At this point, it is worth mentioning that, as well as data from surveys, mobile 
phone data have their own limitations and drawbacks (e.g. limited socio-demographic 
information available due to privacy issues), which will be discussed at the end of this 
paper. 

Travel behavior and mobile phone data 

Recent studies from the human and social research area have demonstrated the 
usefulness of mobile phone data to study travel behavior. González et al. (2008), Song 
et al. (2010a, 2010b), and Bagrow and Lin (2012) have demonstrated that human 
mobility is highly structured and governed by certain patterns. Slim and Ahas (2010) 
used mobile phone positioning data to identify individuals’ residential locations in 
Estonia. Ahas et al. (2010) also monitored the movements of suburban commuters in 
the city of Tallinn, Estonia. Mobile phone positioning data has been used to study how 
people move during social events (Calabrese et al. 2010). Song et al. (2010a) studied 
the predictability of human mobility from location data of GSM tower IDs. Becker et al. 
(2011) identified residential location of daily workers and the late-night revelers in the 
city of Morristown, New Jersey, USA, in order to understand daily flows of people in 
and out of city. Isaacman et al. (2011) used Call Detail Records (hereafter CDRs) to 
identify locations where people spend most of their time. They validated the algorithms 
used, derived via logistic regressions, by comparing their results to ground truth data 
provided by a group of volunteers. The algorithms identified home and work sites with 
median errors under one mile. Do and Gatica-Pérez (2012) developed algorithms to 
predict user mobility using various types of data collected from mobile phones of 153 
volunteers during 17 months (GPS, WiFi APs, calling logs, etc.). In the transport field, 
research interest in relation to mobile phone-based data has been concentrated on 
using mobile phones as probes for estimation of aggregate level traffic parameters, 
such as travel time and travel speed (Bar-Gera 2007), mode share (Wang et al. 2010; 
Doyle et al., 2011), origin-destination matrices (White and Wells 2002; Cáceres et al. 
2007; Sohn and Kim 2008; Calabrese et al. 2011b) and traffic flows (Cáceres et al. 
2012). Reviews of current practices using mobile phone as traffic probes can be found 
in Yim (2003), Rose (2006), Cáceres et al. (2008) and Steenbruggen et al. (2011). 

Social networks, travel behavior and mobile phone call data 

Communication information from mobile phone data can be used to infer social network 
structures. For example, Eagle et al. (2009) used call logs, Bluetooth devices in 
proximity, cell tower IDs, application usage and phone status collected from mobile 
phones of 94 volunteers to study friendship behaviors. Mobile phones were equipped 
with software applications that recorded and sent the data to a central server. The 
analysis of the mobile phone data was compared with self-reported data. They found 
that friendship is related to in-role communication and proximity (those interactions 
likely to be associated with work, e.g. proximity at work), as well as with extra-role 
communication and proximity (those interactions that are unlikely to be associated with 
work, such as Saturday night proximity). Using just the extra-role communication factor 
from that analysis, it was possible to accurately predict 96% of symmetric non-friends 
(subjects who work together but neither considers the other a friend) and 95% of 
symmetric friends; in-role communication produced a similar accuracy. Thus they could 



accurately predict self-reported friendships based only on objective measurements of 
behavior. Landline and mobile phone data were used by Sobolevsky et al. (2013) as a 
proxy for interactions to identify community regions. They detected coherent areas, and 
most of their boundaries closely follow existing political or socio-economic borders. 

A considerable number of studies have used mobile phone data to either analyze 
social network or travel behavior. However, studies using mobile phone data to jointly 
analyze social networks and travel behavior are scarce. Phithakkitnukoon et al. (2011) 
identified residential locations of individuals with mobile phone positioning data and 
quantified the strength of social ties based on call duration. They found that residential 
migration can affect the strength of social ties over time: strong ties persist through a 
migration, while weak ties tend to disappear. In a subsequent study (Phithakkitnukoon 
et al. 2012), the authors found that 80% of individuals’ mobile phone traces were within 
the 20 km proximity of their nearest social ties’ residential locations. Calabrese et al. 
(2011) used a subset of mobile phone data from 1 million users in Portugal to study the 
relationship between their telecommunications patterns and physical locations. They 
found that there was a strong positive correlation between the call frequency between 
two individuals and the frequency of co-location occurrences. Cho et al. (2011) studied 
social travel using cell phone location data (estimated from the nearest cell phone 
tower of both the persons making and receiving the call), and data from two online 
location-based social networks. Ythier et al. (2013) used data from phone calls, sms 
logs and GPS of 111 people to investigate the influence of communication and social 
contacts on travel behavior. They found that people tend to travel in a similar manner 
as those they are socially connected to (consistently with the social network and travel 
literature) and that communication use is a complement to physical travel (consistently 
with the telecommunication and travel literature). Chen and Mei (2014) identified social 
ties and characterized basic mobility patterns using a mobile phone dataset of around 
425.000 users with both location information and calling information for a large 
urbanized city in China. 

 

Scope and paper contribution 

The use of mobile phone data to analyze social network and travel behavior interaction 
is gaining interest due to its potential to identify social and travel behavior patterns 
based on a large sample of individuals. This source of data has the advantage of being 
collected passively, with no human errors, no non-response and no fatigue/attrition. 
The main purpose of this paper is to contribute to efforts in this area by focusing on two 
main aspects: (1) the relationship between social network and frequent locations visited 
by social network individuals, and (2) the analysis of co-location, defined as the 
events in which two individuals of the same social network are in the same place at the 
same time. Note that when analyzing frequent locations of the social network, co-
location is not strictly required. 

With respect to frequent locations, research on social networks and travel behavior has 
mainly focused on home locations, taking the spatial proximity of residential locations 
as a proxy of social interaction, although some studies have also addressed the 
distribution of the work location of the social network (e.g., Phithakkitnukoon et al. 
2012). Also, mobile phone data have been analyzed to infer home and work locations, 
defined as the most frequent locations in a certain period of time. In this paper, in 



addition to home and work locations, a methodology is proposed to identify other 
frequent locations. Additionally, instead of analyzing the spatial distribution of frequent 
locations of the social network, the focus is on the analysis of the nature (i.e. home, 
work, other location) of the locations shared by the individuals of the social network, 
aiming to understand if the reason why the user is at that location is influenced by its 
social contacts.  

Regarding co-location, few studies have faced this problem through the use of mobile 
phone data. Calabrese et al. (2011) identified a co-location event when two individuals 
who are in the same area (different from users’ home and work) call each other, which 
is seen as coordination between them to meet in a nearby area. Chen and Mei (2014) 
concluded that other attributes related to mobility patterns such as co-location are 
equally or even more strongly related to social interaction than the spatial distribution of 
residential locations of the social network; co-location is assumed to occur when two 
individuals are in the same place during a time frame, dividing every day into two time 
frames, daytime (8 am - 8 pm) and night-time (8:01 pm - 7:59 pm). In the present 
paper, a novel methodology to analyze co-location is proposed. For each individual, a 
mobility model identifying locations visited along the different days of the sample is 
defined. By crossing the mobility models of the individuals, a co-location event is 
identified if two users of the same social network are in the same place at the same 
time. The methodology proposed allows the identification of co-location events even if 
there is not phone communication between the individuals and with a high temporal 
resolution. Similarly to frequent locations analysis, one of the main objectives is to 
analyze the nature of co-location events. 

To the best of our knowledge, the dataset used for this study (described in detail 
below) is the largest one considered so far to analyze the interaction between the 
social network and travel behavior  

 

Dataset 

The mobile phone data used for this study consists of a set of Call Detail Records 
(CDRs). CDRs are generated when a mobile phone connected to the network makes 
or receives a phone call or uses a service (e.g., SMS, MMS, etc.). For invoicing 
purposes, the information regarding the time and the Base Transceiver Station (BTS) 
tower to which the user was connected when the call was initiated and ended is 
logged, providing an indication of the geographical position of the user at certain 
moments. No information about the exact position of a user in the area of coverage of a 
BTS is known. Also, no information about the location of the cell phone is known or 
stored if no interaction is taking place. The CDRs used in this study were collected for 
Spain, comprising anonymous call information for around 24 million users, accounting 
for more than 50% of the 2009 Spanish population. The CDRs cover a period of time 
from September to November 2009 consisting of 53 days (including weekdays and 
weekends) which provide more than 10 billion spatiotemporal registers. From the 
information contained in each CDR, the following call information was extracted: 
caller’s anonymous ID, callee’s anonymous ID, day of the call, time when the call 
starts, duration of the call, caller’s connected tower when the call starts and caller’s 
connected tower when the call ends. Users’ positions are collected from BTS towers 
around Spain, leading to a location accuracy of few hundreds of meters in urban areas 



and several kilometers in rural areas due to the different density of towers. In order to 
preserve privacy, original records were encrypted. Additionally, all the information 
presented in this paper is aggregated. No contract or demographic data were available 
for this study. None of the authors of this study participated in the encryption or 
extraction of the CDRs. 

 

Methodology   

In this section we explain the methodology followed to: (1) determine the social network 
of the users, (2) identify the frequent locations visited by each user, (3) develop user 
mobility models, (4) analyze the interactions between social network and frequent 
locations and (5) analyze co-location events. 

Social network 

The determination of the social network of each user is based on an egocentric 
network approach, leading to a network of users (alters) with whom the main user (ego) 
has some relation. It has been considered, as in other similar studies (Onnela et al. 
2007; Phithakkitnukoon et al. 2012; Chen and Mei 2014), that a relationship between 
two different users only exists if the phone communication between them is reciprocal. 
Therefore, the social network of the ego is defined as a set of nodes (one node per 
user) and undirected connections or links between them representing reciprocal calls. 
In order to measure the strength of these relations, links have been weighted by the 
total numbers of calls between users. 

Frequent locations 

User frequent locations are defined as those places repetitively visited by the user 
along a certain period of time. Previous studies identifying frequent locations based on 
mobile phone data have mainly focused on home and work locations (e.g., Isaacman et 
al. 2011, Phithakkitnukoon et al. 2012, Chen and Mei 2014). In this paper, other 
relevant locations are additionally considered. Some frequent locations are hard to 
identify due to their particular spatiotemporal characteristics: for instance, it seems that 
a place where a person goes swimming all Mondays should be considered as a 
frequent location; however, if the frequency is measured on a weekly or monthly basis 
(i.e., 7 or 30 days) this location would probably be wrongly discarded. To give response 
to this problem and maximize the identification of relevant frequent locations, different 
criteria have been defined. A location is considered frequent if the user appears at that 
location a minimum number of days on a single day basis; on a working day basis, 
considering working days from Monday to Thursday; or on a weekend basis, 
considering weekend from Saturday to Sunday. Fridays have intentionally not been 
classified neither as working days nor weekend due to their particular mixed 
characteristics. The minimum number of days (minimum frequency) to consider a 
location as a frequent location is determined by the following expression: _ = ∙ _ _  

where ‘α’ is a reduction coefficient and ‘total_sample_days’ is the total number of days 
of a certain type present in the sample (e.g., total number of Mondays, total number of 



working days, etc.). The alpha coefficient determines the ratio between the minimum 
number of appearances on days of a certain type (single day, working day, etc.) and 
the total number of days of that type present in the sample. It is important to note that 
the frequency of appearance of a user at a certain location is in most cases 
underestimated, since the user will only appear in that position if he/she makes or 
receives a call. Therefore, these considerations about the nature of the data have to be 
taken into account when selecting the value of the alpha coefficient. As a first 
approach, an alpha coefficient of 0.35 has been considered adequate to estimate 
frequent locations.  

Additionally, frequent locations have been classified into three different groups: home, 
work and other. Home and work locations are estimated considering only working days. 
A frequent location is classified as home if it is the most frequent location between 8 
p.m. and 7 a.m. Similarly, work location is considered the most frequent location 
between 8:00 a.m. and 5 p.m. Finally, all other frequent locations different from home 
and work are classified as other locations. Note that a single location can be classified 
simultaneously as home and work location. In contrast to other frequent locations, as 
home and work locations present time restrictions, it seems reasonable that lower 
alpha coefficients should be considered in these cases. Moreover, as the effective 
hours (hours when there exists a high probability of making or receiving a call) 
considered for home locations are lower than those considered for work locations, the 
alpha coefficient considered for home locations should be lower. Under these 
considerations, alpha coefficients of 0.2 and 0.3 have been considered appropriate to 
estimate home and work locations respectively. 

Mobility model for co-location analysis 

CDRs provide, on average, spatiotemporal information of each user every several 
hours. This level of detail could be useful for analyzing individual daily mobility partners 
such as home and work trips; however, when analyzing co-location events between an 
individual and its social network, more detailed information is needed. To respond to 
this limitation, a mobility model which expands the spatiotemporal information present 
in the CDRs providing an estimation of the position of the user along the day has been 
developed (see Fig. 1). The mobility model for each user is defined as follows: 

1. CDR of the user = User’s location and time information (L0, t0) 

2. Next CDR of the user = User’s location and time information (L1, t1) 

3. if ( t1 – t0 ) > T_threshold --> Location information missed from t0 to t1 

4. else: 

 if L0 = L1 = L --> User location between [t0, t1] is L 

 else --> t’ = f(t0, t1) / User location is L0 between [t0, t’] and L1 between 

[t’, t1]. 

T_threshold represents the maximum time distance between 2 instances (t0, t1) to 
consider that no relevant intermediate locations exist between those instances; and f 
(ti, tj)  is a probability function that determines the time when a trip is performed. 



 
Fig. 1 Comparison between the information provided by CDRs and the information 

provided by the mobility model 

 

Social network and frequent locations analysis 

The main objective of this analysis is to explore the relation between the frequent 
locations visited by the ego and those visited by its social network. Only users whose 
home and work locations have been identified are considered for the analysis (around 
2,300,000 users). For each egocentric network, the frequent locations of the ego are 
compared with the frequent locations of the alters. The common frequent locations are 
identified and the type of relation between those locations is classified according to the 
characteristics of the locations shared. There are 9 possible types of relations derived 
from the combination of the three possible types of frequent locations [home, work, 
other]. As mentioned before, home and work could correspond to the same location; in 
these cases, the type of relation is proportionally assigned (e.g., user ‘A’ and user ‘B’ 
share a common location ‘L’, for ‘A’ location ‘L’ is simultaneously home and work, and 
for ‘B’ it’s other location; the relation type will be classified as 50% home-other and 
50% work-other). 

Co-location analysis 

The mobility models of the different users belonging to the same social network are 
compared to identify co-location events. In contrast to the previous analysis, both 
frequent and non-frequent locations are considered. The different locations are 
classified as home, work, other and non-frequent. For each egocentric network, the 
different locations of the ego and the alters are compared along the different days of 
the sample. Co-location is identified and classified according to the characteristics of 
the locations shared. There are 16 possible types of co-locations derived from the 4 
types of locations. The co-location analysis has been performed using a subset of the 
whole dataset covering the users living in the metropolitan area of Barcelona and their 
social network (independently of the place of residence), leading to a sample of around 
250,000 users. Note that, as in the previous analysis, the mentioned sample only 
considers users whose home and work locations have been identified. 

 



Results and discussion 

Social network statistics 

From the whole sample of CDRs, around 24 million of egocentric networks have been 
identified. The average number of alters per ego is 9.31 with a standard deviation of 
17.19. The average number of phone calls between two users (considered as a proxy 
of the strength of the social relation) is 21. 90% of the egos have less than a phone call 
per day with each alter. 

Frequent locations statistics 

For each user of the sample, the frequency of appearance of his/her locations has 
been calculated. The average number of frequent locations per user is 3.47 with a 
standard deviation of 2.83. Considering that the minimum number of frequent locations 
is two (home and work), on average every user has 1.5 other locations which could be 
associated to social activities. This result shows that there are other frequent locations, 
apart from the commonly considered home and work, whose importance (measured as 
the number of locations) is similar to the non-social ones and in some cases even more 
important (based on the standard deviation results). This result supports the idea that 
considering other activities different from home and work is essential to properly 
capture users’ travel behavior. Figure 2 shows the distribution of other locations 
according to the day of the week. Most of the other frequent locations have been 
identified on Tuesdays, Thursdays and Fridays. Moreover, there are some locations 
that are at the same time frequent on a working day basis and on a weekend basis.  

 

 
Fig. 2 Distribution of other frequent locations according to the day of the week 

 

To validate the methodology used to estimate home locations, a correlation analysis 
comparing the results and the 2009 population distribution of Spain has been 
performed. The results are compared at province level (52 provinces), showing a high 
correlation, with R2 = 0.93 (see Fig. 3). Similarly, to validate the relation between home 
and work locations (commuting trips) a correlation analysis comparing the results 
obtained and the 2011 census for the metropolitan area of Barcelona has been carried 



out. The results are compared at municipal level (36 municipalities) providing an R2 = 
0.99 (see Fig 4). According to correlation results, the alpha coefficients used to 
estimate home and work locations seem to be adequate. The alpha coefficient for other 
locations is more difficult to validate because of the fact that there are no relevant 
statistics available. However, since home and work locations coefficients seem to be 
adequate, a value of 0.35 for other locations seems reasonable. It is important to 
highlight that the alpha coefficients proposed are appropriate for the temporal and 
spatial resolution of this dataset; and that other similar alpha coefficients applied to this 
dataset may also lead to good results. To determine which range of alpha values is 
appropriate for each type of location, a sensitivity or robustness analysis would be 
needed, being this analysis out of the scope of the present paper. 

Mobility model 

Mobility models have been defined for the residents of the metropolitan area of 
Barcelona and their social networks (250,000 users). The probability function f(ti,tj) 
used to determine the time when the trip is performed has been extracted from the trip 
statistics presented in the 2009 mobility survey of the metropolitan area of Barcelona 
(‘Enquesta de Mobilitat en Día Feiner’, EMEF 2009). A T_threshold of 4 hours has 
been considered appropriate for the analysis. User mobility models provide on average 
4.6 hours of location information on weekdays and 2 hours on weekends (2.5 hours on 
Saturdays and 1.5 hours on Sundays), distributed as shown in figure 5. 

 

 
Fig. 3 (a) Home distribution based on mobile phone data analysis (b) Correlation 
analysis between 2009 census population information and mobile phone results 



 
Fig. 4 (a) Home and work locations of the metropolitan area of Barcelona obtained 
from mobile phone data analysis (b) Correlation analysis between 2011 census 
Barcelona information and mobile phone results 

 

 

Fig. 5 Time coverage of mobility models on weekdays and weekend 

 

Social network and frequent locations interaction results 

From the 24 million egocentric networks in the sample, only those in which the ego has 
home and work location information are considered for the analysis (around 2.3 
million). Similarly, only alters with information about their frequent locations are 
considered (for each egocentric network, around 17% of the alters provide that 
information, with a standard deviation of 13%). Results show that each ego shares, on 
average, at least one frequent location with 61.23 % of the alters (standard deviation of 
36.88%), suggesting a significant relationship between the social network and the 
frequent locations visited by the users. Egos share 1.36 frequent locations with each of 
the alters, with a standard deviation of 0.94. Considering that users have 3.47 frequent 
locations, each ego shares 40% of those locations with each of the alters of the 
network. This result shows that not only the number of alters who share common 
locations with the ego is significant but also the number of common locations between 



the ego and each alter. Moreover, it is observed a strong positive correlation (R2=0.97) 
between the average number of phone calls and the number of frequent locations in 
common; suggesting that as the strength of the relation increases (number of phone 
calls between the ego and the alters), so does the number of common locations (see 
Fig. 6). 

For each of the common locations between the ego and the alters, the type of 
interaction between them is identified and classified according to the types of the 
shared locations. For example, if an ego lives in location A, and the alter visits the ego 
frequently (so position A is an other frequent location for the alter), the type of 
interaction between them will be classified as home-other. A total of 9.6 million 
interactions ego-alter were identified and analyzed. Table 1 shows the distribution of 
the types of interaction between the ego and the alters. From the ego’s point of view, 
most of the interactions with the alters occur in other frequent locations (54%) and to a 
lesser extent in home and work locations (21% and 24%, respectively). The most 
common type of interaction (38.28 %) between the ego and the alters is one in which 
they share an other location different from their home and work. 

Social interactions can be associated to those where are least one of the locations is 
classified as other. Results show that at least 27% (standard deviation 32%) of the 
ego’s other locations are shared with alters, being 14%, 16% and 70% the probabilities 
that the location corresponds to the home, work and other location of the alter 
respectively. It is said ‘at least’ because only a percentage of the alters provide location 
information and therefore some shared frequent locations may be missing, and 
consequently the percentage of other locations shared is probably underestimated. 
 

Ego / Alters Home Work Other Total 
Home 7.41 % 6.42 % 7.62 % 21.45% 
Work 6.42 % 9.07 % 8.58 % 24.07% 
Other 7.62 % 8.58 % 38.28 % 54.48% 

Table 1. Distribution of the ego-alter frequent locations interaction types. 
 

 

Fig. 6 Correlation between the average number of phone calls between two users and 
the number of frequent positions in common 



Co-location analysis results 

Co-location events have been analyzed for the metropolitan area of Barcelona during a 
period of 53 days from September to October 2009. The average number of 
appearances per user along the 53 days is 58.3 with a standard deviation of 51.29. 
Those locations are not necessarily places where the user performs an activity, but 
they could also be locations along a certain trip. From an ego’s perspective, the 
number of locations shared per alter is 8.75 (standard deviation of 3.94), corresponding 
to 15% of the ego’s locations. From those 8.75 common locations, 1.22 locations 
(standard deviation 0,74) are co-located locations. Each of those co-located locations 
has produced on average 4.36 co-location events along the sample, with a standard 
deviation of 4.17. It is important to note that, as it happened when analyzing common 
frequent locations, co-location events are probably underestimated since mobility 
models do not cover the 24 hours of the day. 

For each co-located location, the type of the interaction between the ego and the alter 
has been classified according to the types of the location shared (home, work, other 
and non-frequent location). Around 1.4 million interactions ego-alter were identified and 
analyzed. Table 2 shows the distribution of the types of interaction between the ego 
and the alters. From the ego’s point of view, a significant number of co-located 
locations are non-frequent locations (43%) and other frequent locations (30%), and to a 
lesser extent home (11%) and work (16%) locations.  

Most of the places where egos co-locate are ego’s frequent locations (57%), being 
19.5%, 28.5% and 52% the probability of co-location at ego’s home, work and other 
locations respectively when co-location occurs at a frequent location. These 
percentages are quite similar to those obtained when analyzing the types of interaction 
of ego’s frequent locations (21.5%, 24% and 54.5% for home, work and other locations 
respectively). At first glance, this result might seem obvious since the more the 
frequent location interactions of a specific type, the higher the probability of co-locating 
in this type of interaction. However since the determination of other frequent locations 
does not consider the variable time, it could be the case that an ego and an alter 
sharing several other positions do not co-locate in any of them. This result also 
supports the hypothesis that other frequent locations could be associated to places 
where individuals of the same social network interact (co-locate), which suggests that 
the distribution of the type of interaction ego-alter when analyzing frequent locations 
could be used as a proxy of the probability of an ego to co-locate in its different types of 
frequent locations when co-location occurs in a frequent location. This is of 
considerable importance since the calculation of the type of interaction ego-alter 
considering frequent locations is simpler and less time consuming than the co-location 
analysis. 

On the other hand, although co-location in frequent locations is majority, non-frequent 
locations are almost equally important (43%). When an ego co-locates at a non-
frequent location, there is a probability of 8.1%, 11.3%, 22.8% and 57.8% that this 
location corresponds to the alter’s home, work, other and non-frequent location 
respectively. Non-frequent locations can be seen as destinations rarely visited by the 
users. These locations will be hardly explained by transport models which only 
consider generalized travel costs (time, economic cost, etc.) and omit the influence of 
the social network. In almost half of the cases (42%), when the ego co-locates at a 
non-frequent location, it is because that location corresponds to a frequent location of 



the alter. In the rest of the cases, both (the ego and the alter) shared a non-frequent 
location. The most common type of ego-alter interaction (24.81%) is one in which they 
share a non-frequent location. This type of interaction (non-frequent-non-frequent) can 
be seen as a joint decision between the ego and the alter to decide a place to meet 
different from their frequent locations. 

 

 
Ego / Alter Home Work Other Non-frequent Total 

Home 2.51% 2.14% 2.92% 3.48% 11.05% 
Work 2.14% 5.15% 4.11% 4.86% 16.26% 
Other 2.92% 4.11% 12.94% 9.78% 29.75% 

Non-frequent 3.48% 4.86% 9.78% 24.81% 42.94% 

Table 2. Distribution of the ego-alter co-location interaction types. 

 

Mobile phone data discussion: characteristics and limitations 

Although it has been shown that mobile phone call data have the potential to provide 
rich information about the interaction between social networks and travel behavior, they 
are not free of drawbacks and limitations. 

First, it is important to remark the limitations associated to the fundamental nature of 
mobile phone data. The use of mobile phone call data to identify social relationships 
inevitably misses other kind of interactions conducted through other communication 
channels, such as face to face or e-mail interactions. Moreover, it may misidentify 
certain interactions as social, such as sporadic work relationships. These intrinsic 
limitations may lead to errors in the estimation of some social network variables (e.g., 
number of social contacts) and may introduce bias in some analysis (e.g., when non-
social interactions are considered in the analysis).  

Apart from these intrinsic limitations, the temporal and the spatial resolution of the data 
highly influence the results:  

 The temporal resolution of the data can be defined as the quantity of data 
available per unit of time. For this study, information is only available when the 
mobile phone user makes/receives a call. Therefore, it could be the case that a 
frequent location is missed or misclassified as non-frequent location if the 
number of calls made or received at that location is not a good proxy of the time 
spent by the user at that location. Likewise, some social interactions may be 
missed if information is not available when that social interaction is occurring. 
 

 The spatial resolution of the data determines the accuracy in the estimation of 
the user position. In this study, the spatial resolution corresponds to the size of 
the Voronoi area associated to each BTS, which varies from few hundreds of 
meters in urban areas to kilometers in less populated areas. This research 
assumes that two users co-locate if they are in the same Voronoi area, which 
may lead to overestimate co-location, especially in less populated areas. 
Additionally, from a social perspective, it is important to remark that co-location 
does not ensure social interaction. Just because two users are in the same area 



at the same time, it is not possible to know with certainty that a social 
interaction between them is taking place. 

The improvement of the temporal and spatial resolution of the data will lead to more 
accurate results. Temporal resolution can be improved by recording other type of 
registers apart from calls, such as text messages or Internet connections, while spatial 
resolution can be enhanced by means of signal triangulation, WiFi or GPS information. 

Finally, apart from data characteristics (intrinsic and extrinsic), the representativity of 
the mobile phone data sample is a key question. The sample has to be of enough size 
and homogeneously distributed among the population in order to minimize bias. The 
mobile phone data analyzed for this study accounts for more than 50% of the 2009 
Spanish population and it is homogeneously distributed across the territory, as the 
comparison with census information confirms. However, as socio-demographic 
information is missing, some population profiles may not properly be represented in the 
sample. For future studies, this problem could be mitigated if the dataset provided by 
the mobile phone operator included some basic sociodemographic parameters 
available to the mobile phone company, such as age, gender, etc. 

In summary, mobile phone data open an opportunity to better understand the 
relationship between social network and travel behavior. However, the characteristics 
and limitations mentioned above have to be considered when analyzing and 
interpreting the results in order to devise how to effectively use mobile phone data to 
complement the insights gained from traditional surveys. 

 

Applications to the transport sector 

Activity-based models: improvement of travel behavior modelling  

The results obtained from the joint analysis of users’ social network and travel behavior 
provide relevant information to enrich activity-based models. Indeed, one important 
challenge for operational daily mobility models is the prediction of location choice for 
discretionary (as opposed to mandatory) activities: while home and work locations can 
typically be obtained from reliable sources, such as census, the high flexibility of 
discretionary types makes them much more difficult to handle, the tendency being 
to underestimate traveled distances for those purposes. 

In the past, various approaches have been proposed to tackle this problem. The first 
one, building on the classical random utility framework, proposes to account for 
unobserved heterogeneity in location characteristics and individual tastes using 
random error terms for each agent-location pair (see e.g. Horni 2013). This approach 
yields pretty good results, but has two main drawbacks: 

 it substitutes an explanation of why individuals travel further than expected by 
random noise, 

 the choice of the location being independent across agents, it is unable to 
represent joint traveling to a joint activity. Not only does this represent a 
substantial part of travel, but it is of prime interest for forecasting the impact of 
policies aiming at effecting car occupancy. 



For those reasons, a second approach to discretionary activity location choice has 
been proposed, which takes into account the willingness to pass time with social 
contacts in the utility an agent derives from its daily plan (Axhausen 2005). The basic 
idea is the following: the choices of an agent result from a tradeoff between the benefits 
it derives from performing activities and the generalized cost (money, time, etc.) of the 
associated trips. For instance, the MATSim software platform (www.matsim.org) 
considers utility-maximizing agents, trying to get the most of their day given travel times 
(influenced by others via congestion). The basic utility function simply separately 
scores activity performance and travel, and sums the resulting values: =  +   

where Viperf is the reward (normally positive) to perform an activity, and Vjleg the 
penalty (normally negative) of traveling. As long as the marginal utility of travel time is 
lower than the marginal utility of performing an activity, agents have an incentive to 
perform shorter trips. If the utility derived from an activity is allowed to vary depending 
on who participates, however, agents may get an incentive to travel further to meet 
social contacts — possibly reproducing the tendency elicited by the analysis in the 
previous section. This joint location choice is a first, necessary step, to include joint 
travel to joint activities in a simulation framework. 

This comes however at high cost: the universal destinations choice set is enormous, 
and the multi-objective aspect of the problem requires the usage of non-traditional 
solution concepts to represent joint decisions (see Dubernet and Axhausen 2014, for a 
comparison of two solution concepts to simulate household mobility, or Ronald et al. 
2012 and Ma et al. (2011, 2012) for rule-based simulated bargaining approaches). The 
interaction patterns between the social network and travel behavior obtained from the 
mobile phone data analysis may however help to make this kind of simulations 
tractable, for instance using the following steps: 

 Consider as possible destinations the frequent locations of an agent’s social 
contacts, since results show that co-location frequently occurs in those 
locations. 

 Look into the intersection between isotims of the social network (line of equal 
transport cost), in order to find possible destinations (probably non-frequent 
destinations) that maximize users utility. This proposal is based on the fact that 
co-location events also take place at non-frequent locations. 

 Use the kind of patterns obtained from the mobile phone data analysis to 
calibrate/validate the model. 

Figure 7 shows an example of how the introduction of social interaction in activity-
based models could influence the results. As results show, there is a significant 
probability that individuals of the same social network share other frequent locations. If 
no social interaction is considered, agents will take their own decisions and select the 
other location as a function of the benefits and costs they get. However, if social 
interaction is considered, there is a probability that an agent chooses the same other 
location as a contact of its social network even when that decision implies more 
generalized travel costs. 

 



 

Fig. 7 Diary of activities and trips of 2 agents of the same social network during a 
standard day: (a) Model results without considering social network influence; (b) Model 

results considering social network influence 

 

Transport policy applications 

There are several policy applications where social interaction together with travel 
behavior information can be useful for policy planning and assessment purposes. A 
better understanding of the influence of the social network on travel behavior and the 
availability of transport modelling tools taking into account these considerations are 
important for evaluating transport policies where social interaction is relevant. Such 
transport policies are usually related with services in which transport resources 
(vehicles) are shared. Some examples of policies where the approach proposed in this 
paper can be useful are shown below: 

 Transport on demand: transport on demand aims to minimize the 
underutilization of the transport services by dynamically adjusting supply to 
demand. For example, it is possible to identify frequent locations where people 
go out on Saturday night and determine their places of residence. Depending of 
the distribution of homes and the time variance of return trips, the impact 
(congestion, safety, etc.) of a new collective transport which maximizes the 
usage (number of passengers) and minimizes the cost (minimum route) could 
be assessed. 

 Carpooling: it is usually recognized that people belonging to the same social 
network are more conducive to sharing transport resources. In the case of 
carpooling, social interaction is especially important for several reasons: the 
driver will probably not be a professional driver; people may feel uncomfortable 
sharing a car with people they don’t know, etc. From the information of the 
home locations of the social network and the possible destinations (frequent or 
not), it is possible to evaluate if sharing a car could be beneficial for them. 

 

Conclusions 

It is widely recognized that social contacts have a significant influence on individual’s 
travel behavior. Most decisions about where to perform an activity are related to the 
social network. This paper contributes to better understand the way social network 



influences travel behavior by analyzing the nature (home, work, other, non-frequent) of 
the locations shared by social contacts using mobile phone data, showing the potential 
of this non-conventional data source to provide relevant information on both social 
interaction and travel behavior. 

From the crossing analysis of social networks with frequent locations and mobility 
models, relevant statistics about mobility patterns and the nature of locations shared by 
social contacts have been obtained. The results support the hypothesis that other 
frequent locations of individuals can be considered as potential places where users of 
the same social network interact. Moreover, it has been shown that most of the co-
location interactions are those related to ego’s non-frequent and other frequent 
locations. Indeed, the most common type of ego-alter interaction is one in which they 
share non-frequent locations. Additionally, the potential value of these results to inform 
activity-based models and assess transport policies in which transport resources are 
shared has been discussed. 

Despite the potential of mobile phone data to provide rich information about the 
interaction between social networks and travel behavior, a number of drawbacks and 
limitations shall be taken into account, such as the high spatio-temporal heterogeneity 
of the data or the lack of socio-demographic information. These shortcomings and 
limitations have been analyzed in depth. Data fusion with other data sources is a 
promising approach to fill the gaps of information (such as socio-demographic gaps) as 
well as to validate the results. 

This research has thrown up many questions in need of further investigation. An 
interesting future line of research is the analysis of the length distribution of the trips 
derived from the social activities distinguishing between the different types of 
interactions ego-alter (e.g. non-frequent - other). Especially interesting is the case in 
which both users share a non-frequent location, aiming to explore if there is any kind of 
joint decision among them looking for a mutual benefit. 
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