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COMPACTNESS IN SPACES OF p-INTEGRABLE
FUNCTIONS WITH RESPECT TO A VECTOR

MEASURE.

P. RUEDA AND E.A. SÁNCHEZ PÉREZ

Abstract. We prove that, under some reasonable requirements,
the unit balls of the spaces Lp(m) and L∞(m) of a vector measure
of compact range m are compact with respect to the topology
τm of pointwise convergence of the integrals. This result can be
considered as a generalization of the classical Alaoglu Theorem to
spaces of p-integrable functions with respect to vector measures
with relatively compact range. Some applications to the analysis
of the Saks spaces defined by the norm topology and τm are given.

1. Introduction

The origin of the integration theory with respect to vector measures

goes back to control theory. The solutions of some important problems

in this area have been obtained using vector measure tools (see [17]).

Since then, the interest of the theory has yielded to the development

of the theory of Lp(m) spaces with respect to a vector measure m and

has found more applications in other areas as non linear analysis of

signals (see [12, 14, 16]). The techniques coming from vector measure

integration have also been successfully applied in mathematical physics

to solve some classical non linear problems (see [4, 11, 15]).
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It is usual that, when extending a theory to a wider context, some of

the properties that were satisfied in the restricted theory are not longer

valid in the more general situation. This is the case when one goes from

the integration theory with respect to scalar measures to integration

theory with respect to vector measures. In this case, the role played

by the weak* topology is assumed by the topology τm of the pointwise

convergence of the integrals. However, it is not true in general that the

closed unit ball of the space Lp(m) of all p-integrable functions with re-

spect to a (countably additive) vector measure m on the measure space

(Ω,Σ) and with values in a Banach space E, must be τm-compact. This

is so since in general the dual of Lp(m) cannot be identified with Lp
′
(m),

where 1
p

+ 1
p′

= 1, 1 ≤ p ≤ ∞. The relation between the convergence of

sequences in the spaces of vector measure integrable functions and the

convergence of the corresponding vector valued integrals has been stud-

ied since the seventies (see for instance [18, 19], [5, Section 6], [26] and

the references therein) and yields to replacing the duality of the Ba-

nach space Lp(m) by the vector measure duality, i.e the duality induced

between Lp(m) and Lp
′
(m) by the vector valued integration. This du-

ality has to be understood in the following sense. The vector measure

integral defines an integration operator Im from the space L1(m) of

integrable functions with respect to the vector measure m and the Ba-

nach space E. Then the map (f, g) 
∫

Ω
fg dm ∈ E defines a bilinear

operator Im(·, ·) : Lp(m)× Lp′(m)→ E that satisfies the requirements

for defining a useful duality between both spaces. This vector mea-

sure duality yields to consider the topology τm on Lp(m), given by

the pointwise convergence of the integrals
∫

Ω
· g dm, g ∈ Lp′(m). For

1 < p < ∞, the τm topology lies between the weak and the norm

topologies on (norm) bounded sets and the problem of establishing



COMPACTNESS IN SPACES OF p-INTEGRABLE FUNCTIONS 3

conditions on compactness for τm (besides the straightforward ones) is

in order.

It is well known that compactness is a powerful tool in Functional

Analysis and, in particular, in Vector Measure Theory. For instance, it

was already shown in [28] that compactness of the unit ball of the spaces

Lp(m) with respect to τm was necessary for the main factorization the-

orems of operators to work successfully, but no explicit results of when

this property holds were shown. More efforts have been made in this

direction since 2000, sometimes by analyzing compactness properties

of the integration map, that is closely related to the quoted problem

(see for example [9, 13, 24] and [26, Ch.3] and the references therein).

A relevant paper where the relations between the weak topology on

Lp(m), 1 < p < ∞, and the weak integrals defined by the integration

map is [9], where it is shown that the weak topology and this topology

defined by the weak integrals
∫

Ω
· g d〈m,x∗〉, g ∈ Lp

′
(m), x∗ ∈ X∗,

coincide on bounded sets. In this direction, the papers [7, 29] show

descriptions of the dual space of Lp(m), 1 < p < ∞ by characterizing

the topology defined by the weak integrals.

The aim of this paper is to analyze some aspects of the τm topology

and mainly to provide some criteria for τm-compactness of the unit

balls of Lp(m) and L∞(m). Some examples illustrating our results are

also shown. It must be said that the spaces Lp(m) represent in fact

the class of all order continuous p-convex Banach lattices with a weak

unit (see [6, Prop.2.4] or [26, Prop.3.30]), what means that our results

can be applied to a broad class of Banach spaces.

The paper is organized as follows. After a preliminary section with

definitions and notation, in Section 3 we analyze compactness of the

closed unit ball of Lp(m) with respect to τm and so, to all the natural

topologies on Lp(m). Among others, we prove the following result
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(Corollary 8): If 1 < p < ∞, Lp(m) is reflexive, (BLp′ (m), ‖.‖Lp′ (m))

is separable and m has relatively compact range, then (BLp(m), τm) is

compact. Our main result is a generalization of Alaoglu’s Theorem to

spaces of p-integrable functions with respect to vector measures with

relatively compact range with respect to τm (see Theorem 10). In

Section 4 we give some applications to the Saks space structure of the

Lp(m)-spaces.

2. Preliminaries

Our notation is standard. If 1 ≤ p ≤ ∞, we write p′ for the extended

real number satisfying 1/p+1/p′ = 1. Let E be a real Banach space and

let (Ω,Σ) be a measurable space. If µ is a finite measure on (Ω,Σ) we

define Banach function space over µ following [20, Def.1.b.17, p.28]; it

is a Banach space given by an ideal of L1(µ) containing simple functions

with a lattice norm. Given a countably additive vector measure m :

Σ→ E, we write R(m) for its range. Its variation |m| is defined by

|m|(A) := sup
Bi∈π

n∑
i=1

‖m(Bi)‖,

where the supremum is computed over all finite measurable partitions

π of A ∈ Σ. We write ‖m‖ for its semivariation, that is defined by

‖m‖(A) := supx∗∈BE∗ |〈m,x
∗〉|(A), A ∈ Σ, where 〈m,x∗〉 is the scalar

measure given by 〈m,x∗〉(A) := 〈m(A), x∗〉. It is known that there

exists x∗ ∈ E∗ such that m is absolutely continuous with respect to

|〈m,x∗〉|, that is m(A) = 0 whenever |〈m(A), x∗〉| = 0. Such a measure

〈m,x∗〉 is called a Rybakov measure for m (see [3, Ch.IX]). Throughout

the paper µ will denote a fixed Rybakov measure for m. If 1 ≤ p <

∞, a (scalar) measurable function f is said to be p-integrable with

respect to m if |f |p is integrable with respect to all measures |〈m,x∗〉|
and for each A ∈ Σ there exists an element

∫
A
|f |pdm ∈ E such that
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〈
∫
A
|f |pdm, x∗〉 =

∫
A
|f |pd〈m,x∗〉, x∗ ∈ E∗ (see [18, 19] or [26, Ch.3]).

For the case p = ∞, Lp(m) is simple defined as L∞(µ) for a Rybakov

measure µ for m (obviously all Rybakov measures give the same space).

The space Lp(m), 1 ≤ p <∞, is defined by all (µ-equivalence classes

of) measurable real functions defined on Ω that are p-integrable with

respect to m. It is a Banach function space over any Rybakov measure

for m when the a.e. order and the norm

‖f‖Lp(m) :=
(

sup
x∗∈BE∗

∫
Ω

|f |pd|〈m,x∗〉|
)1/p

, f ∈ Lp(m),

are considered. It is an order continuous p-convex —with constant

1— Banach function space over each Rybakov measure for m (see [28,

Proposition 5], and [6] and [26, Ch.3] for more information on these

spaces). An important fact is that fg ∈ L1(m) whenever f ∈ Lp(m)

and g ∈ Lp
′
(m), for each 1 ≤ p ≤ ∞ (see [26, Prop.3.43] and [28,

Sec.3]; see also [6]). Moreover, for each f ∈ Lp(m)

(1) ‖f‖Lp(m) = sup
g∈BLp′ (m)

‖
∫

Ω

fg dm‖.

Fix a Rybakov measure µ for m. Due to the order continuity of

Lp(m), its dual space Lp(m)∗ (1 ≤ p <∞) allows an easy description;

it coincides with its Köthe dual (or associate space) (Lp(m))′, that is,

Lp(m)∗ = (Lp(m))′ = {ϕg : g ∈ H}, where

H := {g : Ω→ R Σ−measurable : fg ∈ L1(µ) for all f ∈ Lp(m)}

and the duality is given by 〈ϕg, f〉 =
∫

Ω
fg dµ. Information about a

precise description of (Lp(m))′ can be found in [7, 8, 9, 10, 29]. The

integration operator Im : L1(m)→ E is given by

Im(f) =

∫
Ω

f dm, f ∈ L1(m).

General information on the properties of Im can be found in [23, 24, 25],

and [26] and the references therein. Since for all p > 1 the inclusion

Lp(m) ⊆ L1(m) always holds, the integration operator can be defined
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also as an operator Im : Lp(m) → E. If f ∈ L1(m), the set function

mf : Σ→ E defines a vector measure too, and so the integration map

Imf : L1(mf )→ E can be considered.

Let 1 ≤ p ≤ ∞. In this paper we will consider the following locally

convex topologies on Lp(m).

• The topology induced by the norm ‖ · ‖Lp(m).

• The topology of the pointwise convergence of the integrals τm, i.e.

the topology that is defined by the seminorms γg(f) := ‖
∫

Ω
fgdm‖,

f ∈ Lp(m), g ∈ Lp′(m).

• The topology of the pointwise weak convergence of the integrals

τw,m, that is given by the seminorms γg,x∗(f) := 〈
∫

Ω
fgdm, x∗〉, f ∈

Lp(m), g ∈ Lp′(m), x∗ ∈ E∗. Is is a locally convex (and so Hausdorff)

topology on Lp(m).

• The weak topology τw on Lp(m).

Clearly, the norm topology is finer than all the others, and τm and τw

are finer than τw,m. However, in general τm is not finer than τw. Indeed,

τm coincides with the weak* topology whenever m is a scalar measure

and for p = 1, the weak and the weak* topologies do not coincide.

As we said in the Introduction, we are mainly interested in the

space (Lp(m), τm). All the basic results we will need on its topolog-

ical properties are explained through the paper, and can be found in

[6, 8, 9, 26, 28].

3. τm-compactness of the unit balls of Lp(m) and L∞(m)

In this section we obtain characterizations of the τm-compactness

of BLp(m) and analyze several consequences. The coincidence of the

weak topology and τw,m on bounded subsets of Lp(m) was shown in [9,

Theorem 3.5] for 1 < p < ∞ (see also [8]). So, (Lp(m), ‖ ‖Lp(m)) is

reflexive if and only if BLp(m) is τw,m−compact.



COMPACTNESS IN SPACES OF p-INTEGRABLE FUNCTIONS 7

First of all, the range of m to be relatively compact is clearly a

necessary requirement for the τm compactness of the unit ball. This is

so because if BLp(m) is τm compact, p > 1, then its image Im(BLp(m)) is

compact, where Im : Lp(m)→ E is the integration map, and since the

range of m is included in KIm(BLp(m)) for some K > 0, we get that

it is also relatively compact. However, this condition by itself does

not imply that Im : L1(m) → E is compact: there is a broad class of

cases for which the range of m is compact but Im : L1(m)→ E is not

compact (see [26, Sec.3.3]).

It is worth mentioning that if Im : L1(m) → E is compact, then

L1(m) is in fact order isomorphic to L1(|m|) (a scalar measure, see

Proposition 3.48 in [26]), and so the τm topology is just given by the

weak* topology: nothing new is provided.

Proposition 1. Let 1 ≤ p ≤ ∞. If BLp(m) is τm-compact, then τw,m

and τm coincide on bounded subsets of Lp(m). Moreover, if p > 1

and BLp(m) is τm-compact, then the weak topology and τm coincide

on bounded subsets of Lp(m). Consequently, if p > 1, BLp(m) is τm-

compact if and only if (Lp(m), ‖·‖Lp(m)) is reflexive and the weak topol-

ogy and τm coincide on BLp(m).

Proof. Consider the identity map I : (BLp(m), τm) → (BLp(m), τw,m).

As I is continuous, bijective and BLp(m) is τm-compact, then I is an

homeomorphism. Hence the weak topology and τm coincide on BLp(m).

The result for the weak topology is a consequence of the coincidence

between this topology and τw,m. �

Compactness of (BLp(m), τm) allows also to give a description of

Lp(m) as a dual space. Define

Z = {T ∈ Lp(m)∗ : T |BLp(m)
is τm − continuous}

endowed with the topology induced by the strong topology on Lp(m)∗.



8 P. RUEDA AND E.A. SÁNCHEZ PÉREZ

Proposition 2. Let 1 < p < ∞. If BLp(m) is τm-compact, then the

space (Lp(m), ‖ ‖Lp(m)) is isometrically isomorphic to the dual space

Z∗ of Z.

Proof. It follows from [22, Theorem 1]. �

For each f ∈ Lp(m) consider the integration operator Im,f : Lp
′
(m)→

E given by Im,f (h) =
∫

Ω
fh dm. We can identify each f with Im,f and

then consider Lp(m) as a subspace of the product ELp
′
(m). Using the

equivalent expression for the norm given in (1), it is easy to see that

the product topology coincides on Lp(m) with τm. In particular, a

sequence (gn)n in Lp(m) converges for τm if and only if (Im,gn)n con-

verges pointwise. Recall that if m : Σ → E is a vector measure, then

the space Lp(m) is weakly sequentially complete whenever E is (see

[6, Proposition 2.2]; see also Proposition 2.7 in this paper). Sequential

completeness of the space (Lp(m), τm) becomes a relevant tool in this

paper.

Theorem 3. Let 1 ≤ p <∞. If (BLp(m), τw,m) is sequentially complete,

then (BLp(m), τm) is sequentially complete.

Proof. Let (gn)n be a τm-Cauchy sequence in BLp(m). Since τw,m is

coarser than τm, the sequence (gn)n is τw,m Cauchy. By the assumption

that BLp(m) is τw,m sequentially complete, (gn)n τw,m-converges to an

element g ∈ BLp(m). Let us prove that (gn)n actually converges to g

for τm or, equivalently, that (Im,gn)n converges pointwise to Im,g. Since

ELp
′
(m) is complete and (Im,gn)n is Cauchy for the product topology,

(Im,gn)n converges pointwise to some T ∈ ELp
′
(m). It suffices to prove

that T = Im,g. Given arbitrary h ∈ Lp
′
(m) and x∗ ∈ E∗, consider

the functional γh,x∗ ∈ (Lp(m))′ given by γh,x∗(f) = 〈
∫

Ω
fh dm, x∗〉,
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f ∈ Lp(m). As (gn)n τw,m-converges to g, then

〈Im,g(h), x∗〉 = (γh,x∗)(g) = lim
n

(γh,x∗)(gn)

= lim
n
〈Im,gn(h), x∗〉 = 〈T (h), x∗〉,

that allows to conclude that Im,g = T . �

Note that the proof works with the obvious changes to prove that

(Lp(m), τm) is sequentially complete whenever (Lp(m), τw,m) is sequen-

tially complete, 1 ≤ p <∞.

Lemma 4. [8, Proposition 2.2.1] Let 1 ≤ p <∞. If (BLp′ (m), ‖.‖Lp′ (m))

is separable, then (BLp(m), τm) is metrizable.

Proof. Take (gn)n a norm dense sequence in BLp′ (m). Since the integra-

tion operator Im,f : Lp
′
(m) → E is continuous for all f ∈ Lp(m) and

(gn)n is dense, the map J : BLp(m) → BN
E given by J(f) = (

∫
Ω
gnf dm)n

is injective. Since τm coincides with the product topology restricted to

BLp(m) and BN
E is metrizable, we conclude that (BLp(m), τm) is metriz-

able. �

The reader is referred to [8, Section 2.2] for related results on sep-

arability and metrizability. We recall that a locally convex space is

quasi-complete if every closed bounded subset is complete.

Corollary 5. Let 1 ≤ p <∞. If (BLp(m), τw,m) is sequentially complete

and (BLp′ (m), ‖.‖Lp′ (m)) is separable, then (BLp(m), τm) is complete.

Proof. By Lemma 4 BLp(m) is τm-metrizable. So, to see that BLp(m)

is τm-complete it suffices to be proved that BLp(m) is τm-sequentially

complete. This follows from Theorem 3. �

Remark 6. Every τm-bounded set A in Lp(m) is ‖ · ‖Lp(m)-bounded.

Indeed, the set of operators {Im,f : f ∈ A} is pointwise bounded, for

sup
f∈A
‖Im,f (g)‖ = sup

f∈A
‖
∫

Ω

fg dm‖ = sup
f∈A

γg(f) <∞
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for any g ∈ Lp
′
(m). By the Banach Steinhauss theorem of uniform

boundedness,

sup
f∈A
‖Im,f‖ = sup

f∈A
sup

g∈B
Lp
′
(m)

‖
∫

Ω

fg dm‖ = sup
f∈A
‖f‖Lp(m) <∞.

Hence, A is ‖ · ‖Lp(m)-bounded. On the other hand, BLp(m) is τm closed

(see [28, Proposition 12]) and bounded. Therefore, (BLp(m), τm) is com-

plete if and only if (Lp(m), τm) is quasi-complete.

We will denote by R(m) the range of m. We now proceed to give

conditions that ensure compactness of (BLp(m), τm).

Theorem 7. Let 1 < p ≤ ∞ and let m be a vector measure such

that (BLp(m), τm) is complete. If R(m) is relatively compact, then

(BLp(m), τm) is compact. If p = 1, the result remains true under the

assumption that Im : L1(m)→ E is compact.

Proof. Let 1 < p ≤ ∞. As in the previous proofs, consider BLp(m) as a

subspace of E
B
Lp
′
(m) by means of the injection f 7→ (

∫
Ω
gf dm)g∈B

Lp
′
(m)

.

For each g ∈ BLp′ (m), let Kg := Im,g(BLp(m)). Since R(m) is relatively

compact, then the integration map Im : Lp(m) → E is compact (see

Proposition 3.56 in [26]). Hence, each Im,g is clearly compact when g is

a simple function. Taking into account that the norm of the operator

Im,g coincides with ‖g‖Lp′ (m) and the ideal of compact operators is

closed for the operator norm, we obtain that each Kg is compact in E,

for any g ∈ BLp′ (m).

By Tychonoff’s Theorem, the product
∏

g∈B
Lp
′
(m)

Kg is compact.

Since

BLp(m) ⊂
∏

g∈B
Lp
′
(m)

Im,g(BLp(m)) ⊂
∏

g∈B
Lp
′
(m)

Kg

and the product topology coincides with τm on BLp(m), it suffices to be

proved that BLp(m) is closed in
∏

g∈B
Lp
′
(m)

Kg. This follows from the
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completeness of (BLp(m), τm) and the coincidence of τm and the product

topology.

The same argument works for p = 1 taking into account that Im com-

pact implies that R(m) and so Im,g is compact for all simple functions

g, that are dense in L∞(m). �

Corollary 8. Let 1 < p < ∞ and let m be a vector measure such

that Lp(m) is weakly sequentially complete —equivalently, Lp(m) is

reflexive—, and (BLp′ (m), ‖.‖Lp′ (m)) is separable. If R(m) is relatively

compact, then (BLp(m), τm) is compact. For p = 1 the result is true

under the assumption that Im : L1(m)→ E is compact.

Proof. For 1 < p < ∞, weak sequential completeness of Lp(m) and

reflexivity are equivalent properties (see Proposition 3.38 in [26]). Since

Lp(m) is weakly sequentially complete, BLp(m) so is. Since τw and τw,m

coincide on bounded sets when 1 < p < ∞ [9, Theorem 3.5] it follows

that BLp(m) is τw,m sequentially complete. By Corollary 5 BLp(m) is τm

complete. Theorem 7 gives now the result. �

Remark 9. Proposition 2.3 in [6] provides a characterization for the

separability of Lp
′
(m). For the weak sequential completeness, see the

comments in page 14 of [6] and Proposition 3.38 of [26].

Corollary 8 clarifies Theorem 14 in [28] where a similar result is

stated, whose proof assumes implicitly that the unit ball BLp(m) is τm-

complete.

In particular, Theorem 7 gives sufficient conditions for BL∞(m) to be

τm-compact. Without assuming that BLp′ (m) is separable and Lp(m) is

weakly sequentially complete, a slightly different argument provides the

following result on compactness of BL∞(m) with respect to the topology

induced by (Lp(m), τm). In what follows we will assume for the aim

of simplicity and without loss of generality that BL∞(m) ⊆ BLp(m),
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or equivalently that ‖m‖(Ω) ≤ 1. The proof uses a Radon-Nikodym

Theorem for vector measures.

Theorem 10. Let 1 < p ≤ ∞. Consider a vector measure m. If R(m)

is relatively compact, then BL∞(m) considered as a topological subspace

of (BLp(m), τm), is compact. If p = 1, the same result holds under the

assumption of compactness for Im : L1(m)→ E.

Proof. For each g ∈ BLp′ (m) let Kg := Im,g(BLp(m)). Consider now

BL∞(m) ⊂ BLp(m) contained in the product
∏

g∈B
Lp
′
(m)

Kg as was ex-

plained in the proof of Theorem 7. For p > 1 each subset Kg is

compact (see [26, Ch. 3] or [27, Lemma 14]); for p = 1, since Im

is assumed to be compact, the same holds. Take a Cauchy net {gη}η∈Λ

in BL∞(m) for the topology induced by (Lp(m), τm). Note that for all

η, Σ 3 A  
∫
A
gηdm defines a (countably additive) vector measure

mgη . By the Banach-Steinhauss theorem the pointwise limit of Imgη is

a continuous linear operator T : Lp
′
(m) → E. Define the set function

mT : Σ→ E by mT (A) := T (χA), A ∈ Σ. Let us consider two cases:

(i) If 1 ≤ p′ < ∞, then Lp
′
(m) is order continuous and so mT is a

(countably additive) vector measure. Clearly, the following domination

holds: for each gη, A ∈ Σ and x′ ∈ BX∗ ,

(2) 〈
∫
A

gηdm, x
′〉 ≤ ‖gη‖L∞(m)|〈m,x′〉|(A).

In other words, each vector measure given by Imgη , and so the pointwise

limit T , is scalarly uniformly dominated by m. Indeed, for each A ∈ Σ

and x′ ∈ BX∗ , 〈T (χA), x′〉 = limη〈
∫
A
gηdm, x

′〉 ≤ |〈m,x′〉|(A).

(ii) If p = 1 (i.e. p′ = ∞), although L∞(m) is not order continuous

we still can prove that mT is a (countably additive) vector measure.

Consider a measurable partition {Ai}∞i=1 of the measurable set A. Then

for each η we have that limn

∫
∪ni=1Ai

gηdm =
∫
A
gηdm. Notice that the
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domination (2) also holds in this case, and so for each n ∈ N,

〈T (χA\∪ni=1Ai
), x′〉 = lim

η
〈
∫
A\∪ni=1Ai

gηdm, x
′〉 ≤ |〈m,x′〉|(A \ ∪ni=1Ai).

But each measure |〈m,x′〉| is countably additive, so

lim
n
〈T (χA\∪ni=1Ai

), x′〉 = 0

what means that the set function mT defines a weakly countably addi-

tive vector measure. The Orlicz-Pettis Theorem ([3, Cor.4]) proves that

mT is countably additive, and as we said it is also scalarly dominated

by m.

To finish the proof for both cases (i) and (ii), it is enough to apply

the Radon-Nikodym Theorem for scalarly dominated measures ([21,

Th.1], see also [2, Th.3.1]). It gives that there is a function g ∈ L∞(m)

such that T (χA) =
∫
A
gdm, A ∈ Σ. Since simple functions are dense in

Lp
′
(m) —including the case p =∞—, we obtain that T (f) =

∫
Ω
gfdm,

for all f ∈ Lp
′
(m). So, the unit ball of L∞(m) is closed for the τm-

topology, and then compact.

�

Remark 11. As τm coincides with the weak* topology whenever m is a

scalar measure, then the above result can be considered as an extension

of Alaoglu’s Theorem to vector measures with relatively compact range.

4. Applications

In this section, we present some applications regarding compactness

of the unit ball of Lp(m). In what follows we show a general description

of the natural topologies on the space Lp(m) and the links that can be

established between them under the assumption of τm-compactness of

the unit ball. In order to do it, let us introduce the following notion. A

Saks space is a triple (E, ‖.‖, τ) where (E, ‖.‖) is a normed space and
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τ is a locally convex topology on E so that BE, the closed unit ball of

(E, ‖.‖) , is τ -bounded and τ -closed.

This definition was given by Cooper using the terminology intro-

duced earlier by Orlicz for a related, although different, concept (see

[1, Notes I.5] for details). For the general theory of Saks spaces we refer

to [1]. The importance of Saks spaces lies in the existence of a mixed

locally convex topology γ[‖.‖, τ ] on E, which is the finest linear topol-

ogy on E that coincides with τ on the ‖.‖-bounded sets. The mixed

topology γ[‖.‖, τ ] is defined as follows: if U := (Un)n is a sequence of

absolutely convex 0-neighbourhoods for τ , the family formed by the

sets

γ(U) := ∪∞n=1(U1 ∩BE + U2 ∩ 2BE + · · ·+ Un ∩ nBE)

when varying U , is a basis of 0-neighbourhoods for γ[‖.‖, τ ].

Proposition 12. Let 1 < p ≤ ∞. The spaces (Lp(m), ‖.‖Lp(m), τm)

and (Lp(m), ‖.‖Lp(m), τw,m) are Saks spaces.

Proof. By [28, Proposition 12] BLp(m) is τw,m-closed and hence, τm-

closed. �

Therefore we can consider the mixed topologies γm := γ[‖.‖Lp(m), τm]

and γw,m := γ[‖.‖Lp(m), τw,m]. So defined, γm and γw,m are the finest

linear topologies that coincide with τm and τw,m respectively on BLp(m).

Proposition 13. Let 1 < p ≤ ∞. If BLp(m) is τm-compact, then

γw,m = γm on bounded sets.

Proof. It follows from Proposition 1 and [9]. �

In case that γw,m = γm, we will just call such topology γ.

Proposition 14. Let 1 < p < ∞. If Lp(m) is reflexive, then γw,m is

the topology of uniform convergence on compact subsets of Lp(m)∗.
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Proof. By [8, Theorem 2.1.7] τw,m coincides with the weak topology on

BLp(m). Since Lp(m) is reflexive, BLp(m) is weakly compact and hence

τw,m compact. By [1, Corollary I.4.2], γw,m is the finest topology on

Lp(m) which agrees with τw,m and hence with the weak topology on

BLp(m). As the weak and the weak* topologies coincide on Lp(m), the

Banach-Dieudonné Theorem yields the result. �

From Propositions 1, 13 and 14 we get the following result.

Corollary 15. Let 1 < p <∞. If BLp(m) is τm-compact, then γ is the

topology of uniform convergence on compact subsets of Lp(m)∗.

Proposition 16. Let 1 < p < ∞. If BLp(m) is τm-compact, then γ is

generated by all seminorms

p(f) := sup
j
aj max

k≤j
‖
∫

Ω

fhk dm‖X

where (aj)j varies over all sequences of positive numbers decreasing to

0, and (hj)j varies over all sequences in BLp′ (m).

Proof. For each finite subset H of Lp
′
(m), define

pH(f) := max{‖
∫

Ω

fh dm‖X : h ∈ H}.

Given an arbitrary ε > 0,

{f ∈ Lp(m) : pH(f) < ε} = ∩h∈H{f ∈ Lp(m) : ‖
∫

Ω

fh dm‖X < ε}.

Then it is clear that pH is a continuous seminorm for τm. Hence, when

varying H over all finite subsets of Lp
′
(m), {pH} defines a family S of

continuous seminorms. Since p∪ni=1Hi
(f) = max1≤i≤n pHi(f), the family

S is closed for finite suprema. Besides, since

‖f‖Lp(m) = sup{|
∫

Ω

fh d〈m,x∗〉| : h ∈ BLp′ (m), x
∗ ∈ BE∗}

= sup{‖
∫

Ω

fh dm‖X : h ∈ BLp′ (m)}
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for all f ∈ Lp(m), we obtain

‖f‖Lp(m) = sup{pH(f) : pH ∈ S, H ⊆ BLp′ (m)}.

It follows from [1, Proposition I.4.5] that the seminorms q given by

q(f) = supn anpHn(f) generates the mixed topology γm when (an)n

varies over all sequences of positive numbers decreasing to 0, and (pHn)n

over all sequences in S. The result follows now easily.

�

References

[1] J. B. Cooper, Saks spaces and Applications to Functional Analysis. North-
Holland Mathematics Studies, 28. North-Holland, Amsterdam, 1978.
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[Enrique A. Sánchez Pérez] Instituto Universitario de Matemática Pura
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