
A Semantics to Generate the Context-sensitive
Synchronized Control-Flow Graph (extended)

Marisa Llorens, Javier Oliver, Josep Silva, and Salvador Tamarit

Universidad Politécnica de Valencia, Camino de Vera S/N, E-46022 Valencia, Spain
{mllorens,fjoliver,jsilva,stamarit}@dsic.upv.es

Abstract. The CSP language allows the specification and verification of
complex concurrent systems. Many analyses for CSP exist that have been
successfully applied in different industrial projects. However, the cost of
the analyses performed is usually very high, and sometimes prohibitive,
due to the complexity imposed by the non-deterministic execution order
of processes and to the restrictions imposed on this order by synchroniza-
tions. In this work, we define a data structure that allows us to statically
simplify a specification before the analyses. This simplification can dras-
tically reduce the time needed by many CSP analyses. We also introduce
an algorithm able to automatically generate this data structure from a
CSP specification. The algorithm has been proved correct and its imple-
mentation for the CSP’s animator ProB is publicly available.

1 Introduction

The Communicating Sequential Processes (CSP) [3, 12] language allows us to
specify complex systems with multiple interacting processes. The study and
transformation of such systems often implies different analyses (e.g., deadlock
analysis [5], reliability analysis [4], refinement checking [11], etc.) which are often
based on a data structure able to represent all computations of a specification.

Recently, a new data structure called Context-sensitive Synchronized Control-
Flow Graph (CSCFG) has been proposed [7]. This data structure is a graph that
allows us to finitely represent possibly infinite computations, and it is particu-
larly interesting because it takes into account the context of process calls, and
thus it allows us to produce analyses that are very precise. In particular, some
analyses (see, e.g., [8, 9]) use the CSCFG to simplify a specification with respect
to some term by discarding those parts of the specification that cannot be ex-
ecuted before the term and thus they cannot influence it. This simplification is
automatic and thus it is very useful as a preprocessing stage of other analyses.

However, computing the CSCFG is a complex task due to the non-determinis-
tic execution of processes, due to deadlocks, due to non-terminating processes
and mainly due to synchronizations. This is the reason why there does not
exist any correctness result which formally relates the CSCFG of a specification
to its execution. This result is needed to prove important properties (such as
correctness and completeness) of the techniques based on the CSCFG.

2 M. Llorens et al.

In this work, we formally define the CSCFG and a technique to produce the
CSCFG of a given CSP specification. Roughly, we instrument the CSP standard
semantics (Chapter 7 in [12]) in such a way that the execution of the instru-
mented semantics produces as a side-effect the portion of the CSCFG associated
with the performed computation. Then, we define an algorithm which uses the
instrumented semantics to build the complete CSCFG associated with a CSP
specification. This algorithm executes the semantics several times to explore
all possible computations of the specification, producing incrementally the final
CSCFG.

2 The Syntax and Semantics of CSP

In order to make the paper self-contained, this section recalls CSP’s syntax and
semantics [3, 12]. For concretion, and to facilitate the understanding of the follow-
ing definitions and algorithm, we have selected a subset of CSP that is sufficiently
expressive to illustrate the method, and it contains the most important opera-
tors that produce the challenging problems such as deadlocks, non-determinism
and parallel execution.

We use the following domains: process names (M, N . . . ∈ Names), processes
(P, Q . . . ∈ Procs) and events (a, b . . . ∈ Σ). A CSP specification is a finite set of
process definitions N = P with P = M | a → P | P u Q | P 2 Q | P ||

X⊆Σ

Q | STOP .

Therefore, processes can be a call to another process or a combination of the
following operators:
Prefixing (a → P) Event a must happen before process P .
Internal choice (P u Q) The system chooses non-deterministically to execute
one of the two processes P or Q.
External choice (P 2 Q) It is identical to internal choice but the choice comes
from outside the system (e.g., the user).
Synchronized parallelism (P ||

X⊆Σ

Q) Both processes are executed in paral-

lel with a set X of synchronized events. In absence of synchronizations both
processes can execute in any order. Whenever a synchronized event a ∈ X hap-
pens in one of the processes, it must also happen in the other at the same time.
Whenever the set of synchronized events is not specified, it is assumed that
processes are synchronized in all common events. A particular case of parallel
execution is interleaving (represented by |||) where no synchronizations exist
(i.e., X = ∅).
Stop (STOP) Synonym of deadlock: It finishes the current process.

We now recall the standard operational semantics of CSP as defined by
Roscoe [12]. It is presented in Fig. 1 as a logical inference system. A state of
the semantics is a process to be evaluated called the control. In the following,
we assume that the system starts with an initial state MAIN, and the rules of
the semantics are used to infer how this state evolves. When no rules can be ap-
plied to the current state, the computation finishes. The rules of the semantics
change the states of the computation due to the occurrence of events. The set

A Semantics to Generate the CSCFG 3

of possible events is Στ = Σ ∪ {τ}. Events in Σ are visible from the external
environment, and can only happen with its co-operation (e.g., actions of the
user). Event τ is an internal event that cannot be observed from outside the
system and it happens automatically as defined by the semantics. In order to
perform computations, we construct an initial state and (non-deterministically)
apply the rules of Fig. 1.

(Process Call) (Prefixing) (Internal Choice 1) (Internal Choice 2)

N
τ

−→ rhs(N) (a → P)
a

−→ P (P u Q)
τ

−→ P (P u Q)
τ

−→ Q

(External Choice 1) (External Choice 2) (External Choice 3) (External Choice 4)

P
τ

−→ P ′

(P � Q)
τ

−→ (P ′ � Q)

Q
τ

−→ Q′

(P � Q)
τ

−→ (P � Q′)

P
e
−→ P ′

(P � Q)
e
−→ P ′

e ∈ Σ
Q

e
−→ Q′

(P � Q)
e
−→ Q′

e ∈ Σ

(Synchronized Parallelism 1) (Synchronized Parallelism 2) (Synchronized Parallelism 3)

P
e
−→ P ′

(P ||
X

Q)
e
−→ (P ′ ||

X

Q)
e ∈ Στ\X

Q
e
−→ Q′

(P ||
X

Q)
e
−→ (P ||

X

Q′)
e ∈ Στ\X

P
e

−→ P ′ Q
e

−→ Q′

(P ||
X

Q)
e

−→ (P ′ ||
X

Q′)
e ∈ X

Fig. 1. CSP’s operational semantics

3 Context-sensitive Synchronized Control-Flow Graphs

The CSCFG was proposed in [7, 9] as a data structure able to finitely represent all
possible (often infinite) computations of a CSP specification. This data structure
is particularly useful to simplify a CSP specification before its static analysis.
The simplification of industrial CSP specifications allows us to drastically reduce
the time needed to perform expensive analyses such as model checking. Algo-
rithms to construct CSCFGs have been implemented [8] and integrated into the
most advanced CSP environment ProB [6]. In this section we introduce a new
formalization of the CSCFG that directly relates the graph construction to the
control-flow of the computations it represents.

A CSCFG is formed by the sequence of expressions that are evaluated during
an execution. These expressions are conveniently connected to form a graph. In
addition, the source position (in the specification) of each literal (i.e., events,
operators and process names) is also included in the CSCFG. This is very useful
because it provides the CSCFG with the ability to determine what parts of the
source code have been executed and in what order. The inclusion of source po-
sitions in the CSCFG implies an additional level of complexity in the semantics,
but the benefits of providing the CSCFG with this additional information are
clear and, for some applications, essential. Therefore, we use labels (that we call
specification positions) to identify each literal in a specification which roughly

4 M. Llorens et al.

corresponds to nodes in the CSP specification’s abstract syntax tree. We de-
fine a function Pos to obtain the specification position of an element of a CSP
specification and it is defined over nodes of an abstract syntax tree for a CSP
specification. Formally,

Definition 1. (Specification position) A specification position is a pair (N, w)
where N ∈ N and w is a sequence of natural numbers (we use Λ to denote the
empty sequence). We let Pos(o) denote the specification position of an expression
o. Each process definition N = P of a CSP specification is labelled with specifica-
tion positions. The specification position of its left-hand side is Pos(N) = (N, 0).
The right-hand side (abbrev. rhs) is labelled with the call AddSpPos(P, (N, Λ));
where function AddSpPos is defined as follows:

AddSpPos(P, (N, w))=

P(N,w) if P ∈ N

STOP(N,w) if P = STOP

a(N,w.1) →(N,w) AddSpPos(Q, (N, w.2)) if P = a → Q

AddSpPos(Q, (N, w.1)) op(N,w) AddSpPos(R, (N, w.2))
if P = Q op R ∀ op ∈ {u, 2, ||}

We often use Pos(S) to denote a set with all positions in a specification S.

Example 1. Consider the CSP specification in Fig. 2(a) where literals are labelled
with their associated specification positions (they are underlined) so that labels
are unique.

MAIN(MAIN,0) = (a(MAIN,1.1) → (MAIN,1)STOP(MAIN,1.2)) ‖
{a}

(MAIN,Λ)

(P(MAIN,2.1)2(MAIN,2)(a(MAIN,2.2.1) → (MAIN,2.2)STOP(MAIN,2.2.2)))

P(P,0) = b(P,1) → (P,Λ)SKIP(P,2)

(a) CSP specification

||
MAIN,Λ

�
MAIN,2

a
MAIN,1.1

→
MAIN,1

STOP
MAIN,1.2

P
MAIN,2.1

b
P,1

→
P,Λ

STOP
P,2

a
MAIN,2.2.1

→
MAIN,2.2

STOP
MAIN,2.2.2

1

2

3

4

5

6

9

10

12

7

8

11

MAIN
MAIN,0

0

(b) CSCFG

Fig. 2. CSP specification and its associated CSCFG

In the following, specification positions will be represented with greek letters
(α, β, . . .) and we will often use indistinguishably an expression and its associated
specification position when it is clear from the context (e.g., in Example 1 we
will refer to (P, 1) as b).

A Semantics to Generate the CSCFG 5

In order to introduce the definition of CSCFG, we need first to define the
concepts of control-flow, path and context.

Definition 2. (Control-flow) Given a CSP specification S, the control-flow is
a transitive relation between the specification positions of S. Given two specifi-
cation positions α, β in S, we say that the control of α can pass to β iff

i) α = N ∧ β = first((N, Λ)) with N = rhs(N)∈ S
ii) α ∈ {u, 2, ||} ∧ β ∈ {first(α.1),first(α.2)}
iii) α = β.1 ∧ β = →
iv) α = → ∧ β = first(α.2)

where first(α) is defined as follows: first(α) =

{

α.1 if α = →
α otherwise

We say that a specification position α is executable in S iff the control can pass
from the initial state (i.e., MAIN) to α.

For instance, in Example 1, the control can pass from (MAIN, 2.1) to (P, 1)
due to rule i), from (MAIN, 2) to (MAIN, 2.1) and (MAIN, 2.2.1) due to rule ii), from
(MAIN, 2.2.1) to (MAIN, 2.2) due to rule iii), and from (MAIN, 2.2) to (MAIN, 2.2.2)
due to rule iv).

As we will work with graphs whose nodes are labelled with positions, we use
l(n) to refer to the label of node n.

Definition 3. (Path) Given a labelled graph G = (N, E), a path between two
nodes n1, m ∈ N , Path(n1, m), is a sequence n1, . . . , nk such that nk 7→ m ∈ E

and for all 1≤ i<k we have ni 7→ ni+1 ∈ E. The path is loop-free if for all i 6= j

we have ni 6= nj .

Definition 4. (Context) Given a labelled graph G = (N, E) and a node n ∈ N ,
the context of n, Con(n) = {m | l(m)=M with (M =P)∈ S and there exists a
loop-free path m 7→∗ n}.

Intuitively speaking, the context of a node represents the set of processes
in which a particular node is being executed. This is represented by the set of
process calls in the computation that were done before the specified node. For
instance, the CSCFG associated with the specification in Example 1 is shown
in Fig. 2(b). In this graph we have that Con(4)={0, 3}, i.e., b is being executed
after having called processes MAIN and P. Note that focussing on a process call
node we can use the context to identify loops; i.e., we have a loop whenever
n ∈ Con(m) with l(n) = l(m) ∈ Names. Note also that the CSCFG is unique
for a given CSP specification [9].

Definition 5. (Context-sensitive Synchronized Control-Flow Graph) Given a
CSP specification S, its Context-sensitive Synchronized Control-Flow Graph
(CSCFG) is a labelled directed graph G = (N, Ec, El, Es) where N is a set of
nodes such that ∀ n ∈ N. l(n) ∈ Pos(S) and l(n) is executable in S; and edges
are divided into three groups: control-flow edges (Ec), loop edges (El) and syn-
chronization edges (Es).

6 M. Llorens et al.

– Ec is a set of one-way edges (denoted with 7→) representing the possible
control-flow between two nodes. Control edges do not form loops. The root of
the tree formed by Ec is the position of the initial call to MAIN.

– El is a set of one-way edges (denoted with) such that (n1 n2) ∈ El iff
l(n1) and l(n2) are (possibly different) process calls that refer to the same
process M ∈ N and n2 ∈ Con(n1).

– Es is a set of two-way edges (denoted with e) representing the possible
synchronization of two event nodes (l(n) ∈ Σ).

– Given a CSCFG, every node labelled (M, Λ) has one and only one incoming
edge in Ec; and every process call node has one and only one outgoing edge
which belongs to either Ec or El.

Example 2. Consider again the specification of Example 1, shown in Fig. 2(a),
and its associated CSCFG, shown in Fig. 2(b). For the time being, the reader can
ignore the numbering and color of the nodes; they will be explained in Section
4. Each process call is connected to a subgraph which contains the right-hand
side of the called process. For convenience, in this example there are no loop
edges; there are control-flow edges and one synchronization edge between nodes
(MAIN, 2.2.1) and (MAIN, 1.1) representing the synchronization of event a.

Note that the CSCFG shows the exact processes that have been evaluated
with an explicit causality relation; and, in addition, it shows the specification
positions that have been evaluated and in what order. Therefore, it is not only
useful as a program comprehension tool, but it can be used for program sim-
plification. For instance, with a simple backwards traversal from a, the CSCFG
reveals that the only part of the code that can be executed before a is the
underlined part:

MAIN = (a → STOP) ‖
{a}

(P 2 (a → STOP))

P = b → STOP

Hence, the specification can be significantly simplified for those analyses fo-
cussing on the occurrence of event a.

4 An Algorithm to Generate the CSCFG

This section introduces an algorithm able to generate the CSCFG associated
with a CSP specification. The algorithm uses an instrumented operational se-
mantics of CSP which (i) generates as a side-effect the CSCFG associated with
the computation performed with the semantics; (ii) it controls that no infinite
loops are executed; and (iii) it ensures that the execution is deterministic.

Algorithm 1 controls that the semantics is executed repeatedly in order
to deterministically execute all possible computations—of the original (non-
deterministic) specification—and the CSCFG for the whole specification is con-
structed incrementally with each execution of the semantics. The key point of

A Semantics to Generate the CSCFG 7

the algorithm is the use of a stack that records the actions that can be per-
formed by the semantics. In particular, the stack contains tuples of the form
(rule, rules) where rule indicates the rule that must be selected by the seman-
tics in the next execution step, and rules is a set with the other possible rules
that can be selected. The algorithm uses the stack to prepare each execution of
the semantics indicating the rules that must be applied at each step. For this,
function UpdStack is used; it basically avoids to repeat the same computation
with the semantics. When the semantics finishes, the algorithm prepares a new
execution of the semantics with an updated stack. This is repeated until all
possible computations are explored (i.e., until the stack is empty).

The standard operational semantics of CSP [12] can be non-terminating due
to infinite computations. Therefore, the instrumentation of the semantics incor-
porates a loop-checking mechanism to ensure termination.

Algorithm 1 General Algorithm

Build the initial state of the semantics: state = (MAIN(MAIN,0), ∅, •, (∅, ∅), ∅, ∅)
repeat

repeat

Run the rules of the instrumented semantics with the state state

until no more rules can be applied
Get the new state: state = (, G, , (∅, S0), , ζ)
state=(MAIN(MAIN,0), G, •, (UpdStack(S0), ∅), ∅, ∅)

until UpdStack(S0) = ∅
return G

where function UpdStack is defined as follows:

UpdStack(S) =

�� � (rule, rules\{rule}) : S′ if S = (, rules) : S′ and rule ∈ rules

UpdStack(S′) if S = (, ∅) : S′

∅ if S = ∅

The instrumented semantics used by Algorithm 1 is shown in Fig. 3. It is an
operational semantics where we assume that every literal in the specification has
been labelled with its specification position (denoted by a subscript, e.g., Pα). In
this semantics, a state is a tuple (P, G, m, (S, S0), ∆, ζ), where P is the process
to be evaluated (the control), G is a directed graph (i.e., the CSCFG constructed
so far), m is a numeric reference to the current node in G, (S, S0) is a tuple with
two stacks (where the empty stack is denoted by ∅) that contains the rules to
apply and the rules applied so far, ∆ is a set of references to nodes used to draw
synchronizations in G and ζ is a graph like G, but it only contains the part of
the graph generated for the current computation, and it is used to detect loops.
The basic idea of the graph construction is to record the current control with a
fresh reference1 n by connecting it to its parent m. We use the notation G[n

m
7→α]

either to introduce a node in G or as a condition on G (i.e., G contains node
n). This node has reference n, is labelled with specification position α and its

1 We assume that fresh references are numeric and generated incrementally.

8 M. Llorens et al.

parent is m. The edge introduced can be a control, a synchronization or a loop
edge. This notation is very convenient because it allows us to add nodes to G,
but also to extract information from G. For instance, with G[3

m
7→α] we can know

the parent of node 3 (the value of m), and the specification position of node 3
(the value of α).

Note that the initial state for the semantics used by Algorithm 1 has
MAIN(MAIN,0) in the control. This initial call to MAIN does not appear in the spec-
ification, thus we label it with a special specification position (MAIN, 0) which is
the root of the CSCFG (see Fig. 2(b)). Note that we use • as a reference in the
initial state. The first node added to the CSCFG (i.e., the root) will have parent
reference •. Therefore, here • denotes the empty reference because the root of
the CSCFG has no parent.

An explanation for each rule of the semantics follows.

(Process Call)

(Nα, G, m, (S, S0), ∆, ζ)
τ

−→ (P ′, G′, n, (S, S0), ∅, ζ′)

(P ′, G′, ζ′) = LoopCheck(N, n, G[n
m
7→ α], ζ ∪ {n

m
7→ α})

(Prefixing)

(aα →β P, G, m, (S, S0), ∆, ζ)
a

−→ (P, G[n
m
7→ α, o

n
7→ β], o, (S, S0), {n}, ζ ∪ {n

m
7→ α, o

n
7→ β})

(Choice)

(P uα Q, G, m, (S, S0), ∆, ζ)
τ

−→ (P ′, G[n
m
7→ α], n, (S′, S′

0), ∅, ζ ∪ {n
m
7→ α})

(P ′, (S′, S′
0)) = SelectBranch(P uα Q, (S, S0))

(STOP)

(STOPα, G, m, (S, S0), ∆, ζ)
τ

−→ (⊥, G[n
m
7→ α], n, (S, S0), ∅, ζ ∪ {n

m
7→ α})

Fig. 3. An instrumented operational semantics that generates the CSCFG

(Process Call) The called process N is unfolded, node n (a fresh reference) is
added to the graphs G and ζ with specification position α and parent m. In the
new state, n represents the current reference. The new expression in the control
is P ′, computed with function LoopCheck which is used to prevent infinite un-
folding and is defined below. No event can synchronize in this rule, thus ∆ is
empty.

LoopCheck(N, n, G, ζ)=

(s(rhs(N)), G[n s], ζ ∪ {n s}) if ∃s.s
t
7→N ∈ G

∧s ∈ Path(0, n)
(rhs(N), G, ζ) otherwise

Function LoopCheck checks whether the process call in the control has not been
already executed (if so, we are in a loop). When a loop is detected, the right-

A
S
em

a
n
tics

to
G

en
era

te
th

e
C

S
C

F
G

9

(Synchronized Parallelism 1)

(P1, G′, n′, (S′, (SP1, rules) : S0), ∆, ζ′)
e

−→ (P1′, G′′, n′′, (S′′, S′
0), ∆′, ζ′′)

(P1‖
X

(α,n1,n2,Υ)P2, G, m, (S′ : (SP1, rules), S0), ∆, ζ)
e

−→ (P ′, G′′, m, (S′′, S′
0), ∆′, ζ′′)

e ∈ Στ\X

(G′, ζ′, n′) = InitBranch(G, ζ, n1, m, α) ∧ P ′ =

����� 	m (Unloop(P1′ ‖
X

(α,n′′,n2,Υ)P2) if ζ = ζ′′

P1′ ‖
X

(α,n′′,n2,Υ)P2 otherwise

(Synchronized Parallelism 2)

(P2, G′, n′, (S′, (SP2, rules) : S0), ∆, ζ′)
e

−→ (P2′, G′′, n′′, (S′′, S′
0), ∆′, ζ′′)

(P1‖
X

(α,n1,n2,Υ)P2, G, m, (S′ : (SP2, rules), S0), ∆, ζ)
e

−→ (P ′, G′, m, (S′′, S′
0), ∆′, ζ′′)

e ∈ Στ\X

(G′, ζ′, n′) = InitBranch(G, ζ, n2, m, α) ∧ P ′ =

����� 	m (Unloop(P1‖
X

(α,n1,n′′,Υ)P2′) if ζ = ζ′′

P1‖
X

(α,n1,n′′,Υ)P2′ otherwise

(Synchronized Parallelism 3)
Left Right

(P1‖
X

(α,n1,n2,Υ)P2, G, m, (S′ : (SP3, rules), S0), ∆, ζ)
e

−→ (P ′, G′′, m, (S′′′, S′′
0), ∆1 ∪ ∆2, ζ′ ∪ syncs)

e ∈ X

(G′
1, ζ1, n′

1) = InitBranch(G, ζ, n1, m, α) ∧ Left = (P1, G′
1, n′

1, (S′, (SP3, rules) : S0), ∆, ζ1)
e

−→ (P1′, G′′
1 , n′′

1 , (S′′, S′
0), ∆1, ζ′

1) ∧

(G′
2, ζ2, n′

2) = InitBranch(G′′
1 , ζ′

1, n2, m, α) ∧ Right = (P2, G′
2, n′

2, (S′′, S′
0), ∆, ζ2)

e
−→ (P2′, G′′, n′′

2 , (S′′′, S′′
0), ∆2, ζ′) ∧

sync = {s1 e s2 | s1 ∈ ∆1 ∧ s2 ∈ ∆2} ∧ ∀ (m e n) ∈ sync . G′′[m e n] ∧ P ′ =

����� 	m (Unloop(P1′ ‖
X

(α,n′′
1 ,n′′

2 ,•)P2′)) if (sync ∪ ζ′) = ζ

P1′ ‖
X

(α,n′′
1 ,n′′

2 ,•)P2′ otherwise

(Synchronized Parallelism 4)

(P1‖
X

(α,n1,n2,Υ)P2, G, m, (S′ : (SP4, rules), S0), ∆, ζ)
τ

−→ (P ′, G, m, (S′, (SP4, rules) : S0), ∅, ζ)

P ′ = LoopControl(P1‖
X

(α,n1,n2,Υ)P2, m)

(Synchronized Parallelism 5)

(P1‖
X

(α,n1,n2,Υ)P2, G, m, ([(rule, rules)], S0), ∆, ζ)
e

−→ (P, G′, m, (S′, S′
0), ∆′, ζ′)

(P1‖
X

(α,n1,n2,Υ)P2, G, m, (∅, S0), ∆, ζ)
e

−→ (P, G′, m, (S′, S′
0), ∆′, ζ′)

e ∈ Στ

rule ∈ AppRules(P1‖
X

P2) ∧ rules = AppRules(P1‖
X

P2)\{rule}

F
ig

.
3
.
A

n
in

stru
m

en
ted

o
p
era

tio
n
a
l
sem

a
n
tics

th
a
t

g
en

era
tes

th
e

C
S
C

F
G

(co
n
t.)

10 M. Llorens et al.

hand side of the called process is labelled with a special symbol 	s and a loop
edge between nodes n and s is added to the graph. The loop symbol 	 is labelled
with the position s of the process call of the loop. This label is later used by
rule (Synchronized Parallelism 4) to decide whether the process must be stopped.
It is also used to know what is the reference of the process’ node if it is unfolded
again.

(Prefixing) This rule adds nodes n (the prefix) and o (the prefixing operator) to
the graphs G and ζ. In the new state, o becomes the current reference. The new
control is P . The set ∆ is {n} to indicate that event a has occurred and it must
be synchronized when required by (Synchronized Parallelism 3).

(Choice) The only sources of non-determinism are choice operators (different
branches can be selected for execution) and parallel operators (different order
of branches can be selected for execution). Therefore, every time the semantics
executes a choice or a parallelism, they are made deterministic thanks to the
information in the stack S. Both internal and external can be treated with a
single rule because the CSCFG associated to a specification with external choices
is identical to the CSCFG associated to the specification with the external choices
replaced by internal choices. This rule adds node n to the graphs which is labelled
with the specification position α and has parent m. In the new state, n becomes
the current reference. No event can synchronize in this rule, thus ∆ is empty.

Function SelectBranch is used to produce the new control P ′ and the new
tuple of stacks (S′, S′

0), by selecting a branch with the information of the stack.
Note that, for simplicity, the lists constructor “:” has been overloaded, and it is
also used to build lists of the form (A : a) where A is a list and a is the last
element:

SelectBranch(PuαQ, (S, S0))=

(P, (S′, (C1, {C2}) : S0)) if S = S′ : (C1,{C2})
(Q, (S′, (C2, ∅) : S0)) if S = S′ : (C2, ∅)
(P, (∅, (C1, {C2}) : S0)) otherwise

If the last element of the stack S indicates that the first branch of the choice
(C1) must be selected, then P is the new control. If the second branch must be
selected (C2), the new control is Q. In any other case the stack is empty, and
thus this is the first time that this choice is evaluated. Then, we select the first
branch (P is the new control) and we add (C1, {C2}) to the stack S0 indicating
that C1 has been fired, and the remaining option is C2.

For instance, when the CSCFG of Fig. 2(b) is being constructed and we
reach the choice operator (i.e., (MAIN, 2)), then the left branch of the choice is
evaluated and (C1, {C2}) is added to the stack to indicate that the left branch
has been evaluated. The second time it is evaluated, the stack is updated to
(C2, ∅) and the right branch is evaluated. Therefore, the selection of branches
is predetermined by the stack, thus, Algorithm 1 can decide what branches are
evaluated by conveniently handling the information of the stack.

(Synchronized Parallelism 1 and 2) The stack determines what rule to use when
a parallelism operator is in the control. If the last element in the stack is SP1,
then (Synchronized Parallelism 1) is used. If it is SP2, (Synchronized Parallelism 2) is
used.

A Semantics to Generate the CSCFG 11

In a synchronized parallelism composition, both parallel processes can be
intertwiningly executed until a synchronized event is found. Therefore, nodes for
both processes can be added interwoven to the graph. Hence, the semantics needs
to know in every state the references to be used in both branches. This is done by
labelling each parallelism operator with a tuple of the form (α, n1, n2, Υ) where α

is the specification position of the parallelism operator; n1 and n2 are respectively
the references of the last node introduced in the left and right branches of the
parallelism, and they are initialised to •; and Υ is a node reference used to decide
when to unfold a process call (in order to avoid infinite loops), also initialised to
•. The sets ∆′ and ζ ′ are passed down unchanged so that another rule can use
them if necessary.
These rules develop the branches of the parallelism until they are finished or
until they must synchronize. They use function InitBranch to introduce the
parallelism into the graph the first time it is executed and only if it has not been
introduced in a previous computation. For instance, consider a state where a
parallelism operator is labelled with ((MAIN, Λ), •, •, •). Therefore, it is evaluated
for the first time, and thus, when, e.g., rule (Synchronized Parallelism 1) is applied,

a node 1
0
7→ (MAIN, Λ), which refers to the parallelism operator, is added to G

and the parallelism operator is relabelled to ((MAIN, Λ), x, •, •) where x is the new
reference associated with the left branch. After executing function InitBranch,
we get a new graph and a new reference. Its definition is the following:

InitBranch(G, ζ, n, m, α) =

{

(G[o
m
7→α], ζ ∪ {o

m
7→α}, o) if n = •

(G, ζ, n) otherwise

(Synchronized Parallelism 3) It is applied when the last element in the stack is
SP3. It is used to synchronize the parallel processes. In this rule, Υ is replaced
by •, meaning that a synchronization edge has been drawn and the loops could
be unfolded again if it is needed. The set sync of all the events that have been
executed in this step must be synchronized. Therefore, all the events occurred
in the subderivations of P1 (∆1) and P2 (∆2) are mutually synchronized and
added to both G′′ and ζ ′. In the case that all the synchronizations occurred in
this step are already in ζ ′, this rule detects that the parallelism is in a loop; and
thus, in the new control the parallelism operator is labelled with 	 and all the
other loop labels are removed from it. This is done by a trivial function Unloop.
(Synchronized Parallelism 4) This rule is applied when the last element in the
stack is SP4. It is used when none of the parallel processes can proceed (because
they already finished, deadlocked or were labelled with). When a process is
labelled as a loop with 	, it can be unlabelled to unfold it once2in order to
allow the other processes to continue. This happens when the looped process is
in parallel with other process and the later is waiting to synchronize with the
former. In order to perform the synchronization, both processes must continue,
thus the loop is unlabelled. Hence, the system must stop only when both paral-
lel processes are marked as a loop. This task is done by function LoopControl.

2 Only once because it will be labelled again by rule (Process Call) when the loop is
repeated.

12 M. Llorens et al.

It decides if the branches of the parallelism should be further unfolded or they
should be stopped (e.g., due to a deadlock or an infinite loop):

LoopControl(P ‖
X

(α,p,q,Υ)Q, m) =

	m(P ′
	 ‖

X
(α,p	,q	,•)Q

′
) if P ′ = 	p	

(P ′
) ∧ Q′ =	q	

(Q′
)

	m(P ′
	 ‖

X
(α,p	,q′,•)⊥) if P ′ = 	p	

(P ′
) ∧ (Q′ = ⊥ ∨ (Υ = p	 ∧ Q′ 6= 	 ()))

P ′
	 ‖

X
(α,p	,q′,p)Q

′ if P ′ = 	p	
(P ′
) ∧ Q′ 6= ⊥ ∧ Q′ 6= 	 () ∧ Υ 6= p	

⊥ otherwise

where (P ′, p′, Q′, q′) ∈ {(P, p, Q, q), (Q, q, P, p)}.
When one of the branches has been labelled as a loop, there are three options:

(i) The other branch is also a loop. In this case, the whole parallelism is marked
as a loop labelled with its parent, and Υ is put to •. (ii) Either it is a loop that
has been unfolded without drawing any synchronization (this is known because
Υ is equal to the parent of the loop), or the other branch already terminated
(i.e., it is ⊥). In this case, the parallelism is also marked as a loop, and the other
branch is put to ⊥ (this means that this process has been deadlocked). Also
here, Υ is put to •. (iii) If we are not in a loop, then we allow the parallelism to
proceed by unlabelling the looped branch. In the rest of the cases ⊥ is returned
representing that this is a deadlock, and thus, stopping further computations.
(Synchronized Parallelism 5) This rule is used when the stack is empty. It basically
analyses the control and decides what are the applicable rules of the semantics.
This is done with function AppRules which returns the set of rules R that can
be applied to a synchronized parallelism P ‖

X

Q:

AppRules(P ‖
X

Q) =

{SP1} if τ ∈ FstEvs(P)
{SP2} if τ 6∈ FstEvs(P) ∧ τ ∈ FstEvs(Q)
R if τ 6∈ FstEvs(P) ∧ τ 6∈ FstEvs(Q) ∧ R 6= ∅
{SP4} otherwise

where

SP1 ∈ R if ∃e ∈ FstEvs(P) ∧ e 6∈ X

SP2 ∈ R if ∃e ∈ FstEvs(Q) ∧ e 6∈ X

SP3 ∈ R if ∃e ∈ FstEvs(P) ∧ ∃e ∈ FstEvs(Q) ∧ e ∈ X

Essentially, AppRules decides what rules are applicable depending on the
events that could happen in the next step. These events can be inferred by using
function FstEvs. In particular, given a process P , function FstEvs returns the
set of events that can fire a rule in the semantics using P as the control. There-
fore, rule (Synchronized Parallelism 5) prepares the stack allowing the semantics to
proceed with the correct rule.

A Semantics to Generate the CSCFG 13

FstEvs(P) =

{a} if P = a → Q

∅ if P = 	Q ∨ P = ⊥

{τ} if P = M ∨ P = STOP ∨ P = Q u R ∨ P = (⊥‖
X

⊥)

∨ P =(Q‖
X

	R) ∨ P =(Q‖
X

⊥) ∨ P =(⊥‖
X

	R)

∨ (P =(Q‖
X

R) ∧ FstEvs(R)⊆X) ∨ (P =(Q‖
X

	R) ∧ FstEvs(Q)⊆X)

∨ (P =Q‖
X

R ∧ FstEvs(Q)⊆X ∧ FstEvs(R)⊆X∧
⋂

M∈{Q,R}

FstEvs(M)=∅)

E otherwise, where P = Q‖
X

R ∧ E = (FstEvs(Q) ∪ FstEvs(R))\

(X ∩ (FstEvs(Q)\FstEvs(R) ∪ FstEvs(R)\FstEvs(Q)))
(STOP) Whenever this rule is applied, the subcomputation finishes because ⊥
is put in the control, and this special constructor has no associated rule. A node
with the STOP position is added to the graph.

We illustrate this semantics with a simple example.

Example 3. Consider again the specification in Example 1. Due to the choice
operator, in this specification two different events can occur, namely b and a.
Therefore, Algorithm 1 obtains two computations, called respectively First it-
eration and Second iteration in Fig. 4. In this figure, for each state, we show
a sequence of rules applied from left to right to obtain the next state. Here, for
clarity, specification positions have been omitted from the control. We first exe-
cute the semantics with the initial state (MAIN(MAIN,0), ∅, •, (∅, ∅), ∅, ∅) and get the
computation First iteration. This computation corresponds to the execution
of the left branch of the choice (i.e., P) with the occurrence of event b. The final
state is State 6 = (⊥, G5, 0, (∅, S6), ∅, ∅). Note that the stack S6 contains a pair
(C1, {C2}) to denote that the left branch of the choice has been executed. Then,
the algorithm calls function UpdStack and executes the semantics again with the
new initial state State 7 = (MAIN(MAIN,0), G5, •, ([(C2, ∅), (SP2, ∅)], ∅), ∅, ∅) and it
gets the computation Second iteration. After this execution the final CSCFG
(G9) has been computed. Figure 2(b) shows the CSCFG generated where white
nodes were generated in the first iteration; and grey nodes were generated in the
second iteration.

For those readers interested in the complete sequence of rewriting steps per-
formed by the semantics, we provide in Fig. 5 the complete derivations of the
semantics that the algorithm fired. Here, for clarity, specification positions have
been omitted from the control and each computation step is labelled with the
applied rule.

Next, we show a more interesting example where non-terminating processes
appear.

14 M. Llorens et al.

First iteration

State 0 = (MAIN(MAIN,0), G0, •, (∅, ∅), ∅, ∅) where G0 = ∅ (PC)

State 1 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,•,•)(P2(a → STOP)), G1, 0, (∅, ∅), ∅, ∅)

where G1 = G0[0 7→ (MAIN, 0)] (SP5)(SP2)(Choice)

State 2 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,2,•)P, G2, 0, (∅, S2), ∅, ∅)

where G2 = G1[1
0
7→ (MAIN, Λ), 2

1
7→ (MAIN, 2)] and S2 = [(C1, {C2}), (SP2, ∅)] (SP5)(SP2)(PC)

State 3 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,3,•)(b → STOP), G3, 0, (∅, S3), ∅, ∅)

where G3 = G2[3
2
7→ (MAIN, 2.1)] and S3 = (SP2, ∅) : S2 (SP5)(SP2)(Pref)

State 4 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,5,•)STOP, G4, 0, (∅, S4), {4}, ∅)

where G4 = G3[4
3
7→ (P, 1), 5

4
7→ (P, Λ)] and S4 = (SP2, ∅) : S3 (SP5)(SP2)(STOP)

State 5 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,6,•)⊥, G5, 0, (∅, S5), ∅, ∅)

where G5 = G4[6
5
7→ (P, 2)] and S5 = (SP2, ∅) : S4 (SP5)(SP4)

State 6 = (⊥, G5, 0, (∅, S6), ∅, ∅) where S6 = (SP4, ∅) : S5

= [(SP4, ∅), (SP2, ∅), (SP2, ∅), (SP2, ∅), (C1, {C2}), (SP2, ∅)]

Second iteration

State 7 = (MAIN(MAIN,0), G5, •, (UpdStack(S6), ∅), ∅, ∅) =

(MAIN(MAIN,0), G5, •, ([(C2, ∅), (SP2, ∅)], ∅), ∅, ∅) (PC)

State 8 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,•,•)(P2(a → STOP)), G5, 0, (S8, ∅), ∅, ∅)

where S8 = [(C2, ∅), (SP2, ∅)] (SP2)(Choice)

State 9 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,2,•)(a → STOP), G5, 0, (∅, S9), ∅, ∅)

where S9 = [(C2, ∅), (SP2, ∅)] (SP5)(SP3)(Pref)(Pref)

State 10 = (STOP ‖
{a}

((MAIN,Λ),8,10,•)STOP, G6, 0, (∅, S10), {7, 9}, {7 e 9})

where G6 = G5[7
1
7→ (MAIN, 1.1), 8

7
7→ (MAIN, 1), 9

2
7→ (MAIN, 2.2.1), 10

9
7→ (MAIN, 2.2)]

and S10 = (SP3, ∅) : S9 (SP5)(SP1)(STOP)

State 11 = (⊥ ‖
{a}

((MAIN,Λ),11,10,•)STOP, G7, 0, (∅, S11), ∅, {7 e 9})

where G7 = G6[11
8
7→ (MAIN, 1.2)] and S11 = (SP1, ∅) : S10 (SP5)(SP2)(STOP)

State 12 = (⊥ ‖
{a}

((MAIN,Λ),11,12,•)⊥, G8, 0, (∅, S12), ∅, {7 e 9})

where G8 = G7[12
10
7→ (MAIN, 2.2.2)] and S12 = (SP2, ∅) : S11 (SP5)(SP4)

State 13 = (⊥, G8, 0, (∅, S13), ∅, {7 e 9})

where S13 = (SP4, ∅) : S12 = [(SP4, ∅), (SP2, ∅), (SP1, ∅), (SP3, ∅), (C2, ∅), (SP2, ∅)]

State 14 = (MAIN(MAIN,0), G8[7 e 9], •, (UpdStack(S13), ∅), ∅, ∅) =

(MAIN(MAIN,0), G9, •, (∅, ∅), ∅, ∅)

Fig. 4. An example of computation with Algorithm 1

A
S
em

a
n
tics

to
G

en
era

te
th

e
C

S
C

F
G

1
5

(Process Call)
(MAIN(MAIN,0), ∅, •, (∅, ∅), ∅, ∅)

τ
−→ State 1

where State 1 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,•,•)(P2(a → STOP)), G0[0 7→ (MAIN, 0)], 0, (∅, ∅), ∅, ∅)

(SP5)

(SP2)

(Choice)
(P2(a → STOP), G1[1

0
7→ (MAIN, Λ)], 1, (∅, [(SP2, ∅)]), ∅, ∅)

τ
−→ (P, G1[2

1
7→ (MAIN, 2)], 2, (∅, S2), ∅, ∅)

((a → STOP) ‖
{a}

((MAIN,Λ),•,•,•)(P2(a → STOP)), G1, 0, ([(SP2, ∅)], ∅), ∅, ∅)
τ

−→ State 2

State 1
τ

−→ State 2

where State 2 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,2,•)P, G2, 0, (∅, S2), ∅, ∅) and S2 = [(C1, {C2}), (SP2, ∅)]

(SP5)

(SP2)

(Process Call)
(P, G2, 2, (∅, (SP2, ∅) : S2), ∅, ∅)

τ
−→ (b → STOP, G2[3

2
7→ (MAIN, 2.1)], 3, (∅, S3), ∅, ∅)

((a → STOP) ‖
{a}

((MAIN,Λ),•,2,•)P, G2, 0, ([(SP2, ∅)], S2), ∅, ∅)
τ

−→ State 3

State 2
τ

−→ State 3

where State 3 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,3,•)(b → STOP), G3, 0, (∅, S3), ∅, ∅) and S3 = [(SP2, ∅), (C1, {C2}), (SP2, ∅)]

(SP5)

(SP2)

(Prefix)
(b → STOP, G3, 3, (∅, (SP2, ∅) : S3), ∅, ∅)

b
−→ (STOP, G3[4

3
7→ (P, 1), 5

4
7→ (P, Λ)], 5, (∅, S4), {4}, ∅)

((a → STOP) ‖
{a}

((MAIN,Λ),•,3,•)(b → STOP), G3, 0, ([(SP2, ∅)], S3), ∅, ∅)
b

−→ State 4

State 3
b

−→ State 4

where State 4 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,5,•)STOP, G4, 0, (∅, S4), {4}, ∅) and S4 = [(SP2, ∅), (SP2, ∅), (C1, {C2}), (SP2, ∅)]

(SP5)

(SP2)

(STOP)
(STOP, G4, 5, (∅, (SP2, ∅) : S4), {4}, ∅)

τ
−→ (⊥, G4[6

5
7→ (P, 2)], 6, (∅, S5), ∅, ∅)

((a → STOP) ‖
{a}

((MAIN,Λ),•,5,•)STOP, G4, 0, ([(SP2, ∅)], S4), {4}, ∅)
τ

−→ State 5

State 4
τ

−→ State 5

where State 5 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,6,•)⊥, G5, 0, (∅, S5), ∅, ∅) and S5 = [(SP2, ∅), (SP2, ∅), (SP2, ∅), (C1, {C2}), (SP2, ∅)]

F
ig

.
5
.
A

n
ex

a
m

p
le

o
f
co

m
p
u
ta

tio
n

(step
b
y

step
)

w
ith

A
lg

o
rith

m
1

1
6

M
.
L
lo

ren
s

et
a
l.

(SP5)

(SP4)
((a → STOP) ‖

{a}
((MAIN,Λ),•,6,•)⊥, G5, 0, ([(SP4, ∅)], S5), ∅, ∅)

τ
−→ (⊥, G5, 0, (∅, (SP4, ∅) : S5), ∅, ∅)

State 5
τ

−→ State 6

where State 6 = (⊥, G5, 0, (∅, S6), ∅, ∅) and S6 = [(SP4, ∅), (SP2, ∅), (SP2, ∅), (SP2, ∅), (C1, {C2}), (SP2, ∅)]

State 7 = (MAIN(MAIN,0), G5, •, (UpdStack(S6), ∅), ∅, ∅) = (MAIN(MAIN,0), G5, •, ([(C2, ∅), (SP2, ∅)], ∅), ∅, ∅)

(Process Call)
State 7

τ
−→ State 8

where State 8 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,•,•)(P2(a → STOP)), G5[0 7→ (MAIN, 0)], 0, (S8, ∅), ∅, ∅) and S8 = [(C2, ∅), (SP2, ∅)]

(SP2)

(Choice)
(P2(a → STOP), G5[1

0
7→ (MAIN, Λ)], 1, ([(C2, ∅)], [(SP2, ∅)]), ∅, ∅)

τ
−→ (a → STOP, G5[2

1
7→ (MAIN, 2)], 2, (∅, S9), ∅, ∅)

State 8
τ

−→ State 9

where State 9 = ((a → STOP) ‖
{a}

((MAIN,Λ),•,2,•)(a → STOP), G5, 0, (∅, S9), ∅, ∅) and S9 = [(C2, ∅), (SP2, ∅)]

(SP5)

(SP3)
L R

((a → STOP) ‖
{a}

((MAIN,Λ),•,2,•)(a → STOP), G5, 0, ([(SP3, ∅)], S9), ∅, ∅)
a

−→ State 10

State 9
a

−→ State 10
where

L = (Prefix)
(a → STOP, G5[1

0
7→ (MAIN, Λ)], 1, (∅, (SP3, ∅) : S9), ∅, ∅)

a
−→ (STOP, G5[7

1
7→ (MAIN, 1.1), 8

7
7→ (MAIN, 1)], 8, (∅, S10), {7}, ∅)

R = (Prefix)
(a → STOP, G5, 2, (∅, S10), ∅, ∅)

a
−→ (STOP, G5[9

2
7→ (MAIN, 2.2.1), 10

9
7→ (MAIN, 2.2)], 10, (∅, S10), {9}, ∅)

and State 10 = (STOP ‖
{a}

((MAIN,Λ),8,10,•)STOP, G6, 0, (∅, S10), {7, 9}, {7 e 9}) and S10 = [(SP3, ∅), (C2, ∅), (SP2, ∅)]

F
ig

.
5
.
A

n
ex

a
m

p
le

o
f
co

m
p
u
ta

tio
n

(step
b
y

step
)

w
ith

A
lg

o
rith

m
1

(co
n
t.)

A
S
em

a
n
tics

to
G

en
era

te
th

e
C

S
C

F
G

1
7

(SP5)

(SP1)

(STOP)
(STOP, G6, 9, (∅, (SP1, ∅) : S10), {7, 9}, {7 e 9})

τ
−→ (⊥, G6[11

8
7→ (MAIN, 1.2)], 11, (∅, S11), ∅, {7 e 9})

(STOP ‖
{a}

((MAIN,Λ),8,10,•)STOP, G6, 0, ([(SP1, ∅)], S10), {7, 9}, {7 e 9})
τ

−→ State 11

State 10
τ

−→ State 11

where State 11 = (⊥ ‖
{a}

((MAIN,Λ),11,10,•)STOP, G7, 0, (∅, S11), ∅, {7 e 9}) and S11 = [(SP1, ∅), (SP3, ∅), (C2, ∅), (SP2, ∅)]

(SP5)

(SP2)

(STOP)
(STOP, G7, 10, (∅, (SP2, ∅) : S11), ∅, {7 e 9})

τ
−→ (⊥, G7[12

10
7→ (MAIN, 2.2.2)], 12, (∅, S12), ∅, {7 e 9})

(⊥ ‖
{a}

((MAIN,Λ),11,10,•)STOP, G7, 0, ([(SP2, ∅)], S11), ∅, {7 e 9})
τ

−→ State 12

State 11
τ

−→ State 12

where State 12 = (⊥ ‖
{a}

((MAIN,Λ),11,12,•)⊥, G8, 0, (∅, S12), ∅, {7 e 9}) and S12 = [(SP2, ∅), (SP1, ∅), (SP3, ∅), (C2, ∅), (SP2, ∅)]

(SP5)

(SP4)
(⊥ ‖

{a}
((MAIN,Λ),11,12,•)⊥, G8, 0, ([(SP4, ∅)], S12), ∅, {7 e 9})

τ
−→ (⊥, G8, 0, (∅, (SP4, ∅) : S12), ∅, {7 e 9})

State 12
τ

−→ State 13

where State 13 = (⊥, G8, 0, (∅, S13), ∅, {7 e 9}) and S13 = [(SP4, ∅), (SP2, ∅), (SP1, ∅), (SP3, ∅), (C2, ∅), (SP2, ∅)]

State 14 = (MAIN(MAIN,0), G8[7 e 9], •, (UpdStack(S13), ∅), ∅, ∅) = (MAIN(MAIN,0), G9, •, (∅, ∅), ∅, ∅)

F
ig

.
5
.
A

n
ex

a
m

p
le

o
f
co

m
p
u
ta

tio
n

(step
b
y

step
)

w
ith

A
lg

o
rith

m
1

(co
n
t.)

18 M. Llorens et al.

Example 4. Consider the following CSP specification where each literal has been
labelled (they are underlined) with their associated specification position.

MAIN = a(MAIN,1.1) → (MAIN,1)a(MAIN,1.2.1) → (MAIN,1.2)STOP(MAIN,1.2.2) ‖
{a}

(MAIN,Λ)P(MAIN,2)

P = a(P,1) → (P,Λ)P(P,2)

Following Algorithm 1, we use the initial state (MAIN(MAIN,0), ∅, •, (∅, ∅), ∅, ∅)
to execute the semantics and get the computation of Fig. 7. This computation
produces as a side effect the CSCFG shown in Fig. 6 for this specification. In
this CSCFG, there is a loop edge between (P, 2) and (MAIN, 2). Note that the
loop edge avoids infinite unfolding of the infinite process P, thus ensuring that
the CSCFG is finite. Loop edges are introduced by the semantics whenever the
context is repeated. In Fig. 7, when process P is called a second time, rule
(Process call) unfolds P , its right-hand side is marked as a loop and a loop edge
between nodes 7 and 2 is added to the graph. In State 4, the looped process
is in parallel with a process waiting to synchronize with it. In order to perform
the synchronization, the loop is unlabelled (State 5) by rule (SP4). Later, it is
labelled again by rule (Process Call) when the loop is repeated (State 8 in Fig.
7 (cont.)). Finally, rule (SP4) detects that the left branch of the parallelism is
deadlocked and the parallelism is marked as a loop (State 9), thus finishing the
computation.

a
MAIN,1.1

||
MAIN,Λ

→
MAIN,1

a
MAIN,1.2.1

P
MAIN,2

1

3

4

→
MAIN,1.2

STOP
MAIN,1.2.2

8

a
P,1

→
P,Λ

P
P,2

9

10

2

5

6

7

MAIN
MAIN,0

0

Fig. 6. CSCFG associated with the CSP specification in Example 4

A
S
em

a
n
tics

to
G

en
era

te
th

e
C

S
C

F
G

1
9

(Process Call)
(MAIN(MAIN,0), ∅, •, (∅, ∅), ∅, ∅)

τ
−→ State 1

where

State 1 = ((a → a → STOP ‖
{a}

((MAIN,Λ),•,•,•)P), G0[0 7→ (MAIN, 0)], •, (∅, ∅), ∅, ∅)

(SP5)

(SP2)

(Process Call)
(P, G1[1

0
7→ (MAIN, Λ)], 1, (∅, [(SP2, ∅)]), ∅, ∅)

τ
−→ (a → P, G1[2

1
7→ (MAIN, 2)], 2, (∅, [(SP2, ∅)]), ∅, ∅)

((a → a → STOP ‖
{a}

((MAIN,Λ),•,•,•)P), G1, •, ([(SP2, ∅)], ∅), ∅, ∅)
τ

−→ State 2

State 1
τ

−→ State 2

where State 2 = ((a → a → STOP ‖
{a}

((MAIN,Λ),•,2,•)a → P), G2, 0, (∅, S2), ∅, ∅) and S2 = [(SP2, ∅)]

(SP5)

(SP3)
L R

((a → a → STOP ‖
{a}

((MAIN,Λ),•,2,•)a → P), G2, 0, ([(SP3, ∅)], S2), ∅, ∅)
a

−→ State 3

State 2
a

−→ State 3
where

L = (Prefix)
(a → a → STOP, G2[1

0
7→ (MAIN, Λ)], 1, (∅, (SP3, ∅) : S2), ∅, ∅)

a
−→ (a → STOP, G2[3

1
7→ (MAIN, 1.1), 4

3
7→ (MAIN, 1)], 4, (∅, S3), {3}, ∅)

R = (Prefix)
(a → P, G2, 2, (∅, S3), ∅, ∅)

a
−→ (P, G2[5

2
7→ (P, 1), 6

5
7→ (P, Λ)], 6, (∅, S3), {5}, ∅)

and State 3 = (a → STOP ‖
{a}

((MAIN,Λ),4,6,•)P, G3, 0, (∅, S3), {3, 5}, {3 e 5}) and S3 = [(SP3, ∅), (SP2, ∅)]

(SP5)

(SP2)

(Process Call)
(P, G3, 6, (∅, (SP2, ∅) : S3), {3, 5}, {3 e 5})

τ
−→ (2 (a → P), G3[7

6
7→ (P, 2), 7 2], 7, (∅, S4), ∅, {3 e 5})

(a → STOP ‖
{a}

((MAIN,Λ),4,6,•)P, G3, 0, ([(SP2, ∅)], S3), {3, 5}, {3 e 5})
τ

−→ State 4

State 3
τ

−→ State 4

where State 4 = ((a → STOP) ‖
{a}

((MAIN,Λ),4,7,•) 	2 (a → P), G4, 0, (∅, S4), ∅, {3 e 5}) and S4 = [(SP2, ∅), (SP3, ∅), (SP2, ∅)]

F
ig

.
7
.
C

o
m

p
u
ta

tio
n

o
f
th

e
sp

ecifi
ca

tio
n

in
E

x
a
m

p
le

4
w

ith
A

lg
o
rith

m
1

2
0

M
.
L
lo

ren
s

et
a
l.

(SP5)

(SP4)
((a → STOP) ‖

{a}
((MAIN,Λ),4,7,•) 	2 (a → P), G4, 0, ([(SP4, ∅)], S4), ∅, {3 e 5})

τ
−→ State 5

State 4
τ

−→ State 5

where State 5 = ((a → STOP) ‖
{a}

((MAIN,Λ),4,2,2)(a → P), G4, 0, (∅, S5), ∅, {3 e 5}) and S5 = [(SP4, ∅), (SP2, ∅), (SP3, ∅), (SP2, ∅)]

(SP5)

(SP3)
L R

((a → STOP) ‖
{a}

((MAIN,Λ),4,2,2)(a → P), G4, 0, ([(SP3, ∅)], S5), ∅, {3 e 5})
a

−→ State 6

State 5
a

−→ State 6
where

L = (Prefix)
(a → STOP, G, 4, (∅, (SP3, ∅) : S5), ∅, {3 e 5})

a
−→ (STOP, G4[8

4
7→ (MAIN, 1.2.1), 9

8
7→ (MAIN, 1.2)], 9, (∅, S6), {8}, {3 e 5})

R = (Prefix)
(a → P, G4, 2, (∅, S6), ∅, {3 e 5})

a
−→ (P, G4[5

2
7→ (P, 1), 6

5
7→ (P, Λ)], 6, (∅, S6), {5}, {3 e 5})

and State 6 = (STOP ‖
{a}

((MAIN,Λ),9,6,•)P, G5, 0, (∅, S6), {8, 5}, {3 e 5, 8 e 5})

and S6 = [(SP3, ∅), (SP4, ∅), (SP2, ∅), (SP3, ∅), (SP2, ∅)]

F
ig

.
7
.
C

o
m

p
u
ta

tio
n

o
f
th

e
sp

ecifi
ca

tio
n

in
E

x
a
m

p
le

4
w

ith
A

lg
o
rith

m
1

(co
n
t.)

5
C

o
rre

c
tn

e
ss

In
th

is
sectio

n
w

e
sta

te
th

e
co

rrectn
ess

o
f
th

e
p
ro

p
o
sed

a
lg

o
rith

m
b
y

sh
ow

in
g

th
a
t

(i)
th

e
g
ra

p
h

p
ro

d
u
ced

b
y

th
e

a
lg

o
rith

m
fo

r
a

C
S
P

sp
ecifi

ca
tio

n
S

is
th

e
C

S
C

F
G

A
S
em

a
n
tics

to
G

en
era

te
th

e
C

S
C

F
G

2
1

(SP5)

(SP1)

(STOP)
(STOP, G5, 9, (∅, (SP1, ∅) : S6), ∅, {3 e 5, 8 e 5})

τ
−→ (⊥, G5[10

9
7→ (MAIN, 1.2.2)], 10, (∅, S7), ∅, {3 e 5, 8 e 5})

(STOP ‖
{a}

((MAIN,Λ),9,6,•)P, G5, 0, ([(SP1, ∅)], S6), {8, 5}, {3 e 5, 8 e 5})
τ

−→ State 7

State 6
τ

−→ State 7

where State 7 = (⊥ ‖
{a}

((MAIN,Λ),10,6,•)P, G6, 0, (∅, S7), ∅, {3 e 5, 8 e 5})

and S7 = [(SP1, ∅), (SP3, ∅), (SP4, ∅), (SP2, ∅), (SP3, ∅), (SP2, ∅)]

(SP5)

(SP2)

(Process Call)
(P, G6, 6, (∅, (SP2, ∅) : S7), ∅, {3 e 5, 8 e 5})

τ
−→ (2 (a → P), G6, 7, (∅, S8), ∅, {3 e 5, 8 e 5})

(⊥ ‖
{a}

((MAIN,Λ),10,7,•)P), G6, 0, ([(SP2, ∅), S7)],∅, {3 e 5, 8 e 5})
τ

−→ State 8

State 7
τ

−→ State 8

where State 8 = (⊥ ‖
{a}

((MAIN,Λ),10,7,•) 	2 (a → P), G6, 0, (∅, S8), ∅, {3 e 5, 8 e 5})

and S8 = [(SP2, ∅), (SP1, ∅), (SP3, ∅), (SP4, ∅), (SP2, ∅), (SP3, ∅), (SP2, ∅)]

(SP5)

(SP4)
(⊥ ‖

{a}
((MAIN,Λ),10,7,•) 	2 (a → P), G6, 0, ([(SP4, ∅)], S8), ∅, {3 e 5, 8 e 5})

τ
−→ State 9

State 8
τ

−→ State 9

where State 9 = (0 (⊥ ‖
{a}

((MAIN,Λ),10,2,•)(a → P)), G6, 0, (∅, S9), ∅, {3 e 5, 8 e 5})

and S9 = [(SP4, ∅), (SP2, ∅), (SP1, ∅), (SP3, ∅), (SP4, ∅), (SP2, ∅), (SP3, ∅), (SP2, ∅)]

State 10 = (MAIN(MAIN,0), G6[3 e 5, 8 e 5], •, (UpdStack(S9), ∅), ∅, ∅) = (MAIN(MAIN,0), G7, •, (∅, ∅), ∅, ∅)

F
ig

.
7
.
C

o
m

p
u
ta

tio
n

o
f
sp

ecifi
ca

tio
n

in
E

x
a
m

p
le

4
w

ith
A

lg
o
rith

m
1

(co
n
t.)

o
f
S

;
a
n
d

(ii)
th

e
a
lg

o
rith

m
term

in
a
tes,

ev
en

if
n
o
n
-term

in
a
tin

g
co

m
p
u
ta

tio
n
s

ex
ist

fo
r

th
e

sp
ecifi

ca
tio

n
S

.
In

o
rd

er
to

p
rov

e
th

ese
th

eo
rem

s,
w

e
n
eed

so
m

e
p
relim

in
a
ry

d
efi

n
itio

n
s

a
n
d

lem
m

a
s.

22 M. Llorens et al.

Definition 6. (Rewriting Step, Derivation) Given a state s of the instrumented

semantics, a rewriting step for s (s
Θ
 s′) is the application of a rule of the

semantics
Θ

s
e

−→ s′
with the occurrence of an event e ∈ Στ and where Θ is a

(possibly empty) set of rewriting steps. Given a state s0, we say that the sequence

s0
Θ0
 . . .

Θn
 sn+1, n ≥ 0, is a derivation of s0 iff ∀ i, 0 ≤ i ≤ n, si

Θi
 si+1 is

a rewriting step. We say that the derivation is complete iff there is no possible
rewriting step for sn+1. We say that two derivations D, D′ are equivalent (de-
noted D ≡ D′) iff all specification positions in the control of a rewriting step of
D also appear in a rewriting step of D′ and viceversa.

The following lemma ensures that all possible derivations of S are explored
by Algorithm 1.

Lemma 1. Let S be a CSP specification and D a complete derivation of S
performed with the standard semantics. Then, Algorithm 1 performs a derivation
D′ such that D ≡ D′.

Proof. We prove first that the algorithm executes the instrumented semantics
with a collection of initial states that explores all possible derivations. We prove
this showing that every non-deterministic application of a rule is stored in the
stack with all possible rules that can be applied; then, Algorithm 1 restarts the
semantics with a new state that forces the semantics to explore a new derivation.
This is done until all possible derivations have been explored.

Firstly, the standard semantics is deterministic except for two rules: (i) choice:
the choice rules are evaluated until one branch is selected; and (ii) synchronized
parallelism: the branches of the parallelism can be executed in any order.

In the case of choices, it is easy to see that the only applicable rule in the
instrumented semantics is (Choice). Let us assume that we evaluate this rule with
a pair of stacks (S, S0). There are two possibilities in this rule: If S is empty,
this rule puts in the control the left branch, and [(C1, {C2})] is added to S0,
meaning that the left branch of the choice is executed and the right branch
is pending. Therefore, we can ensure that the left branch is always explored
because the algorithm evaluates the semantics with an initially empty stack. If
the last element of S is either (C1, {C2}) or (C2, ∅), the semantics evaluates the
first (resp. second) branch and deletes this element from S, and adds it to S0.

We know that none of the other rules changes the stacks except (Synchronized

Parallelism), and they both ((Synchronized Parallelism) and (Choice)) do it in the
same manner. Therefore, we only have to ensure that the algorithm takes the
stack S0, selects another possibility (e.g., if C1 was selected in the previous
evaluation, then C2 is selected in the next evaluation, i.e., if the head of the
stack is (C1, {C2}) it is changed to (C2, ∅)), puts it in the new initial state as
the stack S, and the other stack is initialised for the next computation. This is
exactly what the algorithm does by using function UpdStack.

In the case of synchronized parallelism, the semantics does exactly the same,
but this case is a bit more complex because there are five different rules than can

A Semantics to Generate the CSCFG 23

be applied. In the standard semantics, non-determinism comes from the fact that
both (Synchronized Parallelism 1) and (Synchronized Parallelism 2) can be executed
with the same state. If this happens, the instrumented semantics executes one
rule first and then the other, and all the way around in the next evaluation. When
a parallelism operator is in the control and the stack is empty, rule (Synchronized

Parallelism 5) is executed. This rule uses function AppRules to determine what
rules could be applied. If non-determinism exists in the standard semantics, it
also exists in the instrumented semantics, because the control of both semantics
is the same except for the following cases:

STOP Rule (STOP) of the instrumented semantics is not present in the standard
semantics. When a STOP is reached in a derivation, the standard semantics
stops the (sub)computation because no rule is applicable. In the instru-
mented semantics, when a STOP is reached in a derivation, the only rule
applicable is (STOP) which performs τ and puts ⊥ in the control. Then,
the (sub)computation is stopped because no rule is applicable for ⊥. There-
fore, when the control in the derivation is STOP, the instrumented seman-
tics performs one additional rewriting step with rule (STOP). Therefore, no
additional non-determinism appears in the instrumented semantics due to
(STOP).

⊥ This symbol only appears in the instrumented semantics. If it is in the control,
the computation terminates because no rule can be applied. Therefore, no
additional non-determinism appears in the instrumented semantics due to
⊥.

	 This symbol is introduced in the computation by (Process Call) or (Synchronized

Parallelism 1, 2 and 3). Once it is introduced, there are two possibilities: (i) it
cannot be removed by any rule, thus this case is analogous to the previous
one; or (ii) it is removed by (Synchronized Parallelism 4) because the 	 is
the label of a branch of a parallelism operator. In this case, the control
remains the same as in the standard semantics, and hence, no additional
non-determinism appears.

After (Synchronized Parallelism 5) has been executed, we have all possible ap-
plicable rules in the stack S, and S0 remains unchanged. Then, the semantics
executes the first rule, deletes it from S, and adds it to S0. Therefore, the same
mechanism used for choices is valid for parallelisms, and thus all branches of
choices and parallelisms are explored.

Now, we have to prove that any possible (non-deterministic) derivation of
MAIN with the standard semantics is also performed by the instrumented seman-
tics as defined by Algorithm 1. We proof this lemma by induction on the length
of the derivation D.

In the base case, the initial state for the instrumented semantics induced by
Algorithm 1 is in all cases (MAIN(MAIN,0), G, •, (S, ∅), ∅, ∅) where S = ∅ in the first
execution and S 6= ∅ in the other executions. Therefore, both semantics can only
perform (Process Call) with an event τ . Hence, in the base case, both derivations
are equivalent. We assume as the induction hypothesis, that both derivations

24 M. Llorens et al.

are equivalent after n steps of the standard semantics, and we prove that they
are also equivalent in the step n + 1.

The most interesting cases are those in which the event is an external event.
All possibilities are the following:

– (STOP) In this case, both derivations finish the computation. The instru-
mented semantics performs one step more with the application of rule (STOP)

(see the first item in the previous description).
– (Process Call) and (Prefixing) In these cases, both derivations apply the same

rule and the control is the same in both cases.
– (Internal Choice 1 and 2) In these cases, the control becomes the left (resp.

right) branch. They are analogous to the (Choice) rule of the instrumented
semantics because both branches will be explored in different derivations as
proved before.

– (External Choice 1,2,3 and 4) With (External Choice 1 and 2) only τ events can be
performed several times to evolve the branches of the choice. In every step
the final control has the same specification position of the choice operator.
Finally, one step is applied with (External Choice 3 or 4). Then, the set of
rewriting steps performed with external choice are of the form:

P0
τ

−→ P1

(P0 � Q)
τ

−→ (P1 � Q)
. . .

Pn
e
−→ Pn+1

(Pn � Q)
e
−→ Pn+1

We can assume that (External Choice 1) is applied several times and finally
(External Choice 3). This assumption is valid because (External Choice 2) is
completely analogous to (External Choice 1); (External Choice 3) is completely
analogous to (External Choice 4); and all combinations are going to be exe-
cuted by the semantics as proved before. Then, we have an equivalent set of
rewriting steps with the instrumented semantics:

(P0 � Q)
τ

−→ P0

,
P0

τ
−→ P1

. . .
Pn

τ
−→ Pn+1

Clearly, in both sequences, the specification positions of the control are the
same.

– (Synchronized Parallelism 1 and 2) Both rules can be applied interwound in the
standard semantics. As it has been already demonstrated, we know that the
same combination of rules will be applied by the instrumented semantics
according to the algorithm use of the stack. The only difference is that the
instrumented semantics performs an additional step with (Synchronized Paral-

lelism 5), but this rule keeps the parallelism operator in the control; thus the
specification position is the same and the claim holds.

– (Synchronized Parallelism 3) If this rule is applied in the standard semantics,
in the instrumented semantics we apply (Synchronized Parallelism 5) and then
(Synchronized Parallelism 3). The specification positions of the control do not
change.

Lemma 2. Let S be a CSP specification, and D = s0
Θ0
 . . .

Θn
 sn+1 a derivation

of S performed with the instrumented semantics. Then, for each rewriting step

A Semantics to Generate the CSCFG 25

si
Θi
 si+1, 0 ≤ i < n, with si = (Pα, G, m, (S, S0), ∆, ζ), and si+1 = (Q, G′, n,

(S′, S′
0), ∆

′, ζ ′); we have that n
m
7→ α ∈ G′.

Proof. The lemma trivially holds for all rules of the semantics. The only inter-
esting case is synchronized parallelism. In the case of (Synchronized Parallelism 1, 2

and 3), function InitBranch inserts n
m
7→ α into G′, the first time it is evaluated.

In the case of (Synchronized Parallelism 4), function LoopCheck returns another
synchronized parallelism or a 	 only if one of the processes has been marked
as a loop. This only happens if a process call has been unfolded; and in turn,
this only happens if (Synchronized Parallelism 1, 2 or 3) has been performed. The
other possibility is that function LoopCheck returns a ⊥. In this case, ⊥ cannot
be further unfolded because no rule is applicable. Then, it must be the control
of the state sn+1 and hence it is not required that n

m
7→ α ∈ G′. Finally, (Syn-

chronized Parallelism 5) starts a subderivation with a parallelism operator in the
control and a non-empty stack. Therefore, another of the previous rules must be
applied after it, and thus, the claim follows.

Lemma 3. Let S be a CSP specification, and G = (N, Ec, El, Es) the graph
produced for S by Algorithm 1. Then, for each two nodes n, n′ ∈ N , (n 7→ n′) ∈
Ec iff the control can pass from l(n) to l(n′) and 6 ∃n′′. (n 7→ n′′) ∈ Ec and
(n′′ 7→ n′) ∈ Ec.

Proof. The fact that 6∃n′′. (n 7→ n′′) ∈ Ec and (n′′ 7→ n′) ∈ Ec implies that
the control can pass from n to n′ directly, i.e., without a transitive relation.
This condition is needed because the CSCFG only contains control-flow edges
between those nodes where the control can pass from one to the other directly.
Moreover, all the arcs in Ec are added to G by the instrumented semantics.
Therefore, we only have to prove that in every derivation D of the semantics, for
every new arc (n 7→ n′) added to Ec, the control can pass from l(n) to l(n′). We
prove this lemma by induction on the length of the derivation D. The base case
starts with the initial state (MAIN(MAIN,0), ∅, •, (∅, ∅), ∅, ∅). Therefore the only rule

applicable is (Process Call). This case is trivial because in the new arc n
m
7→ α,

l(m) = (MAIN, 0) and l(n) = (MAIN, Λ). Hence, by item (i) of Definition 2 we
have that the control can pass from l(m) to l(n). We assume as the induction
hypothesis that the lemma holds in the i first rewriting steps of D, and we prove
that it also holds in the step i+1. In the rewriting step i+1, one of the following
rules must be applied:

– (Process Call) This case is analogous to the base case, because in the new
added arc n

m
7→ α, m must be the name of a process N , and n = (N, Λ).

Therefore, by item (i) of Definition 2 we have that the control can pass from
l(m) to l(n).

– (Prefixing) Two new arcs are added to G. n
m
7→ α and o

n
7→ β. Trivially, the

control can pass from l(n) to l(o) by item (iii) of Definition 2. Moreover,
by Lemma 2 we have that a node with the specification position of P and
parent o will be added to G in the next rewriting step. Therefore, the control
can pass from l(o) to Pos(P) by item (iv) of Definition 2.

26 M. Llorens et al.

– (Choice) One of the branches P ′ is the new control. Therefore, by Lemma 2
we have that a node with the specification position of P ′ and parent n will
be added to G in the next rewriting step. Thus, the control can pass from
l(n) to the next fresh reference by item (ii) of Definition 2.

– (Synchronized Parallelism 1 and 2) They are analogous to the case of the choice.
– (Synchronized Parallelism 3) In this case, two new nodes are added. Each of

them corresponds to one branch and are exactly the same as in (Synchronized

Parallelism 1 and 2).
– (Synchronized Parallelism 4) This rule does not add new nodes to the graph.
– (Synchronized Parallelism 5) This rule starts a subderivation by applying one

of the other rules associated with synchronized parallelism, thus the claim
follows by the induction hypothesis.

Lemma 4. Let S be a CSP specification, D a derivation of S performed with
the instrumented semantics, and G = (N, Ec, El, Es) the graph produced by D.
Then, there exists a synchronization edge (ae a′) ∈ Es for each synchronization
in D where a and a′ are the nodes of the synchronized events.

Proof. After every execution of the semantics, Algorithm 1 introduces in the
graph G all the synchronizations in the set ζ. Therefore, we have to prove that
at the end of the derivation D, all the synchronizations are in ζ.

We prove this lemma by induction on the length of the derivation D = s0
Θ0

s1
Θ1
 . . .

Θn
 sn+1. We can assume that the derivation starts with the initial

state (MAIN(MAIN,0), ∅, •, (∅, ∅), ∅, ∅), thus in the base case, the only rule applicable
is (Process Call) and hence no synchronization is possible. We assume as the
induction hypothesis that there exists a synchronization edge (a e a′) ∈ Es

for each synchronization in s0
Θ0
 . . .

Θi−1
 si with 0 < i ≤ n and prove that the

lemma also holds for the next rewriting step si
Θi
 si+1.

Firstly, only (Synchronized Parallelism 3) allows the synchronization of events.
Therefore, (ae a′) ∈ ζ only if the control of si, P , is a synchronized parallelism,
or if a (Synchronized Parallelism 3) is applied in Θi. Then, let us consider the case

where
Θi
 is the application of rule (Synchronized Parallelism 3). This proof is also

valid for the case where (Synchronized Parallelism 3) is applied in Θi. We have the
following rewriting step:

Left Right

(P1‖
X

(α,n1,n2,Υ)P2, G, m, (S′ : (SP3, rules), S0), ∆, ζ)
e

−→ (P ′, G′′, m, (S′′′, S′′
0), ∆1 ∪ ∆2, ζ′ ∪ syncs)

where

(G′
1, ζ1, n′

1) = InitBranch(G, ζ, n1, m, α) ∧ e ∈ X

Left = (P1, G′
1, n′

1, (S′, (SP3, rules) : S0), ∆, ζ1)
e

−→ (P1′, G′′
1 , n′′

1 , (S′′, S′
0), ∆1, ζ′

1)

(G′
2, ζ2, n′

2) = InitBranch(G′′
1 , ζ′

1, n2, m, α)

Right = (P2, G′
2, n′

2, (S′′, S′
0), ∆, ζ2)

e
−→ (P2′, G′′, n′′

2 , (S′′′, S′′
0), ∆2, ζ′)

A Semantics to Generate the CSCFG 27

sync = {s1 e s2 | s1 ∈ ∆1 ∧ s2 ∈ ∆2} ∧ ∀ (m e n) ∈ sync . G′′[m e n]

P ′ = �	
 	m (Unloop(P1′ ‖
X

(α,n′′
1

,n′′
2

,•)P2′)) if (sync ∪ ζ′) = ζ

P1′ ‖
X

(α,n′′
1

,n′′
2

,•)P2′ otherwise

Because (Prefixing) is the only rule that performs an a event without further con-
ditions, we know that P1 must be a prefixing operator or a parallelism containing
a prefixing operator whose prefix is a, i.e., we know that the rule applied in Left

is fired with an event a; and we know that all the rules of the semantics except
(Prefixing) need to fire another rule with an event a as a condition. Therefore,
at the top of the condition rules, there must be a (Prefixing). The same happens
with P2. Hence, two prefixing rules (one for P1 and one for P2) have been fired
as a condition of this rule.

In addition, the new set ζ contains the synchronization set {s1 e s2 | s1 ∈

∆1 ∧ s2 ∈ ∆2} where ∆1 and ∆2 are the sets of references to the events that
must synchronize in Left and Right, respectively.

Hence, we have to prove that all and only the events (a) that must syn-
chronize in Left are in ∆1. We prove this by showing that all references to the
synchronized events are propagated down by all rules from the (Prefixing) in the
top to the (Synchronized Parallelism 3). And the proof is analogous for Right.

The only applicable rules in

(P1, G′
1, n

′
1, (S

′ : (SP3, rules), S0), ∆, ζ)
e

−→ (P1′, G′′
1 , n′′

1 , (S′′, S′
0), ∆1, ζ

′)

are:

– (Prefixing) In this case, the prefix a is added to ∆1.
– (Synchronized Parallelism 1, 2 and 5) In these cases, the set ∆′ is propagated

down.
– (Synchronized Parallelism 3) In this case, the sets ∆1 and ∆2 are joined and

propagated down.

Therefore, all the synchronized events are in the set ∆1 and the claim follows.

Lemma 5. Let S be a CSP specification and G = (N, Ec, El, Es) the CSCFG
produced by Algorithm 1 for S. Then, (n1 n2) ∈ El iff l(n1) and l(n2) are
process calls that refer to the same process M ∈ N and n2 ∈ Con(n1).

Proof. First, all edges in El are introduced in a derivation D of the instrumented

semantics. Let D = s0
Θ0
 . . .

Θn
 sn+1 a derivation that introduced (n1 n2)

into El. Then, this arc is necessarily introduced in a rewriting step where rule
(Process Call) was applied, because this is the only rule that adds arcs to El.
In rule (Process Call), arcs are added by means of function LoopCheck. An arc

is added to El if and only if ∃n2 ∈ Path(0, n1) ∧ n2
t
7→M ∈ Ec, where n1

is the reference of the current node added to N . Therefore, because function
LoopCheck adds the arc n1 n2, then l(n1) = l(n2) = M . Hence, we need to
prove that n2 ∈ Con(n1).

28 M. Llorens et al.

First, by Lemma 3, if the control can pass (transitively) from n2 to n1, then
we have in G a path of control edges n2 7→∗ n1. We can show that this path is
loop-free by contradiction. Let us consider that the path is not loop-free. Then,
n2 7→∗ n3 7→∗ n1 with l(n3) = M and n1 6= n3. The derivation D must be of the
form:

D = s0
Θ0
 . . . si

Θi
 si+1 . . .

Θn
 sn+1, 0 < i ≤ n

where the rewriting step si
Θi
 si+1 introduced n3 in G. Clearly, n3 is neces-

sarily introduced in G by rule (Process Call) which is the only rule that adds a
process call to the graph. Moreover, by the definition of LoopCheck and because

∃n2 . n2
t
7→M ∈ G ∧ n2 ∈ Path(0, n3), we know that the control of si+1 is

	n2 (rhs(N)). But this is a contradiction with the fact that n3 7→∗ n1 because
no rule of the semantics adds a control-flow edge of the form n3 7→. In particular,
once the control of si+1 is labelled with 	n2 , only the rule (Synchronized Parallelism

4) can remove the label of the control. This is done with function LoopControl

in the third case of the definition. But in this case, the parallelism is marked as
P ′
	 ‖

X
(α,p	,q′,p)Q

′ where p	 is the label of the previous process call to M . Hence,

p	 = n2; and thus, the next control edges added to G start from n2, and not
from n3.

Theorem 1 (Correctness) Let S be a CSP specification and G the graph
produced for S by Algorithm 1. Then, G is the CSCFG associated with S.

Proof. In order to prove that G is a CSCFG, we need to prove that it satisfies
the properties of Definition 5. Let us consider a CSCFG G = (N, Ec, El, Es).

Firstly, by Lemma 3, and because control-flow is a transitive relation, we
know that for each rewriting step in a derivation of S the control can pass from
MAIN to the positions added to N . Hence, ∀ n ∈ N. l(n) ∈ Pos(S) and l(n) is
executable in S. In addition, we have that:

– by Lemma 3, for each two nodes n, n′ ∈ N , (n 7→ n′) ∈ Ec iff the control can
pass from n to n′.

– by Lemma 5, (n1 n2) ∈ El iff l(n1) and l(n2) are (possibly different)
process calls that refer to the same process M ∈ N and n2 ∈ Con(n1);

– by Lemma 4, there exists a synchronization edge (a e a′) in G for each
synchronization in a derivation D of S where a and a′ are the nodes of the
synchronized events. And, by Lemma 1 we know that all possible derivations
of S are explored by Algorithm 1.

Moreover, we know that the only nodes in N are the nodes induced by Ec

because all the nodes added to G are added by connecting the new node to the
last added node (i.e., if the current reference is m and the new fresh reference is

n, then the new node is always added as G[n
m
7→α]). Hence, all nodes are related

by control edges and thus the claim holds.

A Semantics to Generate the CSCFG 29

Theorem 2 (Termination) Let S be a CSP specification. Then, the execution
of Algorithm 1 with S terminates.

Proof. In order to prove that the algorithm terminates we have to show that the
stack never grows infinitely. For this purpose, we have to prove that all executions
of the semantics terminate. This is sufficient because function UpdStack, which
is the only one that also manipulates the stack, always either reduces its size
or leaves it unchanged. So, as the stack is always increased by rule (Synchronized

Parallelism 5) or by rule (Choice), we have to show that there is no derivation
which fires these rules infinitely. We use a function over sets of rewriting steps
which is defined as follows:

[R] =
⋃

{ {s
Θ
 s′} ∪ [Θ] | s

Θ
 s′ ∈ R}

Given a set R of rewriting steps, it returns R and all the rewriting steps included
in the subderivations of R.

In the following, we will consider derivations where the state is simplified and
only the control is taken into account. In order to prove that there does not exist
any infinite derivation, we consider the main derivation D of the semantics where

the initial control is MAIN. If ∀si
Θi
 si+1 ∈ D where 6 ∃s

Θ
 s′ ∈ [{si

Θi
 si+1}]

such that s = N and s′ =	 (rhs(N)), then we know that the derivation D is
finite because no infinite unfolding is possible (we know that no process is called
twice) and the specification is finite. Hence, as the application of the rules of the
semantics always reduces the size of the process in the control, it will eventually
terminate with ⊥.

The other case happens when the same process appears twice in a derivation.
We can assume that, after a number of rewriting steps, we find the first occur-

rence of a rewriting step si
Θi
 si+1 ∈ D where ∃s

Θ
 s′ ∈ [{si

Θi
 si+1}] such that

s = N and s′ =	 (rhs(N)). When this happens, we know that N has been al-
ready unfolded in a previous rewriting step, and function LoopCheck introduces

the loop s′ through the rule (Process Call) which corresponds to s
Θ
 s′.

We have two possibilities: the first one happens when s′ = si+1 which means
that this is the last rewriting step of derivation D since there does not exist
any rule for 	(). In the other case, when s′ 6= si+1, we have that rewriting

step si
Θi
 si+1 corresponds to the application of rule (Synchronized Parallelism 1),

(Synchronized Parallelism 2) or (Synchronized Parallelism 5), since no other rule can
fire the rule (Process Call) into the associated Θi. Note that rule (Synchronized

Parallelism 3) can not be applied here because event τ can not fire this rule. This
means that si is a parallelism which has nested parallelisms in its branches and

some of these branches has the process call N . Then we know that ∃ (s‖
X

P)
Θ′

(s′ ‖
X

P) ∈ [{si
Θi
 si+1}] where Θ′ = {s

Θ
 s′}.3 Now, process P could be of one

of these kinds:
3 Of course, s could be on the right branch of the parallelism, but we only consider

this case since the other one is analogous.

30 M. Llorens et al.

– ⊥: In this case, there is a rewriting step sj

Θj

 sj+1 ∈ D with j > i such

that (s′ ‖
X

⊥)
Θ′′

 	 (s′ ‖
X

⊥) ∈ [{sj

Θj

 sj+1}] by application of rule (Synchronized

Parallelism 4). Then, if sj+1 =	 (s′ ‖
X

⊥) then the computation terminates.

Else, sj+1 is a parallelism and it terminates by induction.

– 	 (Q′): In this case, there is a rewriting step sj

Θj

 sj+1 ∈ D with j > i

such that (s′ ‖
X

	 (Q′))
Θ′′

 	 (s′ ‖
X

Q′) ∈ [{sj

Θj

 sj+1}] by application of rule

(Synchronized Parallelism 4). Then, if sj+1 =	 (s′ ‖
X

Q′) then the computation

terminates. Else, sj+1 is a parallelism and it terminates by induction.

– STOP: Then, there is some rewriting step sj

Θj

 sj+1 ∈ D with j > i such

that (s′ ‖
X

STOP)
Θ′′

 (s′ ‖
X

⊥) ∈ [{sj

Θj

 sj+1}], and it terminates by case ⊥.

– a → Q: Then, there are two possibilities. If a 6∈ X then there is some rewrit-

ing step sj

Θj

 sj+1 ∈ D with j > i such that (s′ ‖
X

(a → Q))
Θ′′

 (s′ ‖
X

Q) ∈

[{sj

Θj

 sj+1}], then it terminates by induction. Else, when a ∈ X , there

is a rewriting step sj

Θj

 sj+1 ∈ D with j > i such that (s′ ‖
X

(a → Q))
Θ′′

(rhs(N)‖
X

a → Q) ∈ [{sj

Θj

 sj+1}], where parallelism’s Υ is equal to the

label of the loop. Then, we have again two options. The first one is that
some synchronization is drawn before to have N again in the left branch

of the parallelism. Then, we have a rewriting step sk
Θk
 sk+1 ∈ D with

k > j such that (s′′ ‖
X

a → Q)
Θ′′′

 (s′′′ ‖
X

Q) ∈ [{sk
Θk
 sk+1}], and Υ is put

to • if the synchronization is not included in ζ yet. This case terminates,
by induction hypothesis. Otherwise, if the synchronization was in ζ, then

(s′′ ‖
X

a → Q)
Θ′′′

 	 (s′′′ ‖
X

Q) ∈ [{sk
Θk
 sk+1}] by rule (Synchronized Parallelism

3). If sk+1 =	 (s′′′ ‖
X

Q), the derivation has terminated, else termination is

proved by induction. The second case is when none synchronization is drawn

before to have N again into the left branch. In this case, we have that sk
Θk

sk+1 ∈ D with k > j such that (s′ ‖
X

a → Q)
Θ′′′

 	 (s′ ‖
X

⊥) ∈ [{sk
Θk
 sk+1}]

by rule (Synchronized Parallelism 4). If sk+1 =	 (s′ ‖
X

⊥), the derivation has

terminated, else, termination is proved by induction.

– Q1 � Q2: In this case, one of the branches is selected, and independently of
which one is followed, the computation terminates by induction. Then, there

is some rewriting step sj

Θj

 sj+1 ∈ D with j > i such that (s′ ‖
X

(Q1 �Q2))
Θ′′

(s′ ‖
X

Q1) ∈ [{sj

Θj

 sj+1}] or (s′ ‖
X

(Q1 � Q2))
Θ′′

 (s′ ‖
X

Q2) ∈ [{sj

Θj

 sj+1}].

A Semantics to Generate the CSCFG 31

– Q1 ‖
Y

Q2: Using the induction hypothesis, a parallelism always terminates,

so we have to consider that in this case Q will be rewritten either to ⊥ or to
	(Q′

1 ‖
Y

Q′
2) and thus, the computation finishes.

Therefore, the claim holds.

6 Conclusions

This work introduces an algorithm to build the CSCFG associated with a CSP
specification. The algorithm uses an instrumentation of the standard CSP’s op-
erational semantics to explore all possible computations of a specification. The
semantics is deterministic because the rule applied in every step is predetermined
by the initial state and the information in the stack. Therefore, the algorithm
can execute the semantics several times to iteratively explore all computations
and hence, generate the whole CSCFG. The CSCFG is generated even for non-
terminating specifications due to the use of a loop detection mechanism con-
trolled by the semantics. This semantics is an interesting result because it can
serve as a reference mark to prove properties such as completeness of static
analyses based on the CSCFG. The way in which the semantics has been in-
strumented can be used for other similar purposes with slight modifications. For
instance, the same design could be used to generate other graph representations
of a computation such as Petri nets [10].

On the practical side, we have implemented a tool called SOC [8] which is
able to automatically generate the CSCFG of a CSP specification. The CSCFG
is later used for debugging and program simplification. SOC has been inte-
grated into the most extended CSP animator and model-checker ProB [2, 6],
that shows the maturity and usefulness of this tool and of CSCFGs. The last re-
lease of SOC implements the algorithm described in this paper. However, in the
implementation the algorithm is much more complex because it contains some
improvements that significantly speed up the CSCFG construction. The most
important improvement is to avoid repeated computations. This is done by: (i)
state memorization: once a state already explored is reached the algorithm stops
this computation and starts with another one; and (ii) skipping already per-
formed computations: computations do not start from MAIN, they start from the
next non-deterministic state in the execution (this is provided by the information
of the stack).

The implementation, source code and several examples are publicly available
at: http://users.dsic.upv.es/∼jsilva/soc/

References

1. Brassel, B., Hanus, M., Huch, F., Vidal, G.: A Semantics for Tracing Declarative
Multi-paradigm Programs. In: Moggi, E., Warren, D.S. (eds.) 6th ACM SIGPLAN
Int’l Conf. on Principles and Practice of Declarative Programming (PPDP’04), pp.
179–190. ACM, New York, NY, USA (2004)

32 M. Llorens et al.

2. Butler, M., Leuschel, M.: Combining CSP and B for Specification and Property
Verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol.
3582, pp. 221–236. Springer, Heildeberg (2005)

3. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River, NJ, USA (1985)

4. Kavi, K.M., Sheldon, F.T., Shirazi, B., Hurson, A.R.: Reliability Analysis of CSP
Specifications using Petri Nets and Markov Processes. In: 28th Annual Hawaii Int’l
Conf. on System Sciences (HICSS’95), vol. 2 (Software Technology), pp. 516–524.
IEEE Computer Society, Washington, DC, USA (1995)

5. Ladkin, P., Simons, B.: Static Deadlock Analysis for CSP-Type Communications.
Responsive Computer Systems (Chapter 5), Kluwer Academic Publishers (1995)

6. Leuschel, M., Butler, M.: ProB: an Automated Analysis Toolset for the B Method.
Journal of Software Tools for Technology Transfer. 10(2), 185–203 (2008)

7. Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: Static Slicing of CSP
Specifications. In: Hanus, M. (ed.) 18th Int’l Symp. on Logic-Based Program Synthe-
sis and Transformation (LOPSTR’08), pp. 141–150. Technical report, DSIC-II/09/08,
Universidad Politécnica de Valencia (July 2008)

8. Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: SOC: a Slicer for CSP
Specifications. In: Puebla, G., Vidal, G. (eds.) 2009 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program Manipulation (PEPM’09), pp.
165–168. ACM, New York, NY, USA (2009)

9. Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: The MEB and CEB
Static Analysis for CSP Specifications. In: Hanus, M. (ed.) LOPSTR 2008, Revised
Selected Papers. LNCS, vol. 5438, pp. 103–118. Springer, Heildeberg (2009)

10. Llorens, M., Oliver, J., Silva, J., Tamarit, S.: Transforming Communicating Se-
quential Processes to Petri Nets. In: Topping, B.H.V., Adam, J.M., Pallarés, F.J.,
Bru, R., Romero, M.L. (eds.) Seventh Int’l Conf. on Engineering Computational
Technology (ICECT’10). Civil-Comp Press, Stirlingshire, Scotland (to appear 2010)

11. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical Compression for Model-Checking CSP or How to
Check 1020 Dining Philosophers for Deadlock. In: Brinksma, E., Cleaveland, R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, London (1995)

12. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River, NJ, USA (2005)

