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ABSTRACT v

Abstract

Supraventricular tachyarrhythmias, in particular Atrial Fibrillation (AF), are
the most commonly cardiac diseases encountered in the routine clinical practice.
The prevalence of AF is less than 1% among population under 60 years old, but it
increases significantly among those over 70, approximating to 10% in those older
than 80. Undergoing a sutained AF episode is related to a higher mortality ratio
and to a rising probability of suffering thromboembolisms, myocardial infarction,
and stroke. On the other hand, paroxysmal AF (PAF), which is characterized by
its spontaneous termination, is frequently the precursor to sustained AF. This
provokes a great interest among the scientific community in disclosing the me-
chanisms which lead to AF perpetuation or to spontaneous AF termination.

The analysis of the surface electrocardiogram (ECG) is the most extended non-
invasive technique in medical diagnosis of cardiac pathologies. In order to use
the ECG as a tool for the AF study, the atrial activity (AA) must be separated
from other cardioelectric signals. In this sense, Blind Source Separation (BSS)
techniques are able to perform a multi-lead statistical analysis with the aim to
obtain a set of independent sources that include the AA. When the BSS problem
is tackled, it becomes necessary to consider a source mixing model near to the
real mixing process in order to develop mathematical algorithms that solve the
problem. A feasible model consists of assuming the linear mixture of sources.
Within this linear mixing model it can be made the additional assumption of ins-
tantaneous mixture. This instantaneous linear mixing model is the one used in
Independent Component Analysis (ICA). An alternative mixing model is con-
sidered by convolutive BSS (CBSS) algorithms, where a more realistic process in
the generation of ECG leads is taken into account with delayed contributions of
cardioelectric sources.

In this thesis, a performance study of CBSS algorithms applied to AA extrac-
tion from ECG recordings has been carried out for the first time. With this aim,
the most relevant CBSS algorithms have been compared with the instantaneous
algorithm FastICA, the effectivity of which is extensively proved. This compari-
son will allow to know which CBSS algorithms are useful for AA extraction from
ECG recordings of AF episodes. On the other hand, CBSS algorithms have the
problem of requiring a minimum number of observed signals for their suitable
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application. Here a new AA extraction algorithm is presented, which is based on
the convolutive mixing model and solves the problem of lack of available leads
from Holter ECG recordings. The high likeliness level between original and esti-
mated AA, measured by different performance indicators, demonstrates the suit-
ability of this new method for the AA extraction from Holter recordings and,
furthermore, a higher robustness against noise of the convolutive mixing model
is highlighted.

The most common cause of undergoing an AF episode is attributed to the
reentry mechanism, which consists of multiple wavelet fronts that propagate
through the atrial tissue. Recent studies have proved a relation between the num-
ber of simultaneous reentries and atrial electrical activity organization of the atria.
In addition, it is also known the progressive deterioration of the atrial electrical
activity organization after the PAF onset and the organization increase prior to its
return to normal sinus rhythm. Furthermore, the maintenance of AF episodes is
related to frequency dispersion variability of AA. From a clinic point of view, it
is interesting to evaluate the atrial electrical activity by means of regularity indi-
cators applied to the AA extracted from the surface ECG with the aim to predict
the evolution of PAF episodes. This can be carried out from two different pers-
pectives. Firstly, a regularity estimation can be applied to the raw AA obtained
by extraction algorithms. An alternative way to tackle the problem is to study the
regularity of certain spectral feature throughout time. This last aspect has never
been considered before and is a matter of study in this thesis.

The work of this thesis finishes with the presentation of a new method for
predicting the early termination or the maintenance of PAF episodes. This new
method is based on the regularity analysis of AA spectral features. During the
method design, the regularity of twelve numerical series of spectral features was
analyzed. In order to construct these series, the spectrogram of the AA was previ-
ously computed. The series regularity was estimated by the nonlinear regularity
estimator sample entropy (SampEn). The SampEn of six spectral features were
revealed as statistically relevant to PAF characterization with p < 0.05 for all fea-
tures. This study was complemented with a multivariate regularity analysis that
executes a joint study of the spectral features series and the AA in time domain
The multivariate analysis discloses the combination of features that optimizes the
prediction with 100% of correctly classified recordings for the learning set and
93.33% for the test set. Consequently, the presented method can be reliably used
for predicting PAF termination.
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Resumen

Las arritmias supraventriculares, en particular la fibrilación auricular (FA),
son las enfermedades cardı́acas más comúnmente encontradas en la práctica clı́ni-
ca rutinaria. La prevalencia de la FA es inferior al 1% en la población menor de 60
años, pero aumenta de manera significativa a partir de los 70 años, acercándose
al 10% en los mayores de 80. El padecimiento de un episodio de FA sostenida,
además de estar ligado a una mayor tasa de mortalidad, aumenta la probabilidad
de sufrir tromboembolismo, infarto de miocardio y accidentes cerebrovasculares.
Por otro lado, los episodios de FA paroxı́stica, aquella que termina de manera
espontánea, son los precursores de la FA sostenida, lo que suscita un alto interés
entre la comunidad cientı́fica por conocer los mecanismos responsables de per-
petuar o conducir a la terminación espontánea de los episodios de FA.

El análisis del ECG de superficie es la técnica no invasiva más extendida en
la diagnosis médica de las patologı́as cardı́acas. Para utilizar el ECG como herra-
mienta de estudio de la FA, se necesita separar la actividad auricular (AA) de las
demás señales cardioeléctricas. En este sentido, las técnicas de Separación Ciega
de Fuentes (BSS) son capaces de realizar un análisis estadı́stico multiderivación
con el objetivo de recuperar un conjunto de fuentes cardioeléctricas independien-
tes, entre las cuales se encuentra la AA. A la hora de abordar un problema de BSS,
se hace necesario considerar un modelo de mezcla de las fuentes lo más ajustado
posible a la realidad para poder desarrollar algoritmos matemáticos que lo re-
suelvan. Un modelo viable es aquel que supone mezclas lineales. Dentro del
modelo de mezclas lineales se puede además hacer la restricción de que estas
sean instantáneas. Este modelo de mezcla lineal instantánea es el utilizado en el
Análisis de Componentes Independientes (ICA). Un modelo de mezcla alterna-
tivo es el considerado por los algoritmos BSS convolutivos (CBSS), donde se tiene
en cuenta un proceso de generación más realista de las derivaciones de ECG con
contribuciones retardadas de fuentes cardioeléctricas.

En esta tesis se ha realizado por primera vez un estudio de rendimiento de
los algoritmos CBSS aplicados a la extracción de la AA a partir de registros de
ECG. Para ello, se han comparado los algoritmos CBSS más relevantes con el al-
goritmo instantáneo FastICA, cuya efectividad está ya ampliamente contrastada.
Esta comparación va a permitir saber qué algoritmos CBSS resultan ser útiles
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para extraer la AA de los registros ECG de episodios de FA. Por otro lado, los al-
goritmos CBSS presentan el problema de requerir un mı́nimo número de señales
observadas para su adecuada aplicación. Aquı́ se presenta un nuevo algoritmo
para la extracción de la AA, basado en el modelo convolutivo de mezcla, que
resuelve el problema de la escasez de derivaciones que poseen los registros de
Holter. El alto grado de similitud entre la AA original y la AA estimada, medido
por los dsitintos indicadores de rendimiento utilizados, demuestra la idoneidad
del nuevo método presentado para la extracción de la AA a partir de registros
Holter, además de poner de relieve una mayor robustez frente al ruido del mo-
delo convolutivo de mezcla.

La causa más común que explica la aparición de episodios de FA es el meca-
nismo de reentrada, que consiste en a la existencia de múltiples frentes de propa-
gación que recorren el tejido auricular. Estudios recientes han demostrado la
relación existente entre el número de reentradas simultáneas y la organización
de la actividad eléctrica de las aurı́culas. Por otra parte, también son conocidos
el progresivo deterioro de la organización de la actividad eléctrica auricular tras
el comienzo de la FA paroxı́stica y el incremento de la misma en los instantes
previos al retorno a ritmo sinusal normal. El mantenimiento de los episodios de
FA está relacionado además con la variabilidad de dispersión en frecuencia de la
AA. Desde un punto de vista clı́nico, resulta interesante evaluar el nivel de orga-
nización eléctrica de las aurı́culas mediante indicadores de regularidad aplicados
a la AA extraı́da del ECG de superficie con el objetivo de predecir la evolución
de la FA paroxı́stica. Esto se puede llevar a cabo desde dos perspectivas distin-
tas. La primera forma de hacerlo serı́a aplicar la estimación de regularidad a la
señal de AA tal como la obtienen los métodos de extracción. Una manera alterna-
tiva de abordar el problema serı́a estudiar la regularidad de ciertas caracterı́sticas
espectrales de la AA a lo largo del tiempo, lo cual no ha sido nunca realizado
anteriormente y es motivo de estudio en esta tesis.

El trabajo de la tesis finaliza con la presentación de un nuevo método para
la predicción de la pronta terminación o el mantenimiento de episodios de FA
paroxı́stica. Este método se basa en el análisis de regularidad de caracterı́sticas
espectrales de la AA. Durante el diseño del método, se analizó la regularidad de
las series numéricas de doce caracterı́sticas espectrales diferentes. Para construir
estas series fue obtenido previamente el espectrograma de la AA. La regularidad
de las series se estimó mediante el ı́ndice de regularidad no lineal entropı́a mues-
tral. La entropı́a muestral de seis de las caracterı́sticas espectrales analizadas re-
sultó ser estadı́sticamente relevante para la caracterización de la FA paroxı́stica
con p < 0.05 en todos ellos. Este estudio fue complementado con un análisis
multivariante de regularidad que lleva a cabo un estudio conjunto de las series
de caracterı́sticas espectrales y la AA en el dominio temporal. El análisis mul-
tivariante desvela la combinación de caracterı́sticas que optimiza la predicción,
de manera que el porcentaje de episodios correctamente clasificados alcanza el
100% para el grupo de aprendizaje y el 93.33% para el grupo de test. Por tanto, el
método presentado puede ser utilizado con suficiente fiabilidad para predecir la
terminación de la FA paroxı́stica.
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Resum

Les arrı́tmies supraventriculars, en particular la fibri·lació auricular (FA), són
les enfermetats cardı́aques més comunment trobades en la pràctica clı́nica rutinà-
ria. La prevalència de la FA és inferior al 1% en la població menor de 60 anys,
però augmenta de manera significativa a partir dels 70 anys, apropant-se al 10%
en els majors de 80. El patiment d’un episodi de FA sostinguda, a més d’estar lli-
gat a una major taxa de mortalitat, augmenta la probabilitat de sofrir tromboem-
bolisme, infart de miocardi i accidents cerebrovasculars. Per una altra banda, els
episodis de FA paroxı́stica, aquella que finalitza de manera espontània, són els
precursors de la FA sostinguda, la qual cosa suscita un alt interés entre la comu-
nitat cientı́fica per conéixer els mecnanismes responsables de perpetuar o conduir
a la finalització espontània dels episodis de FA.

L’anàlisi de l’ECG de superfı́cie és la tècnica més estesa en la diagnosi mèdica
de les patologies cardı́aques. Per utilitzar l’ECG com a eina d’estudi de la FA, es
necessita separar l’activitat auricular (AA) de la resta de senyals cardioelèctriques.
En aquest sentit, les tècniques de Separació Cega de Fonts (BSS) són capaces de re-
alitzar un anàlisi estadı́stic multiderivació amb l’objectiu de recuperar un conjunt
de fonts cardioelèctriques independents, entre les quals es troba l’AA. A l’hora
d’abordar un problema de BSS, es fa necessari considerar un model de mescla de
les fonts el més ajustat possible a la realitat per poder desenvolupar algoritmes
matemàtics que el resolguen. Un model viable és aquell que suposa mescles li-
neals. Dins d’aquest model de mescles lineals es pot a més fer la restricció de
que aquestes siguen instatànies. Aquest model de mescla lineal instantània és
l’utilitzat en l’Anàlisi de Components Independents (ICA). Un model de mescla
alternatiu és el considerat pels algortimes BSS convolutius (CBSS), on es té en
compte un procés de generació més realista de les derivacions de l’ECG amb con-
tribucions retardades de fonts cardioelèctriques.

En aquesta tesi s’ha dut a terme per primera vegada un estudi de rendiment
dels algoritmes CBSS aplicats a l’extracció de l’AA a partir de registres d’ECG.
Per fer això, s’han comparat els algoritmes CBSS més rellevants amb l’algoritme
instantani FastICA, l’efectivitat del qual està ja ampliament contrastada. Aquesta
comparació permetrà saber quins algoritmes CBSS resulten ser útils per extraure
l’AA dels registres d’ECG d’episodis de FA. Per un altre costat, els algoritmes
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CBSS presenten el problema de requerir un nombre mı́nim de senyals obser-
vades per a la seua adequada aplicació. Acı́ es presenta un nou algoritme per a
l’extracció de l’AA, basat en el model convolutiu de mescla, que resol el problema
de l’escassesa de derivacions que posseixen els registres Holter. L’alt grau de
similitud entre l’AA original i l’AA estimada, mesurat pels diferents indicadors
de rendiment utilitzats, demostra la idoneı̈tat del nou mètode per a l’extracció de
l’AA a partir de registres Holter, a més de posar de relleu una major robustesa
front al soroll del model convolutiu de mescla.

La causa més comú que explica l’aparició d’episodis de FA és el mecanisme
de reentrada, que consisteix en l’existència de múltiples fronts de propagació que
recorren el teixit auricular. Estudis recents han demostrat la relació existent en-
tre el nombre d’entrades simultànies i l’organització de l’activitat elèctrica de
les aurı́cules. Per altra banda, també són coneguts la progressiva deterioració
de l’organització de l’activitat elèctrica auricular després del començament de
la FA paroxı́stica i l’increment de dita organització en els instants previs al re-
torn a ritme sinusal normal. El manteniment dels episodis de FA està a més
relacionat amb la variabilitat de dispersió en freqüència de l’AA. Des d’un punt
de vista clı́nic, resulta interessant avaluar el nivell d’organització elèctrica de les
aurı́cules mitjançant indicadors de regularitat aplicats a l’AA extreta de l’ECG
de superfı́cie amb l’objectiu de predir l’evolució de la FA paroxı́stica. Açò es pot
dur a terme desde dues perspectives distintes. La primera forma de fer-ho seria
aplicar l’estimació de regularitat a l’AA tal com l’obtenen els mètodes d’extracció.
Una manera alternativa d’abordar el problema seria estudiar la regularitat de
certes caracterı́stiques espectrals de l’AA al llarg del temps, la qual cosa no ha
estat mai realitzada amb anterioritat i és motiu d’estudi en aquesta tesi.

El treball de la tesi finalitza amb la presentació d’un nou mètode per a a
predicció de la sobtada terminació o el manteniment d’episodis de FA paroxı́stica.
Aquest mètode es basa en l’anàlisi de regularitat de caracterı́stiques espectrals de
l’AA. Durant el disseny del mètode es va analitzar la regularitat de les sèries
numèriques de dotze caracterı́sitiques espectrals diferents. Per construir aque-
stes sèries es va obtenir previament l’espectrograma de l’AA. La regularitat de
les sèries va ser estimada amb l’index de regularitat no lineal entropia mostral.
L’entropia mostral de sis de les caracterı́stiques espectrals analitzades va resultar
ser estadı́sticament relevant per a la caracterització de la FA paroxı́stica amb p <
0.05 per a tots ells. Aquest estudi va ser completat amb un anàlisi multivariant
de regularitat que realitza un estudi conjunt de les sèries de caracterı́stiques es-
pectrals i de l’AA en el domini temporal. L’anàlisis multivariant desvela la com-
binació de paràmetres que optimitza la predicció, de manera que el percentatge
d’episodis correctament classificats alcança el 100% per al grup d’aprenentatge i
el 93.33% per al grup de test. Per tant, el mètode presentat pot ser utilitzat amb
suficient fiabilitat per a predir la terminació de la FA paroxı́stica.
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Chapter 1

Motivation, Hypotheses, and
Objectives

1.1 Motivation

Atrial arrhythmias, in particular atrial fibrillation (AF), are the most commonly
encountered arrhythmias in routine clinical practice [1]. Atrial fibrillation is a
supraventricular tachyarrhythmia characterized by uncoordinated atrial activa-
tion with consequent deterioration of atrial mechanical function, so that atria
contract in a disorganized manner when AF occurs [2]. The Franmingham Heart
Study [3] reveals that the prevalence is less than 1% in people under 60 years
old, but it increases significantly in those over 70, reaching 10% for those over 80.
AF accounts for approximately one third of hospitalizations for cardiac rhythm
disturbance, what explains the great interest of its study [1]. Furthermore, AF
affects negatively to patient’s quality of life [4] and contributes to worsening the
prognosis of patients who have other comorbidities [5, 6, 7].

The analysis of the electrocardiogram (ECG) is the most extended noninvasive
technique in medical diagnosis of AF [8]. The exhaustive analysis of AF episodes
requires to separate previously the atrial activity (AA) component from other bio-
electric signals that contribute to the ECG formation [9]. Some of these signals
are the ventricular activity (VA), the muscular activity, the noise and the artifacts
introduced by the electrodes and the powerline interference [10]. The necessary
operation of AA extraction is hindered by several difficulties. Firstly, AA presents
in the ECG much lower amplitude —in some cases well under the noise level—
than its ventricular counterpart. Additionally, both phenomena possess spectral
distributions notably overlapped, rendering linear filtering solutions unsuccess-
ful [11]. To this extent, several techniques can be used in order to extract the
AA from the ECG of AF episodes. On the one hand, time-domain techniques,
like Average Beat Substraction (ABS) [12], try to obtain the AA by subtracting
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the average QRST complex. This techniques work on every ECG lead separately.
On the other hand, Blind Source Separation (BSS) techniques [13, 14] use jointly
the information included in every lead. BSS techniques basically consist of re-
covering a set of hidden source signals from a set of observed linear mixtures
of the sources [15, 16]. At present, the current BSS techniques are applied to
AA extraction by considering the additional assumption of instantaneous mixing
of sources [11]. Nonetheless, the instantaneous linear mixing model is proved
not to be totally an exact description of the real mixing process of cardioelectric
sources [17]. Therefore, the first motivation of this thesis is to find a new mixing
model of cardioelectric sources more adjusted to the real mixing process so that a
more accurate estimation of the AA from ECG recordings can be accomplished.

An accurate extraction of the AA from AF ECG recordings is the base for a
subsequent precise and useful analysis which can help to the clinical manage-
ment of the arrhythmia [9]. The management of patients with AF requires the
knowledge of its pattern of presentation (paroxysmal, persistent, or permanent)
and the underlying conditions in order to take decisions about restoration or
maintenance of sinus rhythm, control of the ventricular rate, and antithrombotic
therapy [8]. Paroxysmal AF (PAF) is often the precursor to sustained AF [18].
Given that sustained AF increases the likelihood of suffering myocardial infarc-
tions and strokes [8], its accurate recognition by means of noninvasive techniques
is of great interest to the regular clinical practice. The prediction of PAF mainte-
nance can help to choose the appropriate intervention that may terminate the ar-
rythmia and prevent its chronification, given that approximately 18% of patients
who has intermittent AF degenerate into permanent AF four years after [19].

With reference to cost of AF management, the aim of the Euro Heart Survey
was to estimate costs of admission and costs incurred on an annual basis by pa-
tients with AF in Greece, Italy, Poland, Spain and The Netherlands. It showed
that inpatient care and interventional procedures were the main drivers of costs,
accounting for more than 70% of total annual costs in all five countries. There-
fore, the prediction of the spontaneous termination of PAF episodes could avoid
unnecessary therapies and their associated clinical costs [20].

The PhysioNet/Computers in Cardiology Challenge 2004 [21] marked the
start of continuous attempts to predict the early termination of PAF episodes by
using the electrocardiogram (ECG). Several groups based their study on the atrial
activity (AA) overall peak frequency plus additional spectral features as the main
peak power [22] or time-frequency pattern [23]. Other groups tried to predict the
evolution of PAF episodes by means of linear classifiers based on the main peak
frequency and the mean RR interval [24, 25]. In [26] the spectral features fibrilla-
tion frequency, fibrillation amplitude and exponential decay are extracted from
frequency-shifted and amplitude-scaled version of a log-spectral profile. The
challenge is approached in [27] from a clinician’s point of view by using features
such as the f-wave polarity, the f-wave peak interval or the amplitude modulation
of AA, and a support vector machine is used as classifier. A recent publication
extends the work carried out in [25] by including stepwise discriminant analysis
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and a greater number of spectral features [28].

The signal regularity analysis of ECG recordings is used in [29] as a means of
predicting the evolution of PAF episodes. On the other hand, the time-frequency
analysis is proved to be feasible for individualized noninvasive characterization
of AF [30]. Time-frequency analysis is a powerful tool for unveiling the temporal
variation of the atrial signal, whether such variation is spontaneous or due to an
intervention [31]. Nevertheless, the relation between the regularity of AA signals
and the evolution of PAF episodes is a matter that has never been explored. In
fact, the likely connection between AA regularity in the time-frequency domain
and the type of PAF episode constitutes the second motivation of this thesis.

1.2 Initial Hypotheses

BSS techniques have been successfully applied to the extraction of the AA from
the ECG of AF episodes by assuming instantaneous and linear mixtures of the
bioelectric signals in the human body [10]. Nevertheless, the assumption of ins-
tantaneous mixing of bioelectric sources involves an approximation error due to
propagation effects [17]. Besides, the generation process of ECG leads implies
the misalignment of lead fiducial points [32]. These two effects might be better
explained by a mixing model different from the instantaneous one where rela-
tive delays among leads could be taken into account. In a new proposed mixing
model it is assumed that the ECG consists of weighted and delayed contributions
of different bioelectric signals. This new mixing model will be later introduced
in section 4.2 as the convolutive linear mixing model. The first hypothesis of the
thesis postulates that the accuracy of the estimated AA can be improved when
the convolutive linear mixing model is used instead of the instantaneous linear
mixing model, given that the convolutive model is a better approximation to the
real mixing process of cardioelectric sources. A particular concern of this thesis is
working with Holter ECG recordings because of their easy availability in clinical
practice and the ability to record data for a long period of time. An extension
of the hypothesis consists of assuming that the convolutive mixing model will
be more useful than the instantaneous one for designing a new algorithm that
optimizes the AA extraction from Holter ECG recordings.

When AF occurs, the electrical impulses in the atria degenerate from a nor-
mally organized pattern into rapid chaotic patterns because of uncoordinated
atrial activation [8]. On the ECG, the consistent P-waves of a normal ECG are
replaced by rapid oscillations of fibrillatory waves with varying morphology and
timing [33], which is usually related to an irregular ventricular response [8]. A
progressive deterioration of AA organization within the first three minutes after
AF onset is proved in [34] and in [35]. In addition, slowing and increased or-
ganization of atrial activation is observed prior to AF termination [35, 36]. The
changes of AA organization in PAF episodes is used in [29] to predict their evo-
lution by using regularity estimators in time domain. On the other hand, the
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study of PAF episodes can be tackled by considering spectral features of the AA.
Holm et al showed that the main peak frequency is a robust measure of intra-
atrial cycle length with the closest correlation found between lead V1 and right
atrial electrograms [37]. With respect to regularity in the time-frequency domain,
the combination of electrical and structural changes is associated with a signifi-
cant loss of spatiotemporal organization, and the maintenance of AF is related to
the structural remodeling and variability in frequency dispersion [38]. A lower
variability of frequency in atrial electrograms is associated with termination of
AF [39]. Moreover, frequency mapping has been used in [40] to identify localized
sites of high frequency activity potentials responsible for the maintenance of AF.
Nevertheless, a study of AA organization in the time-frequency domain by using
regularity estimators has never been carried out. The second hypothesis of this
thesis is that an accurate PAF termination prediction can be given by the appli-
cation in the time-frequency domain of regularity estimators to the previously
extracted AA.

1.3 Objectives

The hypothesis that the convolutive mixture is a better description than the ins-
tantaneous one for cardioelectric sources is an assumption that must be proved.
In other words, the proposed convolutive mixing model as an enhanced expla-
nation of real mixing of sources needs to be validated. A way to do this is to
apply the most relevant convolutive BSS (CBSS) algorithms to the AA extraction
from ECG recordings and to quantify their extraction performance. The subse-
quent comparison of AA extraction performance with FastICA, one BSS algo-
rithm based on the instantaneous mixing model and which accuracy of results
has already been proved [11], will provide an elucidation of the convolutive mix-
ing model feasibility. On the other hand, the reduced number of leads in a Holter
ECG makes unworkable the application of BSS techniques to this type of record-
ings because the number of leads must be at least the number of cardioelectric
sources [14]. Although there exist other techniques for AA extraction that just
require a unique lead, as Average Beat Subtraction (ABS) [12], this kind of tech-
niques supplies an AA dependent on the selected lead. Only BSS techniques can
offer an unified AA that takes into account the information from each lead [11].
Consequently, it must be found the means to increase the number of observations,
i.e. leads, from a Holter ECG. This increase of leads can be carried out by wavelet
decomposition of ECG leads into frequency subbands. The wavelet decomposi-
tion was first applied in [41] by considering the instantaneous mixing model. On
the contrary, our interest is to obtain an unified AA from Holter ECG recordings
by contemplating the convolutive mixture model. Therefore, two main objectives
of this thesis can be already exposed. In the one hand, one main goal is to reveal
which present CBSS algorithms are reliable to extract the AA from the ECG of
AF episodes in order to assess the convolutive mixing model. In the other hand,
a second goal is to improve the AA estimation with respect to the instantaneous
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BSS algorithms by designing a new extraction method based on the convolutive
mixing model. The aim of this new method is to improve the performance of
current extraction methods. This will be mainly centered to solve the singular
problems of AA extraction from Holter ECG systems.

The reason for seeking an accurate AA extraction is its medical applicability,
since it is accepted that noninvasive measurement of fibrillatory waves is useful
for the treatment and management of patients [9, 42]. Once the AA is obtained
with enough accuracy from ECG recordings, it can be used for the characteriza-
tion of PAF episodes by signal analysis. Recognizing the conditions under which
PAF is likely to self-terminate might help to choose the most suitable interven-
tion in affected individuals [21] and to refrain from applying unnecessary thera-
pies [20]. The analysis proposed in this thesis entails studying the regularity of
certain spectral features of the AA source in the time-frequency domain. In or-
der to evaluate the regularity of AA spectral features, the nonlinear index Sample
Entropy (SampEn) [43] was selected. This nonlinear index was chosen because
of the chaotic activation of the atria in the diseased heart and the far-from linear
process of electrical remodeling in AF [44, 45]. The SampEn is proved to be a use-
ful regularity estimator for the study of electroencephalography signals and the
characterization of neural pathologies [46]. The SampEn is also demonstrated
to be a suitable regularity estimator for PAF characterization and was first used
in time-domain to predict PAF evolution in [29]. Given the already commented
AA frequency regularity changes prior to PAF termination, SampEn might be
an accurate predictor in the time-frequency domain of PAF episodes evolution.
The ratio of the area under the dominant frequency of AA and its harmonics to
the total spectral power is used in [47] as a spectral index able to predict the AF
termination. Nonetheless, in contrast to SampEn, this index cannot take into ac-
count the variability in time of spectral properties. A promising innovation of
the present thesis is the application of SampEn to a group of direct and derived
spectral features with the aim to predict the termination of PAF episodes with no-
table accuracy. The SampEn will be applied to spectral features extracted from
time-frequency distributions so that the variable values of features along time
can be considered. This results in the formulation of two additional objectives of
this thesis. Firstly, the SampEn will be assessed as a suitable predictor of PAF
termination in the time-frequency domain. Secondly, a new algorithm based on
the regularity of spectral features will be designed for predicting the evolution of
PAF episodes from Holter ECG recordings.

In sum, this thesis is focused on the accomplishment of the following explicit
objectives:

• Assessment of the convolutive mixing model feasibility for cardioelectric
sources by analyzing the AA extraction performance of the most relevant
CBSS algorithms.

• Design of a new CBSS algorithm able to improve the AA extraction perfor-
mance of current extraction algorithms and to solve the problem of lack of
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available leads from Holter ECG recordings.

• Assessment of the regularity estimator SampEn as an accurate predictor of
PAF episodes termination when applied to series of spectral features.

• Design of a new algorithm based on the application of SampEn in the time-
frequency domain that allows to predict the PAF episodes evolution from
Holter ECG recordings.

1.4 Thesis Structure

This thesis consists of nine chapters where three main parts can be distinguished.
Chapters 1, 2 and 3 constitute the first part of the thesis, where the subject of
study is exposed along with the basic introductory notions and the necessary
previous study of the state of the art. The second part or the thesis comprises
chapters 4, 5 and 6. The methods applied are introduced in chapters 4 and 5,
while the description of the recordings database and the test environments is
made in chapter 6. Finally, the third part is composed by chapters 7, 8 and 9.
Results of the thesis are presented in chapter 7 whilst the discussion on results
and the final conclusions are reported in chapters 8 and 9, respectively. A more
specific description of each subsequent chapter is made next:

• Chapter 2. In this chapter, the heart is described, firstly, as physiological
organ, and secondly, as an electrical generator with its electrical conduction
system. How the electrical activity of the heart is transmitted to the body
surface and how this activity is registered by ECG recorders is described
here as well. The features of a normal ECG are also introduced.

• Chapter 3. This chapter is focused on describing the AF disease. The social
impact of this arrhythmia, its clinical manifestation, classification and elec-
trophysiological mechanisms are treated matters here. On the other hand,
the bioelectric model of AF that will be taken as a reference for the rest of
the study is explained too.

• Chapter 4. This chapter is concerned with the AA estimation strategies
from the ECG. A review of BSS fundamentals and the required conditions
for its applicability are commented here. The several separation criteria
that are the basis of different BSS algorithms is also a question that this
chapter deals with. Besides, the most relevant CBSS algorithms, that will be
used to assess the convolutive mixing model, are introduced. Finally, a new
algorithm for AA estimation from Holter ECG recordings is presented.

• Chapter 5. In this chapter, the SampEn is put forward as a regularity esti-
mator of spectral features. The design of a new method for PAF termination
prediction based on the SampEn estimator is materialized here. This new
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method is optimized for convolutive mixture of sources and is able to in-
crease the number of available observations from Holter ECG recordings.
Moreover, the effects of Holter ECG signal quantization on the method ap-
plicability are considered. Finally, a complementary visual method is also
proposed for PAF termination prediction.

• Chapter 6. In this chapter, the database of ECG recordings is described.
Also, the environments for testing the performance of algorithms are ex-
plained. Furthermore, the necessary performance indicators for quantify-
ing the suitability of the algorithms are defined in this chapter.

• Chapter 7. The results of the previously introduced methods are systema-
tically presented in this chapter. The results are exposed for each testing
environment described in chapter 6.

• Chapter 8. An analytic discussion on the results of chapter 7 is performed in
this chapter in order to find a logical explanation of the obtained outcomes.

• Chapter 9. The concluding remarks on the accomplished work are exposed
in this chapter. Furthermore, some possible future research lines are sug-
gested. Finally, the main contributions in scientific symposia, conferences
and SCI journals on biomedical engineering an cardiology are enumerated.





Chapter 2

Basic Electrocardiography
Concepts

2.1 Cardiovascular Physiology . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Heart Anatomy . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Cardiac Cycle . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Cardiac Conduction System . . . . . . . . . . . . . . . . . . . . 11

2.3 The Electrocardiogram . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Leads of the Standard ECG . . . . . . . . . . . . . . . . . 13

2.3.2 Orthogonal Planes of the ECG . . . . . . . . . . . . . . . 17

2.3.3 The Normal ECG . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Genesis of the ECG. The Heart Vector . . . . . . . . . . . 20

2.3.5 The ECG as a Clinical Tool for Cardiac Diagnosis . . . . 21

In this chapter, a brief description of the heart operation is made by consider-
ing the physiologic aspects and characteristic waveforms of the healthy heart.
The electrocardiogram (ECG) is one of the most frequently used noninvasive
body exploration that supplies a great amount of information on this vital or-
gan. The main features of the electrocardiogram (ECG), as the ECG genesis or the
electrocardiographic leads, will be reviewed here. The standard ECG leads and
the axial reference systems will be explained and the different waves that form
the normal ECG will be commented. Finally, the importance of the ECG as a tool
for cardiac diagnosis will be highlighted.
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2.1 Cardiovascular Physiology

2.1.1 Heart Anatomy

The circulatory system is the network of elastic tubes that carries blood through-
out the body. It includes the heart, lungs, arteries, arterioles (small arteries),
and capillaries (very tiny blood vessels). These blood vessels carry oxygen and
nutrient-rich blood to all parts of the body. The circulatory system also includes
venules (small veins) and veins. These are the blood vessels that carry oxygen-
and nutrient-depleted blood back to the heart and lungs. The circulating blood
brings oxygen and nutrients to all the body’s organs and tissues, including the
heart itself. It also picks up waste products from the body’s cells. These waste
products are removed as they are filtered through the kidneys, liver and lungs [48,
49].

The normal heart is a strong, muscular pump a little larger than a fist and its
weight is about 250-300 g. It pumps blood continuously through the circulatory
system. The heart is located in the chest between the lungs behind the sternum
and above the diaphragm. It is surrounded by the pericardium. Located above
the heart are the great vessels: the superior and inferior vena cava, the pulmonary
artery and vein, as well as the aorta. The aortic arch lies behind the heart. The
location of the heart in the human body is depicted in Figure 2.1a [32, 50].
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Figure 2.1. (a) Location of the heart in the human body and (b) structure of the heart.

Figure 2.1b shows the structure of the heart. The heart has four chambers
through which blood is pumped. The upper two are the right and left atria. The
lower two are the right and left ventricles. There are four valves in the heart
that open and close to let blood flow in only one direction when the heart beats.
The tricuspid valve (also right atrioventricular valve) is between the right atrium
and right ventricle. The pulmonary valve (also called right semilunar valve or
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pulmonic valve) is between the right ventricle and the pulmonary artery. The
mitral valve (also left atrioventricular valve) is between the left atrium and left
ventricle. The aortic valve (also called left semilunar valve) is between the left
ventricle and the aorta. Under normal conditions, the valves let blood flow in
just one direction. Blood flow occurs only when there’s a difference in pressure
across the valves that causes them to open [49].

2.1.2 Cardiac Cycle

Oxygen-poor blood returns to the heart after circulating through the body. It
flows to the heart through veins and enters the right atrium. This chamber emp-
ties blood through the tricuspid valve into the right ventricle. The right ven-
tricle pumps blood under low pressure through the pulmonary valve into the
pulmonary artery. From there the blood goes to the lungs, where it gets fresh
oxygen. Blood returns to the heart from the lungs via four pulmonary veins that
enter the left atrium. From there it passes through the mitral valve and enters the
left ventricle.

The left ventricle pumps the red, oxygen-rich blood through the aortic valve
and into a large artery called the aorta. The aorta takes blood from the heart to
the rest of the body.The left ventricle has a very thick muscular wall so that it
can generate high pressures during contraction. Blood from the left ventricle is
ejected across the aortic valve and into the aorta. While passing through the body,
oxygen in the blood is distributed to the tissues. The cycle repeats as the blood
flows back to the right atrium [49].

2.2 Cardiac Conduction System

The heart can be considered in a simplified description as a physiological organ
that consists of two elements. The first element, already described, is the pump
that impulses the blood through the body. The second element is the electric
system that activates the pump, which includes an electric generator and a con-
duction system of electric pulses [32].

Figure 2.2 shows the conduction system of the heart. Located in the right
atrium at the superior vena cava is the sinus node (sinoatrial or SA node) which
consists of specialized muscle cells. The SA nodal cells are self-excitatory, pace-
maker cells. They generate an action potential at the rate of about 70 per minute.
The action potentials generated by the SA node spread throughout the atria pri-
marily by cell-to-cell conduction. The conduction velocity of action potentials in
the atrial muscle is about 0.5 m/sec. As the wave of action potentials depolarizes
the atrial muscle, the cardiomyocytes contract by a process termed excitation-
contraction coupling [32, 50]. All cells of the conduction system are capable to
generate action potential, but the intrinsic activation rate of the SA node is the
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greatest, what obliges the rest of cells to follow its rhythm. In case of a SA node
disfunction, other cells would replace it so tha action potentials would be gener-
ated at a lower rate [50, 51]. Typical intrinsic activation rates of the conduction
system are also indicated if Figure 2.2.

In the healthy heart, the only pathway available for action potentials to enter
the ventricles is through a specialized region of cells (atrioventricular node, or
AV node) located in the inferior-posterior region of the interatrial septum. The
AV node is a highly specialized conducting tissue that slows the impulse con-
duction considerably (to about 0.05 m/sec) thereby allowing sufficient time for
complete atrial depolarization and contraction (atrial systole) prior to ventricular
depolarization and contraction. The impulses then enter the base of the ventricle
at the Bundle of His and then follow the left and right bundle branches along the
interventricular septum. These specialized fibers conduct the impulses at a very
rapid velocity (about 2 m/sec). The bundle branches then divide into an exten-
sive system of Purkinje fibers that conduct the impulses at high velocity (about
4 m/sec) throughout the ventricles. This results in depolarization of ventricular
myocytes and ventricular contraction (ventricular systole). Figure 2.3 shows the
different waveforms generated by the specialized cells heart conduction system
in a normal ECG and the resultant body surface potential [49, 50].
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Figure 2.2. Parts of the heart conduction system and their activation rates.
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Figure 2.3. Different waveforms generated by the specialized cells heart conduction system in a
normal ECG and the resultant body surface potential [50].

2.3 The Electrocardiogram

The electrocardiogram (ECG) is a recording of the electrical activity produced by
the heart. The body acts as a giant conductor of electric currents. Any two points
on the body may be paired by two electrodes to register the electrical activity of
the heart. Every pair of these electrodes placed on the body surface constitutes
a lead. These electrode leads are connected to a device that measures potential
differences between selected electrodes, and the resulting tracing is called an elec-
trocardiogram [51].

2.3.1 Leads of the Standard ECG

The standard ECG is composed by 12 beforehand fixed leads. There are two basic
types of electrocardiogram (ECG) leads: bipolar and unipolar. Bipolar leads use a
single positive and a single negative electrode between which electric potentials
are measured. Unipolar leads have a single positive recording electrode and use
a combination of electrodes to serve as a composite negative electrode [49].
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Einthoven Limb Leads

In 1908 Willem Einthoven published a description of the first clinically important
ECG measuring system. This measuring system consists of three bipolar ECG
leads, namely leads I, II and III. He established the convention that lead I has the
positive electrode on the left arm, and the negative electrode on the right arm,
and therefore measures the potential difference between the two arms. In the
Lead II configuration, the positive electrode is on the left leg and the negative
electrode is on the right arm. Lead III has the positive electrode on the left leg
and the negative electrode on the left arm [50]. That is:

Lead I : VI = ΦL − ΦR

Lead II : VII = ΦF − ΦR

Lead III : VIII = ΦF − ΦL

(2.1)

where VI , VII and VIII are the voltage of leads I, II and III, respectively. ΦL, ΦR

and ΦL are the potential of the left arm, right arm, and left foot, respectively.
These three bipolar limb leads roughly form an equilateral triangle (with the
heart at the center) that is called Einthoven’s triangle. Whether the limb leads
are attached to the end of the limb (wrists and ankles) or at the origin of the limb
(shoulder or upper thigh) makes no difference in the recording because the limb
can simply be viewed as a long wire conductor originating from a point on the
trunk of the body. These three leads constitute the so called 3-lead axial reference
system [52], which is depicted in Figure 2.4 as unbroken lines.

Maximum positive ECG deflection will occurs in Lead I when a wave of de-
polarization travels parallel through the axis between the right and left arms.
Similar statements can be made for leads II and III where the positive electrode is
located on the left leg. For example, a wave of depolarization traveling towards
the left leg will give a positive deflection in both leads II and III because the pos-
itive electrode for both leads is on the left leg. A maximal positive deflection will
be obtained in lead II when the depolarization wave travels parallel to the axis
between the right arm and left leg. Similarly, a maximal positive deflection will
be obtained in lead III when the depolarization wave travels parallel to the axis
between the left arm and left leg [49, 52].

Goldberger Augmented Limb Leads

In 1942 E. Goldberger observed that the recorded ECG signals could be be re-
placed with a new set of leads that are called augmented leads because of the
augmentation of the signal [50]. These leads have a limb positive electrode that
is referenced against the midpotential of the two remaining limb electrodes. The
positive electrodes for these augmented leads are located on the left arm (aVL),
the right arm (aVR), and the left leg (aVF ). Thus the potentials of the augmented
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limb leads are given by:

aVR = ΦR − ΦL+ΦF

2

aVL = ΦL − ΦR+ΦF

2

aVF = ΦF − ΦR+ΦL

2

(2.2)

The three augmented leads are depicted in Figure 2.4 as broken lines. Lead
aVL is at an angle of 30 degrees with reference to the lead I. Lead aVR and aVF

are at angles of 150 and -90 degrees , respectively. These three augmented leads,
coupled with the three Einthoven limb leads, constitute the so called six-lead ax-
ial system. These six leads system records the electrical activity along a single
plane, termed the frontal plane relative to the heart. Using the axial reference
system and these six leads, it is rather simple to define the direction of an elec-
tric vector at any given instant in time. If a wave of depolarization is spreading
from right to left along the 0o axis, then Lead I will show the greatest positive
amplitude. Likewise, if the direction of the electric vector for depolarization is
directed downwards (-90o), then aVF will show the greatest positive deflection.
If a wave of depolarization is moving from right to left at -30o, then aVR will show
the greatest negative deflection [49, 50].

aV
L

aV
R

aV
F

I

 II III

R L

F

Figure 2.4. Leads I, II and II constitute the Einthoven’s triangle or 3-lead axial reference system.
The augmented leads, aVR, aVL and aVF , in conjunction with I, II and III constitute the 6-lead axial
reference system[50]
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Precordial Leads

For measuring the potentials close to the heart, F. Wilson et al introduced the
precordial leads, i.e. chest leads, in 1944. These are six positive electrodes placed
on the surface of the chest over the heart in order to record electrical activity in
a plane perpendicular to the frontal plane. The exact location of these six leads,
namely V1, V2, · · · , V6, is indicated in Figure 2.5.

1V 2V

3V

4V 5V
6V

I

II

III

IV

V

Clavicula
Mid-clavicular

line

Mid-axilary

line

Figure 2.5. Location of the precordial leads on the chest.

Wilson investigated how electrocardiographic unipolar potentials could be
defined. Ideally, those are measured with respect to a remote reference (infinity).
Wilson suggested the use of the Wilson Central Terminal (WCT) as this reference.
The CWT was initially formed by connecting a 5 kW resistor from each termi-
nal of the limb leads to a common point. The potential of the WCT is calculated
as [52]:

ΦCT =
ΦR + ΦL + ΦF

3
(2.3)

Since the central terminal potential is the average of the Einthoven triangle
vertexes potentials, and the addition of these potentials is approximately zero,
the WCT can be therefore considered as a satisfactory reference. Although Wilson
advocated 5 kW resistances and these are still widely used, at present the high-
input impedance of the ECG amplifiers allows much higher resistances. A higher
resistance increases the CMRR (common-mode rejection ratio) and diminishes
the size of the artifact introduced by the electrode/skin resistance. The formation
of the WCT is schematized in Figure 2.6 [52].

The rules of interpretation for precordial leads are the same as for the limb
leads. For example, a wave of depolarization travelling towards a particular elec-
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Figure 2.6. Formation of the Wilson Central Terminal

trode on the chest surface will elicit a positive deflection. In summary, the twelve
ECG leads provide different views of the same electrical activity within the heart.
Therefore, the waveform recorded will be different for each lead [49, 50].

2.3.2 Orthogonal Planes of the ECG

In principle, two of the limb leads (I, II, III) could reflect the frontal plane com-
ponents, whereas one precordial lead could be chosen for the anterior-posterior
component. The combination should be sufficient to describe completely the elec-
tric heart vector. (The lead V2 would be a very good precordial lead choice since
it is directed closest to the x axis. It is roughly orthogonal to the standard limb
plane, which is close to the frontal plane.) To the extent that the cardiac source
can be described as a dipole, the 12-lead ECG system could be thought to have
three independent leads and nine redundant leads [52].

However, in fact, the precordial leads detect also nondipolar components,
which have diagnostic significance because they are located close to the frontal
part of the heart. Therefore, the 12-lead ECG system has eight truly independent
and four redundant leads. The lead vectors for each lead based on an idealized
(spherical) volume conductor are shown in Figure 2.7. These figures are assumed
to apply in clinical electrocardiography [52].

The main reason for recording all 12 leads is that it enhances pattern recogni-



18 CHAPTER 2. BASIC ELECTROCARDIOGRAPHY CONCEPTS

tion. This combination of leads gives the clinician an opportunity to compare the
projections of the resultant vectors in two orthogonal planes and at different an-
gles. This is further facilitated when the polarity of the lead aVR can be changed;
the lead -aVR is included in many ECG recorders [52].

In summary, for the approximation of cardiac electrical activity by a single
fixed-location dipole, nine leads are redundant in the 12-lead system, as noted
above. If we take into account the distributed character of cardiac sources and
the effect of the thoracic surface and internal inhomogeneities, we can consider
only the four of the six limb leads as truly redundant [52].

Frontal

Sagita
l

Transverse

x

x
x

y

y

y

z

z

z
Sagital Plane Frontal Plane

Transverse Plane

Figure 2.7. Projection of the 12-lead ECG system in three orthogonal planes: frontal, transverse and
sagital [50].

2.3.3 The Normal ECG

The tracing recorded from the electrical activity of the heart forms a series of
waves and complexes that have been arbitrarily labelled, in alphabetical order,
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the P wave, the QRS complex, the T wave and the U wave [32, 49]. The normal
ECG at lead I is depicted in Figure 2.8. Depolarization of the atria produces the P
wave; depolarization of the ventricles produces the QRS complex. Repolarization
of the ventricles causes the T wave. The significance of the U wave is uncertain,
but it may be due to repolarization of the Purkinje system. The PR interval ex-
tends from the beginning of the P wave (the beginning of atrial depolarization) to
the onset of the QRS complex (the beginning of ventricular depolarization) [52].

Figure 2.8. Waves of the normal ECG at lead I [50].

The normal ECG is characterized by [53]:

• P wave:

– Positive in I,II, aVF , V3−6

– Negative in aVR

– Positive, negative or biphasic in III, aVL and V1−2

– Maximum duration: 0.11 seconds.

• Heart Rate (HR): 60 to 100 beats per minute in rest condition.

• PR segment: isoelectric and maximum duration between 0.12 and 0.20 sec-
onds.
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• QRS: duration between 0.06 and 0.12 seconds

• T wave: same direction as QRS, asymmetric morphology, at least the tenth
part of R high

• ST segment: must be isoelectric, although deviations between 0.05 and 0.2
mV may be normal in precordial leads.

• U wave: occurs after the T wave and has the same direction, but frequently
it is not registered.

2.3.4 Genesis of the ECG. The Heart Vector

The electrical activity of the heart can be modelled by a three-dimensional and

time-variable dipole ~H(t), which is the resultant heart dipole moment of the heart,
and which is called the heart vector (HV) [54]. The current generators from a
single heart cell can be considered dipoles. At any time, there will be a wave front
of dipoles that can be treated mathematically using solid angles. When there are
multiple dipoles, the resultant potential can be given by the spatial integral over
the surface of the dipole front [55]. While the HV is a simplified representation of
the electrical activity of the heart, this construct has been proven to be extremely
useful, since models of the heart based on the HV provide an excellent simulation
of the body surface ECG [56]. The measurement and display of the HV is called
vectorcardiography. The three-dimensional graph plotted by the HV dipoled is
referred as the vectorcardiogram.

The potential measured in one lead at any time can be expressed as the scalar
product of two vectors [51]:

uab(t) = ~H(t) ·~lab(t) (2.4)

where

uab(t) = ua(t) − ub(t) (2.5)

is the bipolar potential, ~H is the HV, and~lab is the lead vector from point a to point
b. The lead vector is expressed in terms of resistance per length unit, and it con-
tains information on the geometry of the lead and on the resistivity distribution
along the human body. It depends on the location of the source, the location of
the observation point, the reference point, and the shape and conductivity of the
torso and its internal structures [56]. The lead vector is a three-dimensional trans-
fer coefficient which describes how the HV influences the potential measured in
a particular lead [32, 50].
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The genesis of the ECG can be regarded as the HV projection on every lead.
The direction and the magnitude of the HV change during the different stages
of heart depolarisation and repolarisation. This is shown in Figures 2.9 and 2.10,
where the HV is projected on leads I, II and III at different moments of the heart
cycle. The rest of leads are also generated in the same way as a projection of the
HV on the sagittal, frontal and transverse planes [32]. In a typical vectorcardio-
gram, we can distinguish three main loops:

• P loop, which is related to the depolarization of the atrial tissue during the
atrial systole.

• QRS loop, which is related to the depolarization of the myocardium during
the ventricular systole.

• T loop, which is related to the repolarization of the the myocardium during
the ventricular diastole.

More realistic heart models divide the heart into a number of regions, and as-

sign a lumped dipole ~Hi(t) to the centroid of each region. In this case the cardiac
electrical sources are represented by a finite number of lumped current dipoles.
Such a source is a multiple dipole source [56]. The surface potential is then given
by:

uab(t) =

n
∑

i=1

~Hi(t) ·~labi
(t) (2.6)

The presence of multiple electrical sources will be a basis, in this thesis, for
the application of Blind Source Separation (BSS) to separate the Atrial Activity
(AA) from other bioelectric sources. We will discuss this in depth in subsequent
chapters.

2.3.5 The ECG as a Clinical Tool for Cardiac Diagnosis

There are two aspects to interpretation of the ECG. One is concerned with mor-
phology of the waves and complexes, which make up a complete cardiac cycle.
The other is concerned with timing of events and variations in patterns observed
over many beats. Any change in cardiac electrical activity or in the volume con-
ductor may be reflected in the ECG and provide diagnostic information. Car-
diac electrical activity involves the shape of the action potential impulse and its
propagation through the heart. This electrical activity determines the bioelec-
tric sources. Volume conductor changes are often extracardiac and result in ECG
changes. Included, for example, are conditions such as lung emphysema, and
pericardial effusion where fluid forms around the heart. Diagnostic changes in
the ECG of cardiac origin may be categorized as follows [56].
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Figure 2.9. The generation of the ECG signal in the Einthoven limb leads [50].
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Figure 2.10. The generation of the ECG signal in the Einthoven limb leads (continued) [50].
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• Injury: Injury to regions of the heart as a result of ischemia due to narrow-
ing or occlusion of coronary arteries supplying the heart leads to changes in
cellular action potentials and in the propagation of the impulse. The injury
may be transient and reversible as during exercise or the early phases of
myocardial infarction, or may become permanent after several hours. An
example of the type of change observed in the ECG is a shift away from the
baseline in the level of the ST segment which is the part of the waveform
between the end of QRS and the beginning of T.

• Enlargement: Changes in the shape or position of the heart may result in
ECG changes of diagnostic import. Of particular importance is enlargement
or hypertrophy of one or more chambers of the heart. The atrial or ventric-
ular cavity may enlarge, or the muscle wall may thicken.

• Conduction defects: Disease of any of the structures comprising the spe-
cialized conduction system, or presence of abnormal (accessory) pathways,
may result in an alteration of the spread of excitation and the time course
of recovery. Typical changes include slowed conduction and block of the
impulse.

• Rhythm and rate: Information about heart rate is generally easily extracted
from the ECG. Of immediate interest is whether the rate is too slow (brady-
cardia) or too fast (tachycardia), whether the ventricular rate is the same as
the atrial rate, whether or not the rate is irregular, whether the disturbance
is primarily atrial or ventricular. Disease of any portion of the heart can re-
sult in a disruption of its rhythm. The classification of cardiac arrhythmias
and dysrhythmias involves more than 40 descriptors.

• Ionic effects: The cardiac action potential depends on the extracellular con-
centration of such ions as potassium and calcium, in addition to the pres-
ence of certain cardiotropic drugs such as digitalis. Abnormal levels may
alter electrical activity and be manifest as changes in the ECG.
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After introducing the basic heart operation and the essential concepts on elec-
trocardiography, a description of the atrial fibrillation will be made from a clinical
point of view. Firstly, the definition of this arrhythmia and its clinical manifesta-
tion will be introduced. Secondly, the most extended classification of the atrial
fibrillation will be established and the electrophysiological mechanisms involved
in the occurrence of atrial fibrillation will be explained. Thirdly, the atrial fibrilla-
tion social impact will be portrayed by presenting the incidence, prevalence and
effects on quality of life. Finally, the bioelectric model of atrial fibrillation used in
the thesis, that validates the application of algorithms introduced in subsequent
chapters, will be described.
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3.1 Definition and Clinical Manifestation

Atrial Fibrillation (AF) is the most commonly encountered arrhythmia in routine
clinical practice. AF is a supraventricular tachyarrhythmia characterized by un-
coordinated atrial activation with consequent deterioration of the atrial mechan-
ical function. When AF occurs, the atria contract in a disorganized manner [8].

AF is capable of inducing electrophysiologic changes that promote further
AF [57]. These include electrical, contractile and structural changes to the atria
that have collectively become known as atrial remodelling. In the electrical re-
modelling process, the membrane channel responsible for calcium entry becomes
less active. Eventually, the production of that channel is downregulated. These
changes reduce the action potential duration and provoke the AF perpetuation [58].

On the other hand, studies conducted on animals and humans have demon-
strated AF-related reductions in atrial contractile function and suggested that ab-
normal calcium handling at high rates may be responsible for remodelling [59,
60]. The presence of atrial fibrillation confers an alteration in hemodynamic state
via two mechanisms: the loss of atrial systole and the irregular, fast ventricular
response. Atrial fibrillation leads to a fall in stroke volume, varying from about
10% in normal individuals to over a third in the elderly. The reduction in stroke
volume in atrial fibrillation is most marked at higher heart rates due to reduced
left ventricular filling time [61].

AF is often related to increased atrial size, allowing a critical mass of anatom-
ical substrate for the persistence of the disorganized electrical waveforms. Many
conditions predisposing to AF are known to have effects on the left atrium, which
are likely to be contributory to the initiation and maintenance of AF [61]. In addi-
tion, patchy areas of fibrotic change have been described on histological examina-
tion of atrial tissue from patients with AF [62]. There exist an association between
atrial fibrosis and AF, although determining the casual importance of tissue fibro-
sis in AF occurrence and persistence remains an important challenge [63].

On the ECG, atrial fibrillation is described by the substitution of consistent
P-waves by rapid oscillations of fibrillatory waves (f-waves) that vary in size and
shape and which rate typically ranges from 350 to 600 beats per minute [8]. The
amplitude of f-waves in AF is lower when compared to the amplitude of P-waves
during sinus rhythm [64]. Atrial fibrillation is also characterized by frequent ir-
regular and rapid ventricular response [8]. The ECG provides a noninvasive way
to study AF mechanisms. Analysis can be done through direct observation of
the original signal or through methods used to obtain and analyze atrial activity
(AA). The low amplitude of the AA in the surface ECG presents a challenge in
analyzing f-waves characteristics [33]. The ventricular response to AF can vary
with the electrophysiological properties of the AV node and the level of vagal and
sympathetic tone [8]. Although the irregular ventricular response may be a clue
for the presence of AF, this is a consequence of the arrhythmia and is not neces-
sarily present [65]. Differences between normal ECG and atrial fibrillation ECG
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can be observed in Figure 3.1.

0 1 2 3 4 5 6

0 1 2 3 4 5 6
Time (seconds)

NSR

AF

Time (seconds)

(a)

(b)

Figure 3.1. ECG of (a) Normal Sinus Rhythm (NSR) and (b) AF episode. In AF, the P waves are
substituted by rapid oscillations of fibrillatory waves and the ventricular response becomes irregular.

3.2 Classification

In a general and summarized way, atrial fibrillation can be classified, according
to the recommendations of the American College of Cardiology, as follows [8]:

• First detected: No other atrial fibrillation episodes were observed before in
the patient.

• Recurrent: When two or more atrial fibrillation episodes are observed in the
same patient.

• Paroxysmal: The arrythmia terminates spontanously. Atrial fibrillation episodes

last less than seven days, and typically less than 48 hours.

• Persistent: At the contrary that in the previous case, persistent atrial fibril-
lation is sustained if no pharmacological therapy or electric cardioversion
is done. Persistent AF may be either the first presentation of the arrhythmia
or the culmination of recurrent episodes of paroxysmal AF. It usually lasts
more than 7 days.
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• Permanent: Pharmacological therapy and electric cardioversion attempts
failed to revert the heart to sinusal rhythm. It is the chronic state of AF and
can last for years.

In figure 3.2 it is shown the relations between the different types of AF. Persis-
tent AF may be either the first presentation of the arrhythmia or the culmination
of recurrent episodes of paroxysmal atrial fibrillation.

Finally, the term lone atrial fibrillation is defined as AF in the absence of clin-
ical or echocardiographic findings of cardiopulmonary disease. It generally ap-
plies to individuals under 60 years old who do not present any clinical evidence
of cardiovascular pathology.

Figure 3.2. Patterns of atrial fibrillation. (1) episodes that generally last less than or equal to 7 days
(most less than 24 h; (2) usually more than 7 days; (3) cardioversion failed or not attempted; and (4)
either paroxysmal or persistent AF may be recurrent [8].

3.3 Electrophysiological Mechanisms

Theories of the mechanism of AF involve two main processes[8]: enhanced au-
tomaticity in one or several rapidly depolarizing foci (see Figure 3.3.a) and reen-
try involving one or more circuits (see Figure 3.3.b). In the first of the mecha-
nisms, rapidly firing atrial foci, located in one or several of the superior pul-
monary veins, can initiate atrial fibrillation in susceptible patients. Foci also oc-
cur in the right atrium and infrequently in the superior vena cava or coronary
sinus. The focal origin of AF is supported by experimental models and appears
to be more important in patients with paroxysmal AF than in those with persis-
tent AF [8]. Nonetheless, the most extended and accepted theory is based on
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the reentry mechanism, which considers the existence of multiple wave propaga-
tion fronts. The multiple wavelet hypothesis as the mechanism of reentrant atrial
fibrillation was advanced by Moe et al [66], who proposed that fractionation of
the wave fronts as they propagate through the atria results in self-perpetuating
”daughter wavelets.” The number of wavelets present at any time depends on the
refractory period, mass, and conduction velocity in different parts of the atria [8].

Reentry occurs when an impulse travels around an abnormal circuit repet-
itively. Let us consider two distinct areas of tissue (Figure 3.4), where area A
is excited by a depolarizing wavefront. Once excited, cells in area A cannot be
excited again until their cell membranes have repolarized and the cells have re-
covered; the depolarizing wavefront has left the cells in its wake refractory to
further stimulus. A premature stimulus activating area B cannot excite area A if
it occurs when the intervening tissue is still refractory. However, if that depolar-
izing wavefront travels to area A by an alternate route, allowing sufficient time
for tissue in area A to recover, then area A may be re-excited. Under the right cir-
cumstances, areas A and B can then re-excite each other, which leads to sustained
reentry [58].

There exist two different types of reentries: anatomic and functional reen-
tries. In anatomic reentry, the boundaries of the circuit are physical cardiac struc-
tures. Alternatively, variations in the electrophysiologic properties of contigu-
ous tissues, not anatomic obstacles, may serve as the boundaries of a functional
reentry circuit. Functional reentry appears to be the most important mecha-
nism in AF [58]. The likelihood that AF will terminate, either spontaneously or
as a result of a medical intervention, is inversely related to the duration of the
episode [57, 58]. Recent studies have proved that, when an AF episode is near
to its termination, the number of reentries decreases so that simpler waveforms
are generated on the atrial tissue [36, 39, 67]. Consequently, f-waves evolve to P-
waves while the AA becomes slightly more organized before AF termination [68].

3.4 Epidemiology

Atrial fibrillation is the most common arrhythmia encountered in clinical practice,
accounting for approximately one third of hospitalizations for cardiac rhythm
disturbance. It has been estimated that 2.2 million americans have paroxysmal
or persistent atrial fibrillation[8]. The prevalence of AF that comes out from
the Framingham Heart Study and the Cardiovascular Heart Study (CHS) is pre-
sented in Figure 3.5. The prevalence of atrial fibrillation is estimated at 0.4% of the
general population, increasing with age. Atrial fibrillation is uncommon in child-
hood except after cardiac surgery. AF occurs in fewer than 1% of people under
60 years old but in more than 6% of those older than 80 years. The age-adjusted
prevalence is higher in men than in women. Based on limited data, blacks have
less than half the age-adjusted risk of developing atrial fibrillation that is seen in
whites . The frequency of lone atrial fibrillation was less than 12% of all cases of
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Figure 3.3. Principal electrophysiological mechanisms of atrial fibrillation. (a) Focal activation. The
initiating focus (indicated by the asterisk) often lies within the region of the pulmonary veins. The
resulting wavelets represent fibrillatory conduction, as in multiple-wavelet reentry. (b) Multiple-wavelet
reentry. Wavelets (indicated by arrows) randomly reenter tissue previously activated by them or by
another wavelet. The routes the wavelets travel vary. LA indicates left atrium; PV, pulmonary vein;
ICV, inferior vena cava; SCV, superior vena cava; and RA, right atrium [1]

atrial fibrillation in some series but over 30% in others. The prevalence of atrial
fibrillation increases with the severity of congestive heart failure (HF) or valvular
heart disease[8]. In the year 2000, roughly 2.25 million Americans had AF. By the
year 2010, that number will go up to 2.66 million, which already is a third of a
million increase, and it is projected to go up continuously and predicted to peak
at the year 2050 at 5.5 million patients, what emerges from the ATRIA study (the
AnTicoagulation and Risk Factors In Atrial Fibrillation) [69].

The incidence of AF emerged from the Framingham and CHS studies is show
in 3.6. The incidence of AF increased from less than 0.1% per year in those under
40 years of age to greater than 1.5% per year in women over 80 years of age and
greater than 2% per year in men over 80 years of age. The age-adjusted incidence
increased over a 30-year period in the Framingham Study [8].

Figure 3.7 shows the clinical correlations between different risk factors that
are observed in the cardiology clinical practice. Heart failure (HF) is very highly
associated with the risk of developing AF, with a hazard ratio approaching 5 for
men and almost 6 for women. The older the patients get, the more likely patients
are at risk of developing AF. Clearly, the presence of valvular heart disease is also
associated with an increased risk of developing AF. Hypertension and diabetes
are really the main drivers for development down the road of AF. To some extent,
myocardial infarction (MI) and coronary disease are associated with AF [70].

On the other hand, AF contributes to worsening the prognosis of patients who
have other comorbidities. This is summarized in Table 3.1. In hypertensive pa-
tients, new onset AF nearly doubles the risk of cardiovascular events, triples the
risk of stroke and increases the risk of hospitalization for HF by fivefold [6]. In
patients with congestive heart failure (CHF), new onset AF increases the risk of
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Figure 3.4. a) A sinus impulse activates area A. (b) A premature beat arising in area B fails to reach
area A because the intervening tissue remains refractory from the preceding sinus beat. (c) The
premature stimulus travels slowly via an alternative route back to area A, allowing enough time for
area A to recover and be excited. (d) Area A re-excites area B, and the cycle sustains itself [58].

mortality by 1.6-fold in men and by 2.7-fold in women [7]. In patients with my-
ocardial infarction (MI), new onset AF nearly doubles the risk of in-hospital and
long-term mortality [5]. Furthermore, AF increases the risk for stroke across all
groups [3], and stroke associated with AF is typically more severe than stroke due
to other etiologies [71, 72].

In sum, the prevalence and the incidence of the atrial fibrillation justify the
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Age group

Figure 3.5. Prevalence of AF in two American epidemiological studies. Framingham indicates the
Framingham Heart Study; CHS, Cardiovascular Health Study [1]

Age group

Figure 3.6. Incidence of atrial fibrillation in two American epidemiological studies. Framingham indi-
cates the Framingham Heart Study, and CHS indicates Cardiovascular Health Study [1]

Figure 3.7. Independent risk factors for AF [70]

importance of seeking for new techniques that improve the characterization of
the arrythmia in order to choose its proper diagnosis and management. It is par-
ticularly important the understanding of the mechanisms of spontaneous termi-
nation of PAF episodes because it could lead to improvements in treatment of
sustained AF [21].
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Patients with new onset
AF

Events Risk

Hypertension Cardiovascular events ↑ 1.88

· n=8851 Fatal and nonfatal stroke ↑ 3

· Follow-up: 4.8 ± 1 year Hospitalization for HF ↑ 5

CHF Mortality in men ↑ 1.6

· n=1470, · Follow-up: 5.6 years Mortality in women ↑ 2.7

MI Inhospital mortality ↑ 1.98

· n=17,944, · Follow-up: 4 years Long-term mortality (4 years) ↑ 1.78

Table 3.1. Prognosis of patients with AF comorbidities. HF, heart failure; CHF, congestive heart
Failure; MI, myocardial infarction.

3.5 Atrial Fibrillation and Quality of Life

In addition to variables such as mortality and length of stay and other clinical
variables, also quality of life (QoL) indicators must be considered The SF-36 score
has been successfully validated and used quite frequently to describe some of
these QoL concerns on the part of patients as they recover from different health-
related experiences [4]. In figure 3.8 we show the results of this questionnaire
for control patients, post-MI patients and AF patients. Unfortunately, the worst
QoL parameter indicator is in patients with AF. Those patients, when they fill out
the SF-36 questionnaire with regards to their general health, their social function,
their mental health, and their physical function on a regular basis, reported that
their QoL is actually worse than the QoL of patients who have recovered from a
heart attack [4].

Figure 3.8. Adverse effects of AF on QoL. Lower scores mean poorer QoL [4].
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3.6 Bioelectric Model of Atrial Fibrillation

3.6.1 Potentials on the Body Surface

Electrocardiography involves interpretation of the potentials recorded at the body
surface due to electrical activity of the heart. To this end, the concept of an elec-
trical representation of the heart’s activity is used. That is, an equivalent source
in conjunction with a specified volume conductor serve to model the torso [50].

There are several physical models to represent both the cardiac current sources
and the enclosing torso shape and conductivity. Source models range from simple
current dipoles to complex current surfaces. Torso shape and conductivity mo-
dels range from infinite homogeneous conductors to finite element models. The
combination of torso and source models to calculate the body surface potentials
is known as the forward problem [54]. One of the most accepted solution for the
forward problem relays on the computation, using surface methods, of the outer
body surface potentials from the epicardial (external surface of the heart) surface
potentials [73]. Surface methods are based on integral equations for the poten-
tial derived by applying Green’s second identity in a torso model comprising the
body surface SB and the heart surface SH [11, 74, 75]. For solving the problem it
is assumed that the region contained between the two surfaces is homogeneous.
In that case, the body surface potential ΦB at the ith observation point can be
expressed as [10, 54]:

Φi
B =

1

4π

(
∫

SB

ΦBdΩi
BB −

∫

SH

1

ri
BH

∇ΦH · d~SH −
∫

SH

ΦHdΩi
BH

)

(3.1)

and the heart surface potential ΦH at the ith observation point is:

Φi
H =

1

4π

(
∫

SB

ΦBdΩi
HB −

∫

SH

1

ri
HH

∇ΦH · d~SH −
∫

SH

ΦHdΩi
HH

)

(3.2)

where ri
PQ is the distance from the ith arbitrary observation point on surface P

to one elemental source on surface Q, and d~SH is the outward differential normal
vector to surface SH . In addition, the differential solid angle dΩi

PQ is defined

as that subtended, at the ith observation point on surface P , by an elemental
area of the integration surface Q. Likewise, Φi

P is the electric potential at the
ith observation point on surface P . This situations can be seen graphically for
the ith observation point located on surfaces SB and SH in Figures 3.9 and 3.10,
respectively.

The general approach for finding solutions to this kind of integral equations is
to discretize the problem and write one equation for a number of points on both
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Figure 3.9. Integration surfaces and geometry outline involved in the forward problem solution when
the observation point i is placed on the inner bounding of the body surface SB [10].
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Figure 3.10. Integration surfaces and geometry outline involved in the forward problem solution when
the observation point i lies on the outer bounding of the heart surface SH [10].

surfaces and solve these equations simultaneously [54]. For NB points defined on
the body surface, representing the field points (leads), and NH on the epicardium
representing the source positions, it is possible to write the following set of dis-
cretized expressions as the observation point sweeps all the body and the heart
surface [10, 54]:
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NB
∑

j=1

pij
BBΦj

B +

NH
∑

j=1

pij
BHΦj

H +

NH
∑

j=1

gij
BHΓj

H = 0 (3.3)

NB
∑

j=1

pij
HBΦj

B +

NH
∑

j=1

pij
HHΦj

H +

NH
∑

j=1

gij
HHΓj

H = 0 (3.4)

where Γj
H is the normal component of the potential gradient for point j on the

heart surface. In general the gij
PQ term links the potential at observation point

i on surface P to the value of the potential gradient Γj
H at point j on surface

Q, while pij
PQ is the geometrical coefficient which weights the contribution in the

observation point i on surface P of the potential at node j on surface Q. Therefore,

the equations can be separated into the product of a potential (Φj
B or Φj

H ) or the

gradient of a potential (Γj
H ) at a specific point j on either one of the surfaces and

a second factor (the terms with general form pij
PQ and gij

PQ) based entirely on the

geometry of the torso and the heart. Φj
B and Φj

H are the potential at node j on the
body and heart surfaces, respectively. Equations 3.4 and 3.4 can be rewritten in
matrix form as:

PBBΦB + PBHΦH + GBHΓH = 0 (3.5)

PHBΦB + PHHΦH + GHHΓH = 0 (3.6)

where ΦB and ΦH are NB and NH potential column vectors, ΓH is a column
vector of NH epicardial potential gradients, and the various P and G coefficient
matrices are determined solely by integrations involving the geometry of the epi-
cardial and body surfaces. Here again, the first subscript of P (or G) represents
the surface containing the observation points, having as much rows as points
(NH or NB), and the second one, the surface (heart or body) of integration with
the number of columns equal to the number of points where the integration is
computed (NH or NB). Solving Eq. (3.6) for the matrix of epicardial potential
gradients ΓH and substituting the result into Eq. (3.5) yields [54, 10]:

ΦB = TBHΦH (3.7)

with TBH defined as

TBH =
(

PBB − GBH(GHH )−1PHB

)−1 ·
·
(

GBH(GHH )−1PHH − PBH

)

(3.8)
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Eq. (3.7) and (3.8) define the solution to the forward problem. The elements of
matrix TBH are the transfer coefficients relating the potential at a particular point
on the epicardial surface to that at a particular point on the body surface, and
they depend solely of the geometry of the epicardial and body surfaces and the
conductivity of the torso.

Eq. (3.7) shows that the electric potential in one point of the body surface can
be obtained by adding the partial contributions of the heart potentials, weighted
by a transfer coefficient. Obviously, Eq. (3.7) relates to a linear mixing model
where a set of observations are obtained by linearly combining a set of sources.
In our case, the sources are the set of bioelectric potentials in the epicardium and
the observations the set of body-surface potentials.

The transfer (or mixing) matrix of Eq. (3.8), models the conductivity of the hu-
man torso and, in a first approximation, may be considered as an isotropic homo-
geneous volume conductor. A more realistic modeling of the torso can consider
inhomogeneities of the volume conductor and the presence of different tissues.
One can take such inhomogeneities into account by approximating the volume
conductor by a collection of regions, each one of which is homogeneous, resis-
tive, and isotropic but, at the same time retaining the results of Eq. (3.7) [73].
Hence, inhomogeneities and anisotropies in the human torso only modify the
transfer coefficients, i.e. the elements of TBH , but do not affect the fulfillment of
the model [76].

The solution of the forward problem attained in equation 3.8 is a linear ex-
pression and no other additional constraints can be inferred from it. Nonetheless,
several constraints can be added to the mixing model within the condition of
linearity. The most simple condition is to consider that time-varying bioelectric
currents and voltages in the human body can be examined with the conventional
quasi-static approximation so that the mixture of contributions to the potential
in one point of the body surface occurs instantaneously. This quasi-estationarity
model has been successfully used in previous works to study the ECG genesis in
atrial fibrillation episodes [10]. A more complex model consists of considering
that the linear mixtures described by equation 3.8 do not occur instantaneously
but there exist some contribution delays in the generation of the ECG leads. In
fact, time delays of several miliseconds are always perceived between the QRS
maxima of different ECG leads, as exemplified in Figure 3.11. Accordingly to
equation 2.4, the heart vector is a three-dimensional time-varying vector whose
projections on the leads produce the electrocardiographic signals. As a conse-
quence, the maximum projection value during the QRS complex is not obtained
simultaneously in all leads. These time delays between fiducial points of ECG
leads could be due to the fact that the maximum projection of the heart vector on
each lead happens at different moments, which provokes a misalignment of QRS
complexes.

On the other hand, let us consider the general formulation for the electric
field in a infinite volume conductor due to an impressed current density source
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~Js whose temporal behavior is harmonic at an angular frequency ω. The medium
is assumed to be linear, homogeneous and isotropic and characterized by its mag-
netic permeability µ, electric conductivity σ and dielectric constant ǫ. The elec-
tric and magnetic fields are found by solution of the inhomogeneous Helmholtz

equations. The scalar potential Φ and the magnetic potential vector ~A are given
by [17]:

Φ(~rS) =
1

4π(σ + jωǫ)

∫

V

1

r
ρ(~rV ) · e−jkrdV (3.9)

~A(~rS) =
µ

4π

∫

V

~Js(~rV ) · e−jkrdV (3.10)

where ~rS indicates the position where Φ and ~A are figured out, ~rV indicates a
point of the integration volume, r is equal to |~rV − ~rS |, and k is the propagation
constant defined as:

k2 = ω2µǫc = ω2µ (1 + σ/jωǫ) (3.11)

and ǫc is a complex dielectric constant, implicitly defined in equation 3.11as ǫc =
ǫ(1 + σ/jωǫ), that includes the effects of conductivity and losses in its real and
imaginary parts, respectively. An alternate form of writing equation 3.11 is:

k2 = −jωµσc = −jωµσ(1 + jωǫ/σ) (3.12)

where the complex conductivity is defined as σc = σ(1 + jωǫ/σ).

The time required for changes in the source to a field point is represented in
equations 3.9 and 3.10 by the phase delay e

−jkr . This term can be developed as:

e
−jkr = 1 − jkr − j

(kr)2

2!
− j

(kr)3

3!
· · · (3.13)

Therefore, the propagation delay of a bioelectric wave from the source point to the
measure point can only be neglected when the condition kr ≪ 1 is accomplished.
In order to evaluate an upper bound of the magnitude kr , the typical propagation
values for the human body are chosen, namely rmax = 1 m, fmax = 1 kHz, µ =
4π · 10−7 H/m, and σ = 0.02 S/m [17]. On the other hand, setting the value of
1 + jωǫ/σ) equal to the conservative value of

√
2 yields the maximum value of kr

as [17]:
krmax = (1 − j)

√
2π · 1000 · 4π10−7 · 0.2 = 0.0397(1− j) (3.14)

That is, the value of ·e−jkr is near one, but there exits a certain error of 4 per cent.
Plonsey assumes in [17] that this error is reasonably negligible, so that the ins-
tantaneous mixing model could be considered with a 4% error in the mixtures of
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bioelectric signals on the human body surface. As a consequence, the use of the
instantaneous mixing model for the study of atrial fibrillation is validated in [10]
by this low error. Nonetheless, the existence of this error along with the misalign-
ment of QRS maxima, as a consequence of the different instants of maximum
projection of the heart vector on every lead, justifies the study of a more complex
mixing model than the instantaneous one. This new model is the convolutive lin-
ear mixing model, which is able to compensate the aforementioned time delays.
The description of both mixing models, instantaneous and convolutive, will be
later expanded in chapter 4
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Figure 3.11. QRS complex detail of a 12-lead AF ECG. The maximum projection of the heart vector
on each ECG lead occurs at different moments .

Given that the misalignment between fiducial points of ECG leads and the
wave propagation delays can be taken into account in a convolutive model, this
mixing model seems to be better adapted to the mixture of electrical heart sources
in the human body than the instantaneous one. Furthermore, the movement of
the heart during beating makes the location of sources vary and could affect the
quasi-stationary assumptions considered in [10]. All these phenomena could af-
fect in a different way to the AA extraction performance of algorithms when the
instantaneous or the convolutive model are considered. In fact, one of the main
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objectives of this thesis is to study the eventual improvement of AA extraction
when a model different from the instantaneous model, i.e. the convolutive model,
is used to describe the mixture of heart potential sources. The study in this thesis
of several convolutive algorithms will allow us to elucidate this question. The
convolutive algorithms under test will be presented in chapter 4 and the results
of test will be provided in chapter 7.

3.6.2 Independence and Nongaussianity of Atrial and Ventricu-
lar Activities

During an AF episode several independent wave fronts propagate simultane-
ously throughout the atria but only a reduced part of them reaches the AV node.
Moreover, several properties of the AV node tend to limit strongly the ventricular
activation. First, the excitability of cells within the AV node is significantly less
than the atrial myocardium, thus meaning that the refractory period is consider-
ably larger than in the atria [1]. Second, the AV node demonstrates decremental
conduction properties; that is, the amplitude and rate of rise of cardiac action
potentials decrease progressively from cell to cell. Because of this property, im-
pulses may traverse only a portion of the AV node before blocking [77]. One clin-
ical manifestation of this property is the phenomenon of concealed conduction,
in which a atrial impulse that itself does not conduct to the ventricles may impair
conduction of subsequent impulses, blocking the propagation of other impulses
that otherwise would have conducted [77]. As a consequence of the aforemen-
tioned AV node properties most of the atrial wave fronts do not reach conduction
and are not able to produce ventricular depolarization.

On the other hand, the physical origin of the atrial wave front that has been
able to produce ventricular depolarization could be very variable. This unco-
ordinated operation of AA and VA during an AF episode makes it reasonable
to regard both activities as physically independent and, in turn, as generated
by statistically independent sources of cardioelectric activity. The validity of the
atrio-ventricular statistical-independence assumption is in line with the findings
reported by other authors in the field [74, 11, 78].

With respect to nongaussianity, VA presents high values within the heart beat
(QRS complex) and low values in the rest of the cardiac cycle. Hence, the his-
togram analysis of VA reveals an impulsive, i.e., supergaussian, behaviour [79]
with typical kurtosis values above 15. On the other hand, AA of an AF episode
has been accurately modeled as a saw-tooth signal consisting of a sinusoid with
several harmonics [78], which behaves, statistically speaking, as a subgaussian
random process. Moreover, when a QRS complex and T wave cancellation algo-
rithm, like those described in [78, 79, 80, 81], is employed to cancel out VA over
one ECG lead, it can be observed that the remaining ECG, mainly the AA, present
a subgaussian behaviour with negative kurtosis values.

The independence and nongaussianity of source are necessary conditions for
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the applicability of the convolutive algorithms that will be later introduced in
chapter 4. This subject of applicability will be expanded in section 4.3.2. On the
other hand, the consideration of QRS misalignment, the aforementioned wave
propagation delay and the variable location of sources justify the performance
study of convolutive algorithms.
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In the previous chapters, the basic concepts on electrocardiography and atrial
fibrillation were concisely introduced. The present chapter is centered in the atrial
activity (AA) extraction from ECG recordings as a necessary previous step to the
exhaustive study of AF episodes. The chapter starts with a description of the
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time-domain extraction techniques used for AA extraction. Next, general con-
cepts on Blind Source Separation (BSS) and mixing models of sources are intro-
duced. Two main mixing models are considered. In the first place, the instantane-
ous mixing model is described, which has already been used for AA extraction.
In the second place, the convolutive mixing model is introduced. This second
model has never been used before for AA extraction, and one of the main goals
of this thesis is disclosing its applicability. This goal will be accomplished by ana-
lyzing the performance of the most relevant BSS algorithms that take into account
the convolutive mixing model. The algorithms which performance will be stud-
ied are presented in section 4.5. Finally, since convolutive BSS algorithms cannot
be applied directly to extract the AA from Holter ECG recordings because of the
lack of leads, a new algorithm for AA extraction based on the convolutive model
that solves this problem is presented in section 4.6.

4.1 Time-domain Based Techniques

The earliest developed techniques of atrial activity estimation work in time do-
main, and they obtain the atrial activity by subtracting the average QRST waves
from ECG signals. The most extensively used QRST Cancellation techniques in
AF studies is Average Beat Subtraction (ABS) [12, 37, 79]. In ABS the successive
cardiac cycles are assumed to be repetitions of the same process. Thus the regis-
tration of a heart beat can be considered as the result of an ergodic process [79].
That is, the recorded signal of a heart beat is highly correlated with the previous
ones. Nevertheless, in AF episodes this regularity is only observed for ventricular
components. On the contrary, since atrial depolarisation is produced by contin-
uous and chaotic wavelet fronts, fibrillatory waves appear randomly and com-
pletely decoupled at each heart beat. As a consequence, the averaged waveform
of the typical AA of AF asymptotically tends to zero. This allows to extract the
average QRST template by averaging several QRST occurrences, given that when
enough QRST complexes are considered, the template will be formed only by the
ventricular activity [12].

ABS is performed in three main steps [79]:

1. Detection and alignment of the segments that contain the QRST wave.

2. Computation of the average beat.

3. QRST template substraction.

The problem of detection and alignment can be solved by means of threshold-
based algorithms [82, 83].

The ABS process is depicted in figure 4.1, which can be mathematically ex-
pressed as:
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ya = y − x (4.1)

where y is one of the heart beats of the ECG, x is the computed averaged beat,
and ya is the residual signal estimated as the atrial activity.

+

-

(a) (b)

- ---

Figure 4.1. a) Computation of the QRST template of an AF episode by QRST beat averaging b)
Estimation of the AA by aligning and subtracting the QRST template.

Usually, the leads that contain great atrial component are II, III, aVF and V1.
V1 is frequently the lead selected to extract the atrial activity. The QRST cancel-
lation algorithm is also referred as Template Matching and Subtraction (TMS).
After the extraction of the AA by using these techniques, different measurements
of autocorrelation [84] and non-uniformity [85] can be applied to the signal in
order to characterize it.

In 2001, it was presented the Spatio-Temporal techniques for QRST cancella-
tion [78], which improves the performance of the ABS method. The application
of the Spatio-Temporal techniques implies to calculate a new scale factor before
the subtraction of the computed averaged beat [78]. This method’s performance
is considerably better than the one of the straightforward ABS because it obtains
a substantial reduction of the average QRST-related error. As a consequence, the
quality of the extracted AA is also improved [78].

A recent modified version of ABS, the Adaptive Singular Value Cancellation
(ASVC) [86, 87], studies the VA cancellation accuracy, when different complexes
are selected to obtain the ventricular template. The results showed that the most
correlation-similar complexes to the one under cancellation provided a more ac-
curate ventricular cancellation template than the preceding and subsequent beats,
thus providing a higher AA extraction quality. ASVC is the first cancelation strat-
egy able to calculate the most suitable number of complexes prior to extracting
the AA signal, considering the specific characteristics of the input ECG recording.
In contrast, all the previously proposed ABS strategy variants considere all the
ECG complexes to generate the ventricular template [12, 37, 78, 79, 80, 88, 89, 90].
ASVC reaches a more accurate QRST cancellation template than those obtained
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with ABS and previous variants. In addition, ASVC is more robust in ECGs with
variable QRST morphology and in the presence of ectopic beats than ABS.

4.2 Blind Source Separation

The aforementioned family of techniques has been well accepted and used in
clinical applications [91]. Nonetheless, they are only applied to the leads where
atrial fibrillation is more easily distinguishable, frequently V1. This means that,
if QRST cancellation techniques is applied to M different leads, M different es-
timated atrial activities will result as well. Consequently, they do not make use
of the information included in every lead in an unified way. On the contrary,
Blind Source Separation (BSS) techniques [15] make a multi-lead statistical analy-
sis by exploiting the spatial diversity introduced by multiple spatially-separated
electrodes. Next, the most important models used in BSS will described.

4.2.1 General Mixing Model

BSS consists of retrieving a set of signals that cannot be observed directly from
other set of signals that can be observed. A general scheme of the BSS problem
is shown in Fig. 4.2. The signals to be retrieved are called sources, and those
that can be observed are called observations. The observations are formed by the
contribution of all the original sources. Two main conditions must be fulfilled
in order to apply BSS techniques: 1) independence of the sources and 2) non-
gaussianity of the sources [13, 15, 16]. This last family of extraction techniques,
when applied to the ECG, are able to obtain a set of independent sources that
include a unified AA signal [11].

In the general BSS mixing model, a set o N independent source signals, {sj ∈
R, j = 1, 2 . . .N}, are considered. After a transformation process, characterized
by M transformation functions Fi{·}, M observations, {si ∈ R, i = 1, 2 . . . , M},
are recorded by M sensors. That is, the general BSS model is a MIMO system
(Multiple Input Multiple Output). The transformation functions F{·} are un-
known, and no assumption is made on their possible linearity. Every observation
can be expressed as:

xi = Fi (s1, s2, . . . , sN ) (4.2)

The applicability of instantaneous BSS techniques for AA estimation in AF
episodes is justified in [74]. Firstly, in AF episodes the bioelectric sources of the
heart generating AA and VA are proved to be uncoupled and statistically inde-
pendent, given the uncoordinated operation of AA and VA during AF episodes.
Secondly, it is also proved that both activities present a non-Gaussian behavior
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Figure 4.2. The Blind Source Separation problem. The M observed signals are function of N inde-
pendent sources. The sources and the transformation functions are unknown. BSS algorithms try to
approximate the separation system that inverts the process. In linear models, the mixing system and
the separation system are represented by the A and the W matrices respectively.

(AA has a subgaussian probability distribution whereas the VA is clearly super-
gaussian). Finally, it is demonstrated that ECG recordings are linear mixtures of
bioelectric signals that depend on the position of the ECG electrodes. Therefore,
the extraction of the AF from the ECG can be tackled as a BSS problem where
the mixture of AA, VA, electric excitation due to muscular movement, undesired
artifacts, noise and some other bioelectric signals produces the registered ECG
signals of every lead [74], as depicted in Fig. 4.3. Two different mixing models of
the bioelectric signals can be considered under the assumption of linearity. This
models are described in the two following subsections.

(VA)

(AA)

(Noise)

Linear
Mixture

(A matrix)

(I)

(V6)

Figure 4.3. Genesis of the standard 12-leads ECG as the linear mixture of atrial activity (AA), ventric-
ular activity (VA), noise, and other bioelectric sources.

4.2.2 Instantaneous Linear Mixing Model

The most frequent assumption is that the transformation functions F{·} of equa-
tion (4.2) are linear. Within the assumption of linearity, the simplest situation is
the instantaneous linear model. In this case, the instantaneous mixture of the car-
dioelectric sources in the human body is assumed. Let us assume working with
discrete-time signals and let n be the sampleindex. Hence the observations xi can
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be expressed as [14]:

x1[n] = a11s1[n] + a12s2[n] + · · · a1NsN [n] + n1[n]

x2[n] = a21s1[n] + a22s2[n] + · · · a2NsN [n] + n2[n]
...

...
...

...

xN [n] = aM1s1[n] + · · · · · · · · + aMNsN [n] + nM [n]

(4.3)

where {s1[n], . . . , sN [n]} are the original sources, {x1[n], . . . , xM [n]} are the ob-
servations (i.e, the registered signals of every ECG lead), and {n1[n], . . . , nM [n]}
are additive noise signals that contaminate the observations. That is, the observed
signals are weighted additions of the sources plus additive noise.

This can be written in a more compact expression as [14]:

xi[n] =
N

∑

j=1

aij [n] · sj [n] + ni[n], i = 1, 2, . . . , M (4.4)

Using matrix notation, the previous expression can be written as [14]:

x[n] = A · s[n] + n[n] (4.5)

where A is a matrix that contains the aij coefficients, x[n] = [x1[n], x2[n], . . .,
xM [n]]T is the column vector that contains the observations, and s[n] = [s1[n], s2[n],
. . . , sN [n]]T contains the sources. This model can be simplified by considering the
additive noise as an additional source. Hence equation 4.5 can be rewritten as:

x[n] = A · s[n] (4.6)

The BSS algorithms based on the instantaneous linear mixing model try to
estimate a W matrix that approximates the inverse of the mixing matrix A so
that the independent sources can be estimated [14] as a linear transformation:

ŝ[n] = W · x[n] (4.7)

where ŝ[n] is the set of estimated sources. The instantaneous linear mixing model
is depicted in Fig. 4.4. The approach to the BSS problem exposed in equation 4.6,
where instantaneous mixture is assumed, is known as Independent Component
Analysis (ICA).

One important BSS algorithm that follows the instantaneous mixing model
of ICA is the FastICA algorithm. The FastICA algorithm [14], based on the ins-
tantaneous mixing model, has already been applied to the extraction of the AA
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from ECGs of AF episodes [92]. In FastICA it is assumed that no propagation de-
lay of the cardioelectric signals exists in the human body. The error introduced by
FastICA as a consequence of assuming instantaneous mixtures resulted to be neg-
ligible and quite good results in the extraction of the AA have been obtained [74].
This algorithm has been combined with spatio-temporal techniques improving
its results [93].

Figure 4.4. Instantaneous linear mixing model. Here the observations of the ECG are assumed to be
instantaneous linear mixtures of the bioelectric sources.

The FastICA algorithm tries to find a direction as a unit vector w so that the
projection w zT maximizes its nongaussianity. Nongaussianity is here measured
by the approximation of negentropy [14]. FastICA is based on a fixed-point itera-
tion scheme for finding a maximum of nongaussianity. FastICA uses negentropy
to combine the superior algorithmic properties resulting from the fixed-point it-
eration with the preferable statistical properties due to negentropy [14]. The ne-
gentropy of a random variable y can be approximated as[14]:

J(y) ∝ [E[{G(y)} − E[{G(ν)}]2 (4.8)

where E{·} is the expectation operator [94] and there is assumed that y is of null
mean and unit variance, ν is a gaussian variable of null mean and unit variance,
and G(·) is a non-quadratic function. The following choices of G(·) have been
proved to be very useful approximations:
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G1(y) =
1

a1

log cosha1y (4.9)

G2(y) = − exp(
−y2

2
) (4.10)

where 1 ≤ a1 ≤ 2 is some suitable constant, often taken equal to one [14].

4.2.3 Convolutive Linear Mixing Model

A more realistic assumption on the mixture of sources is the so called convolu-
tive linear mixing model. This is the model that the convolutive BSS (CBBS) al-
gorithms presuppose. In this case, weighted and, besides, delayed contributions
in the generation of the observed signals are taken into account [95, 96].

As shown in Fig. 4.5, the convolutive model is a more general linear mixture
BSS model where previous coefficients aij have been substituted by FIR (Finite-
duration Impulse Response) filters hij of length L. In fact, the previous instanta-
neous model could be considered as a particular case of the convoulutive model
where L equals one. Hence, the convolutive linear mixing BSS model can be ex-
pressed as:

xi[n] =

N
∑

j=1

hij [n] ∗ sj[n] + ni[n], i = 1, 2, . . . , M (4.11)

where ∗ is the convolution operator. Also here, it is considered the presence of
additive noise in the observations. Using matrix notation, equation 4.11 can be
rewritten as:

x[n] = A ∗ s[n] + n[n] (4.12)

If the additive noise is considered as an additional source, equation 4.12 is rewrit-
ten as a simpler expression:

x[n] = A ∗ s[n] (4.13)

Similarly to the instantaneous case, the linear transformation that estimates the
original independent sources in the convolutive case is given by:

ŝ[n] = W ∗ x[n] (4.14)

where W is an estimation of A−1.
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Figure 4.5. Convolutive linear mixing model. Here the observations of the ECG are assumed to be
convolutive linear mixtures of the bioelectric sources.

4.2.4 Global Matrix G

Given that both the mixture and separation of signals are characterized by their
respective matrices A and W, the general process where the mixture and the se-
paration processes are executed sequentially can be expressed as a global mixing-
unmixing matrix G which is the product of A and W. In the case of the instanta-
neous mixture model, the matrix G is expressed as:

G = W · A (4.15)

and the estimated sources are given by:

ŝ[n] = W · A · s[n] = G · s[n] (4.16)

The ideal solution of the BSS problem for the instantaneous model is to find
the unmixing matrix W that equals the inverse of A so that G matches exactly
the identity matrix I. In this case, the estimated sources would exactly match the
original sources, since it is accomplished that:

ŝ[n] = G · s = I · s = s[n] (4.17)
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where s[n] is the set of original sources, ŝ[n] is the set of estimated sources, and
x[n] is the set of observations. Similar expressions describe the global mixing-
unmixing process when the convolutive mixture model is considered. In this
case the global matrix is written as:

G = W ∗A (4.18)

and the estimated sources as:

ŝ[n] = W ∗ A ∗ s[n] = G ∗ s[n] (4.19)

In the convolutive case, the matrices A,W and G are not constituted by unique
coefficients but by FIR filters instead. The global matrix, G, must ideally tend to
a matrix where all FIR filters of the same row except one have null response. The
ideal response of the non-null filter is a Dirac delta. Figure 4.6 shows an example
of ideal 2 × 2 global matrix , G, with FIR filters length equal to 15.

0

1

0

1

0

1  

0

1

Filter 1.1 Filter 1.2

Filter 2.1 Filter 2.2

Figure 4.6. Ideal global matrix G with FIR filters length equal to 15. The elements of the main
diagonal, i.e. filters 1.1 and 2.2, are Dirac deltas. The rest of elements are filters of null response.

The mixing process is only reversible under certain conditions. Let us first
consider the simplest case, when two sources and two observations are consid-
ered. In the instantaneous model, the ideal matrix W , i.e. the inverse of A, is
given by:

W = A−1 =
1

h11h22 − h21h22

[

h22 −h21

−h12 h11

]

(4.20)

Thus A is not singular, i.e. its inverse exists, if and only if it is accomplished the
condition:
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h11h22 − h21h22 6= 0 (4.21)

In other words, the determinant of A must not be zero. Similarly, in the convolu-
tive model, the inverse of the mixing matrix A is computed as [97]:

W = A−1 =
1

h11 ∗ h22 − h21 ∗ h22

[

h22 −h21

−h12 h11

]

(4.22)

Here, hij are FIR filters and A is not singular if and only if:

h11 ∗ h22 − h21 ∗ h22 6= 0 (4.23)

If there are more observations than sources, as often happens in AA extraction,
then A is not a square matrix. Hence A has not maximum rank so that its inverse
does not exist. Consequently, W is figured out as a LMS (Least Minimum Square)
approximation of the so called pseudoinverse matrix[14]:

W = (AHA)−1 ∗ AT (4.24)

where AH is the transposed conjugated matrix of A. The less restrictive condition
that now must be fulfilled is that the inverse of (AHA) exists.

4.3 Applicability of BSS to Estimate the Atrial Activ-

ity

4.3.1 Conditions of the Sources in BSS

The application of convolutive BSS is conditioned to the accomplishment of a
set of underlying assumptions on the source signals. The principal assumptions
on sources {sj [n]}, j = 1, . . . , N are stationarity, null mean, and mutual inde-
pendence [98]. Although most of signals do not comply with the condition of null
mean, this condition of null mean can be always reached by signal preprocessing.
The condition of independency implies that, for every pair of samples s1 = si[n]
and s2 = sj [l] of any pair of mixed source signals, the joint density function of s1

and s2 can be factorized as the product of the marginal density functions:

ps1s2
= ps1

ps2
(4.25)

The statistic independence of every source signal with the other sources is a
paramount requirement for most formulations of convolutive BSS problem. Nev-
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ertheless, the accomplishment of this condition does not guarantee the separa-
tion. Every separation method establishes additional requirements on the source
signals.

4.3.2 Separability and Identifiability

When the BSS problem is tackled, the first subject to deal with is to know the
conditions that a mixing matrix must obey to ensure the feasibility of the sources
separation. This is related with the concept of separability [13] and exclusively
depends on the mixing matrix A. In the particular case where the number of
observations is equal to the number of sources, separability is guaranteed if the
mixing matrix is not singular. In this case, the lineal transformation associated to
the mixture is a biyective relation so that A is regular and its inverse can always
be computed as W = A−1. On the contrary, if A is singular, the correspondence
is not biyective and, therefore, the inverse of the mixing matrix can not be com-
puted. A necessary and sufficient condition for the separability of the mixture is
that its inverse system exist, and this is guaranteed if A(z) is of complete rank by
columns in the unit circle |z| = 1.[99]

Another important question is the identifiability of the mixture, also called
principle of separation. Both terms refer to the possibility of determining the
mixing matrix. It would never be possible to exactly determine the mixing matrix;
instead, a certain ambiguity will always exist.

Two hypotheses have been fixed as principles of separation, accordingly to
theorem of Darmois-Skitovich: [95]:

• Principle 1: If no more than one source is gaussian, the two-by-two indepen-
dence property of the observations is sufficient to guarantee the separation.

• Principle 2: In the presence of more than one gaussian source, the two-
by-two independence property only guarantees the separation of the non-
gaussian sources.

It is proved that the separation matrix W, that obtains two-by-two indepen-
dent outputs, is not unique [16]. The solution of the BSS problem has two inherent
indeterminacies,namely:[95]

• Indeterminacy 1: The property of independence is preserved for any scaling
of the outputs.

• Indeterminacy 2: The rearrangement of the outputs does not modify the
property of independence.
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In the convolutive case [95], it is important to note that the mixing and sepa-
ration processes are linear memory systems. This fact introduces a new indeter-
minacy in the solution of the BSS problem, that is, the impossibility of calculating
the delay related to every extracted source.

In the case of AF episodes the sources that constitute the ECG can be consid-
ered independent, given that the atrial activity and the ventricular are generated
by independent bioelectric phenomena [10]. Furthermore, neither the atrial ac-
tivity nor the ventricular activity are gaussian sources, but they are subgaussian
and supergaussian sources, respectively [10]. On the one hand, the condition of
supergaussian probability density function (pdf) of the ventricular activity is eas-
ily demonstrable by the fact that ventricular components have high amplitudes
within short segments that contain QRS complexes, whereas they have small am-
plitudes the rest of time. Consequently, the VA has a pointed probability density
function, where most values are concentrated around small values and with long
tails. The typical kurtosis of VA is around 30, which confirms the supergaussian-
ity of this random variable [10, 14, 93]. On the other hand, the AA of AF episodes
approaches a saw-tooth signal [78] and behaves as a typical subgaussian random
variable with typical a kurtosis around -0.5. Figure 4.7 shows the histogram and
the kurtosis of the VA and the AA of an AF episode. Therefore, none of the source
concerning AF episodes, i.e. AA and VA, have a gaussian pdf. Accordingly to the
aforementioned principle 2, the extraction of the atrial activity of an atrial fibril-
lation episode can be handled as a BSS problem.

Another important factor to take into account is the presence of noise in the
ECG recordings. In general, the subgaussian behavior of the estimated atrial ac-
tivity is not so far from the gaussianity. Nevertheless, this fact is not considered a
problem for the separation of the AA from the gaussian noise, because the power
of noise in ECG can be normally reduced by signal preprocessing to much smaller
values than the AA power[74].

Figure 4.7. Example of histogram and kurtosis of a)AA source and b)VA source. The AA behaves as
a subgaussian random variable with negative kurtosis. The VA behaves as a supergaussian random
variable with possitive kurtosis.
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4.4 Separation Criteria for Convolutive BSS

The performance of any BSS technique is highly related with the criterion used
for separation. This criterion depends on the initial assumptions on the source
signals. Most of BSS methods consider that all source signals are statistically
independent. Nevertheless, all methods use additional characteristic features of
the source signals to reach their separation. The existing criteria for convolutive
BSS can be divided into three groups: criteria based on density modeling, criteria
based on contrast functions, and criteria based on correlation.

The density modelling based convolutive criteria are defined from the con-
cepts of Information Theory (IT). The IT is applicable to a variety of fields as
Communications, Economy, Neuroscience and Physics [100]. The Information
Theory is useful for BSS because it can characterize the amount of information
shared by a set of signals. Intuitively, the separation of signals is reached when
no common information exists between any subset of source signals. The base
of these methods is density modeling since they model the joint pdf of the out-
put signal set, y[n], so that the separation system is adjusted to produce the most
approximately independent output signal series [14]. In the last years, several
mathematical formulations have been developed on the IT [101, 102]. Neverthe-
less, all these formulations can be unified by using the Kullback-Leibler diver-
gence [13]. Considering the notation y[n] = ŝ[n], the Kullback-Leibler divergence
is expressed as:

D(py||p̂y) =

∫

py(y) log(
py(y)

p̂y(y)
)dy (4.26)

where py(y) and p̂y(y) are the original and the estimated pdf of y[n]. Equation
4.26 quantifies the distance between py(y) and p̂y(y). Equation 4.26 can be rewrit-
ten by using the expectation operator E{·} so that:

D(py||p̂y) = E

{

log

(

py(y)

p̂y(y)

)}

(4.27)

The contrast functions are an alternative to the criteria based on density mod-
eling [16]. The concept of a contrast function is similar to a LED of an electric
or mechanic device that indicates the accomplishment of certain operation condi-
tion. Similarly, a contrast function indicate whether one output signal of a separa-
tion system, say yi[n], is contributed by a unique source signal, say xj [n]. The key
of this is determining the function that depends only on yi[n] but not on the mix-
ture conditions. From equation 4.17 the i-th estimated source can be expressed as
a function of the gij elements of matrix G:
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yi[n] =

N
∑

j=1

gijsj [n] i = 1, . . . , N (4.28)

A contrast function is a cost function Ψ(yi[n]) which is maximized when it is
accomplished that [103]

gij =

{

dl for a unique value of l 1 6 l 6 N

0 rest of cases
(4.29)

This contrast function must be easy to evaluate and must identify the separation
condition for the source signal statistics as a its own maximization. The normal-
ized kurtosis is an example of contrast function able to identify a correct sepa-
ration solution in the BSS problem. The normalized kurtosis ky of an aleatory
variable y is defined as [103]:

ky =
E{|y|4}
E2{|y|2} − 3 (4.30)

With reference to the correlation criteria, the decorrelation of observations was
the first approach to solve the problem of convolutive mixture separation [104,
105]. The decorrelation is reached when the cross-correlation matrix of sources
becomes null for any delay. Attending to this criterion, the following cross-
correlations must be cancelled when casual, L-length separation filters are con-
sidered:

Ryi,yj
[k] = E{yi[n]yj [n − k]} = 0, ∀i, j|i6=j , k = 0, . . . , L − 1 (4.31)

4.5 Convolutive BSS algorithms Under Test

In this section several convolutive BSS algorithms will be introduced, the AA ex-
traction performance of which will be tested in this thesis. In order to study all
range of separation criteria, four CBSS algorithms have been selected. These al-
gorithms optimize the separation of audio sources in reverberant spaces where
convolutive mixture is assumed [106] but have never been used for the extraction
of bioelectric signals. First, the Infomax algorithm is described as an algorithm
based on density modeling. Next the MBLMS algorithm is introduced, which is
based on contrast functions. A first approach to the correlation criterion in BSS is
the TDD algorithm. Finally, the CoBliSS algorithm will be described, which is also
based on the correlation criterion and, in contrast to TDD, adjusts the weights al-
ternatively in time and frequency domain. The code of all four tested algorithms
was made free available for the scientific community by their respective authors.
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4.5.1 Infomax

In 1995, A. Bell and T. Sejnowski exposed the theory basis for using the IT in
BSS [102]. The BSS algorithms based on the IT try to maximize the output entropy,
or information flow, of a neural network with nonlinear outputs. This family of
algorithms are referred as infomax algorithms [14].

Let us consider x as the input of a neural network. The outputs yi of the neural
network are of the form:

yi = φi(b
T

i x) (4.32)

where the φi are some nonlinear scalar functions, and the bi are the weight vec-
tors of the neurons. φi are sigmoidal functions [107] that are used to provide the
high order statistic (HOS) needed to establish the independence of sources. The
objective of infomax is to maximize the entropy of the outputs [14]:

H(y) = H
(

φ1(b
T

1 x, . . . ,bT

n x)
)

(4.33)

where H(·) is the entropy operator. Two of the most frequently used sigmoidal
functions are the logistic function

φ(y) =
1

1 + exp(−y)
(4.34)

and the hyperbolic function [14]

φ(y) = y ± tanh (y) (4.35)

K.Torkola extended the infomax algorithm of Bell and Sejnowski for use with
delayed and convolved sources [108]. T. Amari proposed a more effective crite-
rion of natural gradient [101], and Te-Won Lee et al extended the work of Torkola
by using equations of a feedforward network architecture [109]. Asano [110] pro-
posed a BSS algorithm for convolutive mixture that works in the time-frequency
domain and wich is a combination of Principal Component Analysis (PCA) and
infomax. This is a BSS algorithm that has been optimized for audio mixtures, and
where PCA is employed for reducing room reverberation. This algorithm will be
henceforth referred as the Infomax algorithm.

4.5.2 MBLMS

The LMS (Least Mean Square) algorithm is the simplest adaptive filtering algo-
rithms that are currently used. The LMS algorithm is executed in three main
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steps [111]:

1. Filtering the input signal x[n] by means of an adaptive filter.

2. Generation of the error signal e[n], computed as a comparison of the filtered
signal, y[n], and the desired response, d[n]. In the case of blind deconvolu-
tion, the expected signal d[n] is the original source, s[n], and the filtered
signal y[n] is the estimated source ŝ[n].

3. Adjustment of the filter coefficients according to the error signal.

In other words, the objective of the LMS algorithm is to minimize the mean-
square error of the signal e[n] that is obtained in step two. The process is il-
lustrated in Figure 4.8 for multiple inputs and outputs. This minimization can be
referenced as a cost function, Ψ, that evaluates the mean-square error [97]. That
is:

Ψ = E{|y[n] − s[n]|2} (4.36)

X

Adaptive

function
+

-

W

d[n]

y[n]

Figure 4.8. Standard LMS Algorithm

Nonetheless, the desired signal d[n] is unknown, given that it corresponds to a
source signal of the BSS problem. Thus, the cost function Ψ must be estimated.
This can be done by means of the non-linear Bussgang function in order to pro-
vide the following cost function [111, 112]:

Ψ = E{
∣

∣y − g(y)|2
}

(4.37)

The nonlinear Bussgang function is defined as [111, 112]:
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g(y) =
−E

{

y2
}

p′ (y)

p (y)
(4.38)

where p (y) is the density of y and p′ (y) its derivative.

The cost function Ψ is minimized in order to adapt the deconvolution filter
weights iteratively. Lambert has obtained a cost function that can be extended to
the multiple inputs case [97, 113]:

Ψ = trace E
{

(y − g(s)(y − g(s))H
}

(4.39)

where the trace of an N × N square matrix is defined as the sum of the elements
on the main diagonal. The algorithm that use the previous cost function is called
the Multi-channel Blind Least-Mean Square (MBLMS) algorithm [97, 113].

4.5.3 TDD

The Time-Delayed Decorrelation (TDD) algorithm was first proposed by Molgedey
and Schuster [104] for instantaneous mixtures, i.e. x[n] = A · x[n], where A is a
N × N matrix. The goal is to find a matrix W which is equivalent to the inverse
matrix of A with the ambiguity of amplitude and permutation. The correlation
matrix Rxx[n] of observations is written as:

Rxx[n] = A ·E{s[k]s[k − n]} ·AT = A · Rss[n] ·AT (4.40)

where Rss[τ ] is the correlation matrix of sources.

Let us assume that the components s[n] are independent and that Rss[n] is a
diagonal matrix for any value of n. Molgedey and Schuster demonstrated that,
under these conditions, the BSS problem of finding B is reduced to solve the
eigenvalue problem [114, 115]:

(

Rxx[n1]Rxx[n2]
−1

)

W = W (Λ1Λ2) (4.41)

This problem can also be solved by simultaneous diagonalization of time-delayed
matrices. In this case, the instantaneous BSS problem is solved in two steps,
namely sphering and rotation [114]. Ikeda and Murata [114, 115] proposed a BSS
algorithm that extends the application of the TDD algorithm to the case of convo-
lutive mixtures of signals. This algorithm uses the the spectrogram to transform
mixed source signals into the time-frequency domain.

One main difficulty of BSS algorithms that work in time-frequency domain
is the ambiguities of amplitude and permutation. In [114, 115] this is solved
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by using the inverse of the decorrelating matrices and the envelope of the sig-
nals. On the one hand, the problem of amplitude ambiguity is solved by putting
back the separated independent components to the sensor input with the separa-
tion matrix W. On the other hand, the problem of permutation is solved by the
similarity among envelopes. As a result, the algorithm proposed by Ikeda and
Murata [114, 115] obtains separated spectrograms, Si[f, n], which inverse Fourier
transforms yield the estimated original time-domain signal sources si[n]. This
last algorithm will be referred as the TDD algorithm that will be tested in our
work.

4.5.4 CoBliSS

Schobben and Sommen worked in the BSS problem applied to the separation
of multiple speakers in a room using multiple microphones [116, 117]. They
presented a new BSS algorithm that was entirely based on Second Order Statis-
tics (SOS), which was entitled Convolutive Blind Signal Separation (CoBliSS) al-
gorithm. In this algorithm, the optimization is done by minimizing the cross-
correlation among the outputs of the multichannel separating filter. This criterion
is transformed to the frequency domain in order to achieve a computationally in-
expensive algorithm with fast convergence. The filter coefficients are figured out
in the frequency domain so that the cross-correlation become equal to zero. While
in TDD the approximation of coefficients is entirely made in the frequency do-
main, in CoBliSS, the approximation weights are adjusted iteratively in alternate
time and frequency domains [116, 117].

Attending to equation 4.14, the ith estimated source si[n] of the separation
process for convolutive mixtures can be expressed from the set of observations x
as:

ŝi[n] =
M
∑

j=1

wij [n] ∗ xj [n] i = 1, 2, . . . , M (4.42)

with M the number of of observations and wij the filters of the separation matrix
W.

The cross-correlation among the outputs can be written as [116, 117]:

Ryi,yj
[k] = E {yi[n]yj [n + k]} =

M
∑

a=1

M
∑

c=1

L−1
∑

b=0

L−1
∑

d=0

wia[b]wjc[d]rxaxc
[l + b− d] (4.43)

where
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rxaxc
= E {xa[n]xc[n + d]} (4.44)

A cost function can be formed directly from equation 4.43 using, for example,
the sum of squares of the cross-correlation coefficients. The straightforward min-
imization of such a cost function is not eligible however due to the large number
of filter coefficients involved. A typical example is that two sources and two ob-
servations are used. In that case, four FIR filters need to be calculated, each with
several hundreds to thousands coefficients. Furthermore, all these coefficients are
dependent on each other which makes the problem even more difficult. There-
fore, an approach is required that solves for filter coefficients subsets which are
as independent of each other as possible. In order to achieve this, equation 4.43 is
transformed to the frequency domain, where the CoBliSS algorithm works as an
iterative method [116, 117].

4.6 Atrial Activity Extraction from Holter Recordings

4.6.1 Inherent Problems

Ambulatory electrocardiography, namely Holter electrocardiography, is a widely
used noninvasive test to evaluate ECG abnormalities in patients with various
cardiac disease states. The clinical utility of the ambulatory ECG recording lies in
the ability to continuously examine the patient’s rhythm over an extended time,
permitting ambulatory activity and facilitating examination of diurnal physical
and physiologic changes. In contrast to the standard ECG, which provides a
fixed picture of 12 leads that demonstrate cardiac electrical events over a brief
period (typically less than 30 seconds), the 24-hours ambulatory ECG provides a
more narrow view of 2 or 3 leads of ECG data but has the strength of recording
changing dynamic cardiac electrical phenomena that often are transient and of
brief duration. Ambulatory monitoring provides a record of past events, allow-
ing detailed analysis of dynamic and transient ECG changes. Clinical experience
has shown ambulatory ECG to be one of the most cost-effective clinical tools in
the diagnosis and assessment of symptomatic and asymptomatic cardiac arrhyth-
mias, prognostic assessment of risk stratification of various cardiac populations,
and the evaluation of arrhythmia management modalities [118].

The main difficulty for applying BSS techniques to extract the AA from Holter
recordings is the lack of ECG leads. The number of observation required to solve
a BSS problem is, at least, the number of mixed sources [14]. Given that AA,
VA, noise and other bioelectric signals are always present in the ECG generation,
two Holter leads are not enough to determine the AA. That is, the limited num-
bers of leads recorded from a Holter system reduces excessively the necessary
spacial diversity required by BSS techniques to accurately extract the AA. Conse-
quently, other extraction techniques diferent from BSS, as Average Beat Substrac-
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tion (ABS) [12], are commonly prefered when multi-lead ECG recordings are not
available and individual leads are used instead [31]. Therefore, if convolutive
BSS algorithms will be used to extract the AA from ECG Holter recordings of AF
episodes, the number of observations must be increased. One way to solve this
difficulty is including a wavelet decomposition of the Holter leads. The wavelet
analysis can transform a signal under investigation into a set of signals so that
a multiplied number of observations is made available. These new signals are
called detail and approximation coefficients, each of them carrying information
of different frequency bands of the ECG [119]. The inclusion of a wavelet decom-
position stage to increase the number of leads was first introduced by Sanchez
et al as the Wavelet Blind Separation (WBS) method [41]. Next, a new convolu-
tive BSS algorithm optimized for the AA extraction from Holter recordings of AF
episodes will be introduced. This new method is based on wavelet decomposi-
tion to increase the number of observations and will be subsequently referred as
Convolutive Multiband Blind Separation (CMBS). In the next two subsections the
wavelet transform principles will be summarized and the CMBS algorithm will
be described.

4.6.2 Wavelet Transform Principles

Wavelet analysis is used to transform the signal under investigation into another
representation that presents the signal information in a more useful form, join-
ing spectral and temporal analysis [119]. Mathematically speaking, the Wavelet
Transform (WT) is the convolution of the analyzed signal, s(t), with a set of
wavelet functions of a wavelet family, Ψa,b(t). All these functions derive from a
unique wavelet mother or basis wavelet, Ψ(t) and are dilated and displaced ver-
sions of it. The Continuous Wavelet Transform (CWT) of s(t) is provided by [119]:

Ca(b) =

∫ ∞

−∞

s(t)Ψ∗
a,b(t)dt (4.45)

where a, b ∈ ℜ, a 6= 0, are the scale and translation parameters, respectively,
and t is the time. The relation between the wavelet functions Ψa,b(t) and their
mother wavelet or basis function is:

Ψa,b(t) = |a|−1/2Ψ

(

t − b

a

)

(4.46)

As a increases, the wavelet becomes narrower. Thus, one has a unique analytic
pattern and its replications at different scales and with variable time localization.

The wavelet mother used to generate all the basis functions is based on some
desired characteristics associated with that function. The translation parameter
b relates to the location of the wavelet function as it is shifted through the sig-
nal. Thus, it corresponds to the time information in the Wavelet Transform. The
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scale parameter a is defined as 1/frequency and is related to frequency informa-
tion. Scaling either dilates (expands) or compresses a signal. Large scales (low
frequencies) dilate the signal and provide global information about the signal,
while small scales (high frequencies) compress the signal and provide detailed
information hidden in the signal. The above analysis becomes very useful as in
most practical applications, high frequencies (low scales) do not last for a long
duration, but instead, appear as short bursts, while low frequencies (high scales)
usually last for entire duration of the signal [120]. Given the varying time and
frequency resolution at different scales, the wavelet analysis is also known as
Multi-Resolution Analysis (MRA) [119]. An example of convolution of an arbi-
trary signal with two functions of the same wavelet family for two different scale
factors ( a=1 and 5), and four different translation values of b is displayed in fig-
ure 4.9.

When discrete functions are considered, the discrete wavelet transform (DWT)
results from discretizing scale and translation parameters. Particularly, the defi-
nition of parameters as a = 2j and b = k · 2j leads to the dyadic DWT (DyWT),
expressed as [119]:

c(j, k) =
∑

n∈Z

x[n]Ψj,k[n] (4.47)

where

Ψj,k[n] = 2−j/2Ψ
[

2−jn − k
]

(4.48)

and

a = 2j; b = k · 2j ; (j, k) ∈ Z2 (4.49)

The implementation of the DyWT can be done by executing a hierarchical
structure decomposition of the analyzed signal, so that the DyWT is computed
as successive lowpass and highpass filtering of the discrete time-domain signal.
This version of MRA is called the Mallat algorithm or Mallat-tree decomposi-
tion [121]. This algorithm is schematized in figure 4.10, where the low pass filter
is denoted by G0, while the high pass filter is denoted by H0. At each level, the
high pass filter produces detail information, d[n], while the low pass filter associ-
ated with scaling function produces coarse approximations, a[n].

The possibility of reconstruction of the original signal from some of the ob-
tained basic blocks without loss of information is other important advantage of
this discrete transforms. An approximation to the signal at scale m can be gener-
ated by adding a wavelet of mother functions at this scaled factored by approxi-
mation coefficients as follows [119, 120]:
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Figure 4.9. Example of convolution between an arbitrary signal and a wavelet function at two different
scales, a = 1 and a = 5, and for different time shifts given by the translation parameter b.
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Figure 4.10. Multi-Resolution Analysis by successive lowpass and highpass filtering

sm(k) =
∑

n

Cm(n) · Ψm,n(k) (4.50)

and the original signal can be reconstructed back by adding its approximations
at all scales. This mathematical synthesis is called the Inverse Discrete Wavelet
Transform (IDWT) and has the next representation in the discrete domain[119,
120]:

s(k) =
∑

m

∑

n

Cm(n) · Ψm,n(k) (4.51)

4.6.3 A New Algorithm for Atrial Activity Estimation: Convolu-
tive Multiband Blind Separation

.

After describing the inherent problems of AA extraction from ECG Holter
recordings, the CMBS algorithm can be already designed. It basically consists of
wavelet decomposition stage plus a convolutive BSS stage. The general process
of CMBS is schematized in figure 4.11. The Mallat-tree decomposition allows to
increase the number of observations from Holter ECG recordings so that CBSS
algorithms have enough entries to estimate the AA of AF episodes. Mathemati-
cally, if x1 and x2 are two leads of a Holter ECG recording, the wavelet stage will
produce N new signals from each lead that are observations inputs for the BSS
stage, where N is a natural number that depends on the level of wavelet decom-
position. For instance, if the level of decomposition is six, N is equal to seven
since six detail and one approximation coefficients are considered. That is:

x1 −→ [x11, x12, . . . , x1N ]

x2 −→ [x21, x22, . . . , x2N ]
(4.52)
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Figure 4.11. General CMBS process for AA extraction.

Hence the BSS stage must solve the following BSS problem:
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(4.53)

There still exist several unsolved questions of the algorithm design. Firstly, the
optimal wavelet mother for the decomposition of Holter ECG recordings must be
chosen. Secondly, the optimal level of decomposition for the selected wavelet
mother must be selected too. The scheme of figure 4.11 is particularized for eight
decomposition levels, and it can be anticipated that this value has not been arbi-
trarily chosen but is the result of a deep previous performance study of several
wavelet mothers and decomposition levels. All the analyzed wavelet mothers be-
long to wavelet families that are available in Matlab code. The analyzed wavelet
mothers and the decomposition levels at which they are used are detailed in Ta-
ble 4.1. The symmlet(7), Daubechies(10), Symmlet(7) and Meyer wavelet mothers
were used in [41] and [122], where the most suitable wavelet mother is adap-
tively selected in different fragments of the ECG according with the form of each
QRS complex. Similarly, the wavelet mothers Haar, Daubechies(5), Coiflet(3),
Biorthogonal (4.4), Reverse Biorthogonal(4.4) and Symmlet(5) were used in [123].
A detailed description of this functions can be found in [119]. Four of the studied
wavelet mothers are depicted in Figure 4.12. The analyzed wavelet mothers and
their levels of decomposition are presented in Table 4.1. A performance compar-
ison of these wavelet mothers will be presented in chapter 7 and will allow to
complete the algorithm design. The number of analyzed decomposition levels is
different for every family because both the mother and the decomposition level
were adjusted jointly and iteratively.

It can be anticipated too that the function symlet(8) with eight levels of de-
composition was used as mother wavelet, given that it offered the best perfor-
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Wavelet Family Levels of Decomposition

symmlet(6) 5 and 6

symmlet(7) 5 to 7

symmlet(8) 5 to 8

symmlet(9) 5 to 9

bior(4.4) 7 and 8

Daubechies(10) 7 and 8

Coiflet(3) 8

Harr(4) 8

Table 4.1. Analyzed wavelet mothers and their levels of decomposition.
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Figure 4.12. Several mother wavelet functions used to transform Holter leads into a higher number of
observations
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mance among all the analyzed families. All detail coefficients and only one ap-
proximation coefficient of the lead decomposition stage are taken as inputs of the
BSS stage. Thus nine observation signals resulted from each Holter lead. Con-
sequently, eighteen signals were used as inputs of the BSS stage, as depicted in
Figure 4.13. Note that the detail coefficients d1 and d2 do not contain significant
information because of the spectral properties of Holter signals. Therefore, only
seven useful wavelet signals from each lead are considered in practice. Hence
the number of significant signals coming to the BSS stage is fourteen when two
Holter leads are available.

The complete design of CMBS also requires to choose the optimal CBSS algo-
rithm for AA extraction. It can be also anticipated that this optimal algorithm is
the convolutive BSS algorithm Infomax [110], as will be corroborated by results
given in chapter 7. The results presented in chapter 7 will justify the use of a
convolutive model as well.

Finally, a crucial decision is which one of the estimated sources s1, s2, . . . , sN

carries the information related to the AA. As for the before described convolutive
BSS alogrithms (Infomax, MBLMS, TDD and CoBliSS), spectral analysis is used
to identify the AA among the extracted signals. This will be explained in depth
in chapter 6. The selection of the AA from the sources estimated by convolutive
Infomax is made regarding to the spectral morphology of the signals. The typi-
cal power spectrum of AA signals contains a sharp peak between 4 an 8 Hz and
insignificant content in the rest of frequencies [124]. This selection can be made
either by visual observation of the extracted sources spectra, or by using the Spec-
tral Concentration (SC) index, which automatizes the decision [93]. The SC will
be later defined in chapter 6.
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Figure 4.13. Decomposition of a Holter lead into 8 detail and one approximation coefficient by using
symmlet 8 with 8 decomposition levels
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In this chapter, a new method based on the analysis of AA spectral features
organization is presented with the aim to predict PAF episode termination. We
have centered our work in disclosing the differences of spectral features orga-
nization between terminating and non-terminating PAF episodes. The analysis
of spectral features is made in terms of mathematical regularity of their series.
The organization is measured by using the entropy estimator Sample Entropy
(SampEn) [43, 125]. This chapter is organized as follows. In section 5.1 the re-
gularity estimator SampEn and its related nomenclature are introduced. A new
method based on spectral features for predicting PAF termination is described in
section 5.2. The effects of signals quantization on the suitability of spectral analy-
sis are taken into consideration in section 5.3. Finally, a visual prediction method
based on Poicaré plots that complements the analytic assessment of spectral fea-
tures is presented in section 5.4.



72 CHAPTER 5. PREDICTION OF PAROXYSMAL ATRIAL F IBRILLATION TERMINATION

5.1 Sample Entropy as a Regularity Estimator

Given that the electrical remodeling present in the heart when AF occurs is a
far-from linear process [91], the non-linear index SampEn was chosen to esti-
mate the regularity of series. Other non-linear indices, as the Approximate En-
tropy (ApEn) [125], which has been previously used in several biomedical ap-
plications [43], were also tested. Nevertheless, among the explored indexes, the
SampEn was the one that achieved the higher percentage of correctly classified
PAF episodes. The SampEn [43] measures the regularity level of series. That is,
they quantify how predictable series are depending on the number of times that
repetitive patterns are present in them. The SampEn appears as a natural evolu-
tion of the Approximate Entropy (ApEn) with the aim to reduce the bias of this
estimator [43].

The main advantage of SampEn, in comparison with other nonlinear regula-
rity indices, is its largely independency on the record length [43]. The SampEn
operator explores numeric series in search of similar epochs and assigns a non-
negative number to the sequence. Large values of SampEn indicate high math-
ematical complexity or irregularity of data. Conversely, low values of SampEn
indicate low complexity or high regularity of data. The computation of SampEn
requires, besides the numeric series, two additional inputs: the length of patterns,
m, and the tolerance window or criterion of similarity, r. The SampEn reflects
the likelihood that similar patterns of observations will not be followed by ad-
ditional similar observations. A time series containing many repetitive patterns
has a relatively small SampEn. A less predictable, i.e. more complex, process
has a higher SampEn. A major difference between SampEn and ApEn is that
SampEn does not count self-matches and, consequently, has a reduced bias [43].
In a formal way, the SampEn is defined as follows:

Let x[n] be a numeric series of length N that consists of N − m + 1 patterns
Xm(i) , 1 ≤ i ≤ N − m + 1 of length m. That is:

x[n] = [Xm(1), Xm(2), . . . , Xm(N − m + 1)] (5.1)

where

Xm(i) = [x(i), x(2), . . . , x(i + m − 1)], 1 ≤ i ≤ N − m + 1 (5.2)

The distance between any two patterns of the series, Xm(i), Xm(j), of length
m is defined as:

d[Xm(i), Xm(j)] = max
k=0,...,m−1

(|x(i + k) − x(j + k)|) (5.3)

Let Bi be the number of patterns of length m that fulfill d[Xm(i), Xm(j)] < r
with 1 ≤ j ≤ N − m, j 6= i, where r is the feature that defines the criterion of
similarity between patterns [125]. The fraction of patterns in x[n] of length m that
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resemble the pattern Xm(i) is:

Bm
i (r) =

1

N − m − 1
Bi (5.4)

The mean of these Bm
i (r) is the probability that two patterns in x[n] of length

m accomplish that d[Xm(i), Xm(j)] < r:

Bm(r) =
1

N − m

N−m
∑

i=1

Bm
i (r) (5.5)

Similarly, considering Ai as the number of patterns in x[n] of length m+1 that
fulfill d[Xm+1(i), Xm+1(j)] < r, with 1 ≤ j ≤ N − m, j 6= i, Am

i (r) and Am(r) are
defined as:

Am
i (r) =

1

N − m − 1
Ai 1 ≤ N − m (5.6)

Am(r) =
1

N − m

N−m
∑

i=1

Am
i (r) (5.7)

where Am
i (r) is the probability that two patterns in x[n] of length m+1 accomplish

that d[Xm+1(i), Xm+1(j)] < r. Finally, the SampEn is defined as:

SampEn(m, r) = lim
N→∞

{

− ln

[

Am(r)

Bm(r)

]}

(5.8)

For a finite sequence of length N , its SampEn(m, r) is estimated by the statis-
tic:

SampEn(m, r, N) = − ln

[

Am(r)

Bm(r)

]

(5.9)

The SampEn is usually computed for m equal to 1 or 2, and r between 0.1
and 0.25 times the standard deviation of the numeric sequence. This normaliza-
tion produce good statistical validity of SampEn and makes it independent from
any translation or scale invariance. In other words, the SampEn remains un-
changed under uniform magnification or reduction processes and constant shift
of values [125, 126].
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5.2 Multi-Parametric Sample Entropy

In this section we will describe the method to predict the evolution of PAF episo-
des. The differences of regularity in the time-frequency domain will be the key
to distinguish between terminating and nonterminating PAF episodes. The regu-
larity analysis is assessed by the non-linear regularity estimator SampEn. Given
that we are interested in describing the AA properties in the time-frequency do-
main, some transformations on the Holter ECG recordings must be carried out
before applying the SampEn estimator. An scheme of the proposed general pro-
cess to classify PAF episodes can be seen in figure 5.1. This new method will be
henceforth referred as Multi-Parametric Sample Entropy (MPSE). The MPSE is
completed in six main steps: extraction of the AA, computation of the spectro-
gram, curve fitting, construction of spectral features series, SampEn computa-
tion, and the final classification. Next we will describe each of these steps. With
reference to the last step, the classification can be assessed either by by using uni-
variate analysis or discriminant analysis. This will define two different versions
of the method depending on the type of classification. In other words, steps from
one to five are common to both versions of the method and will be referred as
shared steps, whilst step six, i.e. the final classification, will be different for each
version.

AA extraction

Time-frequency distribution

Cubic spline fitting

Construction of sequences

Computation of SampEn

Classification

Figure 5.1. General process to classify a PAF episode as terminating or non-terminating
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5.2.1 Shared Steps

In order to use the ECG as a suitable tool for the analysis of AF, the AA must
be separated from the other cardioelectric signals. The extraction of the AA dur-
ing AF requires nonlinear signal processing since spectra of atrial and ventricular
activities (VA) overlap and, in consequence, they cannot be separated by simple
linear filtering [31]. In this sense, the CMBS method, which has been presented
in chapter 4, is fully optimized for the extraction of the AA when a reduced num-
ber of leads is available, as in Holter recordings, and a convolutive mixture of
sources occurs, as it happens in the human body. Given that our database consist
of Holter recordings, we have chosen the CMBS method to extract the AA as a
previous step to the rest of the analysis. This selection will be fully justified in
chapter 7.

After the extraction of the AA signal, its spectrogram [127] is computed with
Hamming windows of 1024 samples in length and 75% overlap. An example
of AA spectrogram is depicted in n Figure 5.2.a. How the spectrogram is cho-
sen as the optimal time-frequency distribution to represent the AA in the time-
frequency domain will be elucidated later in section 5.2.4. The results presented
in chapter 7 will corroborate that the spectrogram is the best distribution for
the study of AA regularity. Once the time-frequency distribution is computed,
a cubic spline fitting is applied to each frequency slice that constitute the time-
frequency distribution. This is exemplified in Figure 5.2.b for a spectrogram slice
at t = 50 seconds. In order to facilitate the spectral features extraction, the cu-
bic spline fitting curve is interpolated so that the resulting frequency resolution
is 0.01 Hz. In this way, the spectral features of the AA are computed more accu-
rately. The selection of the cubic spline model for spectral interpolation is justified
because in several preliminary trials it provided the best fitting in comparison
with Gaussian, polynomial, rational, Weibull, power and exponential models. A
cubic spline is a piecewise function of third-order polynomials [128, 129]. Next,
the local maxima and minima of the interpolated fitting curve are detected. Only
singular points from the main peak to the end of the spectrum are taken into ac-
count in order to discard irrelevant maxima or minima . Several spectral features
are then computed from these singular points. These spectral features will be
introduced in subsection 6.4.2.

The next step consists of constructing the mathematical series of spectral fea-
tures. Finally, the SampEn of all aforementioned series is computed in order to
estimate their mathematical regularity. As it will be corroborated in chapter 7,
some differences of signal regularity can be observed between terminating and
non terminating episodes. The size of series is around 600 elements, what is
large enough since the SampEn is meaningfully applied to more than 100 data
points [125]. All SampEn values were computed with four significant digits.
Given than the duration of the spectral features series is about a minute, the re-
sultant series time resolution is 0.1 seconds. The values of m = 2 and r = 0.25
times the STD of signals were chosen for the computation of SampE, which are
in the rank suggested by Pincus [126] (m = 1 and r between 0.1 and 0.25 times
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the STD). Other values of m and r were also evaluated, but the best results were
reached with these values of m and r. This selection will be later justified in
chapter 7.

Figure 5.2. Time-frequency plot of a typical AA signal. a) AA spectrogram computed using Hamming
windows of 1024 samples in length and 75% overlap. b) Spectrogram slice at t = 50 seconds,
interpolated fitting curve, local maxima and minima, and spectral features fp1, fp2, A1 and A2.

5.2.2 Univariate Analysis

Once the SampEn of series is computed, we must be able to decide from this
SampEn value whether the PAF episode is near to termination or, on the contrary,
it is more likely to sustain. One straight choice for evaluating the SampEn values
is fixing a threshold level of SampEn for every spectral feature. This threshold
will be the limit between terminating and nonterminating PAF episodes. Since in
this case the decision is made by regarding at only one variable each time, this
type of decision is usually referred as univariate analysis. On the other hand, the
complete procedure of the univariate analysis consists of two different phases
that are highly related with the database structure, which will be introduced in
chapter 6. In a first stage, the threshold level must be fixed, which is carried out
by considering a limited number of ECG recordings that constitute the so called
learning set. After fixing the threshold level, which can be obviously different for
every spectral feature, the suitability of the method is assessed by considering a
different and independent group of recordings, which is referred as the test set.
This procedure is depicted in Figure 5.3. In Figure 5.3.a the SampEn threshold
level of a spectral feature is chosen by regarding at the learning set. Black circles
indicate terminating episodes and white circles indicate nonterminating episodes
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This threshold is optimal since it provides the maximum number of correct clas-
sifications. Note that any displacement of this threshold up or down from its
actual position would affect negatively to the total correct classifications. In Fig-
ure 5.3.b the recordings of the test set are classified by considering the threshold
level previously fixed. The more correctly classified episodes of the test set the
more suitable the classification method is.

learning set occurences test set occurences

SampEn of

spectral parameter

(a) (b)

SampEn of

spectral parameter

threshold threshold

Terminating

Non-terminating

Figure 5.3. (a) The threshold of the univariate analysis is fixed as the optimal decision level of
SampEn for the learning set (b) The method is finally assessed by considering the recordings of
the test set and the threshold fixed by the learning set. Black circles indicate terminating episodes.
White circles indicate nonterminating episodes.

5.2.3 Multivariate Analysis

In a univariate analysis the classification of a PAF episode as terminating or non-
terminating is made by considering only a spectral feature at each time. Conse-
quently, the final decision might be different for the same episode when different
spectral feature are considered. In a multivariate analysis, several variables are
considered at the same time so that the information carried by each variable is
not regarded separately but all variables are jointly analyzed instead. Therefore,
the final decision is not a function of a unique variable, but it is a function of
several variables. In order to obtain this function of several variables we need to
carry out a discriminant analysis where the SampEn of each spectral feature is
taken into account. Thus we will subsequently refer to the multivariate analysis
also as discriminant analysis. The objective pursued by the discriminant analysis
is to know if there exists any combination of the aforementioned features which
improves the decision reliability.

As in the univariate analysis, the discriminant analysis is carried out in two
stages. First, the discriminant function is adjusted by considering the learning
data set. This discriminant function is a linear transformation of the SampEn
of spectral feature, which will be considered to be optimally adjusted when the
maximum number of correctly classified learning PAF episodes is reached. Note
that not necessarily all variables will be present in the final discriminant func-
tion because some carried information might be redundant. On the other hand,
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each variable present in the discriminant function will contribute it with a dif-
ferent weight. Then this discriminant function is assessed by the test set, as in
the univariate case. An example of discriminant function of two input variables
is depicted in Figure 5.4. Given that two variables contribute to the discrimi-
nant function, it is presented as a straight line. In Figure 5.4.a the multivariate
function is adjusted from the recordings of the learning set. In Figure 5.4.b the
multivariate function is assessed by the recordings of the test set. If three vari-
ables contributed to the discriminant function it would be a plane. More than
three contributing variables implies a hyperplane as discriminant function.

SampEn of

spectral parameter 2

(a) Learning set (b) Test set

SampEn of

spectral parameter
discriminant

function

Terminating

Non-terminating

SampEn of spectral parameter 1 SampEn of spectral parameter 1

discriminant

function

Figure 5.4. (a) The discriminant function is adjusted from the learning set (b) The method is finally
assessed by considering the recordings of the test set and the adjusted discriminant function. Black
circles indicate terminating episodes. White circles indicate nonterminating episodes.

5.2.4 Selection of the Optimal Time-Frequency Distribution

Among the desirable properties of an energy time-frequency distribution, two
of them are of particular importance : time and frequency covariance. Indeed,
these properties guaranty that, if the signal is delayed in time and modulated,
its time-frequency distribution is translated of the same quantities in the time-
frequency plane. It has been shown that the class of energy time-frequency dis-
tributions verifying these covariance properties possesses the following general
expression [127]:

Cx(t, ω) =
1

4π

∫∫∫

s∗
(

u − 1

2
τ

)

s

(

u +
1

2
τ

)

Φ(θ, τ)e−jθt−jτt+jθududτdθ

(5.10)
where Φ(θ, τ) is a two-dimensional function called the parameterization or kernel
function. This class of distributions is known as the Cohen’s class [127]. Several
usual kernel functions are presented in table 5.1.

Although time-frequency distributions had been previously used in forecast-
ing the evolution of AF episodes [23, 28], the SampEn is for the first time applied
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Name Kernel: Φ(θ, τ)

Wigner-Ville 1

Margenau-Hill cos 1

2
θr

Page ejθ|τ |

Choi-Williams e−θ2τ2/σ

Spectrogram
∫

h∗
(

u − 1

2
τ
)

e−jθuh
(

u + 1

2
τ
)

du

Zhao-Atlas-Marks g(τ)|τ | sin aθr
aθr

Table 5.1. Several usual kernel functions of time-frequncy distributions

to series of spectral features in the present work. Given that the optimal time-
frequency distribution for the proposed method was a priori unknown, a prelim-
inary study with the aim to choose it was advisable. This preliminary study was
made by considering several time-frequency distributions and a reduced number
of spectral features. The features chosen to do this prior survey were fp1 and SC.
The fp1 was chosen because it is known from previous works that fp1 contains
very relevant information on the AF termination [22, 23]. The SC was selected
because it is a significant feature of real AF recordings [93]. Once the optimal
time-frequency distribution was identified, the number of spectral features was
extended to twelve.

The computed time-frequency distributions are those kernel functions are tab-
ulated in Table 5.1 and other three derived distributions. All these time-frequency
distributions belong to the Cohen’s class [127, 130] and are the following: spectro-
gram (SP), Wigner-Ville (WV), pseudo-Wigner-Ville (PWV), Margenau-Hill (MH),
pseudo-Margenau-Hill (PMH), Page (PG), pseudo-Page (PPG), Zhao-Atlas-Marks
(ZAM) and Choi-Williams (CW). A in depth description of each of these distribu-
tions can be found in [127]. In order to use a unified criteria and avoid undesired
sampling distortion on the selection of the optimal time-frequency distribution,
all distributions were obtained with the same resolution of 1 second in time and
1 Hz in frequency. Results of this study will be shown in chapter 7.

5.3 ECG Signal Quantization Effects

5.3.1 Introduction

In chapter 7 results will prove the suitability of MPSE for PAF termination pre-
diction. In an ideal situation, our database would only consist of high resolution
recordings. Nevertheless, these high resolution recordings are not always avail-
able in the regular clinical practice. Because of memory constraints of recorder
devices, long duration recordings, as Holter systems, are normally sampled at
a low frequency rate and with a low resolution, that is, the sampled values are
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stored by using a reduced number of bits. Since long duration recordings are
frequently used as a diagnosis tool of AF, it would be interesting to know how
Holter should be configured. In this section we are particularly concerned with
the effects of quantization on MPSE. Here we present a methodology to assess the
effects of ECG quantization on this PAF termination prediction method. We will
analyze the effects of progressive decreasing signal resolution on several features
used by MPSE.

5.3.2 Methodology

In order to analyze the quantization effects on MPSE, this study was particu-
larized for two spectral features, namely the main peak frequency (fp1) and the
Spectral Concentration (SC). On the other hand, the accuracy of the SampEn of
the AA for different degrees of quantization is also computed. Hence, the effects
of quantization on the estimation of signals regularity are also analyzed here.
These features three will be later described in chapter 6.

The general process is depicted in figure 5.5. The 16-bit original leads are
quantized using from 15 to 4 bits. Then the CMBS algorithm is applied to ex-
tract the estimated AA from every signal. The digital post-BSS filter is a low-pass
Chebyshev type II ninth order with cut-off frequency 70 Hz and 40 dB ripple in
the stop-band and was applied to all the estimated AA signals . Next, the spec-
trograms of the filtered AA signals were computed using 1024 points Fast Fourier
Transform (FFT), 1024 sample size Hamming window and 75% overlapping. Be-
sides, sequences of the AA spectrograms characteristic features, i.e. the main
peak frequency (fp1) and the SC), were constructed. Furthermore, the SampEn
of quantized AA is also computed with the aim to measure the mathematical
organization of time-domain signals [43, 125].

The results of this section will be presented in section 7.4. These results will
allow us to make a recommendation on the minimum number of encoding bits.
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Figure 5.5. General process of analysis. Subindexes express the number of bits. (a) Quantization of
leads, (b) AA extraction by the CMBS, (c) Low pass filtering, (d) Spectrogram of the quantized AA, (e)
construction of fp and SC sequences, and computation of the SampEn of AA.
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5.4 Poincaré Plots of Time-Frequency Parameters

5.4.1 Introduction

Given that in these critical situations a decision must be made with the utmost
urgency, it would be desirable to have a visualization tool of easy interpretation
that could provide a fast and reliable prediction of AF episode evolution. In this
section, a new method to discriminate between terminating and nonterminating
PAF episodes is presented. This new method is based on Poincaré plots and time-
frequency analysis. The novelty of this method is the representation of time-
frequency features on Poincaré [131, 132] plots as a new tool of decision. The
main advantages of this new method are the low computational load and the
visually easy interpretation of data.

5.4.2 Methodology

Firstly, the AA is extracted from the ECG recordings, given that the analysis of
previously separated AA makes easier the study of AF [11] and improves the
information provided by time-frequency distributions [37]. The AA activity is
separated from the rest of cardioelectric sources by using the CMBS algorithm.

Secondly, the spectrograms of the extracted AA signals are computed using
Hamming windows of 1024 samples in length and 75% overlap. In order to fa-
cilitate the extraction of spectrogram features, cubic spline fitting is applied to
each of the Fourier transforms that comprises the spectrogram. The cubic spline
model reached the best fitting in comparison with gaussian, polynomial, rational,
Weibull, power and exponential models. The cubic spline fitting curve from the
original data is interpolated so that the resulting frequency resolution is 0.01Hz
and the spectral features are hence extracted with higher accuracy. From four
time-frequency features of every spectrogram we constructed four time-domain
sequences. These features are the main peak frequency (fp1), the second largest
peak frequency (fp2), and their respective peak magnitudes (A1 and A2).

Finally, the phase portraits, i.e. the Poincaré maps with the stroboscopic view
[131], of the aforementioned features were plotted. One phase portrait consists
of plotting each data point of a periodically observed magnitude versus its pre-
decessor [131, 132]). The formation of a stroboscopic view is exemplified in fig-
ure 5.6 for an arbitrary vector x=[1 2 3 4 3 2 1].

The visual inspection of clusters in the phase portraits, helped by the inser-
tion of a cursor as a graphical threshold, was used to decide if the AF episode
was of terminating or nonterminating nature. The results of this section will be
presented in section 7.5 of chapter 7 , where the differences between stroboscopic
views of terminating and nonterminating PAF episodes will be elucidated. The
aforementioned overlap of 75% was necessary to have enough large numeric se-
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Figure 5.6. Example of the stroboscopic view of vector x=[1 2 3 4 3 2 1]

quences, around 600 elements, so that the nature of PAF episodes could be de-
duced from the stroboscopic views.
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In this chapter the employed database of signals and the indicators used for
measuring the performance of methods are introduced. Furthermore, the use of
performance indicators requires the definition of the appropriate testing environ-
ments. Each of the methods introduced in previous chapters will be assessed in
one or two testing environments. This chapter is divided in three main subjects
attending to the distribution of previous chapters: performance analysis of CBSS
algorithms, performance analysis of CMBS, and performance analysis of AF ter-
mination prediction, which includes the analysis of MPSE, Poincaré plots, and
quantization effects.
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6.1 Database Source and Signal Preprocessing

All signals in database are initially extracted from real ECG recordings. Several
environments based on these original real recordings are defined in next sections.
These original real signals are all preprocessed in order to reduce baseline wan-
der, high frequency noise and powerline interference. The baseline wander is re-
moved by bidirectional IIR Chebyshev high pass filtering with cut-off frequency
of 0.5 Hz [133, 134]. The high frequency noise was reduced with an eight or-
der bidirectional IIR Chebyshev low pass filtering with cut-off frequency of 70
Hz [135, 136]. The powerline interference is removed through adaptive filter-
ing, which preserves ECG spectral information [137]. In addition, when the ECG
recordings are registered at low frequency rate, they are upsampled to 1024 Hz
with the aim to enhance the algorithms performance.

The initial real recordings come from two different sources. Firstly, twenty
12-leads ECG recordings of persistent AF episodes were made available by cour-
tesy of the Clinic University Hospital of Valencia. These 12 recordings were cap-
tured at a frequency rate of 1 kHz in the Cardiac Electrophysiology Laboratory
of the aforementioned hospital by the diagnosis system Prucka Cardiolab 4000.
An initial step previous to the study of CBSS algorithms performance is the the
separation of AA and VA by the ABS algorithm so that they will be later used for
the formation of synthetic ECGs . This will be later expanded in section 6.2 for
each particular testing environment. Secondly, 50 real two-lead Holter recordings
of PAF episodes were taken from the se of PhysioNet/Computers in Cardiology
Challenge 2004. These signals were initially sampled at a frequency rate of 128
Hz. A wider description of it will be given in section 6.4.1.

6.2 Performance Analysis of CBSS Algorithms

The performance analysis of CBSS algorithms comprises three main subjects: the
description of the environments for testing the performance of algorithms, the
performance indicators used to quantify the accuracy of the estimated AA, and
the processes required to identify the AA among all the estimated sources. This
three subjects are tackled in the next three subsections.

6.2.1 Testing Environments

In order to test the performance of convolutive BSS algorithms in the AA extrac-
tion two different test environments have been proposed. The signal database of
each environment is constituted by synthetic ECG recordings. Nonetheless, there
exist important differences between the synthesis process of both environments.
The synthesis process of the first environment is a very controlled process so that
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all signal mixing features can be adjusted. This first environment does not rep-
resent a totally realistic mixture model but is very useful for the comparison of
the AA extraction performance of convolutive BSS algorithms and the instanta-
neous algorithm FastICA. In a first step, the first environment is used to discard
those convolutve algorithms which extraction performance is much lower than
the performance of FastICA. By contrast, the synthesis process of the second en-
vironment is a more realistic one, since the resulting synthetic ECG recordings
are effectively real ECG signals. This second environment provides a better ap-
proach to the analysis of real signals at the expense of less control of the synthesis
process. Next, each testing environment is described separately.

First Environment

The signal database of the first environment consists of 15 pairs of separate AA
and VA. The AA and the VA were previously extracted from real ECG recordings
coming from the Cardiolab system by using the ABS algorithm. ABS was applied
to lead V1 because this is the lead where the AA is more clearly distinguished.
This extraction technique was chosen for this previous process because it is a
widely used extraction technique which is based on QRST cancellation. Because
of this, this previous process and the BSS techniques are made totally indepen-
dent. In this way, this previous extraction process neither affects the performance
study nor benefits the extraction performance of any algorithm under test BSS
algorithm. All ECGs recordings are 10 seconds in length with a sampling rate of
1 kHz.

The separate AA and VA are are mixed by known linear functions in a con-
trolled process. The synthesized ECG leads of AF are generated by combining the
AA and the VA of the same AF episode by means of a randomized 2 × 2 mixing
matrix A. The elements of the mixing matrix are FIR filters so that the mixture of
AA and VA is made by regarding the mixture model given by equation 4.13, that
is, the convolutive mixture model. Henceforth, it will be said that these signals
are mixed ”convolutively”. An example of synthetic leads formation from the
original AA and VA can be seen in Figure 6.1 for a length of filters hij equal to 2.
Attending to the size of matrix A, equation 4.13 can be rewritten as:

[

x1[n]

x2[n]

]

=

[

h11 h12

h21 h22

]

∗
[

s1[n]

s2[n]

]

(6.1)

where s1 and s2 are the mixed AA and VA, regardless of the appearing order, x1

and x2 are the synthetic leads, and hij are FIR filters that constitute the mixing
matrix A. In the same way, 4.14 can be rewritten as:

[

ŝ1[n]

ŝ2[n]

]

=

[

w11 w12

w21 w22

]

∗
[

x1[n]

x2[n]

]

(6.2)
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Figure 6.1. Example of synthetic leads x1 and x2 formation from the AA and the VA. The filters of
matrix A take the following values in the example: h11 = [1 0.5], h12 = [2 1], h21 = [1 − 0.5],
h22 = [−2 − 1].

where ŝ1 and ŝ2 represent the estimated AA and VA, regardless of the appearing
order, and wij are FIR filters that constitute the unmixing matrix W.

In this context, the hij filters length of equation 6.1 are varied in order to gen-
erate several types of convolutive mixtures, each of them contemplating a dif-
ferent maximum delay of sources. The length of hij is represented by Nm and
has been changed from 1 to 8. Consequently, the maximum considered signal
delay of convolutive mixing is equal to 8 miliseconds, given that the sampling
rate is 1 kHz. The selection of 8 as the maximum value of Nm is justified because
the delay between the QRS maxima of two arbitrary ECG leads is around a few
miliseconds. Consequently, eight is a reasonable maximum value of the FIR fil-
ters length. Note that the instantaneous mixture is also taken into account in this
environment, given that equation 4.13 matches equation 4.6 when Nm is equal to
one. Every value of Nm defines a different experiment which results will be pre-
sented in chapter 7. As ten different mixing matrices are randomized for every
Nm, 150 mixtures are generated for each experiment, seeing that 15 pairs of AA
and VA signals are available.

In the separation process, the length of wij filters is a feature that must be ad-
justed in all the tested CBSS algorithms. This new feature is referred as Ns and is
varied in each of the experiments. CoBliSS is the only tested CBSS algorithm that
allows to adjust Ns equal to one. In this case, the values Ns = 1, 2, 4, 8, 16 and 32
were considered. In the rest of the algorithms, the lowest allowed value of Ns is
two, thus the values N = 2, 4, 8, 16 and 32 were considered instead. That is, the
minimum of Ns, 1 or 2, is a constraint of every tested CBSS algorithm. On the
other hand, the maximum of Ns, i.e. 32, was chosen so that the maximum con-
trolled delay due to the mixing-unmixing process equals to 40 ms in duration,
accordingly to the aforementioned maximum value of Ns [97] and the sampling
rate of 1 kHz. The tested lengths of Nm and Ns are shown in table 6.1. Not all
values of the Ns rank are tested but only those which are powers of two. The use
of these Ns values guarantees an optimal efficiency of the tested CBSS algorithms
with regard to time execution, given that that all algorithms under test work in
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the frequency domain and are based on Fast Fourier Transform (FFT) computa-
tion.

CoBliSS Rest of CBSS algorithms

Nm 1, 2, 4, 8 1, 2, 4, 8

Ns 1, 2, 4, 8, 16, 32 2, 4, 8, 16, 32

Table 6.1. Tested filter lengths of the mixing and separation matrices in the first environment. Nm is
the length of the mixing matrix filters. Ns is the length of the separation matrix filters.

In order to ensure the good working and utility of this first environment for
testing BSS algorithm, several constraints were imposed on the generation of ran-
domized matrices. The first restriction on the matrix randomizing is the invert-
ibility of mixing matrices. That is, it must be accomplished the condition given
by equation 4.21, in the case of instantaneous mixture, or equation 4.23, in the
case of convolutive mixture. Furthermore, we require that FIR filters of the mix-
ing matrix are minimum phase filters, since most of convolutive BSS algorithms
are based on the neuromimetic Hérault-Jutten network and one restriction of this
architecture is that FIR filters must have minimum phase [98]. This assumption
is easily applicable to the mixture of biomedical signals in the human body, given
that it is reasonable to think that the FIR filters are casual and stable, so that they
obey the condition of minimum phase [14].

Second Environment

In the second environment, 12-leads ECGs of AF episodes are synthesized adding
AA and VA of every lead. As in the first environment, the contributions to AA
and VA of each lead were previously separated from real ECGs of AF episodes
coming from the Cardiolab system by using QRST cancellation. The main differ-
ence with the first environment is that the synthetic ECG matches exactly the real
ECG. In fact, the synthesized ECG is a reconstruction of the original ECG from
the previously separated AA and VA of each lead. Other important difference
from the first environment is the fact that now the mixing matrix is unknown.
Although we know the AA and VA contributions on each lead, on the contrary,
we do not know the mixture process nor the original AA and VA sources. Con-
sequently, the mixing matrix of sources remains hidden. Therefore, this second
environment is more realistic than the first one at expense of some control loss
of the mixture process. This second environment comprises 20 synthetic ECGs.
This process is depicted in Fig. 6.2 and can be mathematically expressed as [93]:

xi = xiAA + xiAV , , i = 1, . . . , 12 (6.3)

where and xiAA and xiAV are the atrial and ventricular contribution of the i-th
lead respectively, and xi is the i-th synthesized lead. All resulting ECG recordings
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Figure 6.2. Second environment synthetic ECG generation. The AF 12-leads ECGs are synthesized
by adding the AA and the VA of every lead, previously separated from real ECGs of AF episodes.

last for 10 seconds and are sampled at 1 KHz. This second environment comprises
20 synthetic ECGs.

With reference to the filter length of the mixing and unmixing matrices, the
feature Nm is unknown as well as the mixing process. On the contrary, the feature
Ns can still be fixed previously to the application of each CBSS algorithm. Since
convolutive mixtures of bioelectric signals in the human body is assumed and the
original mixing matrix A is unknown, we cannot determine the exact length of
mixing matrix FIR filters in the second environment. In this second environment,
Ns varies from 1 to 128 or from 2 to 128, depending on the CBSS algorithm. Not
all values of the Ns rank are tested but only those which are powers of two with
the aim to facilitate the FFT computation.

6.2.2 Performance Indicators

For the study of the AA extraction performance reached by CBSS algorithms, two
indicators have been employed, namely the Signal to Interference Ratio (SIR) and
the index of cross-correlation between signals. Next both indicators are intro-
duced along with the necessary adaptation to each testing environment.

Signal to Interference Ratio (SIR)

In an ideal separation process, the estimated sources match exactly the original
sources. On the contrary, in a real separation process, the estimated sources are
always contaminated by contributions of other sources to a certain extent. The
SIR indicator measures this level of interference among the estimated sources as
a ratio of signal powers. In a signal generation model of synthetic signals where
both the original sources sj and the mixing matrix are known, as in the first en-
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vironment, this ratio can be easily computed. Nonetheless, our major interest
is to know how CBSS algorithms improve the source separation. Therefore, the
SIR must be computed before and after the application of BSS algorithms and
then compared. This will define a new indicator that measures this improve-
ment. Since our particular concern is the extraction of the AA, this indicator will
be referred as SIRAA, which measures the AA extraction performance as the in-
crease of the SIR accomplished by BSS algorithms. A similar indicator for audio
mixtures is defined in [138].

First, let us consider xi as the observation with the highest contribution of AA.
The SIR ratio of xi is defined as [106, 138]:

SIRo
AA = 10 log

E{(hij ∗ sj)
2}

E{(
N

∑

k=1

k 6=j

hik ∗ sk)2}
(6.4)

where hij are the FIR filters of the A mixing matrix, ∗ is the convolution operator,
and the superscript o stands for observed signal. In the same way, let us consider
that ŝp is the estimated source with the highest contribution of AA. The SIR ratio
of ŝp is [106, 138]:

SIRe
AA = 10 log

E{(gpj ∗ sj)
2}

E{(
N

∑

k=1

k 6=p

gpk ∗ sk)2}
(6.5)

where gpk are the FIR filters of the G global system matrix so that G = W ∗ A,
W is the estimated separation matrix, and the superscript e stands for estimated
signal. Finally, the use of logarithmic units lead us to express SIRAA as:

SIRAA = SIRe
AA − SIRo

AA (6.6)

Now, let us consider the particular case of two sources and two observations
of the first environment. In this case, since the matrix A is of size 2 × 2, the
equation 4.13, that describes the convolutive mixtures, can be rewritten as:

x1 = h11 ∗ s1 + h12 ∗ s2

x2 = h21 ∗ s1 + h22 ∗ s2

(6.7)

In the same way, since the separation matrix is also of size 2 × 2, the equa-
tion 4.14, that describes the estimation of sources in the convolutive model, can
be rewritten as:
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ŝ1 = w11 ∗ x1 + w12 ∗ x2

ŝ2 = w11 ∗ x1 + w12 ∗ x2

(6.8)

The substitution of 6.7 into 6.8 yields:

ŝ1 = w11 ∗ (h11 ∗ s1 + h12 ∗ s2) + w12 ∗ (h21 ∗ s1 + h22 ∗ s2)

ŝ2 = w11 ∗ (h11 ∗ s1 + h12 ∗ s2) + w12 ∗ (h21 ∗ s1 + h22 ∗ s2)
(6.9)

From equation 6.9, the SIRo
1 can already be computed, seeing that all terms

are known:

SIRo
1 = 10 log

E{(h11 ∗ s1)
2}

E{(h12 ∗ s2)2}
(6.10)

And the separation level of source s1 in the estimated source ŝ1 as:

SIRe
1 = 10 log

E{(w11 ∗ h11 ∗ s1 + w12 ∗ h21 ∗ s1)
2}

E{(w11 ∗ h12 ∗ s2 + w12 ∗ h22 ∗ s2)2}
(6.11)

Now the SIRAA is figured out by substituting equations 6.10 and 6.11 into equa-
tion 6.6. Note that, depending on the mixing matrix the subscripts of the source
and the observed signal may not coincide.

In the second environment the mixing matrix is undefined as well as the orig-
inal AA and VA sources. Only the partial contributions of AA and VA on every
ECG lead are known. Despite this, the SIRAA defined in equation 6.6 can still
be computed. In order to do this, the source and the observation with the high-
est contribution of AA are used for SIRAA computation. Let us assume that the
lead with the greatest atrial activity contribution is V1. Therefore, SIRo

AA can be
expressed as:

SIRo
AA = 10 log

E{(xV 1
AA)2}

E{(xV 1
V A)2} (6.12)

When CBSS algorithms are applied, an unmixing matrix W is approximated so
that the estimated atrial activity source can be expressed as:

ŝ = W ∗ x (6.13)

Substituting equation 6.3 in 6.13 yields

ŝ = W ∗ xAA + W ∗ xV A (6.14)

Defining wAA as the A row that provides the estimated atrial activity, the esti-
mated AA signal, ŝAA, can be computed as:
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ŝAA = wAA ∗ x (6.15)

Hence, the estimated atrial activity source, ŝAA, has a contribution of the original
atrial activity signals, sAA, and a spurious contribution of the VA signals, sV A:

ŝAA = sAA + sV A = wAA ∗ xAA + wAA ∗ xV A (6.16)

where all terms are known. Then, SIRe
AA can be expressed as

SIRe
AA = 10 log

E{(sAA)2}
E{(sV A)2} (6.17)

Finally, SIRAA is computed by using equation 6.6.

Cross-correlation Index

We define the cross-correlation index between two signals xi and xj as

Rij =
E{xi · xj}

√

E{x2
i }E{x2

j}
(6.18)

which ranks between 0 and 1. The nearer Rij to one the more similar the signals
are. Conversely, the nearer Rij to 0 the more different the signals are.

Since we are interested in measuring the quality of AA extraction, for simpli-
city we will use in the future the following notation:

• sAA as the original atrial activity.

• ŝAA as the estimated atrial activity.

• RAAt
as the cross-correlation between the original AA and the estimated

AA. The subscript t denotes that this cross-correlation index is computed in
the time domain.

Hence equation 6.18 can be rewritten as:

RAAt =
E{sAA · ŝAA}

√

E{s2
AA}E{ŝ2

AA}
(6.19)

RAAt will be used, in addition to SIRAA, to assess performance of CBSS algo-
rithms in the AA extraction from AF episodes.
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6.2.3 Identification of the AA source

Considering that the typical spectral morphology for AA is characterized by a
very pronounced peak in frequencies from 4 to 8Hz, with no harmonics and in-
significant amplitudes above 15Hz [139], it is possible to define a performance
extraction index capable of evaluating AA extraction quality based on the spec-
tral concentration. The spectral concentration (SC) index is defined as [93]:

SC =

1.17fp1
∑

f=0.82fp1

PAA(f)

0.5fs
∑

f=0

PAA(f)

(6.20)

where PAA is the power spectral density of the AA signal, f is the independent
variable of frequencies, fs is the sampling rate, and fp1 is the main frequency
peak of the AA. Experimental observations prove that the AA is the estimated
independent component with the highest SC when the limits of the numerator
summation are those specified in equation (6.20) [124]. Therefore, the SC can be
used as an indicator to select, in an automated way, the estimated source that
best matches the AA. A wider distance between frequency limits introduces high
frequency noise components in the calculation of the SC indicator so that the
probability of discriminating correctly the AA is reduced. A shorter distance be-
tween limits reduces the AA power considered in SC so that the probability of
AA discrimination is reduced too. The bandwidth considered for the SC compu-
tation is of 2 Hz for a typical fp1 of 6 Hz, what justifies the selection of the lower
and upper limits of the sum [93].

An additional strategy to identify the AA is the use of the fourth order cu-
mulant, i.e. kurtosis, since the source separated from an AF episode that has the
lower kurtosis is considered as the AA [11]. The kurtosis of a signal y is defined
as:

kurt(y) = E
{

y4
}

− 3
(

E
{

y2
})2

(6.21)

6.3 Performance Analysis of CMBS

Two matters will be treated in the two following subsections. Firstly, the two
environments where the CMBS algorithm is tested and compared with other ex-
traction methods are described. Secondly, the performance indicators employed
for the quantification of AA extraction performance are portrayed.
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6.3.1 Testing environments

As for CBSS algorithms, two different environments were proposed to test the
AA extraction performance of CMBS. The first environment is a controlled mix-
ture model. The second environment is more realistic but has less control on the
mixture model. In order to study the effect of noise on the extraction performance
of CMBS, tree levels of Additive White Gaussian Noise (AWGN) were considered
in both scenarios: no noise, a Signal to Noise Ratio (SNR) of 5 dB, and a SNR of
15 dB. The SNR is defined as [140]:

SNR = 10 log

(

E(x2[n]

E(w2[n]

)

(6.22)

where x[n] is a free of noise signal and w2[n] is the AWGN added to x[n].

First Environment

This environment is similar to the first environment described for the test of CBSS
algorithms, given that the same 15 pairs of AA and VA signals are used here. The
AA and VA are separated from each recording lead by ABS before the application
of CMBS. Also the AA and VA are mixed convolutively by random matrices.
Nonetheless, there exist some differences in the mixing and unmixing process.
First, the length of the mixing matrix filters, Nm, is not varied now but is fixed
to one. The reason is that now our objective is not the performance comparison
of several CBSS algorithms. By contrast, we are concerned about the comparison
of the best CMBS algorithm with BSS algorithms that follow the instantaneous
mixture model, as FastICA. Since Nm = 1 indicates the instantaneous model, this
filter length is optimal for the comparison. Furthermore, CMBS is based in the
Infomax algorithm, which optimizes results when Nm equals one. These results
for Infomax will be later detailed in chapter 7.

Another difference with the first environment for CBSS testing relates to the
the length of the unmixing matrix filters, Ns. For similar reasons, the length of the
unmixing matrix filters, Ns was fixed to 4. Although this first environment has
a limited proximity to the real case, it will be very useful to study the extraction
performance of CMBS in a very controlled scenario.

Second Environment

Every recording in the database of this second environment is an AF excerpt of
one minute in length that has been extracted from a long term Holter recording.
The database consists of 50 real two-lead Holter recordings of AF episodes. Al-
though all recordings were initially sampled at a frequency rate of 128 Hz, each
of them was upsampled to a frequency rate of 1024 kHz in order to improve the



96 CHAPTER 6. DATABASE AND PERFORMANCE ANALYSIS

working conditions of the CMBS algorithm. In this second environment the fea-
ture, Nm cannot be set because the mixing procedure is not controlled. On the
contrary, Ns can be fixed because it is an input feature of the CBSS algorithm.
Attending to the results of the Infomax algorithm, Ns was fixed to 4.

6.3.2 Performance Indicators

Given that the CMBS algorithm includes a wavelet stage, the SIRAA index can-
not be used to assess the AA extraction performance because the wavelet stage
hinders its application. Note that neither the wij elements of equation 6.9 nor
wAA of equation 6.16 are known because they are hidden by the wavelet stage.
For this reason, neither equation equation 6.11 nor equation 6.17 can be figured
out. Consequently, other indicators were taken into account to test the CMBS
performance.

In the first environment, four performance indicators were computed from
the extracted AA. The first of these indicators is the cross-correlation index in
the time domain, RAAt, which was already introduced in equation 6.18. An ad-
ditional indicator is the cross-correlation in the frequency domain, RAAf , which
evaluates the level of likelihood between the Fourier transforms of the original an
the estimated AA. Besides, it is also evaluated whether the main peak frequency,
fp1, is in the expected rank from 4 to 8 Hz. Finally, the SC indicator, previously
defined in equation 6.20 is used here as a measure of the extraction performance,
seeing that the SC is highly correlated with RAAt

and with the mean square error
(MSE) between the real and the estimated AA. SC values higher than 60% ensure
high values of RAAt

and low values of MSE, and denotes a proper PSD of the
estimated AA [93].

In the second environment, only the two last indexes were applicable since
the original AA is unknown. Since the RAAt

and the MSE cannot be computed,
the SC was deemed to be a good alternative to assess the AA extraction from real
signals. On the other hand, the fp1 can be also computed in this environment
and used as a criterium of AA extraction suitability based on the aforementioned
expected rank.

6.4 Performance Analysis of AF Termination Predic-

tion

The performance analysis of AF termination prediction requires, as the previous
study of CBSS and CMBS, the definition of the testing environment, which will
be described in subsection 6.4.1. On the other hand, the methodology of MPSE al-
gorithm has been explained in section 5.2, but the spectral features have not been
specified yet. In subsection 6.4.2, these spectral features are introduced. Finally,
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the assessment of quantization effects compelled the introduction of specific per-
formance indicators, which will be defined in subsection 6.4.3.

6.4.1 Testing Environment

Only one environment and a unique database are used to evaluate the termi-
nation prediction. For the present work we have used the database of Phys-
ioNet/Computers in Cardiology Challenge 2004, which consists of 50 two-lead
Holter recordings of PAF episodes. Each recording in the database is a one minute
segment of PAF that has been extracted from a long term Holter recording. The
database is divided into a learning set and a test set. The learning set contains
10 segments of non-terminating AF (group N) and 10 segments of AF that termi-
nates within a second after the end of the record (group T). The test set contains
30 records, approximately half of them belonging to group N, and the rest to
group T. The original sampling rate (fs) of the Holter system was 128 samples
per second, but the ECG recordings were interpolated by zero-padding with a
interpolation factor of 8 , so that a fs equal to 1024 resulted. This database is used
to test the AA termination prediction performance of both MPSE and Poincaré
plots, and the quantization effects as well.

6.4.2 Spectral Features in MPSE

The first considered spectral feature is the main peak frequency (fp1), which is
known to be highly relevant in the characterization of AF [68]. The second spec-
tral feature is the main peak magnitude, A1. The third and fourth features are
the second largest frequency peak (fp2) and its related peak magnitude, A2. The
extraction of these four features can be visualized in Figure 5.2. The fifth feature
is the (SC), which was already defined in equation 6.20.

Other two features related to the width of the spectrum main lobe have been
used: the 3-dB width of the peak, w3dB, and the power in the 3-dB band, pb3dB.
This two last features have been used in [28] to characterize AF. Two derived
features, ∆fp and Ā2 are referred to the spectral shape of AA. Similar features are
used in [141]. The first derived feature is the normalized distance between fp1

and fp2, which is expressed as:

∆fp =
(fp1 − fp2)

fp1

(6.23)

The second derived feature is the normalized amplitude of the second largest
peak, which is defined as:

Ā2 =
A2

A1

(6.24)
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The deviation of the main and second peak frequencies from their respective
mean values are also computed as a dispersion measurement:

d1 = fp1 − E(fp1) (6.25)

d2 = fp2 − E(fp2) (6.26)

where E(·) represents the mathematical expectation over the periodogram. Fi-
nally, the Median Frequency (MF) is obtained as the center of mass of the spec-
trum:

MF =

0.5fs
∑

f=0

|FTAA(f)| · f

0.5fs
∑

f=0

f

(6.27)

where FTAA is the Fourier Transform of the AA. This feature was previously used
in other works to characterize the ventricular fibrillation [142].

The SampEn of the constructed series from the aforementioned spectral fea-
tures series is computed in the MPSE algorithm and used to predict the termi-
nation of PAF episodes, as previously described in section 5.2. It is important
to remark that this prediction is not based on the raw spectral features, but on
the SampEn of their series instead, which estimates their mathematical regula-
rity. The performance of MPSE will be quantified in chapter 7 as the number or
percentage of correctly classified AF episodes.

6.4.3 Performance Indicators of Quantization Effects

Two performance indicators are used to quantify the effects of signal quantiza-
tion. On the first hand, the cross-correlation between the AA quantized with 16
bits (AA16) and the AA quantized with q bits (AAq) was defined as:

Rq =
E{AA16 · AAq}

√

E{AA2
16}E{AAq

2}
(6.28)

Rq was obtained as a measure of signal estimation quality since it quantifies the
degree of similarity between signals. On the other hand, the Mean Absolute Error
(MAE) index for two vectors x1 and x2, both of length N , is computed as:

MAE =

N
∑

i=1

|x1(i) − x2(i)|

N
(6.29)

As the name suggests, the mean absolute error is a weighted average of the ab-
solute errors. MAE provides a different point of view on the degree of similarity
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between signals. MAE has the advantage of preserving the same units than vec-
tors x1 and x2 [94]. MAE will be later applied to the extracted features series fp1

and SC and to the SampEn of AA signals as well.
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The presentation of results is divided in three main parts, accordingly to the
methods arrangement in chapters 4 and 5. In the first place, the AA extraction
performance of the analyzed CBSS algorithms is presented in section 7.1. In the
second place, the performance of the new algorithm for AA extraction, CMBS, is
presented in section 7.2. In the third place, the results of PAF termination pre-
diction achieved by MPSE are presented in section 7.3. The results reached by
the visual method based on Poincaré plots are given in section 7.5. Finally, the
quantization effects are detailed in section 7.4.
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7.1 CBSS

This section is subdivided in two subsections. In subsection 7.1.1 the results of
the first environment described in subsection 6.2.1 are presented. Similarly, the
results of the second environment, also described in subsection 6.2.1, are exposed
in subsection 7.1.2. Remember that the signals mixture of the first environment is
a very controlled process and the signals mixture of the second environment is a
more realistic one. In addition to the BSS algorithms results, the outcomes of the
FastICA algorithm are also included in every figure and table in order to make a
comparison between the convolutive and the instantaneous model.

7.1.1 First Environment

Infomax

The mean RAAt
– the correlation in time domain between the original and esti-

mated AA – obtained by Infomax is depicted in Figure 7.1 for each Nm and Ns

considered in the analysis. Nm and Ns were previously introduced in chapter 6
as the filter length of the mixing and separation matrices, respectively. At the
same time, the mean RAAt

values are tabulated in table 7.1 with three significant
digits. With regard to Nm, a clear trend can be deduced from Figure 7.1: as Nm

increases the RAAt
decreases, what denotes a worsening performance of the al-

gorithm when the mixing process progressively separates from the instantaneous
model. With reference to Ns, the higher values of RAAt

are reached for Ns equal
to one or two, depending on which value of Ns is considered. This implies that, in
terms of RAAt

, the Infomax performance is benefitted when a weak convolutive
mixing model, near the instantaneous mixing model, is contemplated.

Figure 7.2 shows the mean SIRAA for the Infomax algorithm. Keep in mind
that SIRAA quantifies the improvement of Signal to Interference Ratio of AA
accomplished by a extraction algorithm. These values of SIRAA are tabulated
in table 7.2 with one significant decimal. With reference to Nm, a similar trend
to RAAt

is reported, that is, the higher Nm the lower SIRAA. On the contrary,
the maximum values of SIRAA are not reached for Ns equal to one but for Ns

between 4 and 32, depending on the considered Nm. Since the mixed signals are
originally extracted from real signals, this fact could hide a convolutive mixture
of real sources so that the AA extraction process is enhanced when a convolutive
unmixing process is carried out.

In comparison with FastICA, the mean RAAt
values for Infomax are slightly

lower than those for FastICA and nearer to one when the optimal values of Nm

and Ns are considered. Similarly, the mean SIRAA values for Infomax are a few
decibels lower than the mean SIRAA for FastICA. The best mean SIRAA values
are around 30 dB for Infomax, and around 35 dB for FastICA. This means that
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the AA extraction performance of Infomax is quite good but does not exceed the
extraction performance of FastICA. This is interpreted as an adaptation necessity
of the the Infomax algorithm to the particular problem of AA extraction.

RAAt

Nm

Ns=2 Ns=4 Ns=8 Ns=16 Ns=32 FastICA

Figure 7.1. Mean RAAt
for the Infomax algorithm in the first environment. The length of the mixing

matrix filters Nm is varied from 1 to 8 and the length of the separation matrix filters Ns from 2 to 32.
The values for the FastICA algorithm are also included for comparison.

Nm

Ns 1 2 4 8

2 0.949 ± 0.127 0.924 ± 0.141 0.924 ± 0.119 0.763 ± 0.247

4 0.955 ± 0.091 0.926 ± 0.111 0.910 ± 0.119 0.741 ± 0.245

8 0.938 ± 0.079 0.900 ± 0.115 0.876 ± 0.120 0.713 ± 0.238

16 0.835 ± 0.134 0.804 ± 0.141 0.779 ± 0.150 0.647 ± 0.222

32 0.627 ± 0.162 0.584 ± 0.193 0.567 ± 0.180 0.479 ± 0.203

FastICA 0.997 ± 0.014 0.930 ± 0.113 0.937 ± 0.125 0.783 ± 0.247

Table 7.1. Infomax mean RAAt
of Figure 7.1 expressed with three significant digits.

MBLMS

Figure 7.3 shows the mean RAAt
of MBLS for Nm equal to 1, 2, 4 and 8, and

Ns equal to 2,4 8,16 and 32. These mean values are tabulated in table 7.3 with
three significant digits. The mean RAAt

decreases as Nm increases and reaches a
maximum for Nm = 1 and Ns = 2. This maximum of RAAt

is equal to 0.232 ±
0.194, which denotes the low ability of MBLS to AA extraction.
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Nm

SIRAA

Ns=2 Ns=4 Ns=8 Ns=16 Ns=32 FastICA

Figure 7.2. Mean SIRAA(dB) for the Infomax algorithm in the first environment. The length of the
mixing matrix filters Nm is varied from 1 to 8 and the length of the separation matrix filters Ns from 2
to 32. The values for the FastICA algorithm are also included for comparison.

Nm

Ns 1 2 4 8

2 28.5 ± 14.2 24.0 ± 9.6 26.1 ± 6.7 17.9 ± 8.6

4 28.4 ± 13.9 24.7 ± 10.0 26.0 ± 6.8 17.7 ± 8.7

8 30.1 ± 15.5 24.6 ± 10.2 26.3 ± 6.9 18.0 ± 8.7

16 30.3 ± 16.2 24.4 ± 10.4 26.5 ± 7.4 18.3 ± 8.7

32 29.9 ± 15.1 25.2 ± 10.9 26.5 ± 8.0 19.0 ± 9.5

FastICA 35.0 ± 9.9 28.4 ± 8.2 28.0 ± 7.3 19.1 ± 9.0

Table 7.2. Infomax mean SIRAA(dB) of Figure 7.2 expressed with one significant decimal.
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The mean SIRAA for MBLMS are depicted in Figure 7.4 and tabulated in ta-
ble 7.4 with one significant decimal. A low performance of MBLSM is also ob-
served in terms of SIRAA, since this index is always lower than 5 dB. More spe-
cifically, the maximum mean SIRAA is reached for Nm equal to 2 and Ns equal
to 16, and equals 2.7 ± 3.2 dB. In spite of these SIRAA low values, it can be per-
ceived a slight performance improvement of MBLMS when a convolutive model
is considered in the mixing and separation processes instead of the instantaneous
model.

The performance comparison of MBLMS and FastICA algorithms lead to the
same deduction either RAAt

or SIRAA are regarded. SIRAA values obtained by
FastICA algorithm always exceed those obtained by MBLMS algorithm. SIRAA

FastICA values are near to 40 dB. Meanwhile, SIRAA MBLMS values are near
to 0 dB. With reference to RAAt

, the mean values for FastICA are always near
one. On the contrary, RAAt

for MBLMS always approximates zero. That is, the
MBLMS algorithm is unable to reach a practical source signal separation from AF
ECG.

Nm

RAAt

Ns=2 Ns=4 Ns=8 Ns=16 Ns=32 FastICA

Figure 7.3. Mean RAAt
for the MBLMS algorithm in the first environment. The length of the mixing

matrix filters Nm is varied from 1 to 8 and the length of the separation matrix filters Ns from 2 to 32.
The values for the FastICA algorithm are also included for comparison.

TDD

The mean RAAt
reached by TDD is depicted in Figure 7.5 and tabulated with

three significant digits in table 7.5 for the values of Nm and Ns considered in the
analysis. The mean RAAt

values obtained by TDD are much higher than those ob-
tained by MBLMS for every Nm and Ns. The mean RAAt

for TDD is comparable
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Nm

Ns 1 2 4 8

2 0.232 ± 0.194 0.220 ± 0.143 0.172 ± 0.118 0.152 ± 0.103

4 0.082 ± 0.076 0.074 ± 0.048 0.058 ± 0.032 0.049 ± 0.019

8 0.143 ± 0.126 0.136 ± 0.096 0.103 ± 0.088 0.085 ± 0.075

16 0.129 ± 0.109 0.131 ± 0.081 0.091 ± 0.068 0.074 ± 0.046

32 0.116 ± 0.080 0.116 ± 0.077 0.089 ± 0.070 0.081 ± 0.063

FastICA 0.997 ± 0.002 0.923 ± 0.183 0.943 ± 0.115 0.847 ± 0.182

Table 7.3. MBLMS mean RAAt
of Figure 7.3 expressed with trhee significant digits.

Nm

SIR (dB)AA

Ns=2 Ns=4 Ns=8 Ns=16 Ns=32 FastICA

Figure 7.4. Mean SIRAA(dB) for the MBLMS algorithm in the first environment. The length of the
mixing matrix filters Nm is varied from 1 to 8 and the length of the separation matrix filters Ns from 2
to 32. The values for the FastICA algorithm are also included for comparison.

Nm

Ns 1 2 4 8

2 1.0 ± 2.3 0.3 ± 0.3 0.3 ± 0.3 0.2 ± 0.2

4 1.0 ± 2.2 1.0 ± 0.9 0.8 ± 1.0 0.6 ± 0.7

8 1.7 ± 4.5 2.1 ± 2.6 1.9 ± 2.5 1.5 ± 2.0

16 1.7 ± 5.8 2.7 ± 3.2 2.4 ± 2.4 2.1 ± 3.0

32 1.4 ± 6.6 2.5 ± 2.9 2.3 ± 2.6 2.3 ± 3.1

FastICA 37.6 ± 17.0 28.3 ± 10.4 28.4 ± 7.5 24.0 ± 8.7

Table 7.4. MBLMS mean SIRAA(dB) of Figure 7.4 expressed with one significant decimal.
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to the mean RAAt
for Infomax since similar maximum values are achieved. Sim-

ilarly to Infomax, the mean RAAt
decreases when Nm increases. This indicates,

in terms of the RAAt
index, an improvement of AA extraction for TDD when a

weak convolutive model near to the instantaneous model is accomplished in the
mixing process.

Figure 7.6 shows the mean SIRAA for the TDD algorithm. The same values
are tabulated in table 7.6 with one significant decimal. As for RAAt

, the mean
values of SIRAA are comparable to those of Infomax, and reach values near 30
dB. With reference to the mixing process, the higher Nm the lower the SIRAA

is. That is, the algorithm performance is helped by considering a instantaneous
linear mixing model. Nonetheless, the effect on SIRAA of Ns does not indicate
the same. On the contrary the higher values of SIRAA are not reached for Nm

equal to one but for Nm between 8 and 32. This suggests, as in the Infomax case,
that the original mixed sources might be generated by a convolutive mixing so
that a better AA extraction is accomplished when a convolutive unmixing process
is executed.

From Figures 7.5 and 7.6 it can be concluded that both RAAt
values and SIRAA

values are of the same order than those for FastICA. Specifically, the maximum
mean RAAt

for TDD equals 0.960 ± 0.091 (Nm = 1, Ns = 2) and the maximum
mean RAAt

for FastICA is equal to 0.997 ± 0.002 (Nm = 1). The maximum mean
SIRAA for TDD is equal to 32.8 ± 15.9 dB (Nm = 1, Ns = 16) and the maximum
mean SIRAA for FastICA is equal to 37.0 ± 8.3 dB (Nm = 1). As expected, the
best values for FastICA are reached when Nm is equal to one, that is, the instanta-
neous mixing model is considered. These results show that TDD is a good CBSS
algorithm for the AA extraction but, as Infomax, needs to be adapted to this par-
ticular problem in order to reach the results obtained by algorithms that follow
the instantaneous mixing model as FastICA.

Nm

Ns 1 2 4 8

2 0.960 ± 0.091 0.915 ± 0.176 0.900 ± 0.144 0.809 ± 0.194

4 0.958 ± 0.122 0.915 ± 0.195 0.893 ± 0.178 0.813 ± 0.233

8 0.922 ± 0.200 0.897 ± 0.217 0.864 ± 0.215 0.789 ± 0.273

16 0.902 ± 0.212 0.839 ± 0.255 0.821 ± 0.245 0.742 ± 0.291

32 0.827 ± 0.264 0.784 ± 0.292 0.737 ± 0.300 0.705 ± 0.294

FastICA 0.997 ± 0.002 0.950 ± 0.147 0.929 ± 0.134 0.857 ± 0.204

Table 7.5. TDD mean RAAt
of Figure 7.5 expressed with trhee significant digits.
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Nm

RAAt

Ns=2 Ns=4 Ns=8 Ns=16 Ns=32 FastICA

Figure 7.5. Mean RAAt
for the TDD algorithm in the first environment. The length of the mixing

matrix filters Nm is varied from 1 to 8 and the length of the separation matrix filters Ns from 2 to 32.
The values for the FastICA algorithm are also included for comparison.

Nm

SIR (dB)AA

Ns=2 Ns=4 Ns=8 Ns=16 Ns=32 FastICA

Figure 7.6. Mean SIRAA(dB) for the TDD algorithm in the first environment. The length of the
mixing matrix filters Nm is varied from 1 to 8 and the length of the separation matrix filters Ns from 2
to 32. The values for the FastICA algorithm are also included for comparison.
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Nm

Ns 1 2 4 8

2 31.6 ± 12.6 27.0 ± 9.9 24.8 ± 9.0 23.1 ± 8.1

4 30.5 ± 10.4 27.4 ± 8.0 24.9 ± 7.7 23.4 ± 8.2

8 33.6 ± 19.4 27.0 ± 10.9 23.8 ± 9.3 24.1 ± 8.9

16 32.8 ± 15.9 27.3 ± 10.7 23.7 ± 9.6 23.2 ± 9.1

32 31.7 ± 14.0 24.6 ± 10.4 22.8 ± 9.4 22.7 ± 9.1

FastICA 37.0 ± 8.3 31.0 ± 7.2 27.4 ± 7.5 25.5 ± 6.7

Table 7.6. TDD mean SIRAA(dB) of Figure 7.6 expressed with one significant decimal.

CoBliSS

The mean RAAt
attained by the CoBliSS algorithm is depicted for Nm = 1, 2, 4, 8

and Ns = 2, 4, 8, 16, 32 in Figure 7.7. These values are also tabulated in table 7.7
with three significant digits. Note that, on the contrary to the others tested CBSS
algorithms, CoBliSS allows to set Ns equal to one. The best RAAt

outcome is
reached for Nm = 1 and Ns = 1 as well. In this case, the mean RAAt

equals 0.893
and is comparable to the maximum mean values of RAAt

reached by Infomax and
TDD. In contrast, the RAAt

of CoBliSS decreases more rapidly when Ns increases
That is, the performance of CoBliSS, in terms of RAAt

, is more damaged than the
performance of Infomax and TDD when the unmixing process becomes separated
by considering the instantaneous model. Nonetheless, an exception is found for
Nm = 8, where the maximum mean RAAt

is reached for Ns = 2. This means
that, for Nm equal to 8, the best estimated separation matrix is reached when the
length of its filters is equal to 2, what reveals a certain convolutive behavior of
the sources mixture.

The mean SIRAA for CoBliSS is shown in Figure 7.8 and tabulated in table 7.8
for the aforementioned values of Nm and Ns. The mean SIRAA for CoBliSS is
higher than the mean SIRAA for MBLMS but lower than for Infomax an TDD.
Meanwhile the maximum SIRAA values of Infomax and TDD are around 30 dB,
those of CoBliSS are around 20 dB, that is, 10 dB lower. The CoBliSS performance
occupies an intermediate position between MBLMS algorithm and Infomax and
TDD algorithms. This means that CoBliSS is less reliable for the AA extraction
from AF ECGs and an adaptation to this particular problem is more unlikely.

Finally, the comparison with FastICA leads to the same deduction either RAAt

or SIRAA is regarded. The reached quality of the extracted AA is always better
for FastICA whatever the values of Nm and Ns are.
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RAAt

Nm

Ns=1 Ns=2 Ns=4 Ns=16 Ns=32Ns=8 FastICA

Figure 7.7. Mean RAAt
for the CoBliSS algorithm in the first environment. The length of the mixing

matrix filters Nm is varied from 1 to 8 and the length of the separation matrix filters Ns from 1 to 32.
The values for the FastICA algorithm are also included for comparison.

Nm

Ns 1 2 4 8

1 0.893 ± 0.133 0.844 ± 0.197 0.828 ± 0.149 0.169 ± 0.097

2 0.762 ± 0.104 0.683 ± 0.188 0.590 ± 0.266 0.673 ± 0.224

4 0.360 ± 0.152 0.318 ± 0.160 0.761 ± 0.234 0.482 ± 0.194

8 0.308 ± 0.160 0.320 ± 0.162 0.714 ± 0.144 0.218 ± 0.139

16 0.307 ± 0.179 0.326 ± 0.175 0.544 ± 0.144 0.258 ± 0.147

32 0.154 ± 0.130 0.160 ± 0.121 0.301 ± 0.149 0.273 ± 0.143

FastICA 0.996 ± 0.020 0.919 ± 0.190 0.938 ± 0.126 0.751 ± 0.261

Table 7.7. CoBliSS mean RAAt
of Figure 7.7 expressed with trhee significant digits.
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SIRAA

Nm

Ns=1 Ns=2 Ns=4 Ns=16 Ns=32Ns=8 FastICA

Figure 7.8. Mean SIRAA(dB) for the CoBliSS algorithm in the first environment. The length of the
mixing matrix filters Nm is varied from 1 to 8 and the length of the separation matrix filters Ns from 1
to 32. The values for the FastICA algorithm are also included for comparison.

Nm

Ns 1 2 4 8

1 21.3 ± 10.6 18.5 ± 8.2 18.2 ± 5.9 13.6 ± 6.0

2 21.3 ± 10.6 18.5 ± 8.2 18.2 ± 5.9 13.6 ± 5.6

4 21.2 ± 9.6 18.0 ± 9.2 17.7 ± 5.9 12.4 ± 6.4

8 20.1 ± 7.9 17.7 ± 7.4 17.6 ± 5.5 12.3 ± 6.7

16 17.4 ± 8.4 17.7 ± 6.4 18.0 ± 5.2 12.8 ± 7.1

32 13.2 ± 7.3 14.1 ± 6.8 15.9 ± 5.9 12.3 ± 6.4

FastICA 38.4 ± 13.9 28.8 ± 10.7 28.4 ± 7.6 20.3 ± 10.1

Table 7.8. CoBliSS mean SIRAA(dB) of Figure 7.8 expressed with one significant decimal.
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Joint Description

Now a comparison of the CBSS algorithms performance is carried out. In order
to facilitate the analysis, the output data were reorganized. Figure 7.9 shows
the mean SIRAA and the mean RAAt

of the tested CBSS algorithms in the first
environment as a function of the mixing matrix filters length (Nm) regardless of
the separation matrix filters length (Ns). Conversely, Figure 7.10 shows the mean
SIRAA and the mean RAAt

of the tested CBSS algorithms in the first environment
as a function of Ns regardless of Nm. These values are also tabulated in tables 7.9,
7.10, 7.11, and 7.12, respectively.

It can be appreciated in Figure 7.9.a that FastICA SIRAA mean values are
higher than MBLMS SIRAA mean values for any value of Nm. More specifi-
cally, maximum FastICA SIRAA mean values are around 40 dB whereas MBLMS
SIRAA mean values are always lower than 5 dB. In other words, the application
of MBLMS to mixtures of AA an VA does not yield any source signal separation.
On the contrary, the values obtained by TDD are much better than values ob-
tained by MBLMS. In fact, SIRAA mean values of FastICA are only around 10 dB
higher than TDD SIRAA mean values for instantaneous mixtures (Nm = 1). Fur-
thermore, both values decrease and tend to be equal when Nm increases. Infomax
presents a similar behavior to TDD, that is, the SIRAA mean values are slightly
lower than the respective FastICA values for instantaneous mixtures and much
more similar when Nm increases. Interestingly, the mean SIRAA of Infomax for
Nm = 4 (26.3±7 2 dB) is is higher than for Nm = 2 (24.6±10.2 dB) , which can be
interpreted as a convolutive component of the sources mixture. Finally, CoBliSS
SIRAA mean values are around two decades lower than FastICA SIRAA mean
values, that is, the performance of FastICA in the extraction of the AA is much
better than the performance obtained by MBLMS but does not reach the perfor-
mance obtained by TDD and Infomax in any case. The maximum mean SIRAA

of CoBliSS occurs for Nm = 4 (16.9 ± 5.7 dB). As for Infomax, this can be viewed
as a convolutive mixture of sources.

In Figure 7.9b similar trends of the AA extraction quality can be observed in
terms of the RAAt

feature. TDD and Infomax are the CBSS algorithms which
RAAt

mean values are nearer to one, and they tend to the FastICA RAAt
values

when Nm increases. The curve of CoBliSS stands out because the maximum RAAt

is reached for Nm = 4 (0.626±0.181), what reaffirms the hypothesis of convolutive
mixtures.

Figure 7.10 and tables 7.11 and 7.12 illustrate the influence of the length of the
separation matrix filters (Ns) in the quality of the extraction. Ns varies in this
figure and these tables from 2 to 32. The case Ns = 1 is not included since it is
only available for the CoBliSS algorithm. On the other hand, the mean values of
FastICA are just included as a reference constant value, although FastICA does
not match the convolutive model and, therefore, the filters length feature cannot
be chosen. The mean RAAt

and mean SIRAA of TDD and Infomax are very close
to those of FastICA. An interesting trend can be observed in Figure 7.10.a: the
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increasing mean Infomax SIRAA when Ns increases, with a maximum for Ns =
32 (25.1 ± 10.8 dB). Another important detail is the maximum mean SIRAA for
TDD (27.1±12.1 dB), that occurs when Ns is equal to 8. Furthermore, although the
SIRAA mean values for MBLMS are very low, they also increase accordingly to
the values of Ns. Figure 7.11.b shows that the mean RAAt

of each CBSS algorithm
approaches that of FastICA for Ns = 1 but, conversely to Nm, these mean values
decrease when Ns increases.
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Figure 7.9. CBSS algorithms (a) SIRAA and (b) RAAt
mean values in the first environment as a

function of the mixing matrix filters length (Nm) regardless of the separation matrix filters length (Ns).

Ns MBLMS TDD Infomax CoBliSS FastICA

1 1.4 ± 4.3 32.0± 14.5 29.4± 15.0 17.1 ± 8.2 36.9± 12.3

2 1.7 ± 2.0 26.6± 10.0 24.6± 10.2 16.1 ± 7.3 29.0 ± 9.1

4 1.5 ± 1.8 24.0 ± 9.0 26.3 ± 7.2 16.8 ± 5.7 28.1 ± 7.5

8 1.3 ± 1.8 23.3 ± 8.7 18.2 ± 8.8 12.5 ± 6.3 22.2 ± 8.6

Table 7.9. CBSS algorithms mean SIRAA in the first environment as a function of Nm regardless of
Ns expressed with one significant decimal.

7.1.2 Second Environment

From the results obtained in the first environment, it can be observed that only
two of the analyzed algorithms, i.e. TDD and Infomax, accomplish an AA ex-
traction performance close to the one provided by FastICA. Now, In the second
environment, the concern is the performance of BSS algorithms when realistic
12-lead ECGs of AF episodes are considered.

The analysis of the first environment served to discard the two algorithms
with bad performance in AA extraction, i.e. MBLMS and CoBliSS, for the se-
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Ns MBLMS TDD Infomax CoBliSS FastICA

1 0.140± 0.117 0.914± 0.178 0.861± 0.119 0.464± 0.143 0.997± 0.007

2 0.135± 0.089 0.870± 0.227 0.828± 0.140 0.442± 0.167 0.930± 0.158

4 0.103± 0.075 0.843± 0.216 0.811± 0.138 0.623± 0.181 0.937± 0.125

8 0.088± 0.061 0.772± 0.257 0.669± 0.231 0.345± 0.157 0.809± 0.224

Table 7.10. CBSS algorithms mean RAAt
in the first environment as a function of Nm regardless of

Ns expressed with three significant digits.
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Figure 7.10. CBSS algorithms (a) SIRAA and (b) RAAt
mean values in the first environment as a

function of the separation matrix filters length (Ns) regardless of the mixing matrix filters length (Nm).

Ns MBLMS TDD Infomax CoBliSS FastICA

2 0.4 ± 0.8 26.6 ± 9.9 24.1 ± 9.8 17.3 ± 7.7 29.1 ± 9.4

4 0.8 ± 1.2 26.6 ± 8.6 24.2 ± 9.9 16.9 ± 6.9 29.1 ± 9.4

8 1.8 ± 2.9 27.1± 12.1 24.7± 10.3 16.5 ± 6.8 29.1 ± 9.4

16 2.2 ± 3.7 26.8± 11.3 24.9± 10.7 13.9 ± 6.6 29.1 ± 9.4

32 2.1 ± 3.8 25.4± 10.7 25.1± 10.8 11.2 ± 5.6 29.1 ± 9.4

Table 7.11. CBSS algorithms mean SIRAA in the first environment as a function of Ns regardless of
Nm expressed with one significant decimal.
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Ns MBLMS TDD Infomax CoBliSS FastICA

2 0.194± 0.139 0.896± 0.151 0.890± 0.159 0.677± 0.196 0.918± 0.128

4 0.066± 0.044 0.895± 0.182 0.883± 0.142 0.480± 0.185 0.918± 0.128

8 0.117± 0.096 0.868± 0.226 0.857± 0.138 0.390± 0.151 0.918± 0.128

16 0.106± 0.076 0.826± 0.251 0.766± 0.162 0.359± 0.161 0.918± 0.128

32 0.101± 0.073 0.763± 0.288 0.564± 0.184 0.222± 0.136 0.918± 0.128

Table 7.12. CBSS algorithms mean RAAt
in the first environment as a function of Ns regardless of

Nm expressed with three significant digits.

cond environment analysis. Therefore, only TDD and Infomax were analyzed in
this second environment. In the first environment, a simplified mixing-unmixing
model of two sources and two observations is considered. Obviously, this two-
by-two model does not suffice in a real AA extraction problem where the number
of bioelectric sources is typically greater than two, since the AA, the VA, noise
sources, and other bioelectric phenomena are always present. On the other hand,
it would be illogical to discard the information brought by the rest of leads that a
standard 12-leads ECG comprises. Hence, the CBSS algorithms must be adapted
to a 12-by-12 model, that is, a model where twelve observations, i.e. twelve leads,
and twelve independent sources can be contemplated.

The adaptation of CBSS algorithms to a 12-by-12 model was not an easy task
since all of them were initially developed to solve a 2-by-2 problem. This adap-
tation had to be carried out subsequently in this work. This justifies the use of
the 2-by-2 model in order to discard those algorithms which present a bad extrac-
tion performance. The adaptability of the convolutive algorithms to the 12-by-12
model was studied in every CBSS algorithm. It resulted that MBLMS, Infomax
and CoBliSS could be adapted by modifying some input features on the available
Matlab code. On the contrary, the TDD Matlab is constrained to a 2-by-2 model,
and could not be adapted to the 12-by-12 model. As a consequence, in this second
environment only the results of the Infomax algorithm are presented, given that
is the only tested algorithm that accomplishes a quite good performance and is
easily adaptable to the 12-by-12 model at the same time.

Results of the second environment are summarized in Figure 7.11 and in table
7.13, where the values of SIRAA and correlation are presented together. Seven
different unmixing FIR filters length, i.e. Ns = 2, 4, 8, 16, 32, 64 and 128, were
considered. Note that the feature Nm, i.e., the length of the filters of the mixing
matrix, does not appear in the table because the mixing process of sources is
unknown in this second environment.

Also in this environment, the maximum mean SIRAA obtained by FastICA al-
gorithm (22.8±4.9 dB) is several decibels higher than the maximum mean SIRAA

obtained by Infomax (19.8 ± 6.0 dB). In the same way, the maximum mean RAA

obtained by FastICA (0.839 ± 0.164) is slightly higher than the one obtained by
Infomax (0.765 ± 0.155). In spite of this, it is interesting to note that the highest
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Figure 7.11. SIRAA and RAA mean values of the Infomax algorithm in the second environment as
a function of the FIR filters length of the separation matrices (Ns). Seven different lengths of the filters
were considered.

Ns SIRAA(dB) RAAt

2 18.7 ± 5.5 0.737 ± 0.163

4 18.4 ± 5.6 0.722 ± 0.170

8 19.8 ± 6.0 0.765 ± 0.155

16 19.0 ± 5.3 0.750 ± 0.153

32 18.8 ± 5.1 0.743 ± 0.163

64 17.3 ± 4.9 0.709 ± 0.131

128 16.8 ± 5.7 0.688 ± 0.176

FastICA 22.8 ± 4.9 0.839 ± 0.164

Table 7.13. SIRAA and RAAt
mean values of the Infomax algorithm as a function of Ns in the

second environment.
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values of mean SIRAA and mean RAAt
of the Infomax algorithm do not occur for

Ns = 1 but for Ns = 8. As in the first environment, this fact can be interpreted as
a likely hidden convolutive mixture of the cardioelectric real sources that would
explain this maximum of performance at Ns = 8. These results encouraged us
to continue the research on CBSS algorithms. This research has materialized in
the development of a new AA extraction algorithm for convolutive mixtures, the
CMBS, the results of which are presented in the next section.

7.2 CMBS

In spite of the lower performance of CBSS algorithms in comparison with Fast-
ICA, results of the previous section seem to beer out a convolutive factor of the
mixing process of cardioelectric sources in AF ECGs, since a slight improvement
of AA extraction performance is observed in all CBSS algorithms for some com-
binations of Nm and Ns different from the one that characterizes the instantane-
ous model (Nm = 1 and Ns = 1). On the one hand, the CMBS algorithm was
developed with the aim to solve the lack of ECG leads in Holter recordings. The
number of leads is increased in CMBS by means of the frequency subband decom-
position that the Wavelet transform provides. On the other hand, this subband
decomposition was also viewed as a way to enhance the convolutive mixture of
sources in different frequency bands, taking into account the results of CBSS algo-
rithms. In other words, the aforementioned convolutive factor could be located
only in some frequency bands so that a frequency band subdivision of the inputs
could benefit the performance of convolutive CBSS algorithms.

In the next subsections, the results of CMBS are presented for both environ-
ments introduced in section 6.3. Three levels of noise, i.e. no noise, 15 dB and
5 dB of SNR, are presented for every performance index. The extraction perfor-
mance of CMBS was compared with the performance of WBS and ICA in both
scenarios.

7.2.1 First Environment

The results of the first environment are shown in Figures 7.12, 7.13, 7.14, and
7.15. All experiments of CMBS were executed for Nm = 1 and Ns = 4, since
CMBS is based on the Infomax algorithm, which reaches the best outcomes for
these values of Ns and Nm. On the other hand, Nm was fixed to one for WBS and
FastICA, given that these algorithms follow the instantaneous model and Nm = 1
is optimal in this case. For the same reason, Ns had not to be chosen for WBS and
FastICA, since feature Ns is only meaningful for the instantaneous model.

Figure 7.12 shows the mean RAAt
between the original AA and the one ex-

tracted by FastICA, WBS and CMBS from the synthetic ECG recordings of the
first environment at three levels of SNR. When no noise is added to the signal
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recordings, the mean CMBS RAAt
(0.955 ± 0.113) is very close to he mean Fast-

ICA RAAt
(0.997 ± 0.014). This value is very similar to the one obtained by In-

fomax for Nm = 1 and Ns = 4 (0.955 ± 0.091). The mean WBS mean RAAt
for

no noise (0.880 ± 0.354) is lower than those of CMBS and FastICA. In the same
figure, a clear tend can be observed when the additive noise of leads increases
or, in other words, the SNR decreases. For a SNR of 15 dB, the highest RAAt

is
attained by CMBS (0.936 ± 0.368), followed by WBS (0.855 ± 0.360) and then by
FastICA (0.563 ± 0.447). It seems that FastICA is the worst affected algorithm by
additive noise, maybe as a consequence of the lack of leads. This fact is confirmed
when a SNR of 5 dB is considered. Also in this case, CMBS reaches the highest
RAAt

(0.897±0.318), followed by WBS (0.813±0.339) and FastICA (0.389±0.091).
The convolutive model seems to be more robust against additive noise given that
mean CMBS RAAt

always exceeds mean WBS RAAt
.

Similar conclusions can be drawn from the RAAf
outcomes presented in Fi-

gure 7.13. The mean CMBS RAAf
for no noise (0.931 ± 0.018) is high and very

close to mean FastICA RAAf
(0.955 ± 0.012). Again, FastICA is the worst af-

fected algorithm when the level of noise increases. When the SNR is equal to 15
dB, FastICA offers the lowest mean RAAf

(0.709 ± 0.187) and CMBS the highest
(0.924± 0.273). This effect is clearer for SNR equal to 5 dB, where the mean RAAf

takes values of 0.771 ± 0.348 for CMBS, 0.740 ± 0.331 for WBS, and 0.602 ± 0.255
for FastICA. The intermediate values for WBS at the three levels of noise seem
to confirm the deductions from RAAt

, that is, the convolutive model gives the
impression to be more robust against noise than the instantaneous one.

The results for fp1 in the first scenario are shown in Fig 7.14. The mean fp1

estimated by CMBS when no noise is added to signals is 5.49± 1.40 Hz, which is
very close to the mean fp1 of the original mixed AA sources, i.e. 5.46±1.41 Hz. As
SNR decreases, the mean fp1 estimated by every extraction algorithm separates
from the original fp1. The detrimental effects of noise for a SNR of 15 dB are
worst to the performance of FastICA than to the performance of CMBS or WBS,
since the FastICA mean fp1 takes a value of 5.20 ± 1.37 Hz, which is farther from
the original value than the WBS mean fp1 (5.92 ± 2.65) and the CMBS mean fp1

(6.07±1.54). Therefore, the CMBS mean fp1 is the less affected by noise for a SNR
of 15 dB. When SNR is equal to 5 dB, the worst affected algorithm in terms of fp1

is not FastICA, but WBS instead. Nonetheless, the less affected algorithm is still
CMBS, with a mean fp1 of 5.80 ± 2.25. These results verify the higher robustness
against noise of CMBS in comparison with WBS and FastICA.

As shown in Figure 7.15, also the mean SC of the AA extracted by CMBS for
no noise in the first environment (62.82 ± 8.01%) surpasses the results of WBS
(57.00± 1.43%) and FastICA (61.78± 6.44%) , in view of the fact that CBSS mean
SC is the best approach to the mean SC of the original mixed AA sources (62.92±
11.11%). The increase of noise provokes a increasing separation of the estimated
mean SC from the original mean SC. At SNR equal to 15 dB, the CMBS mean
SC decreases and takes a value of 61.44 ± 13.07, which exceeds the mean WBS
SC (55.71± 14.04%) and the mean FastICA SC (60.86± 7.41%). At SNR equal to
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Figure 7.12. Mean RAAt
between the original AA and the one extracted by FastICA, WBS and CMBS

from synthetic ECG recordings of the first environment at three levels of SNR.

5 dB, the mean CMBS mean SC falls up to 60.04 ± 14.16. Despite this, the CMBS
mean SC is greater than the WBS mean SC (47.61±14.14) and the FastICA mean
SC (44.68± 16.11%) at this level of noise.

The selection of the optimal wavelet mother function for the CMBS algo-
rithm is elucidated in table 7.14. This table summarizes the results of CMBS
when different wavelet mother functions are used to implement the wavelet de-
composition stage of the algorithm. The results are given as the mean values
of RAAt

, RAAf
, fp1(Hz) and SC obtained by CMBS in the first environment.

Only the values for no noise are tabulated. The table presents the results of the
wavelet mother function with best results of each wavelet family. Specifically,
these wavelet mother functions are Symmlet(8), Bior(4.4), Coiflet(3) and Haar.
All wavelet mother functions optimized the CMBS outcomes when eight decom-
position levels were considered. Hence, all results exposed in table 7.14 are com-
puted for this decomposition level. CMBS obtains the highest values of RAAt

(0.955 ± 0.113) and the highest RAAf
(0.931 ± 0.018) when the decomposition

stage is implemented with Symlet(8). The mean RAAt
and the mean RAAf

ob-
tained by CMBS, when the wavelet mother Bior(4.4) is used, approach maximum
values but do not reach them. The mean RAAt

and the mean RAAf
for the rest

of wavelet mother functions are farther from the maximum values. With refer-
ence to fp and SC, CMBS offers the best approximation to the original values,
i.e. 5.46 ± 1.41 Hz and 62.92 ± 11.11%. In short, the best CMBS outcomes are
reached when the wavelet mother Symmlet(8) with eight decomposition level is
chosen. Consequently, this option was selected for the final design of the CMBS
algorithm in both environments.
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Figure 7.13. Mean RAAf
between the original AA and the one extracted by FastICA, WBS and

CMBS from synthetic ECG recordings of the first environment at three levels of SNR.
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Figure 7.14. Mean fp1 of the AA extracted by FastICA, WBS and CMBS from synthetic ECG record-
ings of the first environment at three levels of SNR.
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Figure 7.15. Mean SC of the AA extracted by FastICA, WBS and CMBS from synthetic ECG record-
ings of the first environment at three levels of SNR.

RAAt
RAAf

fp1(Hz) SC(%)

Symmlet 8 0.955± 0.113 0.931± 0.018 5.49 ± 1.40 62.82 ± 12.35

Bior 6 0.895± 0.021 0.902± 0.321 6.01 ± 2.16 55.21± 2.55

Daubechies 10 0.825± 0.343 0.880± 0.225 5.11 ± 1.81 50.34 ± 10.36

Coiflet 3 0.771± 0.254 0.730± 0.136 4.15 ± 2.23 43.41 ± 12.05

Harr 4 0.648± 0.283 0.692± 0.301 4.02 ± 2.51 39.18 ± 14.42

Table 7.14. CMBS mean values of RAAt
, RAAf

, fp1(Hz) and SC for different wavelet mother
functions used in the implementation of the CMBS wavelet decomposition stage.
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7.2.2 Second Environment

In this second scenario, where the database consists of real Holter ECG record-
ings, only fp1 and SC were computed as performance indexes of the AA extrac-
tion because the other two indexes could only be calculated for synthetic signals.
On the other hand, a comparison with original values cannot be made in the case
of real signals and it can be just verified that fp1 and SC are within the expected
bounds.

The mean fp1 values of the AA extracted by FastICA, WBS and CMBS from
the real ECG recordings of the second environment are shown in Figure 7.16 at
three levels of SNR. For no noise, all three algorithms have a mean fp1 in the
expected rank from 5 to 8 Hz. In this case, the mean fp1 takes a value of 5.46±1.47
for CMBS, 5.24 ± 2.05 for WBS and 5.40 ± 2.08 for FastICA. Also when SNR is
equal to 15 dB, the mean fp1 of every algorithm is within the expected rank. For
this level of SNR, the less affected algorithm is CMBS with a mean fp1 equal to
5.21 ± 1.71, and the worst affected is WBS with a mean fp1 of 4.52 ± 1.64. On the
contrary, when SNR is equal to 5 dB, the worst affected algorithm in terms of fp1

is FastICA, although CMBS is again the lowest affected algorithm with a mean
fp1 of 5.35 ± 1.14.

Figure 7.17 shows the values of SC in the second environment for FastICA,
WBS and CMBS at three levels of SNR. When the case of no noise is considered,
both CMBS and WBS reach mean SC values that exceed the expected value of
60% (71.83±6.25 for CMBS and 67.13±9.43 for WBS). On the contrary, the FastICA
mean SC takes a value of 43.23 ± 9.55. When the level of noise increases, the
mean SC decreases for every algorithm, as shown in Figure 7.17. Nevertheless,
the highest mean SC is reached by CMBS at the three levels of SNR, what can be
seen as a highest accuracy of this algorithm for the AA extraction.

In brief, also in this second scenario, CMBS presents the best robustness against
noise, either fp1 or SC is regarded. The convolutive model of CMBS seems to be
better adapted to the problem of AA extraction from real Holter ECG recordings
than the instantaneous model of WBS. On the other hand, the low values of SC
of FastICA may be explained by the lack of inputs to the algorithm, i.e. two leads,
in a context of real ECG recordings.

Finally, the otucomes of CMBS in the second environment are compared in
the same scenario with the outcomes of ABS, as a widely extended and accepted
time-domain technique for AA extraction. A comparison of mean fp1 can be
made from the results shown in table 7.15. Very similar mean fp1 are obtained
by both algorithms, what confirms the great accuracy of CMBS also for real ECG
recordings. On the other hand, the increase of noise affects CMBS the less, since
the least change of the mean fp1 is observed for CMBS and the greatest increment
the fp1 standard deviation is suffered by ABS. The same lecture can be made as
regards mean SC, the values of which are shown in table 7.16.
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Figure 7.16. Mean fp1 of the AA extracted by FastICA, WBS and CMBS from real ECG recordings of
the second environment at three levels of SNR.
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Figure 7.17. Mean SC of the AA extracted by FastICA, WBS and CMBS from real ECG recordings
of the second environment at three levels of SNR.

No noise 15 dB 5 dB

CMBS 5.46 ± 1.47 5.21 ± 1.71 5.35 ± 1.14

ABS 5.25 ± 2.15 6.01 ± 4.46 6.56 ± 5.02

Table 7.15. Mean fp1 of CMBS and ABS algorithms in the second environment.
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No noise 15 dB 5 dB

CMBS 71.8 ± 6.25 71.53 ± 7.98 64.70 ± 6.93

ABS 68.32 ± 12.02 63.77 ± 18.55 61.21 ± 25.37

Table 7.16. Mean SC of CMBS and ABS algorithms in the second environment.

7.3 MPSE

The results of MPSE are exposed in the three following subsections. The selection
of the optimal time-frequency distribution is justified in subsection 7.3.1. Results
of the univariate analysis are presented in subsection 7.3.2 and results of the mul-
tivariate analysis in subsection 7.3.3.

7.3.1 Selection of the Time-Frequency Distribution

The selection of the optimal time-frequency distribution was made with regard
to the preliminary study results shown in tables 7.17 and 7.18. Table 7.17 presents
the SampEn of fp1 and bilateral significance between groups N and T computed
for the nine studied time-frequency distributions. Similarly, the SampEn of SC
and its bilateral significance for every time-frequency distribution are shown in
table 7.18. The spectrogram was the one that reached the least bilateral signifi-
cance for both fp1 and SC spectral features, remaining lower than 0.001. In view
of the significance values obtained, the spectrogram was the time-frequency dis-
tribution chosen to face up to the rest of the study by considering twelve spectral
features.

t-f distribution Group N Group T Bil. Sig.

SP 0.1311± 0.0314 0.0788± 0.0346 < 0.001

WV 0.0470± 0.0150 0.0566± 0.0264 0.239

PWV 0.0514± 0.0182 0.0579± 0.0227 0.394

MH 0.0360± 0.0054 0.0346± 0.0071 0.533

PMH 0.0178± 0.0043 0.0121± 0.0051 0.003

PG 0.0360± 0.0054 0.0346± 0.0071 0.533

PPG 0.0178± 0.0043 0.0121± 0.0051 0.003

ZAM 0.0398± 0.0180 0.0375± 0.0169 0.727

CW 0.0385± 0.0171 0.0352± 0.0156 0.576

Table 7.17. SampEn of fp1 and bilateral significance between groups N and T computed for
nine time-frequency distributions: spectrogram (SP), Wigner-Ville (WV), pseudo-Wigner-Ville (PWV),
Margeneau-Hill (MH), pseudo-Margeneau-Hill (PMH), Page (PG), pseudo-Page (PPG), Zhao-Atlas-
Marks (ZAM) and Choi-Williams (CW).
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t-f distribution Group N Group T Bil. Sig.

SP 0.4822± 0.0743 0.4009± 0.0976 < 0.001

WV 0.2029± 0.0354 0.2297± 0.0568 0.142

PWV 0.2358± 0.0370 0.2500± 0.0501 0.390

MH 0.2256± 0.0831 0.2289± 0.0675 0.904

PMH 0.1932± 0.0445 0.1362± 0.0766 0.024

PG 0.2256± 0.0831 0.2289± 0.0675 0.904

PPG 0.1932± 0.0445 0.1362± 0.0767 0.024

ZAM 0.1493± 0.0472 0.1365± 0.0500 0.484

CW 0.1443± 0.0313 0.1332± 0.0349 0.368

Table 7.18. SampEn of SC and bilateral significance between groups N and T computed for
nine time-frequency distributions: spectrogram (SP), Wigner-Ville (WV), pseudo-Wigner-Ville (PWV),
Margeneau-Hill (MH), pseudo-Margeneau-Hill (PMH), Page (PG), pseudo-Page (PPG), Zhao-Atlas-
Marks (ZAM) and Choi-Williams (CW).

r

0.1STD 0.15STD 0.2STD 0.25STD

m=1 0.0058 0.0050 0.0097 0.0094

m=2 0.0075 0.0061 0.0040 0.0010

Table 7.19. SampEn of fp1 bilateral significance for different tested values of m and r. The values
m = 2 and r = 0.25STD are used in the study for SampEn of fp1 regarding to the minimum
associated bilateral significance.

7.3.2 Univariate Analysis

The results of the t-test applied to the SampEn of the numerical series for the
learning set are summarized in Figure 7.18. These results reveal that it is pos-
sible to distinguish between terminating and non-terminating AF in six of the
twelve features, considering a feature to be relevant when its bilateral signifi-
cance is lower than 0.05. These six relevant features are fp1, fp2, ∆fp, A1, d1 and
SC, which bilateral significances are, respectively, 0.001, 0.005, 0.003, 0.004, 0.015,
and 0.001. These results were computed for m = 2 and r = 0.25 because the opti-
mal classification was reached with these values. In order to choose m and r, we
compared the bilateral significance of every spectral feature for m = 1 or m = 2
and r between 0.1 and 0.25 times the standard deviation (STD) of the time-series,
as suggested by Pincus [125]. As an example, the SampEn of fp1 bilateral signifi-
cance for the tested values of m and r is presented in Table 7.19, what justifies the
aforementioned choice of m and r. For the rest of spectral features, the best out-
comes were also achieved for m = 2 and r = 0.25 STD. A more generic strategy
for optimal selection of m and r is developed in [143].

The area under the Receiver Operative Characteristic (ROC) curve for the
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Figure 7.18. Results of the t-test for the SampEn of all the spectral features. a) Mean and standard
deviation of SampEn for groups N and T, b) SampEn bilateral significance between groups. A feature
is considered relevant when its bilateral significance is lower than 0.05.
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fp1 fp2 ∆fp A1 d1 SC

Area under ROC 89.7% 76.3% 77.7% 79.9% 76.3% 72.8%

Table 7.20. Area under ROC curve for the SampEn of the learning set relevant spectral features.

SampEn of the learning set relevant spectral features are shown in table 7.20,
where SampEn of fp1 stands out because of its highest value. In the rest of fea-
tures the bilateral significance obtained is higher than 0.05, thus they are con-
sidered mathematically irrelevant. The mean SampEn in type N recordings is
higher than in type T recordings for all these relevant features. This means that
spectral features of N recordings are less regular than those of T recordings. An
example of this can be seen in Figure 7.19 for feature fp1.

Figure 7.19. a) Type T and b) type N fp1 series example with respective SampEn values 0.0153 and
0.1556. Higher SampEn indicates lower regularity of the signal.

The learning set ROC curve for the SampEn of fp1 is depicted in Figure 7.20,
which has been fitted using the one-term exponential model. A decision thresh-
old of 0.1173 has been chosen to optimize the result for the learning test. By
considering this value of threshold, 19 out of 20 learning recordings have been
classified correctly. This decision threshold results from the smoothed ROC curve
in a sensitivity of 91% and 1 − specificity of 14%. Taking the same threshold for
the test set, 26 out of 30 recordings have been classified correctly. This resulted
in a percentage of recordings properly classified equal to 95% for the learning set
and equal to 86.67% for the test set. The results obtained by this classification
are presented in Figure 7.21 for every recording. The results of this classification
can also be viewed in tables 7.21 and 7.22, where misclassified recordings appear
highlighted. A higher dispersion of results is observed for the test set than for the
learning set. Therefore, we must remark that, despite the difference of dispersion
between learning and test sets, the decision threshold of 0.1173 has been correctly
chosen.
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Figure 7.20. Learning set ROC curve fitted using the one-term exponential model for the SampEn

of fp1. Decision point chosen for sensitivity 91% and 1 − specificity 14%.

Rec. SampEn of fp1 Rec. SampEn of fp1

aN1 0.1256 aT 1 0.0928

aN2 0.1211 aT 2 0.0872

aN3 0.1501 aT 3 0.1092

aN4 0.1333 aT 4 0.1114

aN5 0.1243 aT 5 0.0746

aN6 0.1868 aT 6 0.1262

aN7 0.1319 aT 7 0.1118

aN8 0.1317 aT 8 0.1158

aN9 0.1771 aT 9 0.1016

aN10 0.1206 aT 10 0.0955

Mean 0.1402 Mean 0.1026

Std 0.0224 Std 0.0145

Table 7.21. SampEn of fp1 for each recording of the learning set. The aN recordings belong to
the nonterminating group, and the aT recordings to the terminating group. A classification was made
attending to the threshold value of 0.1173. Highlighted recordings were misclassified.
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Rec. SampEn of fp1 Original Type Rec. SampEn of fp1 Original Type

b1 0.1097 N b16 0.1509 N

b2 0.0778 T b17 0.1217 N

b3 0.0550 T b18 0.0358 T

b4 0.1322 N b19 0.1020 T

b5 0.1265 N b20 0.1566 N

b6 0.1146 T b21 0.1199 N

b7 0.1451 N b22 0.1303 N

b8 0.1540 N b23 0.0767 T

b9 0.1359 T b24 0.0575 T

b10 0.1003 N b25 0.1106 T

b11 0.1147 T b26 0.0645 N

b12 0.0106 T b27 0.0446 T

b13 0.1791 N b28 0.1304 N

b14 0.0744 T b29 0.0945 T

b15 0.1448 N b30 0.1626 N

Table 7.22. SampEn of fp1 for each recording of the test set. A classification was made attending to
the threshold value of 0.1173. Highlighted recordings were misclassified.

Figure 7.21. Classification of type N and T episodes using a threshold value for the SampEn of fp1

equal to 0.1173. The 95% of the learning set and 86.67% of the test set recordings were correctly
classified.
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fp1 fp2 ∆fp A1 d1 SC AA

fp1 1,000 -0,569 -0,446 -0,014 -0,236 0,728 -0,384

fp2 1,000 0,902 0,035 0,279 -0,574 0,287

∆fp 1,000 -0,165 0,126 -0,550 0,076

A1 1,000 0,795 0,136 0,229

d1 1,000 -0,049 0,293

SC 1,000 -0,518

AA 1,000

Table 7.23. Correlations between the SanpEn of variables considered in the stepwise analysis.

7.3.3 Multivariate Analysis

The previous analysis revealed that the SampEn of the spectral features fp1, fp2,
∆fp, A1, d1 and SC have a bilateral significance lower than 0.05 and, in conse-
quence, all of them are suitable to be used in discriminant analysis. Subsequently,
all these relevant features are considered for the discriminant analysis, being the
rest discarded. Furthermore, the SampEn of the raw atrial activity was also com-
puted and a mean difference of 0.2508, with the greatest mean value for the N
group, and a bilateral significance equal to 0.004 were figured out by the t-test.
This fact suggested to include this feature in the discriminant analysis along with
the spectral features. This made possible, in addition, to combine the informa-
tion obtained from both time and frequency domains. The values m = 2 and
r = 0.25 STD were chosen for the SampEn computation, accordingly to the re-
sults of the univariate analysis.

The cross-correlations for the SampEn of spectral significant features and
the AA are shown in table 7.23 and depicted as absolute values in Figure 7.22.
The highest cross-correlation, 0.902, occurs between the SampEn of fp2 and ∆fp.
Also the pairs of variables fp1 and SC, A1 and d1 present high values of cross-
correlation, thus it is reasonable to expect in advance that this pairs of variables
will not appear in the resultant discriminant model.

The homogeneity of covariance matrices was checked by the Box’s M test
[144]. Since the significance of this test was low, 0.013, separate groups of co-
variance matrices were considered for the analysis. The variable selection was
performed by forward stepwise analysis and minimization of the Mahalanobis’
distance [145]. The process fulfilled by the stepwise analysis is described in ta-
ble 7.24. This table display the variables that are in the analysis at each step.

The criterion carried out to select the variable to be added to the model in
the next step is that this variable has the largest statistic F , with a minimum
value equal to 3.84. The process was completed in three steps. The SampEn of
fp1, ∆fp and AA were added to the model by the discriminant analysis, being
the rest of features discarded because of their low F . As expected, none of the
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Figure 7.22. Cross-correlation absolute values for the SampEn of the spectral significant features
and the AA. Pairs of variables with high cross-correlation do not contribute to the resultant discriminant
model.
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Step Tolerance F to Remove

1 AA 1,000 5,272

2 AA 0,410 26,686

fp1 0,410 23,965

3 AA 0,321 35,491

fp1 0,259 39,760

∆fp 0,627 7,138

Table 7.24. Variables in the stepwise analysis. The statistic F indicates which variable must be added
to the model in each step.

Canonical coefficient

SampEn of fp1 1,880

SampEn of AA 1,662

SampEn of ∆fp 0,816

Table 7.25. Standardized canonical discriminant function coefficients from the stepwise analysis.

aforementioned pairs of variables with high cross-correlation appears in the final
discriminant model. The variables in the stepwise analysis at each step are shown
in table 7.24. This kind of multivariate analysis has been previously applied to the
study of AF cardioversion [146].

The discriminant function is a plane given by the equation x3 = −0.0355 ·x1−
0.3380 · x2 + 0.2065, where x1, x2 and x3 represent the SampEn of fp1, ∆fp and
the AA, respectively. The standardized canonical coefficients of the discriminant
function are 1.880 for x1, 0.816 for x2, and 1.662 for x3. The standardized canoni-
cal coefficients of the discriminant function are presented in table 7.25, where they
are ordered by their importance in the discriminant function. The discriminant
function is depicted in Figure 7.23 along with the SampEn values of fp1, ∆fp,
and AA for each recording. These values are tabulated in table 7.26 for learning
recordings and in table 7.27 for test recordings. The two misclassified recordings
are highlighted. Only two of the recordings were misclassified by this function.
A small value of Wilk’s lambda test [144] significance (p < 0.001) was obtained,
which indicates the great discriminatory ability of the function. All of the cases
used to create the model, i.e. the learning set, were correctly classified. Regarding
the test set, 15 out of 16 type N cases and 13 out of 14 type T cases were correctly
classified (see Table 7.28). Expressing this results in percentages, the 100% of the
learning set recordings were classified correctly. In the test test, 93.75 % of N
recordings and and 92.86% of T recordings were classified correctly. The global
percentage of test recordings properly classified was 93.33%.

The method was also tested when the SampEn of the AA was excluded from
the discriminant analysis. Under these conditions, the discriminant analysis did
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not improved t-test results, what suggested combining time and frequency do-
mains.

Figure 7.23. Two dimensional representations of the results taken by SampEn pairs of a) AA and
fp1, b) AA and ∆fp, c) fp1 and ∆fp, and 3-D plot showing the hyperplane defined by the discriminant
function. The 100% of the learning set recordings are classified correctly. In the test test, 93.75 % of
N recordings and 92.86% of T recordings are correctly classified.
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Rec. SampEn of fp1 SampEn of ∆fp SampEn of AA

aN1 0.1256 0.2281 0.2993

aN2 0.1211 0.1333 0.2671

aN3 0.1501 0.1791 0.3112

aN4 0.1333 0.2167 0.3404

aN5 0.1243 0.2202 0.2907

aN6 0.1868 0.2195 0.2923

aN7 0.1319 0.1689 0.2750

aN8 0.1317 0.1967 0.2845

aN9 0.1771 0.2153 0.2890

aN10 0.1206 0.1575 0.2716

aT 1 0.0928 0.3512 0.3198

aT 2 0.0872 0.3091 0.1276

aT 3 0.1092 0.1719 0.2305

aT 4 0.1114 0.1260 0.1987

aT 5 0.0746 0.1988 0.1885

aT 6 0.1262 0.2159 0.2516

aT 7 0.1118 0.2498 0.2234

aT 8 0.1158 0.1837 0.1562

aT 9 0.1016 0.2310 0.1489

aT 10 0.0955 0.1383 0.1537

Table 7.26. SamEn values of fp1, ∆fp, and AA for each recording of the learning set used in the
discriminant analysis.



7.3. MPSE 135

Rec. SampEn of fp1 SampEn of ∆fp SampEn of AA Original Type

b1 0.1097 0.2263 0.1764 N

b2 0.0778 0.1323 0.1746 T

b3 0.0550 0.1686 0.2278 T

b4 0.1322 0.2383 0.299 N

b5 0.1265 0.1111 0.2505 N

b6 0.1146 0.2148 0.1436 T

b7 0.1451 0.2726 0.3101 N

b8 0.1540 0.1680 0.2707 N

b9 0.1359 0.1706 0.2703 T

b10 0.1003 0.1897 0.2791 N

b11 0.1147 0.1446 0.1773 T

b12 0.0106 0.2410 0.1923 T

b13 0.1791 0.3011 0.3222 N

b14 0.0744 0.0691 0.1884 T

b15 0.1448 0.1854 0.2801 N

b16 0.1509 0.2795 0.3078 N

b17 0.1217 0.2138 0.2843 N

b18 0.0358 0.0453 0.2114 T

b19 0.1020 0.2013 0.2435 T

b20 0.1566 0.1198 0.2572 N

b21 0.1199 0.2076 0.2816 N

b22 0.1303 0.2405 0.2931 N

b23 0.0767 0.0695 0.2060 T

b24 0.0575 0.1409 0.1874 T

b25 0.1106 0.1284 0.2207 T

b26 0.0645 0.2774 0.3082 N

b27 0.0446 0.1018 0.1312 T

b28 0.1304 0.2263 0.2898 N

b29 0.0945 0.2956 0.2457 T

b30 0.1626 0.2299 0.2936 N

Table 7.27. SamEn values of fp1, ∆fp, and AA for each recording of the test set used in the
discriminant analysis. Highlighted recordings were misclassified.
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Original Type Predicted Type Total

N T

Learning cases Count N 10 0 10

T 0 10 10

% N 100 0 100

T 0 100 100

Test cases Count N 15 1 16

T 1 13 14

% N 93,75 6,25 100

T 7,14 92,86 100

Table 7.28. Classification of learning and test AF ECG recordings as type N or type T by using the
discriminant analysis.
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7.4 Quantization Effects

Figure 7.24 illustrates the mean Rq , which represents the correlation between the
original 16-bit AA, AA16, and the AAq encoded with 4 to 15 bits. Furthermore,
the mean Rq is also shown in table 7.29 along with the STD. Rq was computed
for both the raw AAq and the low pass filtered AAq . It can be observed the better
estimation quality when RAA is applied to the low pass filtered AAq . In con-
sequence, the subsequent computing of MAE is applied to the filtered signals.
Results reveal that RAA remains higher than 0.7 when the number of encoding
bits is higher or equal to nine. For eight or seven bits, RAA approximates to 0.65,
decreasing significantly when the number of bits is equal to or lower than six.

16 15 14 13 12 11 10 9 8 7 6 5 4

0.4

0.5

0.6

0.7

0.8

0.9

1

number of bits

Raw AA
q

Filtered AA
q

R
q

Figure 7.24. Rq between the 16-bit AA signal AA16 and AAq encoded with 4 to 15 bits. Results are
given for non-filtered AAq and for low-pass filtered AAq .

On the other hand, the MAE obtained for fp1 is represented in figure 7.25. It
can be appreciated that MAE of fp1 does not exceed 1.3 Hz when the number of
bits is higher or equal to seven but it increases drastically below seven bits. In the
same way, as shown in figure 7.26, MAE of SC remains lower than 6% when at
least eight encoding bits are used, but higher values of MAE are obtained when
a more reduced number of bits are considered. Low values of MAE denote a
good approximation of features. Conversely, high values of MAE indicate a bad
approximation of features.

Finally, MAE of AA SampEn signals is depicted if figure 7.27. MAE of SampEn
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Rq

Encoding bits Non-filtered AAq Filtered AAq

4 0.328 ± 0.158 0.367 ± 0.173

5 0.451 ± 0.207 0.503 ± 0.219

6 0.569 ± 0.228 0.639 ± 0.225

7 0.652 ± 0.298 0.691 ± 0.295

8 0.656 ± 0.284 0.662 ± 0.301

9 0.714 ± 0.252 0.728 ± 0.241

10 0.720 ± 0.264 0.730 ± 0.281

11 0.816 ± 0.202 0.832 ± 0.193

12 0.713 ± 0.311 0.737 ± 0.287

13 0.767 ± 0.282 0.790 ± 0.259

14 0.722 ± 0.306 0.725 ± 0.326

15 0.747 ± 0.285 0.763 ± 0.279

Table 7.29. Mean Rq between AA16 and the AAq encoded with 4 to 15 bits. Results are given for
non-filtered AAq and for low-pass filtered AAq .

denotes a quite good approximation of SampEn when seven or more bits are
used with values lower than 0.04. The graph does not clarify which is the opti-
mum number of bits between 7 an 15. Nonetheless, it is clearly shown that MAE
of AA SampEn increases considerably for a number of bits lower than seven. The
values drawn in Figure 7.25, 7.26, and 7.27 are also tabulated in table 7.30 along
with the STD.
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Figure 7.25. Mean MAE of fp1 for a number of encoding bits from 4 to 15. Higher values of MAE
denote a worse approximation of the spectral feature fp1.

Enconding bits MAE of fp1 MAE of SC MAE of AA SampEn

4 1.67 ± 0.77 8.36 ± 2.63 0.0573 ± 0.0683

5 1.73 ± 0.90 8.07 ± 2.31 0.0419 ± 0.0290

6 1.40 ± 0.99 6.56 ± 2.77 0.0432 ± 0.0289

7 1.10 ± 0.86 6.20 ± 3.49 0.0349 ± 0.0369

8 1.15 ± 0.94 5.50 ± 2.66 0.0325 ± 0.0337

9 1.05 ± 0.95 4.84 ± 2.79 0.0277 ± 0.0391

10 1.18 ± 1.16 4.89 ± 3.22 0.0227 ± 0.0262

11 0.95 ± 0.81 4.35 ± 2.44 0.0287 ± 0.0398

12 0.94 ± 1.00 4.72 ± 3.84 0.0216 ± 0.0269

13 0.82 ± 0.85 4.59 ± 3.61 0.0233 ± 0.0355

14 0.91 ± 0.84 4.92 ± 3.93 0.0330 ± 0.0405

15 1.02 ± 0.99 4.51 ± 2.86 0.0352 ± 0.0463

Table 7.30. Mean MAE of fp1, SC, and AA SampEn for AAq encoded with 4 to 15 bits.
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Figure 7.26. Mean MAE of SC for a number of encoding bits from 4 to 15. Higher values of MAE
denote a worse approximation of the spectral feature SC.
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Figure 7.27. Mean MAE of AA SampEn for a number of encoding bits from 4 to 15. Higher values
of MAE denote a worse approximation of the AA SampEn.
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7.5 Poincaré Plots

Figures 7.28 to 7.35 show examples of phase portraits of PAF episodes which
belong to type N or T groups of the database previously defined in section 6.4.
This phase portraits are depicted for the spectral features A1, fp1, A2 and fp2.
Figures 7.28 and 7.29 show the A1 phase portraits of a type N episode and a type
T episode, respectively. Similarly, Figures 7.30 and 7.31 compare the fp1 phase
portraits of he same type N and T episodes. The pair of Figures 7.32 and 7.33
and the pair of figures 7.34 and 7.35 make the comparison of A2 and fp2 phase
portraits, respectively, of these two PAF episodes. Each pair of figures where
equally scaled for every pair of figures of all spectral features in order to facilitate
the comparison. A1(n − 1), fp1(n − 1), A2(n − 1) and fp2(n − 1) stand for the
value in the previous observation moment to A1(n), fp1(n), A2(n) and fp2(n),
respectively. Remember that a cubic spline is applied to the spectrograms so that
a resolution of 0.01 Hz is accomplished.

The visual inspection of Poincaré plots of fp1 (Figures 7.30 and 7.31) show
that both terminating and non-terminating episodes present lineal discontinuous
clustering along the diagonal of the graph. Nonetheless, the dot clusters are lo-
cated close to the bottom left-hand corner of the graph in the case of terminating
episodes (type T). On the contrary, in the case of non-terminating episodes (type
N), it can be observed that dot clusters are far from the the bottom left-hand cor-
ner. As shown in Figures 7.30 and 7.31, when a cursor is located at the place
determined by the frequency of 5.5 Hz as a graphical threshold, the subdivision
of the graph allowed us to distinguish between type N and type T episodes. The
85% of learning set recordings (17 out of 20) and the 70% of the test set recordings
(21 out of 30) were correctly classified using this process. Tables 7.31 and 7.32
show the results of classification by fp1 Poincaré plots for both learning and test
sets, respectively.

In the rest of features it could not be found any plot characteristic useful to
differentiate between type N and type T episodes. In consequence, no thresh-
old could be fixed so that the percentage of correct classifications exceeded 50%.
Therefore, these last features were considered to be useless for the characteriza-
tion of AF through the use of Poincaré plots.
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Figure 7.28. Example of A1 phase portrait of a PAF episode belonging to type N group. No particular
features of these plots can be attributed to the recording type.
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Figure 7.29. Example of A1 phase portrait of a PAF episode belonging to type T group. No particular
features of these plots can be attributed to the recording type.
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Figure 7.30. Example of fp1 phase portrait of a PAF episode belonging to type N group. Dot clusters
are far from the bottom left-hand corner of the graph.
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Figure 7.31. Example of fp1 phase portrait of a PAF episode belonging to type T group. Dot clusters
are concentrated close to the bottom left-hand corner of the graph.
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Figure 7.32. Example of A2 phase portrait of a PAF episode belonging to type N group. No particular
features of these plots can be attributed to the recording type.
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Figure 7.33. Example of A2 phase portrait of a PAF episode belonging to f the type T group. No
particular features of these plots can be attributed to the recording type.
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Figure 7.34. Example of fp2 phase portrait of a PAF episode belonging to type N group. No particular
features of these plots can be attributed to the recording type.
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Figure 7.35. Example of fp2 phase portrait of a PAF episode belonging to type T group. No particular
features of these plots can be attributed to the recording type.
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Type N recordings Type T recordings

aN1 aT 1

aN2 aT 2

aN3 aT 3

aN4 aT 4

aN5 aT 5

aN6 aT 6

aN7 aT 7

aN8 aT 8

aN9 aT 9

aN10 aT 10

Table 7.31. Learning set recordings evaluated by Poincaré plots of fp1. Highlighted recordings were
misclassified.

Recording Original Type Recording Original Type

b1 N b16 N

b2 T b17 N

b3 T b18 T

b4 N b19 T

b5 N b20 N

b6 T b21 N

b7 N b22 N

b8 N b23 T

b9 T b24 T

b10 N b25 T

b11 T b26 N

b12 T b27 T

b13 N b28 N

b14 T b29 T

b15 N b30 N

Table 7.32. Test set recordings evaluated by Poincaré plots of fp1. Highlighted recordings were
misclassified.
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Two main subjects have guided the development of this thesis: the estima-
tion strategies of AA, tackled in chapter 4, and the prediction of PAF termination,
tackled in chapter 5. Therefore, the discussion is accordingly divided in two main
sections. The discussion on estimation strategies is reported in section 8.1 and in-
cludes a analysis of results reached by CBSS algorithms and CMBS. The question
of PAF termination prediction is raised in section 8.2, where results of MPSE are
analyzed. This last section also comprises the topics of Poincaré plots and quan-
tization effects.

8.1 Estimation Strategies of AA

The first environment for the study of CBSS algorithms, where the mixture pro-
cess of AA and VA can be controlled, worked as a first approximation to the
performance evaluation of these AA extraction methods. Infomax and TDD are
the two CBSS algorithms that attained the best outcomes in the first environment
in comparison with MBLMS and CoBliSS. The performance analysis of Infomax
and TDD in terms of RAAt

– correlation between the original and the estimated
AA in time domain – and SIRAA – improvement of the Signal to Interference Ra-
tio of AA accomplished by BSS algorithms – indicate that both algorithms reach
the best results when Nm, the length of mixing matrix filters, is near to one. That
is, the highest quality of the extracted AA from synthetic AF ECGs is obtained
when the original AA and VA are mixed according to an instantaneous model.
Nonetheless, the analysis of results with regard to Ns, the length of the separa-
tion matrix filters, evidence the convolutive mixture of the original real signals
used in the first environment. This fact is clearly highlighted when the SIRAA is
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regarded, since the maximum values of this index are not reached for Ns equal to
two, which is the closest approximation to the instantaneous separation model for
Infomax and TDD. In contrast, the maximum mean values of SIRAA are reached
for Ns between 4 and 32 in the Infomax case, and for Ns between 8 and 32 in the
TDD case. A hidden convolutive mixture of the original sources could explain
the better performance of Infomax and TDD at values of Ns different from two.
With respect to the comparison with FastICA, although Infomax and TDD can be
considered as two good algorithms for AA extraction, results reveal that none of
these CBSS algorithms is totally optimized for this purpose, in view that RAAt

and SIRAA values accomplished by FastICA are always higher.

The low values of RAAt
and SIRAA for MBLMS in the first environment

makes clear that this CMBS algorithm is unsuitable for the AA extraction from
AF ECGs. In the case of CoBliSS, the values of these indexes are not so low but
are quite lower than those of Infomax and TDD. Hence, CoBliSS cannot be re-
garded as a good algorithm for AA extraction. In other words, neither MBLMS
nor CoBliSS are able to achieve a sufficiently accurate AA to be considered in
subsequent studies. Nevertheless, in spite of the low performance of these two
CBSS algorithms, a slight performance improvement can still be observed in both
algorithms when the convolutive model is used in the first environment to sep-
arate the AA from synthetic AF ECGs. As for Infomax and TDD, this effect was
better perceived in the results when the attention is paid on the RAAt

index. The
maximum values of this index were not reached for the closest approximation of
these two CBSS algorithms to the instantaneous separation model , i.e. Ns = 2
for TDD and Ns = 1 for CoBliSS, which bears out a hidden convolutive mixture
of the original AA and VA sources.

The joint description of the first environment results confirms the deductions
extracted from the individual analysis of CBSS algorithms in this environment.
Results corroborate that only two CBSS algorithms, namely Infomax and TDD,
approximate the AA extraction performance of FastICA, attending to RAAt

and
SIRAA indexes. The CBSS algorithm with the worst performance is MBLMS, and
CoBliSS occupies an intermediate position with lower performance than TDD
and Infomax. Some interesting cases of this joint description, as the maximum
mean SIRAA of Infomax for Ns = 32 or the maximum mean SIRAA of TDD
for Ns = 8 , verify a main interpretation of the individual analysis, that is, the
convolutive mixture of original sources.

The results of the second environment, where 12-leads ECGs of AF episodes
are used, were only presented for the Infomax algorithm. There were two reasons
for this. Firstly, the AA extraction performance reached by MBLMS and CoBliSS
was so low that it was not worth analyzing these two CBSS algorithms in the
second environment. Secondly, the TDD algorithm was not easily adaptable to
the 12-lead ECGs of the second environment. One great advantage of this second
environment is to be more realistic than the first and, consequently, its results are
more functional for prospective clinical uses. On the other hand, one main diffi-
cult encountered in this second environment was to find a suitable AA signal as
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the original reference source for the computation of RAAt
and SIRAA. The best

available solution was that exposed in section 6.2 so that the AA is taken from the
lead with the highest contribution of this source, usually lead V1. Given that this
reference AA source is extracted by using ABS from a unique lead, its compari-
son with the AA extracted by CBSS algorithms could not to be totally appropriate.
Since the AA extracted by CBSS algorithm draws together AA information from
all leads, it would be more suitable to compare the estimated AA with a unified
original AA, which is unavailable in the second environment. Despite this limi-
tation, important remarks can be inferred from results of this environment. The
comparison with FastICA shows that Infomax needs to be improved and adapted
to the problem of AA extraction from real AF episodes. Nonetheless, although the
RAAt

and the SIRAA of Infomax are several decibels lower than those of FastICA
for any Ns in the second environment, it can be appreciated a likely convolutive
mixture of the cardioelectric sources that would explain the maximum of SIRAA

with regard to Ns = 8.

The lower AA extraction performance of CBSS algorithms in comparison with
FastICA could have persuaded us to give up the study of these algorithms. None-
theless, the performance results of CBSS algorithms also showed that the mixture
of caridoelectric signals did not follow a totally instantaneous mixing model. This
suggested the design of a new convolutive AA extraction algorithm that could
improve the results of FastICA and, besides, be able to solve the lack of leads
problem of Holter ECG recordings. This new algorithm, i.e. CMBS, is reason-
ably based on Infomax because of its higher AA extraction performance. The
selection of TDD as a base for the CMBS design was also possible, given that a
similar performance is obtained by this algorithm. However, the choice of TDD
was early discarded in view of the problematic adaptation to 12-lead ECGs. Al-
though CMBS has been applied in this thesis to 2-lead Holter ECGs, the number
of leads of a Holter recording is usually three or even greater. Unlike TDD, Info-
max allows that CMBS algorithm can be easily adapted to Holter recordings with
a number of leads greater than two. Therefore, in order to exploit the informa-
tion carried out by each Holter lead in future versions of CMBS, Infomax was the
CBSS algorithm selected for the implementation of CMBS.

The performance of CMBS was analyzed in the two same environments for
the other CBSS algorithms and was compared with the performance of FastICA
and WBS. Both FastICA and WBS were built on the hypothesis of instantaneous
mixture of sources. In short, CMBS can be viewed as an evolution of WBS where
also the number of carioelectric sources is increased by using wavelet decom-
position but the hypothesis of convolutive mixtures is used instead. The CMBS
design and its performance analysis permitted us to know to what extent the AA
extraction from Holter ECG recordings can be benefitted by considering the con-
volutive mixture model.

In the first environment, the performance comparison at three levels of SNR
shows that FastICA is the worst affected algorithm by the AWGN. As a conse-
quence of the least available observations, the performance of this algorithm is
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the worst affected by a contamination of signals with AWGN . On the other hand,
results prove that CMBS is the robustest algorithm against AWGN. This effect is
observed in all performance indicators, i.e. RAAt

, RAAf
, fp1, and SC. Therefore,

it seems that the covolutive mixture model is best adapted to the AA extraction
from Holter ECG and, besides, is better helped by an increase of observations via
wavelet decomposition.

Results of fp1 – main frequency peak of AA – and SC – spectral concentration
of AA around fp1 – in the second environment confirm the superior robustness
of CMBS against AWGN in comparison with FastICA and WBS. The convolutive
mixture model seems to be better adapted to the AA extraction problem also in
this scenario. Furthermore, FastICA is the worst affected algorithm by AWGN in
this environment too, what bears out that the increase of observations from ECG
recordings is a requirement to improve the accuracy of the extracted AA. On the
other hand, the performance comparison of CMBS and ABS in this environment
shows that similar estimations of fp1 are reached by both algorithms. This fact
validates the results of CMBS in a scenario of real ECG recordings, attending
to the wide acceptance of ABS as a time-domain technique for AA extraction.
Besides, given that AWGN provokes a higher dispersion of estimated fp1 val-
ues in ABS, it can be considered that CMBS is robuster than ABS against noise.
Since ABS works with a unique lead, the increase of observations explains why
CMBS is stronger than ABS when sources are contaminated by AWGN. In sum,
the higher robustness of CMBS against noise can be associated, in the one hand,
to the upper diversity of observations and, in the other hand, to an enhancement
of convolutive mixtures due to frequency band subdivision.

Our analysis shows up that CMBS improves the extraction performance of
WBS and ICA in both scenarios so that a high accuracy of the estimated AA for
synthetic and real AF ECG episodes is accomplished, what is proved by the high
values of RAAt

– correlation between the original and the estimated AA in time
domain. In addition, the high values of RAAf

– correlation between the original
and the estimated AA in frequency domain – and SC and the low error of fp1 esti-
mation prove that the original spectral features of the AA are preserved in the AA
estimated by CMBS from both synthetic and real signals. This fact enables CMBS
as a suitable step previous to the analysis of AA signals in the time-frequency
domain.

The main limitation of this study could be the reduced size of the recording
database. In the first environment, this difficulty was overcame by using ten dif-
ferent mixing matrices for each filter length Nm. Consequently, 150 mixtures were
analyzed in each experiment defined by Nm, attending to the fact that 15 pairs of
AA and VA signals were available. This number of mixtures was deemed to be
large enough for an accurate statistic analysis of results. In the second environ-
ment, the number of mixtures could not be augmented artificially, because this
environment reproduces a working context of real ECG recordings. Therefore,
only 20 mixtures could be analyzed for each separation matrix filter length Ns.
In spite of this, important findings could be deduced from the analysis of CBSS
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algorithms in this context. At present, our research group is working on the con-
struction of a new wider database of Holter ECG recordings from AF episodes in
collaboration with the several hospitals.

8.2 Prediction of PAF Termination

In this thesis, we have introduced MPSE as a new method to predict the sponta-
neous termination of PAF episodes. This method is based on the spectral features
regularity analysis of the AA extracted from Holter recordings of AF episodes.
Accordingly to the best performance of CMBS for AA extraction from Holter ECG
recordings, a subject discussed in the previous section, this algorithm was cho-
sen as a previous step to PAF termination prediction. The t-test has revealed the
existence of significant differences for six of the studied spectral features. Conse-
quently, the selection of spectral features for the study, based on previous works
on AF, can be considered appropriate. This test discloses that the mean SampEn
of the relevant features is higher in the nonterminating than in the terminating
AF episodes. Consequently, the nonterminating recordings seem to present more
complex dynamics than the terminating ones. This corroborates the physiolog-
ical organization increase of AA prior to AF termination, what was previously
reported through invasive atrial electrograms [36, 147]. Furthermore, results in-
dicate that clinical relevant information on AF organization can be obtained from
the spectral features of the surface ECG.

Additionally, the t-test has revealed that the SampEn of fp1 has the highest
predictive power among all the studied spectral features. In previous studies of
AF termination [22, 24, 25] the fp1 has been also revealed as a good predictor of
AF termination. The main difference of our work with those studies is that we
consider the mathematical regularity of spectral features in opposition to direct
mean values.

The major relevancy of SampEn for feature fp1 is confirmed by the discrimi-
nant analysis. The canonical coefficient for SampEn of fp1 (1.880) is the highest,
thus it is the variable that contributes the most to the discriminant function. A
slightly lower canonical coefficient is associated with the SampeEn of AA (1.662),
what indicates that both variables, and consequently both time and frequency do-
mains, have a similar weight in the prediction of AF termination. A smaller value
of the canonical coefficients is related to the SampEn of ∆fp (0.816). Nonethe-
less, we must not underestimate any of the variables. Since ∆fp – normalized
distance between the main and second spectral peaks of AA – is a description of
the spectral shape, we can confirm that the variability of this shape along time
contributes to the resultant discriminant function. On the other hand, all these
three canonical coefficients have the same positive sign, what points up that the
loss of mathematical regularity is an indicator of more likely maintenance of AF.

The discriminant analysis has provided an improvement of the results with
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respect to the classification by threshold (5% for the learning set and 6.66% for
the test set). For that reason, it is worth considering the discriminant analysis in
predicting the evolution of AF because this improvement in the classification of
AF could be of great importance in routine clinical practice. Finally, the cross-
correlation outcomes show that variables of the resultant discriminant function
have cross-correlations between them that are not negligible. This means that
these variables share information, that is, they are not totally independent. This
would explain, to some extent, the high percentage of correctly classified episodes
by the SampEn of fp1 and the additional percentage due to the discriminant anal-
ysis.

As MPSE is based on the mathematical regularity of spectral features, it is
worth discussing now the most important observations on regularity. From re-
sults it can be firstly deduced that the future evolution of AF affects is not only re-
flected in the mean values of spectral features but also in their variability in time.
Secondly, the SampEn of the spectral features is higher for the non-terminating
than for the terminating episodes. Therefore, the spectral features mathematical
regularity might be used to predict spontaneous paroxysmal AF termination and
could provide information about the organization of atrial activation in AF. The
good results make this new method a useful tool that can help clinicians in the
management of AF. In comparison with previous classifiers of the Challenge, only
the winner team [22] classified correctly more recordings than our method, one
in the learning set. Nevertheless, the method presented in [22] was only based
in the last second of the AF episode previous to AF termination, so that it can-
not be easily extrapolated to databases different from the one of Challenge 2004.
The results of the rest of classifiers have been enhanced by our method. Further-
more, MPSE is a new strategy that provides an assessment of spectral features
regularity that is not present in previous works.

The study of the quantization effects on the accuracy of the extracted spec-
tral features was developed in order to assess the minimum recommended num-
ber of encoding bits that allows a reliable analysis of AA signals by MPSE. This
study revealed that eight bits can be considered as the minimum real resolution
threshold than can provide acceptable results. However, this only can be affirmed
when the effective dynamic range approximates to the nominal dynamic range.
This would require a real-time adjustment of systems that is hardly available in
Holter recorders. Therefore, taking into account the headroom margin that has
to be considered to avoid recording overflow, the minimum recommended num-
ber of bits is twelve. Put differently, this study revealed the minimum criteria
of Holter ECG recordings that are used as inputs of the MPSE algorithm. This
will be mainly useful for establishing the desirable properties of the Holter ECG
recordings that will constitute our database in construction. This implies a correct
adjustment of the Holter ambulatory recorder, concretely a SEER Light Compact
Digital recorder of GE Medical Systems.

The Poincaré plots are presented in this thesis as an additional method to
MPSE for predicting the PAF termination by means of graphic analysis. The vi-
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sual interpretation of data and the low computational load are the main advan-
tages of this method, which could be useful to the clinical practice. The results of
this new method prove its suitability for PAF characterization when the spectral
feature fp1 is used. Although the percentage of correctly classified PAF episodes
is lower than the one reached by MPSE, this can be considered a useful method
with acceptable results accordingly to the 85% of correct decisions for the test set
and the 70% for the learning set. Further research based on Poincaré plots and
nonlinear time series analysis could improve present results. On the other hand,
this lower percentage can be attributed to an intrinsic error of plot interpretation.
Nevertheless, the Poincaré plots can be seen as a complementary way to exam-
ine the nonlinear spectral properties of AA signals. That is, the Poincaré plots
contribute a new perspective to the nonlinear analysis of AF ECGs. An in-depth
analysis of Poincaré plots with the aim to find a logical relation to MPSE results
could through light on AA signal dynamics. Furthermore, this likely association
between MPSE and Poincaré plots could help to the improvement of the method,
which is still in a initial development stage. While the method was thought for vi-
sual interpretation, an automatized examination of results would help to reduce
lecture errors.

The prediction of PAF termination presents several limitations. Firstly, the
database contains a reduced number of short recordings. A wider database would
be advisable in order to validate the method’s performance over a larger popu-
lation. Longer recordings, which comprise AF onset and offset, would allow to
study the AA organization evolution during the complete AF episode. As men-
tioned before, a wider database is being constructed in order to solve this pro-
blem. Secondly, no information about the medication of patients is provided in
the database. Different drugs could have different effects on the registered wave
form and consequently the results could be altered. The new database will be
correctly noted and will include the necessary data to discriminate different clini-
cal cases. Thirdly, although the Holter recordings have been oversampled to 1024
Hz, we must take this with caution since this oversampling cannot be considered
to be strictly the same as an original sampling rate of 1024 Hz. The recordings of
the new database will be all sampled at a original sample rate of 500 Hz so that
the oversampling effect will be reduced to 2.
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After the concise discussion on results of the previous chapter, here the main
conclusions of the thesis are exposed in section 9.1. Given that the accomplish-
ment of a research work always suggests undertaking additional tasks, likely fu-
ture lines of development are mentioned in section 9.2. The main thesis contribu-
tions to scientific journals and the incentive research programs that partly funded
the execution of this thesis are enumerated in section 9.3.

9.1 Conclusions

In chapter one, the four main objectives of this thesis were concisely exposed.
The final conclusions are logically centered in the accomplishment of these initial
objectives. With reference to the first objective, i.e. the assessment of the con-
volutive mixing model, several important conclusions can be extracted. Firstly,
the performance analysis of the most relevant convolutive algorithms reveals that
some of them approach the performance of the instantaneous algorithm for ref-
erence, i.e. FastICA. Nonetheless, convolutive algorithms need to be enhanced
in order to reach the FastICA performance. Despite the convolutive model is a
better description of the real mixture of cardioelectric sources, the AA extraction
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performance of instantaneous algorithms was not exceeded. These results are
certainly surprising, and they can be explained by the fact that convolutive algo-
rithms have been recently designed and need to be improved and adapted to the
particular features of ECG signals. At first sight, solving the error provoked by
the assumption of instantaneous source mixing in FastICA seems to be lower ad-
vantageous to CBSS algorithms accuracy than expected. This might be attributed
to the low sampling rate of ECG recordings. Taking into account a maximum
available sampling rates of 1 kHz, the time distance between ECG samples is
1 ms, which is of the same order than the propagation error and the misalign-
ment of QRS fiducial points. A sample rate around 10 kHz or more would proba-
bly increase the performance because this would allow to better considerate both
the propagation error and the QRS misalignment. Unfortunately, these sampling
rates are not frequently available and would require much larger data storage
capacities. Nevertheless, a second glance at results proved a certain convolutive
behavior in the cardioelectric source mixture process. This permitted to progress
in the study of CBSS algorithm and to design a new AA extraction method opti-
mized for convolutive mixtures and Holter ECG recordings.

The second objective of this thesis is just related to the design of this new
AA extraction algorithm, i.e. CBMS. The CMBS design was logically based on
Infomax, given the good results of this algorithms in both first and second en-
vironments. The lack of leads problem for applying CBSS algorithms to the AA
extraction from Holter ECG recordings was solved in CMBS by the band subdi-
vision that the Wavelet transform figures out. One main decision of the CMBS
design was the selection of the function used as a mother wavelet. The selected
function was the symlet(8) with regard to its best results in comparison with
other analyzed mother wavelets. Although the increase of leads by wavelet de-
composition was firstly applied in [41], the utility of considering the convolutive
model in this context of lack of leads is revealed as an important conclusion of
the study. The increase of observations by wavelet transform produced an per-
formance improvement of CMBS in comparison with WBS and FastICA and a
higher robustness against noise. In other words, CMBS solves the lack of leads
problem and, at the same time, its results prove the suitability of the convolu-
tive mixing model for AA separation from Holter recordings. Furthermore, the
comparison of CMBS with ABS confirms its appropriateness for AA extraction in
noisy environments.

With reference to the third objective, that is, the assessment of the regularity
estimator SampEn, several important conclusions could be deduced. Firstly, it
was demonstrated that the SampEn is able to find regularity differences in series
of AA spectral features depending on the likeliness of a PAF episode to return to
normal sinus rhythm. In other words, it was proved that SampEn can be used
as an accurate estimator for predicting PAF termination by analyzing the spectral
features regularity of the AA extracted from ECG recordings. Results showed
that more regularity of spectral features series implies a higher likeliness of PAF
episode termination. Conversely, lower regularity signifies a lower likeliness of
the episode to evolve to normal sinus rhythm. Among the analyzed spectral fea-
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tures, fp1 was revealed as the most significant one, when the SampEn of series is
computed, with a bilateral significance of 0.001. Other relevant spectral features,
namely ∆fp, A1, d1 and SC, were also revealed as significant for PAF termination
prediction since the bilateral significance of their SampEn is lower than 0.05 as
well. This suggested the use of all these features in a multivariate analysis of the
SampEn outcomes. Remember that fp1 is the main peak frequency of the AA,
A1 is the related magnitude of this peak, d1 is the deviation of the main from its
mean value, and SC is the Spectral Concentration.

The systematic regularity estimation of spectral feature series for PAF termi-
nation prediction, when the AA is extracted from Holter ECG recordins by CMBS,
constitutes the accomplishment of the last exposed objective, that is, the design of
the MPSE algorithm. Since MPSE uses CMBS for AA extraction, one main advan-
tage of this algorithm is that can be applied to Holter ECG recordings and that
can consider a convolutive mixing model. The use of fp1 series as a unique input
of MPSE or the use of several relevant spectral features defined two different ver-
sions of this new AA extraction method. The t-test applied to the SampEn of fp1

was referred to as the univariate version while the joint analysis of SampEn by
considering several spectral features was referred to as the multivariate version.
In the final design of the multivariate version, the joint application of SampEn
to fp1, ∆fp and AA in time domain was the best feature combination for PAF
termination prediction. The AA in time domain was also included as a variable
for analysis so that both time and frequency regularity features of signals could
be taken into account. The rest of spectral features were not finally used as MPSE
inputs since the high cross-correlations make them unuseful. As far as perfor-
mance is concerned, the univariate analysis reaches good prediction results and
has the advantage of being more easily applicable. On the other hand, the opera-
tion of the multivariate version is a little more complex but provides an increase
of the correctly classified PAF episodes percentage. Although both versions of
the algorithm can be considered suitable for PAF prediction, the improvement
accomplished by the multivariate version might be crucial for a possible clinical
use of this extraction method.

The visual analysis carried out in Poincaré plots, was used as an additional
method for PAF termination prediction. This visual method offered a quite accu-
rate prediction of PAF termination episodes, although does not reaches the per-
formance of CMBS. Nevertheless, a further conclusion can be inferred from the
Poincaré plots results: fp1 is revealed again as the most useful spectral feature for
PAF characterization when used individually. Finally, the study of quantization
effects served to make some advise on the minimum number of recommended
bits for a correct use of MPSE.
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9.2 Future Lines

The work accomplished in this thesis is in line with previous and present stud-
ies of our research group. The AA extraction from ECG recordings by applying
BSS was first introduced by Rieta in [10], where an instantaneous mixing model
was considered. This thesis was initially conceived as a natural extension of [10]
centered on the study of CBSS algorithms. The execution of the thesis has solved
most of the initial questions and, at the same time, allows to discern new lines of
future research. Some of these lines are enumerated next.

• An in-depth study of the sampling rate effects on the accuracy of CBSS
algorithms. Higher sampling rates would allow a better consideration of
propagation effects. A possible future work could consist of assessing the
likely progressive improvement of AA extraction carried out by CBSS al-
gorithms when increasing sampling rates are used. The accomplishment of
this would depend on the availability of ECG recorders that work at high
sampling rates.

• Exploration of the reasons that make the convolutive model robuster against
noise than the instantaneous one for the AA extraction from Holter ECG
recordings. This would allow to better understand the generation and mix-
ing processes of cardioelectric sources in the human body.

• Implementation of a CMBS version for real-time operation. This would
require to increase the execution speed and the total automatization of the
process. Several criteria could be combined to select the correct AA among
all separated sources, e.g. SC and kurtosis of AA spectrum.

• Construction of a wider ECG database in order to make a more reliable eval-
uation of the current and new developed AA extraction techniques. Our
research group is currently working on this new database in collaboration
with several hospitals.

With respect to PAF termination prediction, this work is just a small part of a
global line of our research group where other related works as [148] are included.
Further future research as a continuation of this thesis work will be centered in
the following items.

• Studying the organization evolution of AA spectral features during long
term AF recordings. The study of AA regularity in the first minutes of PAF
onset has been used in this thesis as a means of predicting PAF episodes
evolution. An interesting future study could be the regularity analysis of
spectral features along the whole PAF episode. This could be carried out by
analyzing available Holter ECG recordings and could be helpful for taking
appropriate decisions on PAF management.
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• A further interesting challenge could be to find a suitable relation between
the SampEn of spectral features and the pathophysiological mechanisms of
AF. Although the mathematical regularity of spectral features has served as
a tool to discriminate between terminating and nonterminating PAF episodes,
the physiological reasons that explain these differences on organization re-
main still unclear. The execution of this could help to disclose hidden pro-
cesses of electric heart activation.

• Application of the methodologies presented here to other types of AF, as
persistent AF, and the help to medical decisions, as whether to cardiovert
the patient or not depending on the expected evolution of the arrhythmia.
Moreover, the application of these new methodologies could be extended
to other cardiac diseases different form AF.

• Exploration of alternative regularity indices, e.g. the Lempel-Ziv complex-
ity or central tendency measure, to estimate the regularity of spectral fea-
tures. This might contribute to reveal new aspects of spectral feature regu-
larity useful for predicting the evolution of AF episodes.

• An in-depth study of the effects of drugs on the regularity of spectral fea-
tures series and its relation with the likeliness of PAF episodes to terminate.
This could help to the customized selection of drugs for each patient.

• As for CMBS, the real-time operation of MPSE and its assessment by using a
wider database are also important matters of future development. As com-
mented before, a database is currently being constructed in collaboration
with the several hospitals.

9.3 Contributions

9.3.1 Main Thesis Publications

The work carried out in this thesis has been published in several scientific jour-
nals of international scope and has been presented in national and international
conferences. Next these scientific contributions are enumerated.

The performance study of CBSS algorithms was published as an article of
Lecture Notes in Computer Science:

• C Vayá, J J Rieta, C Sánchez, and D Moratal. Performance study of convo-
lutive BSS algorithms applied to the ECG of atrial fibrillation. Lecture Notes
in Computer Science 3889 (2006), 495-502.

and in the international journal IEEE Transactions on Biomedical Engineering:
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• C Vayá, J J Rieta, C Sánchez, and D Moratal. Convolutive blind source se-
paration algorithms applied to the electrocardiogram of atrial fibrillation:
Study of performance. IEEE Transactions on Biomedical Engineering 54, 8
(2007), 1530-1533.

Previous version of this part were contributed to the proceedings of national
conferences in:

• C Vayá, J J Rieta, D Moratal, and C Sánchez. Rendimiento de los algorit-
mos BSS convolutivos en el estudio de la fibrilación auricular. In Simposium
Nacional de la Unión Cientı́fica Internacional de Radio (2005), vol. 20, pages
1881-1884.

• C Vayá, J J Rieta, D Moratal, and C Sánchez. Estudio de la extracción de
la fibrilación auricular mediante algoritmos BSS convolutivos. In Congreso
Anual de la Sociedad Española de Ingenierı́a Biomédica (2005), vol. 23, pages
7-10.

and to the proceedings of an international conference in:

• C Vayá, J J Rieta, D Moratal, and C Sánchez. Feasibility and performance of
methods based on statistical signal processing to study atrial fibrillation. In
Conf Proc IEEE Computers in Cardiology (2005), vol. 32, pages 925-928

The initial versions of MPSE algorithm were presented in three international
conferences:

• C Vayá, J J Rieta, R Alcaraz, C Sánchez, and R Cervigón. Prediction of
atrial fibrillation termination by approximate entropy in the time-frequency
domain. In Conf Proc IEEE Computers in Cardiology (2006), vol. 33, pages
589-592.

• C Vayá and J J Rieta. Analysis of spectrogram parameters organization ap-
plied to the characterization of atrial fibrillation. In Conf Proc IEEE Comput-
ers in Cardiology (2007), vol. 34, pages 509-512.

• C Vayá and J J Rieta. Combined analysis of time and frequency series regu-
larity applied to the study of atrial fibrillation. In Conf Proc IEEE Computers
in Cardiology (2008), vol. 35, pages 73-76.

and four national conferences:

• C Vayá, J J Rieta, R Alcaraz, J Mateo, and C Sánchez. Clasificación de la fib-
rilación auricular mediante análisis de complejidad en el dominio tiempo-
frecuencia. In Congreso Anual de la Sociedad Española de Ingenierı́a Biomédica
(2006), vol. 24, pages 25-28.
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• C Vayá and J J Rieta. Caracterización de la fibrilación auricular mediante
parametrización espectrográfica del electrocardiograma. In Congreso Anual
de la Sociedad Española de Ingenierı́a Biomédica (2007), vol. 25, pages 214-217.

• C Vayá and J J Rieta. Análisis combinado de regularidad de series en tiempo
y frecuencia aplicado al estudio de la fibrilación auricular. In Congreso Anual
de la Sociedad Española de Ingenierı́a Biomédica, (2008), vol. 26, pages 182-185.

• C Vayá and J J Rieta. Predicción de terminación de la fibrilación auricular
mediante medidas de regularidad de parámetros espectrales. In Simposium
Nacional de la Unión Cientı́fica Internacional de Radio (2008), vol. 23, pages
49-52.

The final version was published in the journal Medical and Biological Engineer-
ing and Computing:

• C Vayá and J J Rieta. Time and frequency series combination for nonin-
vasive regularity analysis of atrial fibrillation. Med Biol Eng Comput 47, 7
(2009), 687-696.

The method for PAF termination prediction based on Poincaré plots was pre-
sented as an international conference publication in:

• C Vayá, J J Rieta, J Mateo, and C Sánchez. Poincaré plots of time-frequency
parameters applied to the prediction of atrial fibrillation termination. In
Conf Proc IEEE Computers in Cardiology (2007), vol. 34, pages 569-572.

The effects of quantization on MPSE were contributed to the same conference
in:

• C Vayá and J J Rieta. ECG signal quantization effects inthe analysis of atrial
fibrillation. In Conf Proc IEEE Computers in Cardiology (2007), vol. 34, pages
477-480.

The CMBS algorithm was presented in two international conferences:

• C Vayá, J J Rieta, and R Alcaraz. Convolutive multiband blind separation to
dissociate atrial from ventricular activity in atrial fibrillation. In Conf Proc
IEEE Computers in Cardiology (2009), vol. 36, pages 713-716.

• C Vayá, and J J Rieta. Combination of covolutive blind signal separation
and wavelet decomposition to extract the atrial activity in atrial fibrillation.
In International Conference on Bio-inspired Systems and Signal Processing (2010),
vol. 3, p. in press.
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and in a national conference:

• C Vayá, J J Rieta, and R Alcaraz. Extracción de la actividad auricular en fib-
rilación auricular mediante separación ciega multibanda de mezclas con-
volutivas. In Congreso Anual de la Sociedad Española de Ingenierı́a Biomédica
(2009), vol. 27, pages 429-432.

The final version is currently under review to be published in the journal
Biomedical Signal Processing and Control:

• C Vayá, and J J Rieta. Atrial Activity Extraction form Holter ECG by Con-
volutive Multiband Blind Separation in Atrial Fibrillation. Biomed Signal
Process Control

9.3.2 Collaborations

Other contributions less related with the subjects of this thesis are the result of
collaborating with other researchers on biomedical engineering. A main topic of
collaboration was the study of ICA as a previous step to the analysis of CBSS
algorithms. The applicability of ICA to the analysis of atrial tachyarrhythmias
was studied in depth in a conference paper:

• J J Rieta, C Vayá, C Sánchez, F Castells, and J Millet. Aplicabilidad de la
separación ciega de fuentes para el analisis de taquiarrtimias auriculares.
In Congreso Anual de la Sociedad Española de Ingenierı́a Biomédica, volume 22,
pages 391-394, 2004.

A derivation of atrial surface reentries in AF patients by surface ICA-estimated
AA is presented as a journal article of Lecture Notes in Computer Science in:

• J J Rieta, F Hornero, C Sánchez, C Vayá, D Moratal, and J M Sanchis. Deriva-
tion of atrial surface reentries applying ICA to the standard ECG of pa-
tients in postoperative atrial fibrillation. Lecture Notes in Computer Science,
3889:478-485, 2006.

An assessment of epicardial atrial activation in atrial fibrillation by ICA was
presented to two national conferences in:

• J J Rieta, C Sánchez, C Vayá, and D Moratal. Verificación no invasiva de
la activación auricular epicárdica en episodios de fibrilación auricular. In
Congreso Anual de la Sociedad Española de Ingenierı́a Biomédica, volume 23,
pages 335-338, 2005.
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• J J Rieta, C Sánchez, C Vayá, D Moratal, and F Hornero. Estudio de reen-
tradas en la superficie auricular mediante el electrocardiograma estándar
en episodios de fibrilación auricular. In Simposium Nacional de la Unión
Cientı́fica Internacional de Radio, volume 20, pages 1521-1524, 2005.

and as international contribution in:

• J J Rieta, C Hornero, C Sánchez, C Vayá, and D Moratal. Epicardial atrial
activation assessment from the surface ECG in atrial fibrillation. In Conf
Proc IEEE Computers in Cardiology, volume 32, pages 941-944, 2005.

The effects of filtering on the applicability of ICA to AA extraction is docu-
mented in:

• J J Rieta, F Hornero, C Sánchez, C Vayá, and D Moratal. Efecto del filtrado
paso bajo en el análisis electrocardiográfico mediante técnicas basadas en
ICA. In Congreso Anual de la Sociedad Española de Ingenierı́a Biomédica,
volume 23, page 447.450, 2005.

Previously to the development of CMBS, the author of the thesis collaborated
in other works concerned with the AA extraction by using the wavelet transform.
These collaborations resulted in three presentations in national conferences:

• C Sánchez, J J Rieta, D Moratal, C Vayá, and J Millet. Comparación de
técnicas wavelet para la extracción de actividad auricular en taquiarritmias
supraventriculares. In Simposium Nacional de la Union Cientı́fica Internacional
de Radio, volume 20, pages 409-411, 2005.

• C Sánchez, J J Rieta, D Moratal, C Vayá, J M Blas, and J Millet. Algortimo
wavelet para la mejora del rendimiento en la extracción de actividad auric-
ular mediante separación ciega de fuentes. In Congreso Anual de la Sociedad
Española de Ingenierı́a Biomédica, volume 23, pages 109-112, 2005.

• C Sánchez, J J Rieta, D Moratal, C Vayá, J M Blas, and J Millet. Evaluación de
técnicas wavelet para la extracción de actividad auricular en taquiarritmias
supraventriculares. In Congreso Anual de la Sociedad Española de Ingenierı́a
Biomédica, volume 23, pages 455-458, 2005.

in an international conference:

• D Sánchez, J J Rieta, C Vayá, R Cervigón, and J Millet. Atrial activity en-
hancement by blind source sequential separation. In Conf Proc IEEE Com-
puters in Cardiology, volume 32, pages 937-940, 2005.
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and as a journal article of Lecture Notes in Computer Science:

• C Sánchez, J J Rieta, C Vayá, R Zangróniz, and J Millet. Wavelet denois-
ing as preprocessing stage to improve ICA performance in atrial fibrillation
analysis. Lecture Notes in Computer Science, 3889:486-494, 2006.

The author also collaborated in the prediction of PAF termination by means
of series regularity predictors as contributions to national symposiums in:

• R Alcaraz, C Sánchez, C Vayá, R Cervigón, and J J Rieta. Aplicación de la
entropı́a muestral en el dominio wavelet para predecir la terminación de
arritmias cardı́acas supraventriculares. In Simposium Nacional de la Unión
Cientı́fica Internacional de Radio, volume 21, pages 1260-1263, 2006.

• R Alcaraz, J J Rieta, J Mateo, C Vayá, and C Sánchez. Anáalisis de reversión
en episodios de fibrilación auricular mediante entropı́a muestral wavelet.
In Congreso Anual de la Sociedad Española de Ingenierı́a Biomédica, volume 24,
pages 339-342, 2006.

and and as contributions to an international conference in:

• R Alcaraz, C Vayá, Cervigón R, C Sánchez, and J J Rieta. Wavelet sample
entropy: A new approach to predict termination of atrial fibrillation. In
Conf Proc IEEE Computers in Cardiology, volume 33, pages 597-600, 2006.

An study of successful cardioversion in atrial fibrillation is treated in:

• R Cervigón, R Alcaraz, C Vayá, J Mateo, J Millet, and C Sánchez. Aplicación
de la entropı́a muestral para la prediccion de recurrencias en episodios de
fibrilación auricular. In Congreso Anual de la Sociedad Española de Ingenierı́a
Biomédica, volume 24, pages 451-454, 2006.

• R Cervigón, R Alcaraz, C Vayá, J Mateo, J Millet, and C Sánchez. Predic-
tion of successful cardioversion in atrial fibrillation using wavelet analysis
parameters and sample entropy. In Conf Proc IEEE Computers in Cardiology,
volume 33, pages 593-596, 2006.

Finally, a collaboration on ECG signal denoising resulted in a national confer-
ence presentation:

• J Mateo, C Sánchez, R Alcaraz, C Vayá, and J J Rieta. Métodos de pre-
procesado en análisis electrocardiográfico: Problemática y evaluación de
soluciones. In Congreso Anual de la Sociedad Española de Ingenierı́a Biomédica,
volume 24, pages 543-546, 2006.
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two contributions to international conferences:

• J Mateo, C Sánchez, C Vayá, R Cervigón, and J J Rieta. A new adaptive
approach to remove baseline wander from ECG recordings using madeline
structure. In Conf Proc IEEE Computers in Cardiology, volume 34, pages 533-
536, 2007.

• J Mateo, C Sánchez, R Alcaraz, C Vayá, and J J Rieta. Neural networks based
approach to remove baseline drift in biomedical signals. In 11th Mediter-
ranean Conference on Medical and Biological Engineering and Computing, vol-
ume 16, pages 90-93, 2007.

and an international journal article:

• J Mateo, Sánchez C, C Vayá, R Cervigón, and J J Rieta. A learning based
Widrow-Hoff delta algorithm for noise eduction in biomedical signals. Lec-
ture Notes in Computer Science, 4527:377-386, 2007.

9.3.3 Funding

This work was partly funded by the following research incentive programs:

• From 01/01/2004 to 01/01/2006. ”Clasificación y caracterización de taquiar-
ritmias auriculares mediante distribuciones tiempo-frecuencia”. Consellerı́a
de Empresa, Universidad y Ciencia de la Generalitat Valenciana. Amount:
26.400 e.

• From 01/12/2006 to 01/12/2007. ”Estudio de las contracciones normales y
prematuras para la prevención de arritmias supraventriculares postopera-
torias de cirugı́a cardı́aca”. Consellerı́a de Empresa, Universidad y Ciencia
de la Generalitat Valenciana. Amount: 13.200 e.

• From 12/31/2006 to 12/31/ 2007. ”Aplicación del Procesado Avanzado de
Señal en la Extracción, Caracterización y Predicción de la Fibrilación Auric-
ular Postoperatoria”. Vicerrectorado de I+D+i de la Universidad Politécnica
de Valencia (UPV20070086). Amount: 3.000 e.

• From 10/01/2007 to 10/01/2010. ”Sinergia de Metodos Lineales y No Lin-
eales para el Analisis, Estratificacion y Prediccion del Comportamiento de
la Fibrilacion Auricular”. Ministerio de Educación y Ciencia -D.G. Investi-
gacion (TEC2007-64884). Amount: 79.013 e.

• From 09/16/2008 to 09/16/2009. ”Ayuda cofinanciación UPV: Sinergia de
Metodos Lineales y No Lineales para el Analisis, Estratificacion y Predic-
cion del Comportamiento de la Fibrilacion Auricular”. Universidad Politécnica
de Valencia (PAID-05-08). Amount: 3.500 e.
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de Valencia, Valencia, Spain, 2008.



List of Figures

2.1 (a) Location of the heart in the human body and (b) structure of the
heart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Parts of the heart conduction system and their activation rates. . . . 12

2.3 Different waveforms generated by the specialized cells heart con-
duction system in a normal ECG and the resultant body surface
potential [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Leads I, II and II constitute the Einthoven’s triangle or 3-lead ax-
ial reference system. The augmented leads, aVR, aVL and aVF , in
conjunction with I, II and III constitute the 6-lead axial reference
system[50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Location of the precordial leads on the chest. . . . . . . . . . . . . . 16

2.6 Formation of the Wilson Central Terminal . . . . . . . . . . . . . . . 17

2.7 Projection of the 12-lead ECG system in three orthogonal planes:
frontal, transverse and sagital [50]. . . . . . . . . . . . . . . . . . . . 18

2.8 Waves of the normal ECG at lead I [50]. . . . . . . . . . . . . . . . . 19

2.9 The generation of the ECG signal in the Einthoven limb leads [50]. 22

2.10 The generation of the ECG signal in the Einthoven limb leads (con-
tinued) [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 ECG of (a) Normal Sinus Rhythm (NSR) and (b) AF episode. In
AF, the P waves are substituted by rapid oscillations of fibrillatory
waves and the ventricular response becomes irregular. . . . . . . . 27



180 LIST OF F IGURES

3.2 Patterns of atrial fibrillation. (1) episodes that generally last less
than or equal to 7 days (most less than 24 h; (2) usually more than
7 days; (3) cardioversion failed or not attempted; and (4) either
paroxysmal or persistent AF may be recurrent [8]. . . . . . . . . . . 28

3.3 Principal electrophysiological mechanisms of atrial fibrillation. (a)
Focal activation. The initiating focus (indicated by the asterisk) of-
ten lies within the region of the pulmonary veins. The resulting
wavelets represent fibrillatory conduction, as in multiple-wavelet
reentry. (b) Multiple-wavelet reentry. Wavelets (indicated by ar-
rows) randomly reenter tissue previously activated by them or by
another wavelet. The routes the wavelets travel vary. LA indicates
left atrium; PV, pulmonary vein; ICV, inferior vena cava; SCV, su-
perior vena cava; and RA, right atrium [1] . . . . . . . . . . . . . . . 30

3.4 a) A sinus impulse activates area A. (b) A premature beat arising
in area B fails to reach area A because the intervening tissue re-
mains refractory from the preceding sinus beat. (c) The premature
stimulus travels slowly via an alternative route back to area A, al-
lowing enough time for area A to recover and be excited. (d) Area
A re-excites area B, and the cycle sustains itself [58]. . . . . . . . . . 31

3.5 Prevalence of AF in two American epidemiological studies. Fram-
ingham indicates the Framingham Heart Study; CHS, Cardiovas-
cular Health Study [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Incidence of atrial fibrillation in two American epidemiological stud-
ies. Framingham indicates the Framingham Heart Study, and CHS
indicates Cardiovascular Health Study [1] . . . . . . . . . . . . . . . 32

3.7 Independent risk factors for AF [70] . . . . . . . . . . . . . . . . . . 32

3.8 Adverse effects of AF on QoL. Lower scores mean poorer QoL [4]. . 33

3.9 Integration surfaces and geometry outline involved in the forward
problem solution when the observation point i is placed on the
inner bounding of the body surface SB [10]. . . . . . . . . . . . . . . 35

3.10 Integration surfaces and geometry outline involved in the forward
problem solution when the observation point i lies on the outer
bounding of the heart surface SH [10]. . . . . . . . . . . . . . . . . . 35

3.11 QRS complex detail of a 12-lead AF ECG. The maximum projection
of the heart vector on each ECG lead occurs at different moments . 39

4.1 a) Computation of the QRST template of an AF episode by QRST
beat averaging b) Estimation of the AA by aligning and subtracting
the QRST template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



LIST OF F IGURES 181

4.2 The Blind Source Separation problem. The M observed signals are
function of N independent sources. The sources and the transfor-
mation functions are unknown. BSS algorithms try to approximate
the separation system that inverts the process. In linear models,
the mixing system and the separation system are represented by
the A and the W matrices respectively. . . . . . . . . . . . . . . . . 47

4.3 Genesis of the standard 12-leads ECG as the linear mixture of atrial
activity (AA), ventricular activity (VA), noise, and other bioelectric
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Instantaneous linear mixing model. Here the observations of the
ECG are assumed to be instantaneous linear mixtures of the bio-
electric sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Convolutive linear mixing model. Here the observations of the
ECG are assumed to be convolutive linear mixtures of the bioelec-
tric sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Ideal global matrix G with FIR filters length equal to 15. The ele-
ments of the main diagonal, i.e. filters 1.1 and 2.2, are Dirac deltas.
The rest of elements are filters of null response. . . . . . . . . . . . . 52

4.7 Example of histogram and kurtosis of a)AA source and b)VA source.
The AA behaves as a subgaussian random variable with negative
kurtosis. The VA behaves as a supergaussian random variable with
possitive kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Standard LMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 Example of convolution between an arbitrary signal and a wavelet
function at two different scales, a = 1 and a = 5, and for different
time shifts given by the translation parameter b. . . . . . . . . . . . 65

4.10 Multi-Resolution Analysis by successive lowpass and highpass fil-
tering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 General CMBS process for AA extraction. . . . . . . . . . . . . . . . 67

4.12 Several mother wavelet functions used to transform Holter leads
into a higher number of observations . . . . . . . . . . . . . . . . . . 68

4.13 Decomposition of a Holter lead into 8 detail and one approxima-
tion coefficient by using symmlet 8 with 8 decomposition levels . . . 70

5.1 General process to classify a PAF episode as terminating or non-
terminating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



182 LIST OF F IGURES

5.2 Time-frequency plot of a typical AA signal. a) AA spectrogram
computed using Hamming windows of 1024 samples in length and
75% overlap. b) Spectrogram slice at t = 50 seconds, interpolated
fitting curve, local maxima and minima, and spectral features fp1,
fp2, A1 and A2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 (a) The threshold of the univariate analysis is fixed as the optimal
decision level of SampEn for the learning set (b) The method is fi-
nally assessed by considering the recordings of the test set and the
threshold fixed by the learning set. Black circles indicate terminat-
ing episodes. White circles indicate nonterminating episodes. . . . 77

5.4 (a) The discriminant function is adjusted from the learning set (b)
The method is finally assessed by considering the recordings of the
test set and the adjusted discriminant function. Black circles indi-
cate terminating episodes. White circles indicate nonterminating
episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 General process of analysis. Subindexes express the number of
bits. (a) Quantization of leads, (b) AA extraction by the CMBS, (c)
Low pass filtering, (d) Spectrogram of the quantized AA, (e) con-
struction of fp and SC sequences, and computation of the SampEn
of AA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Example of the stroboscopic view of vector x=[1 2 3 4 3 2 1] . . . . . 83

6.1 Example of synthetic leads x1 and x2 formation from the AA and
the VA. The filters of matrix A take the following values in the
example: h11 = [1 0.5], h12 = [2 1], h21 = [1 − 0.5], h22 =
[−2 − 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Second environment synthetic ECG generation. The AF 12-leads
ECGs are synthesized by adding the AA and the VA of every lead,
previously separated from real ECGs of AF episodes. . . . . . . . . 90

7.1 Mean RAAt
for the Infomax algorithm in the first environment. The

length of the mixing matrix filters Nm is varied from 1 to 8 and the
length of the separation matrix filters Ns from 2 to 32. The values
for the FastICA algorithm are also included for comparison. . . . . 103

7.2 Mean SIRAA(dB) for the Infomax algorithm in the first environ-
ment. The length of the mixing matrix filters Nm is varied from 1
to 8 and the length of the separation matrix filters Ns from 2 to 32.
The values for the FastICA algorithm are also included for com-
parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



LIST OF F IGURES 183

7.3 Mean RAAt
for the MBLMS algorithm in the first environment. The

length of the mixing matrix filters Nm is varied from 1 to 8 and the
length of the separation matrix filters Ns from 2 to 32. The values
for the FastICA algorithm are also included for comparison. . . . . 105

7.4 Mean SIRAA(dB) for the MBLMS algorithm in the first environ-
ment. The length of the mixing matrix filters Nm is varied from 1
to 8 and the length of the separation matrix filters Ns from 2 to 32.
The values for the FastICA algorithm are also included for com-
parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 Mean RAAt
for the TDD algorithm in the first environment. The

length of the mixing matrix filters Nm is varied from 1 to 8 and the
length of the separation matrix filters Ns from 2 to 32. The values
for the FastICA algorithm are also included for comparison. . . . . 108

7.6 Mean SIRAA(dB) for the TDD algorithm in the first environment.
The length of the mixing matrix filters Nm is varied from 1 to 8
and the length of the separation matrix filters Ns from 2 to 32. The
values for the FastICA algorithm are also included for comparison. 108

7.7 Mean RAAt
for the CoBliSS algorithm in the first environment. The

length of the mixing matrix filters Nm is varied from 1 to 8 and the
length of the separation matrix filters Ns from 1 to 32. The values
for the FastICA algorithm are also included for comparison. . . . . 110

7.8 Mean SIRAA(dB) for the CoBliSS algorithm in the first environ-
ment. The length of the mixing matrix filters Nm is varied from 1
to 8 and the length of the separation matrix filters Ns from 1 to 32.
The values for the FastICA algorithm are also included for com-
parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.9 CBSS algorithms (a) SIRAA and (b) RAAt
mean values in the first

environment as a function of the mixing matrix filters length (Nm)
regardless of the separation matrix filters length (Ns). . . . . . . . . 113

7.10 CBSS algorithms (a) SIRAA and (b) RAAt
mean values in the first

environment as a function of the separation matrix filters length
(Ns) regardless of the mixing matrix filters length (Nm). . . . . . . . 114

7.11 SIRAA and RAA mean values of the Infomax algorithm in the se-
cond environment as a function of the FIR filters length of the se-
paration matrices (Ns). Seven different lengths of the filters were
considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.12 Mean RAAt
between the original AA and the one extracted by Fast-

ICA, WBS and CMBS from synthetic ECG recordings of the first
environment at three levels of SNR. . . . . . . . . . . . . . . . . . . . 119



184 LIST OF F IGURES

7.13 Mean RAAf
between the original AA and the one extracted by Fast-

ICA, WBS and CMBS from synthetic ECG recordings of the first
environment at three levels of SNR. . . . . . . . . . . . . . . . . . . . 120

7.14 Mean fp1 of the AA extracted by FastICA, WBS and CMBS from
synthetic ECG recordings of the first environment at three levels of
SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.15 Mean SC of the AA extracted by FastICA, WBS and CMBS from
synthetic ECG recordings of the first environment at three levels of
SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.16 Mean fp1 of the AA extracted by FastICA, WBS and CMBS from
real ECG recordings of the second environment at three levels of
SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.17 Mean SC of the AA extracted by FastICA, WBS and CMBS from
real ECG recordings of the second environment at three levels of
SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.18 Results of the t-test for the SampEn of all the spectral features. a)
Mean and standard deviation of SampEn for groups N and T, b)
SampEn bilateral significance between groups. A feature is con-
sidered relevant when its bilateral significance is lower than 0.05. . 126

7.19 a) Type T and b) type N fp1 series example with respective SampEn
values 0.0153 and 0.1556. Higher SampEn indicates lower regula-
rity of the signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.20 Learning set ROC curve fitted using the one-term exponential model
for the SampEn of fp1. Decision point chosen for sensitivity 91%
and 1 − specificity 14%. . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.21 Classification of type N and T episodes using a threshold value for
the SampEn of fp1 equal to 0.1173. The 95% of the learning set and
86.67% of the test set recordings were correctly classified. . . . . . . 129

7.22 Cross-correlation absolute values for the SampEn of the spectral
significant features and the AA. Pairs of variables with high cross-
correlation do not contribute to the resultant discriminant model. . 131

7.23 Two dimensional representations of the results taken by SampEn
pairs of a) AA and fp1, b) AA and ∆fp, c) fp1 and ∆fp, and 3-D plot
showing the hyperplane defined by the discriminant function. The
100% of the learning set recordings are classified correctly. In the
test test, 93.75 % of N recordings and 92.86% of T recordings are
correctly classified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



LIST OF F IGURES 185

7.24 Rq between the 16-bit AA signal AA16 and AAq encoded with 4
to 15 bits. Results are given for non-filtered AAq and for low-pass
filtered AAq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.25 Mean MAE of fp1 for a number of encoding bits from 4 to 15.
Higher values of MAE denote a worse approximation of the spec-
tral feature fp1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.26 Mean MAE of SC for a number of encoding bits from 4 to 15.
Higher values of MAE denote a worse approximation of the spec-
tral feature SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.27 Mean MAE of AA SampEn for a number of encoding bits from 4
to 15. Higher values of MAE denote a worse approximation of the
AA SampEn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.28 Example of A1 phase portrait of a PAF episode belonging to type
N group. No particular features of these plots can be attributed to
the recording type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.29 Example of A1 phase portrait of a PAF episode belonging to type
T group. No particular features of these plots can be attributed to
the recording type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.30 Example of fp1 phase portrait of a PAF episode belonging to type
N group. Dot clusters are far from the bottom left-hand corner of
the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.31 Example of fp1 phase portrait of a PAF episode belonging to type T
group. Dot clusters are concentrated close to the bottom left-hand
corner of the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.32 Example of A2 phase portrait of a PAF episode belonging to type
N group. No particular features of these plots can be attributed to
the recording type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.33 Example of A2 phase portrait of a PAF episode belonging to f the
type T group. No particular features of these plots can be attributed
to the recording type. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.34 Example of fp2 phase portrait of a PAF episode belonging to type
N group. No particular features of these plots can be attributed to
the recording type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.35 Example of fp2 phase portrait of a PAF episode belonging to type
T group. No particular features of these plots can be attributed to
the recording type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145





List of Tables

3.1 Prognosis of patients with AF comorbidities. HF, heart failure;
CHF, congestive heart Failure; MI, myocardial infarction. . . . . . . 33

4.1 Analyzed wavelet mothers and their levels of decomposition. . . . 68

5.1 Several usual kernel functions of time-frequncy distributions . . . . 79

6.1 Tested filter lengths of the mixing and separation matrices in the
first environment. Nm is the length of the mixing matrix filters. Ns

is the length of the separation matrix filters. . . . . . . . . . . . . . . 89

7.1 Infomax mean RAAt
of Figure 7.1 expressed with three significant

digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Infomax mean SIRAA(dB) of Figure 7.2 expressed with one signif-
icant decimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 MBLMS mean RAAt
of Figure 7.3 expressed with trhee significant

digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 MBLMS mean SIRAA(dB) of Figure 7.4 expressed with one signif-
icant decimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 TDD mean RAAt
of Figure 7.5 expressed with trhee significant digits.107

7.6 TDD mean SIRAA(dB) of Figure 7.6 expressed with one signifi-
cant decimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.7 CoBliSS mean RAAt
of Figure 7.7 expressed with trhee significant

digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.8 CoBliSS mean SIRAA(dB) of Figure 7.8 expressed with one signif-
icant decimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



188 LIST OF TABLES

7.9 CBSS algorithms mean SIRAA in the first environment as a func-
tion of Nm regardless of Ns expressed with one significant decimal. 113

7.10 CBSS algorithms mean RAAt
in the first environment as a function

of Nm regardless of Ns expressed with three significant digits. . . . 114

7.11 CBSS algorithms mean SIRAA in the first environment as a func-
tion of Ns regardless of Nm expressed with one significant decimal. 114

7.12 CBSS algorithms mean RAAt
in the first environment as a function

of Ns regardless of Nm expressed with three significant digits. . . . 115

7.13 SIRAA and RAAt
mean values of the Infomax algorithm as a func-

tion of Ns in the second environment. . . . . . . . . . . . . . . . . . 116

7.14 CMBS mean values of RAAt
, RAAf

, fp1(Hz) and SC for different
wavelet mother functions used in the implementation of the CMBS
wavelet decomposition stage. . . . . . . . . . . . . . . . . . . . . . . 121

7.15 Mean fp1 of CMBS and ABS algorithms in the second environment. 123

7.16 Mean SC of CMBS and ABS algorithms in the second environment. 124

7.17 SampEn of fp1 and bilateral significance between groups N and T
computed for nine time-frequency distributions: spectrogram (SP),
Wigner-Ville (WV), pseudo-Wigner-Ville (PWV), Margeneau-Hill
(MH), pseudo-Margeneau-Hill (PMH), Page (PG), pseudo-Page (PPG),
Zhao-Atlas-Marks (ZAM) and Choi-Williams (CW). . . . . . . . . . 124

7.18 SampEn of SC and bilateral significance between groups N and T
computed for nine time-frequency distributions: spectrogram (SP),
Wigner-Ville (WV), pseudo-Wigner-Ville (PWV), Margeneau-Hill
(MH), pseudo-Margeneau-Hill (PMH), Page (PG), pseudo-Page (PPG),
Zhao-Atlas-Marks (ZAM) and Choi-Williams (CW). . . . . . . . . . 125

7.19 SampEn of fp1 bilateral significance for different tested values of
m and r. The values m = 2 and r = 0.25STD are used in the study
for SampEn of fp1 regarding to the minimum associated bilateral
significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.20 Area under ROC curve for the SampEn of the learning set relevant
spectral features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.21 SampEn of fp1 for each recording of the learning set. The aN

recordings belong to the nonterminating group, and the aT record-
ings to the terminating group. A classification was made attending
to the threshold value of 0.1173. Highlighted recordings were mis-
classified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



LIST OF TABLES 189

7.22 SampEn of fp1 for each recording of the test set. A classification
was made attending to the threshold value of 0.1173. Highlighted
recordings were misclassified. . . . . . . . . . . . . . . . . . . . . . . 129

7.23 Correlations between the SanpEn of variables considered in the
stepwise analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.24 Variables in the stepwise analysis. The statistic F indicates which
variable must be added to the model in each step. . . . . . . . . . . 132

7.25 Standardized canonical discriminant function coefficients from the
stepwise analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.26 SamEn values of fp1, ∆fp, and AA for each recording of the learn-
ing set used in the discriminant analysis. . . . . . . . . . . . . . . . 134

7.27 SamEn values of fp1, ∆fp, and AA for each recording of the test
set used in the discriminant analysis. Highlighted recordings were
misclassified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.28 Classification of learning and test AF ECG recordings as type N or
type T by using the discriminant analysis. . . . . . . . . . . . . . . . 136

7.29 Mean Rq between AA16 and the AAq encoded with 4 to 15 bits.
Results are given for non-filtered AAq and for low-pass filtered AAq .138

7.30 Mean MAE of fp1, SC, and AA SampEn for AAq encoded with 4
to 15 bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.31 Learning set recordings evaluated by Poincaré plots of fp1. High-
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