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Abstract

Natural Language Processing (NLP) is a field of computer science, arti-
ficial intelligence, and computational linguistics concerned with the interac-
tions between computers and human languages. One of its most challenging
aspects involves enabling computers to derive meaning from human natu-
ral language. To do so, several meaning or context representations have
been proposed with competitive performance. However, these representa-
tions still have room for improvement when working in a cross-domain or
cross-language scenario.

In this thesis we study the use of knowledge graphs as a cross-domain
and cross-language representation of text and its meaning. A knowledge
graph is a graph that expands and relates the original concepts belonging to
a set of words. We obtain its characteristics using a wide-coverage multilin-
gual semantic network as knowledge base. This allows to have a language
coverage of hundreds of languages and millions human-general and -specific
concepts.

As starting point of our research we employ knowledge graph-based fea-
tures — along with other traditional ones and meta-learning — for the NLP
task of single-domain and cross-domain polarity classification. The analysis
and conclusions of that work provide evidence that knowledge graphs cap-
ture meaning in a domain-independent way. The next part of our research
takes advantage of the multilingual semantic network and focuses on cross-
language Information Retrieval (IR) tasks. First, we propose a fully knowl-
edge graph-based model of similarity analysis for cross-language plagiarism
detection. Next, we improve that model to cover out-of-vocabulary words
and verbal tenses and apply it to cross-language document retrieval, cate-
gorisation, and plagiarism detection. Finally, we study the use of knowledge
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graphs for the NLP tasks of community questions answering, native language
identification, and language variety identification.

The contributions of this thesis manifest the potential of knowledge graphs
as a cross-domain and cross-language representation of text and its meaning
for NLP and IR tasks. These contributions have been published in several
international conferences and journals.

b

El Procesamiento del Lenguaje Natural (PLN) es un campo de la infor-
mática, la inteligencia artificial y la lingüística computacional centrado en las
interacciones entre las máquinas y el lenguaje de los humanos. Uno de sus
mayores desafíos implica capacitar a las máquinas para inferir el significado
del lenguaje natural humano. Con este propósito, diversas representaciones
del significado y el contexto han sido propuestas obteniendo un rendimiento
competitivo. Sin embargo, estas representaciones todavía tienen un margen
de mejora en escenarios transdominios y translingües.

En esta tesis estudiamos el uso de grafos de conocimiento como una
representación transdominio y translingüe del texto y su significado. Un
grafo de conocimiento es un grafo que expande y relaciona los conceptos
originales pertenecientes a un conjunto de palabras. Sus propiedades se con-
siguen gracias al uso como base de conocimiento de una red semántica mul-
tilingüe de amplia cobertura. Esto permite tener una cobertura de cientos de
lenguajes y millones de conceptos generales y específicos del ser humano.

Como punto de partida de nuestra investigación empleamos caracterís-
ticas basadas en grafos de conocimiento — junto con otras tradicionales y
meta-aprendizaje — para la tarea de PLN de clasificación de la polaridad
mono- y transdominio. El análisis y conclusiones de ese trabajo muestra
evidencias de que los grafos de conocimiento capturan el significado de una
forma independiente del dominio. La siguiente parte de nuestra investigación
aprovecha la capacidad de la red semántica multilingüe y se centra en tareas
de Recuperación de Información (RI). Primero proponemos un modelo de
análisis de similitud completamente basado en grafos de conocimiento para
detección de plagio translingüe. A continuación, mejoramos ese modelo
para cubrir palabras fuera de vocabulario y tiempos verbales, y lo aplicamos
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a las tareas translingües de recuperación de documentos, clasificación, y de-
tección de plagio. Por último, estudiamos el uso de grafos de conocimiento
para las tareas de PLN de respuesta de preguntas en comunidades, identifi-
cación del lenguaje nativo, y identificación de la variedad del lenguaje.

Las contribuciones de esta tesis ponen de manifiesto el potencial de los
grafos de conocimiento como representación transdominio y translingüe del
texto y su significado en tareas de PLN y RI. Estas contribuciones han sido
publicadas en diversas revistas y conferencias internacionales.

c

El Processament del Llenguatge Natural (PLN) és un camp de la infor-
màtica, la intel·ligència artificial i la lingüística computacional centrat en
les interaccions entre les màquines i el llenguatge dels humans. Un dels
seus majors reptes implica capacitar les màquines per inferir el significat del
llenguatge natural humà. Amb aquest propòsit, diverses representacions del
significat i el context han estat proposades obtenint un rendiment competitiu.
No obstant això, aquestes representacions encara tenen un marge de millora
en escenaris trans-dominis i trans-llenguatges.

En aquesta tesi estudiem l’ús de grafs de coneixement com una repre-
sentació trans-domini i trans-llenguatge del text i el seu significat. Un graf
de coneixement és un graf que expandeix i relaciona els conceptes originals
pertanyents a un conjunt de paraules. Les seves propietats s’aconsegueixen
gràcies a l’ús com a base de coneixement d’una xarxa semàntica multilingüe
d’àmplia cobertura. Això permet tenir una cobertura de centenars de llen-
guatges i milions de conceptes generals i específics de l’ésser humà.

Com a punt de partida de la nostra investigació emprem característiques
basades en grafs de coneixement — juntament amb altres tradicionals i meta-
aprenentatge — per a la tasca de PLN de classificació de la polaritat mono-
i trans-domini. L’anàlisi i conclusions d’aquest treball mostra evidències
que els grafs de coneixement capturen el significat d’una forma indepen-
dent del domini. La següent part de la nostra investigació aprofita la capaci-
tat de la xarxa semàntica multilingüe i se centra en tasques de recuperació
d’informació (RI). Primer proposem un model d’anàlisi de similitud comple-
tament basat en grafs de coneixement per a detecció de plagi trans-llenguatge.
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A continuació, vam millorar aquest model per cobrir paraules fora de vocab-
ulari i temps verbals, i ho apliquem a les tasques trans-llenguatges de recu-
peració de documents, classificació, i detecció de plagi. Finalment, estudiem
l’ús de grafs de coneixement per a les tasques de PLN de resposta de pre-
guntes en comunitats, identificació del llenguatge natiu, i identificació de la
varietat del llenguatge.

Les contribucions d’aquesta tesi posen de manifest el potencial dels grafs
de coneixement com a representació trans-domini i trans-llenguatge del text
i el seu significat en tasques de PLN i RI. Aquestes contribucions han estat
publicades en diverses revistes i conferències internacionals.
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1Introduction

Given the vastness of the Web and its still growing size, user and media
generated contents are today a reference representation of our culture and
knowledge. This has not been overlooked by the industry and the research
communities. In recent years, there has been an increase in the efforts to pro-
cess this information. Natural Language Processing (NLP) (Manning and
Schütze, 1999) enables computers to derive meaning from contents written
in human natural language. This allows to classify and analyse the infor-
mation in order to exploit it with several purposes. These include advertis-
ing, searching, and education. Related to searching tasks, Information Re-
trieval (IR) (Baeza-Yates et al., 1999), the activity of obtaining information
resources relevant to an information need from a collection of information
resources, also increased popularity. Not only search engines benefit from
IR but also tasks such as plagiarism detection (Barrón-Cedeño, 2012) and
recommendation (Balabanović and Shoham, 1997).

Common text processing methods are domain-dependent and are conse-
quently adapted for concrete tasks. Therefore, the problem is exacerbated
when the NLP or IR task is between different domains (Blitzer et al., 2007)
or languages (Potthast et al., 2011a). In order to perform in these settings,
several methods and text representations have been proposed. Domain adap-
tation is one of the preferred methods to perform at cross-domain level. In
contrast, vector-based models are typically used in the literature for repre-
senting documents both in monolingual and cross-language levels.

In this thesis we study the use of knowledge graphs1 as a cross-domain
and cross-language representation of text and its meaning. To do so, we

1A knowledge graph is a subset of a semantic network (also known as knowledge base)
focused on the concepts belonging to a text, and the intermediate concepts and relations be-
tween them. It can also be referred to as semantic annotation or semantic interpretation. The
methods based on knowledge graphs can be referred to as semantic tagging-based methods.
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generate the knowledge graphs (Mihalcea and Radev, 2011) with BabelNet2,
the widest-coverage multilingual semantic network.3 This allows to have
graphs that expand and relate the original concepts belonging to a set of
words. This also provides with a language coverage of hundreds of languages
and millions human-general and -specific concepts. The knowledge graph
representation is also closely related with the cognitive science and how our
mind and its processes represent information (see Section 1.1).

Our research is structured as follows. We first study the use of knowledge
graph-based features for the NLP task of single- and cross-domain polarity
classification. The analysis and conclusions of that work provided evidence
that knowledge graphs capture meaning in a domain-independent way. The
next part of our research took advantage of the multilingual semantic network
and focused on cross-language IR tasks. First, we proposed a fully knowl-
edge graph-based model of similarity analysis for cross-language plagiarism
detection. Next, we improved that model to cover out-of-vocabulary words
and verbal tenses and applied it to cross-language document retrieval, catego-
rization, and plagiarism detection. Finally, we studied the use of knowledge
graphs for the NLP tasks of community questions answering, native language
identification, and language variety identification.

The structure of this chapter is the following. In the next section we
study the relationship of the knowledge representations with the cognitive
science. We overview the reference methods for cross-domain and cross-
language text representation. Next, we motivate our work and present our
objectives and research questions. Finally, we present the contributions and
the structure of this thesis.

1.1 Knowledge Representations and Cognitive Science

Semantic networks and knowledge graphs have a close relationship with the
cognitive science and how mind and its processes represent information. The
meaning of language is represented in regions of our mind known as the
“semantic system” (Tyler et al., 2003). Huth et al. (2016) showed that the
semantic system is organised into intricate patterns that seem to be consis-
tent across individuals. They also provided evidences of areas of that sys-

2http://babelnet.org
3A multilingual semantic network is a (un)directed graph where nodes represent multi-

lingual concepts and edges represent semantic relations between them.

http://babelnet.org
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(a) (b)

Figure 1.1. Two semantic domains extracted from the semantic system of our brain. Domain
(a) seems to be related to life and death. Domain (b) seems to be related to properties of space
and materials.

tem selective for specific semantic domains or groups of related concepts
(Caramazza and Shelton, 1998; Damasio et al., 1996; Mitchell et al., 2008).
These domains were modelled4 using the whole-brain blood-oxygen-level-
dependent responses to stimuli and regression models.5 Our analysis of the
words contained on those domains manifests that there are strong similari-
ties regarding the knowledge graph or the semantic network representation.
You can see examples of semantic domains in Figure 1.1. BabelNet and
WordNet6 represent concepts by means of sets of synonyms — known as
synsets—, which are more explicit and accurate in meaning than these do-
mains. However, the rationale behind representing knowledge using synsets,
or in this case concepts of close meaning, is the same: close ideas in con-
text should be close in the representation as well. In addition, if we employ
BabelNet to search for some of the words in the domains, we can see di-
rect semantic relationships between many of them, e.g. “pregnant”, “child”,
“birth”. It is interesting as well to analyse the words contained in those do-

4Online explorer of the semantic system of our brain: http://gallantlab.org/
huth2016/

5Article in The Guardian about this discovery: https:
//www.theguardian.com/science/2016/apr/27/
brain-atlas-showing-how-words-are-organised-neuroscience

6https://wordnet.princeton.edu/

http://gallantlab.org/huth2016/
http://gallantlab.org/huth2016/
https://www.theguardian.com/science/2016/apr/27/brain-atlas-showing-how-words-are-organised-neuroscience
https://www.theguardian.com/science/2016/apr/27/brain-atlas-showing-how-words-are-organised-neuroscience
https://www.theguardian.com/science/2016/apr/27/brain-atlas-showing-how-words-are-organised-neuroscience
https://wordnet.princeton.edu/
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mains, and also in the synsets of the semantic networks, from the perspective
of the distributional semantics.

Distributional semantics studies the meaning of words and how their
combination gives meaning to texts (Bruni et al., 2012, 2014).7 The dis-
tributional hypothesis originated in linguistics (Yarlett and Ramscar, 2008),
has a relationship with cognitive science, especially regarding the abstract
representations and the meaning of words (Baroni and Lenci, 2009; McDon-
ald and Ramscar, 2001). In order to generate this abstract representations,
some distributional semantic models employ projections to provide with a
low-dimensional space (see Section 1.2.2). If we employ one of those mod-
els to generate distributed representations of words, the distance between
the words contained in the aforementioned domains of our brain is, in gen-
eral, very short. The same occurs when we measure the distance between
the words contained in the synsets. This highlights more the relationship be-
tween all these types of representations for modelling the meaning of texts.

In order to illustrate the relationship between semantic networks, knowl-
edge graphs, distributed representations, and the semantic domains inferred
by Huth et al. (2016) from the semantic system of the human mind, we show
a real example in Figure 1.2. This example contains a two-dimensional pro-
jection of the distributed representations of the words of the domains (a) and
(b) (cf. Figure 1.1). In addition, we included arrows between the words were
exists a semantic relation in BabelNet. As we can see, the words of the do-
mains have been perfectly clustered using distributed representations. This
highlights the potential of these type of representations to measure related-
ness between words. In addition, these relations between the words have
been also captured by BabelNet. The domain (a) has a very strong connec-
tion. In contrast, the relatedness of the domain (b) is not obvious when using
BabelNet. This manifests that the quality of the inferred domain (b) is not
as good as (a), and also highlights the potential of distributed representations
to measure relatedness between any pair of words. This type of graph rep-
resentation, that combines the concepts of a multilingual semantic network
and distributed representations to measure relatedness, will be explored in
Chapter 3 of this thesis. Although the core of this thesis is focused on the

7Multimodal distributional semantics learns the meaning of words not only with text but
also with visual words extracted using computer vision techniques.
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Figure 1.2. Two-dimensional PCA (Jolliffe, 1986) projection of 200-dimensional vectors
estimated with the continuous Skip-gram model (Mikolov et al., 2013b). The vectors belong
to the words of the semantic domains (a) and (b) extracted from the semantic system of our
brain. Arrows represent semantic relations between any synset containing that word in the
BabelNet multilingual semantic network.

use of knowledge graphs, we also employ distributed representation-based
models for comparison in order to solve some tasks in Chapter 5.

1.2 Cross-domain and Cross-language Text Representations

In this section we first describe the reference techniques of domain adapta-
tion employed for representing text in cross-domain tasks. Next, we describe
the state-of-the-art cross-language representations of text. We note that our
aim is not to design domain adaptation algorithms, but to design general and
effective features. The latter being general have more probability to work
across different domains. Indeed, our results in Chapters 2 and 5 show that
our models (designed without any specific approach for domain adaptation)
outperform other specific domain adaptation models. However, most of the
state-of-the-art models in cross-domain classification use domain adaptation.
For that reason we start reviewing this kind of methods and representations.
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1.2.1 DOMAIN ADAPTATION TEXT REPRESENTATIONS

The most popular cross-domain methods employ standard features — such
as unigrams and bigrams — combined with domain adaptation techniques
(Ben-David et al., 2010, 2007; Blitzer et al., 2008) to represent texts.8 These
techniques exploit relevant features from the source domains which are also
important in the target domain. Using these features is possible to determine
the co-occurrence with the target domain features in order to classify its texts.

Domain adaptation has been widely used in cross-domain classification.
The Structural Correspondence Learning (SCL) (Blitzer et al., 2006) model
selects pivot features frequently appearing in both source and target domains.
Then it learns to predict those pivot features using unlabeled data from both
domains. Finally, the text representation is obtained by performing a singular
value decomposition to reduce the dimensionality. The SCL variant exploit-
ing Mutual Information (SCL-MI) (Blitzer et al., 2007) is employed in tasks
such as cross-domain sentiment classification. These tasks require pivot fea-
tures also to be good predictors of the source label. The mutual information
is employed to select the pivots with highest mutual information to those la-
bels. As well in the task of cross-domain sentiment classification, Spectral
Feature Alignment (SFA) (Pan et al., 2010) exploits mutual information to
differentiate domain-specific and domain-independent features. Next, SFA
generates clusters using a spectral clustering over a bipartite graph dividing
both types of features. Finally, these clusters are employed to create a feature
alignment mapping function that provides with the text representation.

Domain adaptation not only has been successfully employed for classifi-
cation tasks. Daumé III (2007) proposed a simple and effective supervised
domain adaptation9 model for named-entity recognition, shallow parsing,
and part-of-speech tagging. This model uses linear kernels to differentiate
domain-specific and domain-independent features from source and target do-
mains. The final representation is in an augmented feature space, which
allows learning algorithms to learn the domain adaptation by themselves.
As well in part-of-speech tagging and also in classification, Jiang and Zhai
(2007) proposed a flexible instance weighting method for domain adaptation

8In this thesis we always refer to the semi-supervised version of domain adaptation if not
otherwise stated. This version requires annotated data from the source domain, unannotated
data from the target domain, and also a “small” set of annotated target domain data.

9In the supervised domain adaptation all the considered data are supposed to be labeled.
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from a distributional view. This method has the advantage of supporting
many different strategies for the adaptation and can be easily extended.

In this thesis we do not employ any domain adaptation or unlabeled data
from the target domain. Our approach is focused on proposing new knowl-
edge graph-based features extracted from the source domains that are able to
be directly applied to the target domain.

1.2.2 CROSS-LANGUAGE TEXT REPRESENTATIONS

The mainstream representation of texts for monolingual and cross-lingual
NLP and IR is vector-based (Manning et al., 2008). The historical repre-
sentation that set the stage was the Vector Space Model (VSM) (Salton and
McGill, 1986). It quantifies the relevance of the terms of a text with a dimen-
sion representing each of them.

There are several cross-language representations following the VSM trend.
Cross-Language Character n-Grams (CL-CNG) (Mcnamee and Mayfield,
2004), represent documents as vectors of character n-grams. It has proven to
obtain good results in cross-language similarity tasks (Potthast et al., 2011a)
between languages with lexical and syntactic similarities. In contrast, the
Cross-Language Alignment-based Similarity Analysis (CL-ASA) (Barrón-
Cedeño et al., 2008; Pinto et al., 2009) model does not need these languages
similarities. It employs a statistical dictionary to represent texts as a vector
of translated terms.

Note that, because of the variety of terms used in a document collection,
a document vector is usually highly dimensional. As a consequence, the re-
sulting computing time may be considerable. To address this issue, several
approaches to the reduction of dimensionality of document vectors have been
proposed in the literature. A popular class of methods is based on projections,
which provide a low-dimensional abstract space referred to as embedding or
latent space. This resulting representations, commonly referred as embed-
dings, distributed or continuous representations, have gained popularity in
the NLP and IR community. There are broadly two categories of approaches:
(i) generative topic models, and (ii) projection based models. Generative
topic models, like Latent Dirichlet Allocation (LDA) (Blei et al., 2003), rep-
resent the high dimensional term vectors in a low-dimensional latent space of
hidden topics. The projection based methods, like Latent Semantic Indexing
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(LSI) (Dumais et al., 1995),10 or the continuous Skip-gram model (Mikolov
et al., 2013b), learn a projection operator to map high-dimensional term vec-
tors to a low-dimensional latent space. There also exist cross-lingual variants
of these models which try to learn embeddings of text in a cross-language
space.

Inside the generative topic models, we can see adaptations of LDA to
perform in a multilingual scenario with models such as Polylingual Topic
Models (Mimno et al., 2009), Joint Probabilistic LSA and Coupled Proba-
bilistic LSA (Platt et al., 2010). With respect to projection based models,
Cross-Language Latent Semantic Indexing (CL-LSI) (Dumais et al., 1997a)
is a cross-lingual extension of LSI. Oriented Principle Component Analysis
(OPCA) tries to learn a translingual projection matrix by solving a gener-
alised eigen value problem (Platt et al., 2010). Similarly, Siamese neural
network based S2Net learns the same projection matrix through backprop-
agation error of distance between parallel sentence pairs (Yih et al., 2011).
There also exist non-linear deep neural network based solutions to learn such
cross-lingual embeddings through deep autoencoders (Gupta et al., 2014;
Lauly et al., 2014a,b) and composition neural networks (Gupta et al., 2015).
Finally, there also exist knowledge-based projection methods such as Cross-
Language Explicit Semantic Analysis (CL-ESA) (Cimiano et al., 2009; Pot-
thast et al., 2011a, 2008). CL-ESA adapts ESA to be used in a cross-language
scenario by exploiting the comparable documents across languages from
Wikipedia. It represents each document written in a language L by a vector
with its similarities with a document collection in the same language L. Us-
ing a multilingual document collection with comparable documents across
languages, the resulting vectors from different languages can be compared
directly.

Note that most of the projection approaches need a high number of train-
ing texts to achieve state-of-the-art performance (Platt et al., 2010; Yih et al.,
2011). In contrast, other approaches have low performance in cases of sim-
ilarity with paraphrasing (Franco-Salvador et al., 2016c). In this thesis, we
propose a cross-language knowledge graph representation for text which is
obtained from a large multilingual semantic network, without using any train-
ing information. Our knowledge graph representation explicitly models the
semantics and meaning of the text expanding and relating the concepts be-

10LSI is Latent Semantic Analysis (LSA) (Deerwester et al., 1990) in the IR context.
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longing to its original words. These concepts inherit the multilinguality of
the semantic network and are, consequently, able to be compared directly —
even if they are created from texts in different languages.

1.3 Motivation and Objectives

The use of distributed representations, and the regularities they capture (Mikolov
et al., 2013c), enable to accurately model text meaning and produced signif-
icant improvements in NLP tasks (Le and Mikolov, 2014; Mikolov et al.,
2013b). However, there is a room of improvement in the cross-language sce-
nario. Most of the approaches need high amounts of data in order to train
representative models. In addition, the computational complexity and the
amount of training data is proportional to the number of languages employed
(Gupta et al., 2014; Platt et al., 2010). On the other hand, the heuristic-
, instance-, or knowledge-based cross-language similarity models, which
do not employ training data, are designed to only detect verbatim or soft-
modified cases of similarity (Franco-Salvador et al., 2016c, 2014b).

The use of knowledge graphs provided with state-of-the-art results in the
task of mono- and cross-language Word Sense Disambiguation (WSD) (Nav-
igli and Ponzetto, 2012a). The starting point of this work is the observation
that, if these graphs provided with the correct disambiguations of a text, even
at cross-language level, they are adequate as representation of the meaning
of that text. In addition, we believe that the multilingual semantic network
employed to generate the graphs — BabelNet —, with a language coverage
of hundreds of languages and millions human-general and -specific concepts,
makes this representation domain- and language-independent. Therefore, its
complexity is also independent of the number of languages employed. In
consequence, knowledge graphs are adequate for cross-domain and cross-
language NLP and IR tasks. Moreover, knowledge graphs have several im-
plicit characteristics — WSD, vocabulary expansion, and language indepen-
dence — that have different impact on their performance in NLP similarity
analysis tasks. Finally, we consider that this representation may be useful for
other non-cross-language or non-cross-domain NLP tasks such as commu-
nity questions answering (Nakov et al., 2016), native language identification
(Koppel et al., 2005), and language variety identification (Franco-Salvador
et al., 2015c).
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Considering what aforementioned statements said, this research has the
following objectives:

• To study the potential of knowledge graph-based features for cross-
domain NLP tasks.

• To develop a cross-language similarity analysis model for NLP and IR
tasks.

• To study the knowledge graph characteristics for cross-language simi-
larity analysis tasks.

• To evaluate the performance of the developed approaches and compare
them with the state-of-the-art models.

• To employ knowledge graphs for other NLP tasks.

1.4 Research Questions

The aforementioned objectives can be divided in three groups according
to the scenario where we employ knowledge graphs: cross-domain, cross-
language, and the scenario where we evaluate other NLP tasks. With respect
to these groups, the research questions we aim to answer in this thesis are:

Questions about the cross-domain scenario

• What is the contribution of the knowledge graph-based features for
cross-domain NLP tasks? We are interested in studying the impact of
this type of features on cross-domain domain NLP tasks and compare
them to traditional ones such as bag of words or n-grams. For this pur-
pose, we have selected the task of cross-domain polarity classification.

Questions about the cross-language scenario

• What is the contribution of the knowledge graph characteristics in
cross-language similarity? In this thesis we independently study these
characteristics to analyse their impact on the task of cross-language
plagiarism detection.
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• Could knowledge graphs be employed to successfully solve cross-language
similarity tasks? Aiming to study their potential for this type of tasks,
we compare their performance with the state of the art. We evaluate
the different models in the cross-language document retrieval, catego-
rization, and plagiarism detection tasks.

Questions about the use of knowledge graphs in other NLP tasks

• What is the performance of knowledge graphs in other NLP tasks?
We aim to investigate the robustness of knowledge graphs as a general
representation of text and its meaning for NLP tasks. To do so, we
employ them for the tasks of community questions answering, native
language identification, and language variety identification.

1.5 Contributions of this Thesis

Next we summarise the main contributions of this thesis.

From the representation viewpoint, we proved that knowledge graphs can
be employed as a cross-domain and cross-language representation of text and
its meaning. We employed several reference datasets to show diverse results
and comparisons with the state of the art and to justify the validity and poten-
tial of this representation. We supported all our conclusions with standard
tests of statistical significance of results. In addition, we studied from a the-
oretical and practical perspective, the main characteristics that contribute to
the knowledge graphs performance.

With respect to the tasks, we showed how to obtain state-of-the-art perfor-
mance with knowledge graphs in several single- and cross-domain NLP and
IR tasks: single- and cross-domain polarity classification (Franco-Salvador
et al., 2015b), cross-language plagiarism detection (Franco-Salvador et al.,
2015a, 2012, 2013a,b, 2014a, 2016a,c), document retrieval and categoriza-
tion (Franco-Salvador et al., 2014b), and community questions answering
(Franco-Salvador et al., 2016b). In addition, we showed the potentiality of
knowledge graphs for native language identification (Franco-Salvador et al.,
2017) and language variety identification (Franco-Salvador et al., 2015c,d;
Rangel et al., 2016).
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From the modelling viewpoint, we employed knowledge graphs to obtain
state-of-the-art performance in two different ways: (i) as a source of feature
extraction for classification and regression, and (ii) as a representation, as
part of the proposed cross-language similarity analysis models. With respect
to these two models, we proposed one that employs knowledge graphs as
representation of the text and its meaning, and we proposed another one that
complements that representation with a vector-based representation in order
to cover the graph shortcomings. In addition, we proposed a new embedding-
based weighting scheme for the semantic relations between the knowledge
graph concepts. This scheme proved to outperform the classical one em-
ployed in the BabelNet multilingual semantic network.

Finally, some contributions only partially related to knowledge graphs
were achieved during this research. First, we proposed the continuous word
alignment-based similarity analysis model that notably improved the perfor-
mance of distributed representations of words in cross-language plagiarism
detection. Next, we proved the relationship between the native language and
the language variety identification tasks by solving both with the same ap-
proach without any task-specific adaptation. The string kernels approach
obtained state-of-the-art performance in several datasets of the two tasks.
Finally, following our hypothesis of the relationship between knowledge
graphs and distributed representations (see Section 1.1), we studied with in-
teresting results how both complement each other for several NLP and IR
tasks.

1.6 Structure of this Thesis

This PhD thesis is presented as a compendium of research articles which
were published during the study phase of this PhD. We include two interna-
tional journal articles and an international conference paper as chapters of
this work. Next we briefly overview the content of the remaining chapters
and appendices:

• Chapter 2 Cross-domain polarity classification using a knowledge-
enhanced meta-classifier

In this chapter we present our work published in the Knowledge-Based
Systems (KNOSYS) journal. In that work we employed knowledge
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graph-based features, such as WSD- and vocabulary expansion-based
ones — along with other traditional ones (bag of words and n-grams)
—, for single- and cross-domain polarity classification of product re-
views. Experimental results, compared to the state-of-the-art models
that employ domain adaptation, show that these types of features cap-
ture information in a domain independent way. Moreover, we proved
that the type of information obtained from disambiguated concepts is
different, and consequently complementary, to the one obtained with
the traditional bag-of-words or n-gram features.

• Chapter 3 A systematic study of knowledge graph analysis for cross-
language plagiarism detection

This chapter is composed by our work published in the Information
Processing & Management (IPM) journal. This is the reference article
of our cross-language similarity model for cross-language knowledge
graph analysis. That method employs knowledge graphs as a cross-
language representation of the text and its meaning. We also study
the implicit and most relevant characteristics — WSD, vocabulary ex-
pansion, and language independence — of the knowledge graphs at
cross-language level. The comparison with the state-of-the-art mod-
els, in the Spanish-English and German-English settings, shows that
this type of representation captures the meaning in a more accurate
way, and therefore improves the performance, even in cases where
paraphrasing occurred.

• Chapter 4 A knowledge-based representation for cross-language doc-
ument retrieval and categorization

In this chapter we present our work published in the conference of
the European Chapter of the Association for Computational Linguis-
tics (EACL). This publication presents a modified version of our cross-
language knowledge graph analysis model. This also includes a vec-
tor component to cover shortcomings such as out-of-vocabulary words
and verbal tenses. Experimental results between several pairs of lan-
guages, in the tasks of cross-language document retrieval and catego-
rization, show its potential for these tasks, and cross-language similar-
ity tasks in general.
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• Chapter 5 Discussion of the results

In this chapter we discuss the results that have been previously ob-
tained. Moreover, we complement our study with some further exper-
iment in order to complete the picture at task level, and analyse the
obtained results from a cross-domain and cross-language perspective.
In addition, we present our experiments and results with knowledge
graphs in other NLP tasks such as community questions answering,
native language identification, and language variety identification.

• Chapter 6 Conclusions

In this chapter we draw the main conclusions of this thesis and an-
swer the research questions made in the introduction. In addition, we
detail our scientific contributions disseminated in the form of publica-
tions. Finally, we comment the open research lines for possible future
works.



2Cross-domain Polarity Classification
using a Knowledge-enhanced

Meta-classifier

Published in:

• Franco-Salvador, M., Cruz, F. L., Troyano, J. A., and Rosso, P. (2015b).
Cross-domain polarity classification using a knowledge-enhanced meta-
classifier. Knowledge-Based Systems, 86:46–56. (Impact Factor:
2.92)

This chapter of the thesis studies the contribution of knowledge graph-
based features for single- and cross-domain polarity classification. For this
purpose, we measure the performance and amount of information of these
features, and compare them to traditional ones such as bag of words and
word n-grams. In addition, we employ meta-learning to put all the evaluated
features together and to compare the resulting model with the state of the art.
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KNOWLEDGE-ENHANCED META-CLASSIFIER

Abstract

Current approaches to single and cross-domain polarity classifica-
tion usually use bag of words, n-grams or lexical resource-based clas-
sifiers. In this paper, we propose the use of meta-learning to combine
and enrich those approaches by adding also other knowledge-based
features. In addition to the aforementioned classical approaches, our
system uses the BabelNet multilingual semantic network to generate
features derived from word sense disambiguation and vocabulary ex-
pansion. Experimental results show state-of-the-art performance on
single and cross-domain polarity classification. Contrary to other ap-
proaches, ours is generic. These results were obtained without any
domain adaptation technique. Moreover, the use of meta-learning al-
lows our approach to obtain the most stable results across domains.
Finally, our empirical analysis provides interesting insights on the use
of semantic network-based features.

Keywords: — Sentiment analysis, Cross-domain polarity classification,
Meta-learning, Word sense disambiguation, Semantic network

2.1 Introduction

Text classification (also known as text categorization) is the task of assign-
ing a category or categories to a text document from a set of predefined
categories. Although at first this topic was approached from a knowledge
engineering perspective (manually defining a set of rules encoding expert
knowledge), in the 90’s machine learning became the main approach, and
so it stands today. A good survey on machine learning approaches to text
classification can be found in (Sebastiani, 2002).

The nature of the predefined categories in text classification can be very
heterogeneous. The most common task is that of topic-based classifica-
tion, attemping to classify documents according to their subject matter (e.g.
Sports vs. Politics vs. Economics). More recently, in the context of the
Web 2.0 and social media, it emerged the task of deciding whether a subjec-
tive text (typically, a textual review of some product or a cultural or political
issue) is positive or negative, depending on the overall sentiment detected.
This particular task is known as polarity classification or sentiment classifi-
cation (Pang et al., 2002; Turney, 2002). Although it can be defined in terms
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of text classification (being positive and negative the predefined categories)
and tackled with similar approaches, polarity classification has been proved
to be a more difficult task (Pang et al., 2002): while topics are often identifi-
able by keywords alone, sentiment can be expressed in a more subtle manner,
and even more when for instance irony is employed (Reyes and Rosso, 2013).
Therefore, solutions blue based only on bag-of-words representations of doc-
uments may not be enough.

In this work we are interested in single and cross-domain polarity classi-
fication. Since we are applying machine learning techniques, we start with
a training set of documents to build some classifiers. In this context, single-
domain classification is the aforementioned common text classification; it
refers to training and testing classifiers on the same domain (e.g. movie
reviews). Meanwhile, cross-domain classification refers to testing on a dif-
ferent domain (target domain) from that or those used in training (source
domains), e.g. training on movie reviews and testing on books reviews. Be-
cause manually labeled documents are needed for training, the latter allows
to work with domains where no labeled documents are available. The prob-
lem of cross-domain text classification was first tackled by Dai et al. (2007),
and the first results on cross-domain polarity classification were reported by
Blitzer et al. (2007).

In order to combine different approaches from the research literature and
recent knowledge-based approaches, and also to measure the contributions
of each one, we propose the use of a meta-learning scheme called Stacked
Generalization (Wolpert, 1992). The set of base classifiers to be combined
using that scheme include solutions used in the past as a TF-IDF bag-of-
words classifier, a TF-IDF word n-gram classifier, and a lexical resource for
opinion mining-based classifier; but also two new proposals, a word sense
disambiguation-based classifier and a vocabulary expansion-based classifier.
The latter two classifiers are trained on the basis of knowledge graphs, a
subset of a semantic network, i.e., BabelNet (Navigli and Ponzetto, 2012a),
focused on the concepts belonging to the text being classified.

The rest of the paper is structured as follows. In Section 2.2 we de-
scribe the related work on single and cross-domain polarity classification. In
Section 2.3 we introduce our new knowledge-enhanced meta-classifier. In
Section 2.4 we evaluate our approach in the tasks of single and cross-domain
polarity classification, and compare it with other state-of-the-art approaches.
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In that section we evaluate also the performance of our different base classi-
fiers. Finally, in Section 2.5 we draw the conclusions and mention directions
for future work.

2.2 Related Work

The first experiments on single-domain polarity classification using machine
learning techniques were performed by Pang et al. (2002). They used a
movie review dataset extracted from IMDb.1 They concluded that polarity
classification achieves worse results than other text classification tasks when
applying the standard machine learning techniques. Another interesting con-
clusion was that using unigram presence instead of unigram frequency leads
to better results, contrary to observations in other works on text classification
(McCallum and Nigam, 1998)

Recent works on polarity classification use the Multi-Domain Sentiment
Dataset (Blitzer et al., 2007) for evaluation. In its last version, the resource
is composed by Amazon product reviews of 25 product types, though most
works report results on only the four domains used by Blitzer et al. (2007):
Books, Electronics, DVDs and Kitchen appliances. Focused on single-domain
polarity classification, Dredze et al. (2008) presented a new online learn-
ing method named confidence-weigthed learning. The method is based on
measuring the confidence of each parameter of the classifier; less confident
parameters are updated more aggressively than more confident ones. They
performed experiments on standard datasets related to different text classi-
fication tasks, reporting very good results for the Multi-Domain Sentiment
Dataset. Another approach, proposed by Li and Zong (2008), use n-grams
combined with Binormal Separation (Forman, 2008), an alternative to TF-
IDF to select the optimal set of features. They reported interesting results in
single domain classification.

Cross-domain polarity classification has gained popularity thanks to the
advances in domain adaptation (Ben-David et al., 2010; Blitzer et al., 2008;
Daumé III, 2007). These techniques make use of labeled data from a source
domain, and unlabeled data from source and target domains to train their
classifiers. Using the different domains available in the Multi-Domain Senti-
ment Dataset, Blitzer et al. (2007) was also the first to report results on cross-

1http://www.cs.cornell.edu/people/pabo/movie-review-data/

http://www.cs.cornell.edu/people/pabo/movie-review-data/
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domain classification proposing two algorithms: structural correspondence
learning (SCL), and its variant using mutual informaton (SCL-MI). The SCL
model selects pivot (unigram and bigram) features frequently appearing in
both source and target domains. Then it learns to predict those pivot features
in the unlabeled data from both domains. Later, a singular value descompo-
sition is performed to reduce dimensions, and a binary classifer is trained to
determine the polarity. Similarly, interesting results on cross-domain polar-
ity classification have been reported by spectral feature alignment (SFA) (Pan
et al., 2010). Using unigram and bigram features, the model exploits the mu-
tual information between each feature and the domain label to differentiate
domain-specific and domain-independent features. Next, a bipartite graph is
constructed by dividing both types of features. An edge connects features
from different types if there exists co-ocurrence. Finally, a spectral cluster-
ing is performed to generate feature clusters and a binary classifer is built for
the polarity classification. More recently, Bollegala et al. (2011, 2013) used
a cross-domain lexicon creation to generate a sentiment-sensitive thesaurus
(SST) that groups different words expressing the same sentiment, using also
unigram and bigram features as representation. This approach also obtained
competitive results in single-domain polarity classification.

Note that all cross-domain approaches use domain adaptation techniques
extracting relevant features from the source domains, in order to obtain im-
portant features to classify the target domain. In contrast, we do not use un-
labeled data from the target domain. Our approach is focused on proposing
new knowledge-based features which allows for training models using the
source domains that are able to be directly applied to the target domain. In
Section 2.4.4 we compare our approach in the task of single-domain polar-
ity classification against SST and the state-of-the-art approaches proposed
by Dredze et al. (2008) and Li and Zong (2008). Next, in Section 2.4.5
we compare our approach in the task of cross-domain polarity classification
against SCL-MI, SFA and SST models.

2.3 Knowledge-enhanced Meta-classifier

We propose the use of a meta-learning scheme for combining different clas-
sical approaches, i.e., bag of words, n-grams or lexical resource-based clas-
sifiers. Key to our approach is adding also other knowledge-based classifiers.
By using a semantic network, we perform word sense disambiguation and
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generate new independent classifiers for the main part-of-speech tags: dis-
ambiguated adjectives, nouns, verbs and adverbs. Using the disambiguated
terms, the semantic network allows us to obtain a vocabulary expansion-
based classifier. In Section 2.3.1 we present the semantic network, and the
word sense disambiguation and vocabulary expansion methods. Then, in
Section 2.3.2 we describe the base classifiers that compose our system. Fi-
nally, in Section 2.3.3 we define the Stacked Generalization that we use to
combine those classifiers.

2.3.1 WORD SENSE DISAMBIGUATION AND VOCABULARY EXPANSION

VIA A SEMANTIC NETWORK

A semantic network (Sowa, 2006) is a (un)directed graph consisting of ver-
tices, which represent concepts, and edges, which represent semantic rela-
tions between them. Concepts are usually organized into a taxonomic hierar-
chy. Figure 2.1 shows a simple example of semantic network.

Figure 2.1. Semantic network example focused on the animal world.

In this work we use the semantic network graph to: (i) perform word
sense disambiguation, and (ii) perform a vocabulary expansion using the dis-
ambiguated words. Despite having the WordNet Semantic Network (Fell-
baum, 1998), which is an historical resource including 117,000 synsets2

in English, in this work we are interested in employing a larger size wide-
coverage lexical knowledge resource. Among those, we can find knowledge
bases extracted automatically from Wikipedia such as DBPedia (Bizer et al.,
2009) or YAGO (Hoffart et al., 2013). However, due to its WordNet-based

2Set of word synonyms.
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internal structure combined with Wikipedia, the high amount of synsets in-
cluded, and the lexicalizations of its concepts available in multiple languages,3

we chose the BabelNet Multilingual Semantic Network.

2.3.1.1 BabelNet

BabelNet4 2.5 (Navigli and Ponzetto, 2012a) is a multilingual semantic net-
work whose concepts and relations are obtained from the automatic map-
ping onto Wordnet of Wikipedia,5 OmegaWiki,6 Wiktionary,7 Wikidata,8

and Open Multilingual WordNet.9 BabelNet is therefore a multilingual “en-
cyclopedic dictionary” that combines lexicographic information with wide-
coverage encyclopedic knowledge. Concepts in BabelNet are represented
similarly to WordNet, i.e., by grouping sets of synonyms in the different lan-
guages into multilingual synsets. Multilingual synsets contain lexicalizations
from WordNet and Open Multilingual WordNet synsets, the corresponding
Wikipedia pages, the OmegaWiki, Wiktionary and Wikidata entries, and ad-
ditional translations by a statistical machine translation system. The relations
between synsets are collected from WordNet, Open Multilingual WordNet,
and from Wikipedia’s hyperlinks between pages. The current version of Ba-
belNet includes 9,348,287 synsets, covers 50 languages, and has a WordNet-
Wikipedia mapping correctness of 91% (Navigli et al., 2013).

2.3.1.2 Word Sense Disambiguation

Word sense disambiguation (WSD) (Navigli, 2009) is the process of identi-
fying which sense (i.e., meaning) of a word is used in a sentence, when the
word is polysemic. In general, the approaches for WSD can be classified
into three types: (i) supervised, with a considerable effort for new languages
and domains due to the huge amount of annotated data required (Pilehvar
and Navigli, 2014; Shen et al., 2013); (ii) unsupervised approaches, which
have to deal with data sparsity and an intrinsic difficulty with their evalua-

3While this work is exclusively evaluated on English, this multilinguality allows us to
perform at multilingual level.

4http://babelnet.org
5http://wikipedia.org
6http://omegawiki.org
7http://wiktionary.org
8http://wikidata.org
9http://compling.hss.ntu.edu.sg/omw/

http://babelnet.org
http://wikipedia.org
http://omegawiki.org
http://wiktionary.org
http://wikidata.org
http://compling.hss.ntu.edu.sg/omw/
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tion (Agirre et al., 2006; Di Marco and Navigli, 2013); (iii) knowledge-based
approaches, which exploit the knowledge available in structured knowledge
bases (Agirre et al., 2014; Moro et al., 2014; Navigli and Lapata, 2010;
Ponzetto and Navigli, 2010). Vocabulary expansion benefits from the WSD
performed using a knowledge base by exploiting the relations in its network.

BabelNet has been used for WSD in several works, including some of
the aforementioned publications and also as part of the Multilingual Word
Sense Disambiguation Task of the SemEval Workshop (Navigli et al., 2013).
Similarly to Navigli and Ponzetto (2012a) and Franco-Salvador et al. (2013a,
2014b), we followed Navigli and Lapata (2010) to create knowledge graphs10

in order to perform the WSD and the vocabulary expansion. The five-step
method we used to perform the WSD is the following:

(i) Part-of-speech tagging and lemmatization Initially we process a doc-
ument d with tokenization, multi-word extraction, part-of-speech (POS) tag-
ging and lemmatization11 to obtain the list of tuples (lemma,tag) T. We are
interested only in the POS tags available on BabelNet (adjectives, nouns,
verbs and adverbs).

(ii) Populating the graph with initial concepts Next, we create an initially-
empty knowledge graph G = (V, E), i.e., such that V = E = ∅. We pop-
ulate the vertex set V with the set SK of all the synsets in BabelNet which
contain any tuple (lemma,tag) in T in the document language L, that is:

SK =
⋃
t∈T

SynsetsL(t), (2.1)

where SynsetsL(t) is the set of synsets which contains a tuple (lemma,tag) t
in the language of interest L.

(iii) Creating the knowledge graph We create the knowledge graph by
searching on BabelNet to obtain the set of paths P connecting pairs of synsets

10 A knowledge graph is a subset of the original semantic network focused on the concepts
belonging to a text, and in the intermediate concepts and relations between them.

11For this purpose we used the Stanford Log-linear Part-Of-Speech Tagger: http://
nlp.stanford.edu/software/tagger.shtml. For the multi-word extraction we
implemented our own tool based on the matching of typical patterns.

http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
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in V. Formally, for each pair {v, v′} ∈ V such that v and v′ do not share any
lexicalization12 in T, for each path in BabelNet v → v1 → · · · → vn →
v′, we set: V := V ∪ {v1, . . . , vn} and E := E ∪ {(v, v1), . . . , (vn, v′)}.
That is, we add all the path vertices and edges to G. Following Navigli and
Ponzetto (2012a), the path length is limited to maximum length of 3, in order
to avoid an excessive semantic drift.

As a result of populating the graph with intermediate edges and vertices,
we obtain a knowledge graph which models the semantic context of docu-
ment d.

(iv) Knowledge graph weighting The next step consists of weighting all
the concepts and semantic relations of the knowledge graph G. For weight-
ing relations we use the original weights from BabelNet, which provide the
degree of relatedness between the synset end points of each edge.13 For
weighting concepts different methods, including the PageRank (Page et al.,
1998) algorithm, have been tested in the past. In this work, we score each
concept using its own outdegree, which has proved to obtain the best re-
sults.(Navigli and Ponzetto, 2012a)

(v) Selecting the corresponding disambiguations Finally, for each tuple
(lemma,tag) t ∈ T, we collect from BabelNet the set of synsets St containing
t, and we select as proper disambiguation tWSD the synset with the highest
score:

tWSD = arg max
s∈St

score(s), (2.2)

2.3.1.3 Vocabulary Expansion

Once we have disambiguated the words of a document d, to enrich and
increase the available context, we perform an automatic vocabulary expan-
sion (Ehrlich and Rapaport, 1997; Ehrlich, 1995) using the BabelNet graph
topology. A simple vocabulary expansion can be done using directly any con-
nected concept to a disambiguated one, up to a certain distance in the graph.

12This prevents different senses of the same term from being connected via a path in the
resulting knowledge graph.

13At this point, we removed the edges below a certain threshold that represents a low
semantic relationship.
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Figure 2.2. Simplified knowledge graph created from the sentence “I opened a new bank
account”. Colored nodes are the resulting disambiguations while white nodes are expanded
concepts. Dashed noded will not be included in the vocabulary expansion set.

However, to preserve as much context as possible and to avoid introducing
noise, we include only intermediate concepts between pairs of disambiguated
words. Formally, using the knowledge graph G created in Section 2.3.1.2, we
obtain a vocabulary expansion as follows:

(i) Collecting the disambiguation senses We first use the process described
in the previous section to obtain the set SWSD. This set is composed by the
disambiguation synsets of the original words of document d.

(ii) Removing alternative senses We create a path set P′ by removing
from the path set P all the paths between synsets which are not in SWSD.
This step removes noise by creating a knowledge graph focused on the dis-
ambiguated concepts.

(iii) Obtaining the expanded concepts We obtain the vocabulary expan-
sion by creating a set Sexp including the intermediate concepts in the paths
of P′. We remove the source and target concepts from paths to evaluate the
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performance of the vocabulary expansion without the original words (see
Section 2.4.3).14

Figure 2.2 provides an example15 of disambiguation and vocabulary ex-
pansion using knowledge graphs.

2.3.2 BASE CLASSIFIERS

We can now define the base classifiers that compose our system. We first
include a TF-IDF bag-of-words classifier, a TF-IDF word n-gram classifier
and a lexical resource for the opinion mining-based classifier. The choice of
these components has been motivated by the good results that they achieved
in the past. In addition, in this work we want to investigate the impact of
knowledge-based classifiers; therefore we include an independent classifier
to study the contribution of WSD for each POS tag employed (adjectives,
nouns, verbs and adverbs). Finally, under the assumption that semantically-
related concepts have a common near relative, we want to exploit this pos-
sible relateness between concepts including a vocabulary expansion-based
classifier. Next we explain in more detail our eight base classifiers:

(i) Bag-of-words classifier This approach transforms a document d into
a traditional vector representation. Following the literature, we selected the
most widely used representation for real-valued feature vectors, commonly
used as baseline: the Term Frequency-Inverse Document Frequency (TF-
IDF) weighting (Salton et al., 1983; Salton and McGill, 1986).

tf-idf(w) = tf(w)N/n(w). (2.3)

where t f (w) is the number of times a term w occurs in document d, N is
the total number of documents in the collection and n(w) is the number of
documents that contain w. We removed stopwords from documents for all
the base classifiers.

14This last part is optional, although it helps to focus on the vocabulary expanded con-
cepts.

15Weights and nodes representing alternative senses or intermediate concepts are removed
for simplicity.
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As classifier, we selected Support Vector Machines (SVM) (Chang and
Lin, 2011), with a linear kernel function,16 given its good performance for
text classification (Joachims, 1998) using TF-IDF weighting.

(ii) Word n-gram classifier The use of word n-grams has been proposed
several times (Cavnar, 1995; Li and Zong, 2008; Mayfield and McNamee,
1999) as a better alternative to single word vector representation due to the
additional information that it provides. Using n-grams is a plus for a complex
classification task like polarity classification: while topics are often identifi-
able by keywords alone, sentiment can be expressed in a more subtle manner
(Pang et al., 2002). For example, the keyword like may be correlated with
positive sentences (e.g. “I like this paper a lot.”) or with negative sentences
(e.g. “I do not like this paper at all.”). Using n-grams also allows us to learn
frequent, opinion-bearing multiword expressions (e.g. “you will love (this
story)”).

This n-gram representation is processed with a TF-IDF weighting and
an SVM classifier. Since larger n-grams will not be frequent, we included
only a combination (Li and Zong, 2008) of 1, 2, and 3-grams.

(iii) Lexical resource-based classifier The use of lexical resources for
opinion mining was strongly popularized by the release of SentiWordNet (Bac-
cianella et al., 2010; Esuli and Sebastiani, 2006). This resource assigns to
each synset of WordNet three sentiment scores: positivity, negativity, ob-
jectivity. It has been sucessfully applied to polarity classification in the
past (Hamouda and Rohaim, 2011; Ohana and Tierney, 2009).

We selected as lexical resource ML-SentiCon (Cruz et al., 2014), which
proved to make several improvements with respect to the original SentiWord-
net 3.0, with a significative better positivity, negativity and objectivity esti-
mation, reflecting those results on their evaluation.

For this base classifier, we decided to use the tree-based C4.5 (Quinlan,
1996) model, which infers a hierarchy of rules as a function of different

16 We use the linear kernel function for all the SVM base classifiers.
17As we can see, we take advantage of WSD to remove noise (unrelared synsets).
18We refer to the disambiguations of the original words of the document.
19Since the format of ML-SentiCon is the same as SentiWordNet, and BabelNet has a

synset for each WordNet synset, we can map directly our disambiguated words to that lexical
resource.
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Model features

Number of words in document d.
Number of disambiguated synsets17 in the knowledge graph G (see Section 2.3.1.2).
Number of directly connected disambiguated synsets in G18.
Number of adjetives in d.
Number of nouns in d.
Number of verbs in d.
Number of adverbs in d.
Average positivity of the disambiguated words of d19.
Average negativity of the disambiguated words of d.
Average objetivity of the disambiguated words of d

Table 2.1. List of features selected for the lexical resource-based classifier.

feature values to determine the final class, and provides good performance
for polarity classification (Jia et al., 2009). Its use is also motivated by the
different types of features that we selected for this classifier (see Table 2.1):
some of them are discrete and unbounded. In addition, considering that there
are only 10 features, using SVM did not pose any additional advantage with
regard to a simpler C4.5 tree-based classifier.

(iv-vii) Word sense disambiguation-based classifiers As we stated at the
beginning of this section, to study the impact of WSD on polarity classifi-
cation, we generate an independent classifier for each POS tag available on
BabelNet (adjectives, nouns, verbs and adverbs) on the basis of the method
explained in Section 2.3.1.2.

During the prototyping process, we realized that due to the use of in-
dependent classifiers for each POS tag, and the error introduced by wrong
disambiguations, the TF-IDF weighting provided an imprecise representa-
tion of documents, and worse results than using only binary TF (presence or
not of the word w in the document). Since the use of this technique has been
studied in the past with good results (Pang et al., 2002), for the WSD-based
models we decided to use binary TF as weighting and SVM as classifier.

(viii) Vocabulary expansion-based classifier The last base classifier uses
the vocabulary expansion explained in Section 2.3.1.3 to represent each doc-
ument d as a binary TF of synsets, which are related to the original disam-
biguated ones of d. The classification is performed using SVM. Since we
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Base Description Weighting Classifier Avg.
classifier ID # feat.

BOW Bag-of-words representation TF-IDF SVM 19,976
(1+2+3)-grams Combine {1, 2, 3}-grams to represent documents TF-IDF SVM 58,636
ML-SentiCon Use a lexical resource to extract different polarity-related features - C4.5 10
Noun WSD Represent documents by its set of disambiguated nouns Binary TF SVM 13,139
Adjective WSD Represent documents by its set of disambiguated adjectives Binary TF SVM 3,241
Verb WSD Represent documents by its set of disambiguated verbs Binary TF SVM 2,138
Adverb WSD Represent documents by its set of disambiguated adverbs Binary TF SVM 689
Vocab. Exp. Use a vocabulary expansion to represent the documents Binary TF SVM 59,372

Table 2.2. Summary of base classifiers.

are removing the original concepts of the documents from the vocabulary ex-
pansion, a document containing the concepts “Michael Jordan” and “NBA”
will be represented by concepts as “Basketball” and “Sport”, but not by the
original concepts. As previously stated, the original concept removal was
performed because we are interested in evaluating the performance of the
vocabulary expansion without the original words.

Table 2.2 provides a summary20 of all the base classifiers.

2.3.3 STACKED GENERALIZATION

We combine the base classifiers with one of the most popular combination
methods in meta-learning: stacking. It has been used successfully in Natural
Language processing (NLP) tasks (Enríquez et al., 2013; Van Halteren et al.,
1998) in the past. This method follows the original Stacked Generalization
method (Wolpert, 1992) to project documents onto a new dimensional space,
which is composed by the annotations of a first-level base classifiers set. This
combination is able to exploit additional information from a corpus by pro-
cessing it with different classifiers. A second-level classifier uses all of the
annotations of the first level to obtain a final decision, with the advantage of
recognizing and classifying correctly patterns in which the correct class tag
is in inferiority. In this work, instead of representing the results of the first
level as a vector of class tags, we represent them as a vector of class prob-
abilities, which proved to obtain better results using SVM (Martín-Valdivia
et al., 2013).

20Column “Avg. # feat.” shows the average number of potential features of the classifier
across domains before applying their respective thresholds (see Section 2.4.2).
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Algorithm 2.1 Stacking Generalization algorithm.
Input: a tagged training corpus T and a untagged test corpus t.
Output: a tagged test corpus t′′.

1: Split T into K parts to obtain T1,...,K partitions.
2: Tag T1,...,K using cross-validation with the C1,...,N base classifiers to obtain

T′1,...,K partitions containing the transformed samples of T.
3: Using T1,...,K for training, classify t with C1,...,N to obtain the transformed corpus

t′.
4: Use T′1,...,K as a single partition to train the second-level classifier Ccomb..
5: Classify t′ with Ccomb. to obtain the tagged test corpus t′′.

T

CC

T

T

T

T
4

1

2

3

1,...,N
C CC

T

T

T

T
3

1

2

4

1,...,N
C CC

T

T

T

T
2

1

3

4

1,...,N
C CC

T

T

T

T
1

2

3

4

1,...,N
C

t

CC1,...,N
C

T

T

T

T

1

2

3

4

T
4
’ T

3
’ T

2
’ T

1
’

C

t ’

First level

Second level

comb.

t ’’

Figure 2.3. Stacked Generalization scheme. Training and test partitions are projected into a
new dimensional space which is composed by the first-level classifier class probabilities. The
second-level classifier uses those probabilities to obtain the final decision.

We can see the Stacked Generalization method detailed in Algorithm 2.1.
Lines 1–3 correspond to the first level of the classifier, which makes the
transformation of the training corpus. The second level of the classfier is ex-
plained in Lines 4–5, which obtains the final classification of the test corpus.
A complete scheme of the model is shown in Figure 2.3.



30
CHAPTER 2. CROSS-DOMAIN POLARITY CLASSIFICATION USING A

KNOWLEDGE-ENHANCED META-CLASSIFIER

2.4 Evaluation

In this section we evaluate the base classifiers of our Knowledge-enhanced
Meta-classifier (KE-Meta), and compare our approach with state-of-the-art
models on single and cross-domain polarity classification.

2.4.1 DATASET

To evaluate our system we chose a classical state-of-the-art dataset, the Multi-
Domain Sentiment Dataset (version 2.0)21 (Blitzer et al., 2007), which has
been used for the evaluation of several research works on sentiment analy-
sis (Blitzer et al., 2007; Bollegala et al., 2013; Dredze et al., 2008; Li and
Zong, 2008). The dataset is composed by Amazon product reviews of 25
product types. Each review contains metadata including a rating of 0-5 stars,
the reviewer name and location, the product name, the review date and title,
and the review text. In addition, for research purposes, a subset of the re-
views with rating < 3 were originally labeled as negative, and with rating
> 3 as positive. Following the literature, in this work we use the Books,
Electronics, DVDs, and Kitchen appliances reviews, with 1,000 positive and
1,000 negative documents per domain, having a total of 8,000 reviews. With
this setup, we can compare our results on single and cross-domain polarity
classification directly with the state of the art.

2.4.2 METHODOLOGY

The evaluation of our approach in single-domain polarity classification is
performed using a stratified 10-fold cross-validation setup for each domain.
In cross-domain, we followed the same 10-fold cross-validation setup,22 in
this case, training always with all domains available and excluding the target
domain to classify, e.g. we train with Books, Electronics, and DVDs, and
we classify Kitchen reviews. We selected as the evaluation metric the accu-
racy of the classifiers, which is the proportion of correctly classified reviews
among the test dataset. We detail the models compared with our approach
on its respective evaluation sections. Note that the number of dimensions of
all our base classifiers is limited to a maximum number of 20,000. However,

21http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
22The cross-validation here is used only to train our KE-Meta classifier, which needs a

splitting of the data to obtain training and testing partitions to generate the final second-level
classifier.

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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similar results were obtained with sizes ranging between 15,000 and 25,000
during the prototyping step.

2.4.3 EVALUATION OF BASE CLASSIFIERS

To evaluate the eight base classifiers that compose our approach (cfr Sec-
tion 2.3.2) summarized in Table 2.2, we first employ a traditional measure
of information theory (Hall and Smith, 1998): the information gain ratio
(IGR) (Quinlan, 1986; Raileanu and Stoffel, 2004). Once analyzed the IGR,
we will continue with the study of the accuracy of classification of each base
classifier.

Having a training set T and its set of attributes Attr, the IGR measure
provides a normalized estimation (between 0 and 1) of the amount of infor-
mation that an attribute a ∈ Attr provides to determine the class attribute.23

The IGR of an attribute a is calculated as the ratio between the information
gain (IG) and the intrinsic value (IV):

IGR(T, a) =
IG(T, a)
IV(T, a)

(2.4)

IG(T, a) = H(T)− ∑
v∈values(a)

(
|{x ∈ T| value(x, a) = v}|

|T| · H({x ∈ T| value(x, a) = v})
)

(2.5)

where we substract to the total entropy H of the train set T the sum of the
relative entropies of the different values of a in T. For each of the attributes,
if a unique classification can be made for the result attribute, the information
gain is equal to the total entropy of a. The IV is a normalization factor
estimated as a function of the substracted entropies of H(T) in IG.

IV(T, a) = − ∑
v∈values(a)

|{x ∈ T| value(x, a) = v}|
|T| · log2

(
|{x ∈ T| value(x, a) = v}|

|T|

)
(2.6)

23Note that each attribute a ∈ Attr corresponds to a base classifier in our approach.
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Figure 2.4. Information gain ratio of the eight base classifiers in single and cross-domain
polarity classification. We show the harmonic mean of the IGR of each feature among the
different tested domains. (a) Base classifiers; (b) other classifiers.

To obtain the IGR of our base classifiers, we estimated the IGR on each
tested domain and we calculated the harmonic mean24 of those results. This
test was performed on single and cross-domain polarity classification. We
show the results in Figure 2.4. As expected, the IGR in cross-domain is
lower than working on single domain for almost all of the base classifiers.
This is not the case of the model using ML-SentiCon, which, despite getting
a low IGR, is able to preserve all its gain when performing at cross-domain
level. These results put forward the advantage of knowledge bases to model
the information in a domain-independent way. We can see that BOW and
(1+2+3)-grams classifiers obtained the highest information gain ratios, with
almost identical values. The results prove that these models are a good choice

24The harmonic mean is the most adequate measure to average percentages of different
domains.
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as base classifiers to be complemented with other classifiers. The vocabulary
expansion, which does not include the original words of the documents, is
able to obtain comparable results. Models disambiguating different POS tags
obtained considerably low IGR. Adjective WSD was the most informative
classifier. This is unsurprising if we consider that often, the polarity of a text
could be given by adjectives. This is followed by the classifier for nouns,
verbs, and finally adverbs. These last two with identical results on single-
domain. Since WSD has been divided into four models, it is difficult to
evaluate its contribution. For this reason, we included also the results of two
additional classifiers: All synsets (Post-WSD) and All synsets (Pre-WSD).
They represent the IGR of a binary TF25 classifier trained using SVM with:
(i) all the disambiguated words together (All synsets (Post-WSD) classifier),
and (ii) all the possible senses of the words together before disambiguation
(All synsets (Pre-WSD) classifer). As we can see, the performance of All
synsets (Post-WSD) significantly outperforms the Pre-WSD model, and ob-
tained similar result to BOW and n-grams based approaches. This highlights
the capability of WSD to remove noisy senses, leaving only the appropiate
one.

Base classifiers Books Electronics DVDs Kitchen

BOW 0.788 0.803 0.804 0.821
(1+2+3)-grams 0.805 0.817 0.803 0.819
ML-SentiCon 0.612 0.644 0.644 0.651
Noun WSD 0.684 0.655 0.679 0.677
Adjective WSD 0.683 0.695 0.729 0.712
Verb WSD 0.669 0.670 0.633 0.675
Adverb WSD 0.651 0.638 0626 0.649
Vocab. Exp. 0.718 0.700 0.709 0.704

Other classifiers

All synsets (Post-WSD) 0.775 0.782 0.785 0.806
All synsets (Pre-WSD) 0.758 0.765 0.784 0.800

Table 2.3. Base classifiers accuracy per domain in single-domain polarity classification.

25Similarly to the other WSD-based classifiers, binary TF is preferred to TF-IDF to
smooth the error in case of a wrong disambiguation.
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Base classifiers Books Electronics DVDs Kitchen

BOW 0.756 0.804 0.791 0.809
(1+2+3)-grams 0.744 0.798 0.771 0.769
ML-SentiCon 0.643 0.652 0.639 0.673
Noun WSD 0.626 0.625 0.644 0.649
Adjective WSD 0.665 0.687 0.699 0.686
Verb WSD 0.584 0.619 0.590 0.605
Adverb WSD 0.617 0.661 0.622 0.646
Vocab. Exp. 0.666 0.695 0.694 0.695

Other classifiers

All synsets (Post-WSD) 0.745 0.765 0.776 0.775
All synsets (Pre-WSD) 0.726 0.757 0.765 0.769

Table 2.4. Base classifiers accuracy per domain in cross-domain polarity classification.

Once evaluated the IGR of the base classifiers, the next step is to evaluate
them separately in the polarity classification task. Following the setup of Sec-
tion 2.4.2, we can see the results on single-domain in Table 2.3. The results
are in line with those obtained for IGR: (1+2+3)-grams obtained the high-
est results, followed by BOW. The vocabulary expansion achieved averaged
results followed by Adjective WSD and the rest of WSD-based classifiers.
Finally, ML-SentiCon was the model with the lowest accuracy. Looking at
the results on cross-domain in Table 2.4, we can see a similar trend. Despite
there is a general decrease in the results, as we stated while analyzing its IGR,
ML-SentiCon has even improved its results on cross-domain, taking advan-
tage of all the other domains to train a domain independent model which
is able to outperform the noun, verb and adverb WSD-based approaches.
Note that, as we can see in both tables, All synsets (Post-WSD) classifier
outperforms the Pre-WSD model, and gets similar results to the best base
classifiers.

Looking at all the previous results, due to the different type of classifers
selected, each one of them should provide different information when com-
bined in a meta-classifier. The next experiment studies the improvement in
the accuracy when adding base classifiers one by one to our KE-Meta ap-
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Figure 2.5. KE-Meta classifier improvement across domains when incrementally adding new
base classifiers to single-domain polarity classification. Each column represents the accuracy
of the model when we combine that base classifier with the classifiers at its left.

proach. We can see the single-domain results in Figure 2.5. As expected,
considering the harmonic mean, there is an improvement when each new
base classifier is added. As one classifier might provide information included
by others, the improvements were shown to be greater at the beginning. The
results on cross-domain are shown in Figure 2.6. Also in this case there is
a clear improvement compared to the first base classifier included, being
BOW, ML-SentiCon and Adjective WSD, the models with higher contri-
bution. However, the vocabulary expansion seems to have a negative con-
tribution in this cross-domain combination. We assume that expanding vo-
cabulary from different domains and combining all the documents together,
contributes to obtaining a noisy base classifier with several clusters of vocab-
ulary of concepts related to each training domain. In the next cross-domain
experiments we will show also the results without the vocabulary expansion
base classifier.
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Figure 2.6. KE-Meta classifier improvement across domains when incrementally adding new
base classifiers to cross-domain polarity classification. Each column represents the accuracy
of the model when we combine that base classifier with the classifiers at its left.

2.4.4 SINGLE-DOMAIN POLARITY CLASSIFICATION

We compared our knowledge-enhanced meta classifier against the state-of-
the-art SST model, and those proposed by Dredze et al. (2008) and Li and
Zong (2008)26 (cfr Section 2.2). In addition we included the results of our
BOW and (1+2+3)-grams classifiers as baselines.

As we can see from Table 2.5,27 thanks to the additional information in-
cluded when combining groups of words as single feature, (1+2+3)-grams
obtained better results than BOW. However, all of the compared models
outperformed these baselines. Dredze et al.’s approach obtained interest-
ing results, specially classifying electronics. This model benefited from
confidence-weighted classification to create very precise linear frontiers among

26Results of compared approaches are taken from their original works: Bollegala et al.
(2013), Dredze et al. (2008) and Li and Zong (2008).

27In this work, statistically significant results according to a χ2 test are highlighted in
bold.
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Method Books Electronics DVDs Kitchen

(a) (Dredze et al., 2008) 0.826 0.859 0.809 0.857
SST 0.804 0.844 0.824 0.877
(Li and Zong, 2008) 0.790 0.850 0.845 0.845

(b) (1+2+3)-grams 0.805 0.817 0.803 0.819
BOW 0.788 0.803 0.804 0.821

(c) KE-Meta 0.835 0.826 0.823 0.842

Table 2.5. Accuracy results in single-domain polarity classification. (a) State-of-the-art
approaches; (b) baselines; (c) proposed approach.

classes. The SST model, using its sentiment sensitive thesaurus, took advan-
tage of the type of reviews used in kitchen domain and obtained the best
results, with good accuracy in the other domains. Li and Zong’s approach,
based on a optimized n-gram selection criteria, obtained the best results on
DVD reviews. Our approach obtained the best results on Books domain and
considerably high results on the rest. We hypothesize that when reviewers an-
alyze books summarizing parts from the story of the book, our meta-classifier
is able to distinguish this pattern by contrasting the probabilities of the base
classifiers, and the polarity of the book summary has less influence in the
final review classification. Note that our approach is the most stable, with
no less than 82.3% of accuracy in all the tests. Using meta-classification,
KE-Meta is able to determine which base classifier is better on each domain,
maximizing its contribution in the combination. We highlight also that each
state-of-the-art approach obtained specially low (or high) results in some do-
main. This may be produced by the writing style employed by reviewers
when commenting on those products. At the end of Section 2.4.5, in Ta-
ble 2.7 we analyze the vocabulary of domains to investigate these differences
further.

2.4.5 CROSS-DOMAIN POLARITY CLASSIFICATION

In this task we compared our KE-Meta approach against the state-of-the-art
SFA, SCL-MI and SST approaches.28 As we mentioned in Section 2.4.3, we
included also the results of our approach without the vocabulary expansion-

28The results of the approaches compared are taken from Bollegala et al. (2013)
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Method Books Electronics DVDs Kitchen

(a) SST 0.763 0.839 0.783 0.852
SFA 0.777 0.753 0.763 0.815
SCL-MI 0.746 0.789 0.763 0.820

(b) BOW 0.756 0.804 0.791 0.809
(1+2+3)-grams 0.744 0.798 0.771 0.769

(c) KE-MetaB 0.784 0.793 0.805 0.828
KE-Meta 0.779 0.789 0.804 0.825

Table 2.6. Accuracy results in cross-domain polarity classification. (a) State-of-the-art ap-
proaches; (b) baselines; (c) proposed approaches.

based base classifier: KE-MetaB. The BOW and (1+2+3)-grams models are
included as baselines.

Table 2.6 shows the cross-domain polarity classification accuracy. The
(1+2+3)-grams baseline achieved the lowest results. Training a cross-domain
n-gram-based classifier using only three domains does not seem to be suffi-
cient to obtain a good domain-independent n-gram inventory. Evidence of
this observation are the close results obtained by SCL-MI and SFA, other
two n-gram based approaches. SCL-MI excelled especially in the kitchen
domain. We hypothesize that the singular value descomposition used to re-
duce dimensions worked better with the reduced size of the vocabulary in
kitchen domain. The second domain with less vocabulary, electronics, ex-
celled too. The bipartite graph constructed to differentiate domain-specific
and independent n-grams helped SFA to obtain significant results on books
domain. Precisely despite obtaining the lowest results in that domain, the
BOW baseline outperformed SFA and SCL-MI on average. In contrast to
n-gram-based approaches, the training data provided was sufficient to infer
a vocabulary, which made this classifier more stable. The SST model proved
to be a good option in cross-domain, with significative results on electronics
and kitchen reviews. Bollegala et al. (2013) justified the low results on books
because of the low number of unlabeled data available on that domain, which
is necessary to create its sentiment sentitive thesaurus. Finally, our KE-Meta
approach obtained the best results on books and DVD reviews, being again
the most stable approach across domains, thanks to the combination of dif-
ferent base classifiers. KE-MetaB, the classifier that does not consider the
vocabulary expansion, obtained not significative better results in all domains.
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Since the use of this base classifer improved the results in single-domain, fu-
ture work is needed in order to understand how to improve its performance
also in cross-domain.

Statistics Books Electronics DVDs Kitchen

Average document length 175 113 190 96
# different lemmas domain 26,108 13,947 28,757 11,095
Average # different lemmas per document 53.4 33.6 57.8 28.3
% nouns domain 66.5% 64.7% 67.4% 61.3%
% adjectives domain 16.7% 15.8% 15.5% 17.4%
% verbs domain 10.0% 11.9% 9.5% 14.1%
% adverbs domain 3.4% 3.7% 3.2% 4%
# different senses domain 17,523 8,809 18,487 8,416
Average # different senses per document 51.2 31.8 54.3 27.9
# different lemmas domain / # different senses domain 0.671 0.632 0.643 0.759
KE-Meta results (single-domain) 0.835 0.826 0.823 0.842
KE-Meta results (cross-domain) 0.784 0.793 0.805 0.828

Table 2.7. Corpus statistics per domain. Bold results indicate statistical significance.

Experimental results of Tables 2.5 and 2.6 show that review polarity clas-
sification of evaluated approaches differ across domains. These differences
could be due to the different language employed by reviewers when com-
menting on products of different domains. In Table 2.7 we can see some
statistics of the corpus divided by domain. While kitchen appliance and elec-
tronic reviewers evaluate using short comments, reviews of book and DVD
domains are longer, e.g. some of them include a summary of the story. In-
teresting also the reduced percentage of nouns in kitchen compared to the
rest. It seems that kitchen appliance reviewers do not cite so often other
products, and use more qualifying adjectives. This makes this domain the
easiest to classify, probably also explained by its shorter length. In general,
single-domain n-gram-based approaches obtained better results with the two
domains with shorter reviews. However, the same trend is not clearly appre-
ciated for the BOW classifier.

We include in the table also statistics of the disambiguated senses. Note
that the ratio between the number of different lemmas per domain and the
different senses per domain is a measure of the polysemy employed29 by re-
viewers. As we can see, the results of our KE-Meta approach are better when

29A value of 1.0 here highlights 0% of polysemy in the corpus.
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the percentage of polysemy is lower and, consequently, less WSD effort is
required.

2.5 Conclusions

In this work we introduced a knowledge-enhanced meta-classifier for single
and cross-domain polarity classification. The main contributions of this work
are: (i) KE-Meta, a new generic approach that combines different types of
classifiers to categorize documents according to their polarity; and (ii) the
study of the impact of WSD and vocabulary expansion-based features as
document representation.

In single and cross-domain polarity classification, KE-Meta has proven
to perform at par or better than state-of-the-art when classifying Amazon
product reviews. Thanks to the combination of different classifiers, our ap-
proach obtained the most stable results across domains, and was able to ex-
cel in domains such as books and DVDs, which often combine a review
and a summary of the product together. In contrast to the state-of-the-art,
our meta-classifier does not perform any domain adaptation, which renders
our approach generic. Moreover, the study of the information gain of our
base classifiers concluded that WSD and vocabulary expansion-based fea-
tures provide additional information not included in other BOW or n-gram-
based classifiers.

Future work will investigate how it affects the inclusion of new base clas-
sifiers in KE-Meta. The use of other state-of-the-art approaches combined
with our approach should provide better results. In addition, we will improve
the current base classifiers, specially the vocabulary expansion-based one, to
perform better both at single and cross-domain level. We will study also the
performance of our classifier in other popular datasets like the well-known
movie review dataset. Moreover, we will evaluate our polarity classification
approach in other languages.30 Finally, we will investigate how to apply mul-
tilingual semantic networks and knowledge graphs in other NLP tasks, from
both, monolingual and multilingual perspectives.

30As we stated in Section 2.3.1, our approach is multilingual. This is due to the use of
BabelNet, which performs WSD, vocabulary expansion, and mapping of SentiWordNet with
the disambiguated words.
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This chapter of the thesis presents the cross-language knowledge graph
analysis model for cross-language similarity. We show its performance in
Spanish-English and German-English plagiarism detection and compare it
with the state of the art. We also perform this evaluation with paraphrase
cases of plagiarism. In addition, we study the most relevant characteristics
of the knowledge graphs for this type of similarity tasks.
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Abstract

Cross-language plagiarism detection aims to detect plagiarised
fragments of text among documents in different languages. In this pa-
per, we perform a systematic examination of Cross-language Knowl-
edge Graph Analysis; an approach that represents text fragments using
knowledge graphs as a language independent content model. We anal-
yse the contributions to cross-language plagiarism detection of the dif-
ferent aspects covered by knowledge graphs: word sense disambigua-
tion, vocabulary expansion, and representation by similarities with a
collection of concepts. In addition, we study both the relevance of con-
cepts and their relations when detecting plagiarism. Finally, as a key
component of the knowledge graph construction, we present a new
weighting scheme of relations between concepts based on distributed
representations of concepts. Experimental results in Spanish-English
and German-English plagiarism detection show state-of-the-art per-
formance and provide interesting insights on the use of knowledge
graphs.

Keywords: — Cross-language, Plagiarism detection, Knowledge graphs,
Multilingual Semantic Network, Distributed representations, Evaluation

3.1 Introduction

Given the vastness of the Web, plagiarism, or the deliberate use of someone
else’s original material without acknowledging its source, has become a se-
rious problem in areas such as Literature, Education, and Science. The ease
of access to copyrighted contents has become matter of concern also for re-
searchers. The problem is exacerbated when the source of plagiarism comes
from another language, which is known as cross-language (CL) plagiarism.
It is not only the additional difficulty of manually detecting the translation
performed, but also the people’s lack of knowledge about the ethical issues
derived from plagiarism. A recent survey about scholar practices and atti-
tudes (Barrón-Cedeño, 2012), reveals that only 36.25% of students believe
that translating text fragments and including them in their work is plagiarism.

Although the CL plagiarism detection task could be potentially performed
manually, the amount of data, languages, and time required make it impos-
sible to perform in practice. Current approaches to CL plagiarism detec-
tion exploit syntactic and lexical properties of the writing, statistical dic-
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tionaries or similarities with a multilingual collection of documents. How-
ever, most of these techniques are designed for verbatim copies and perfor-
mance is reduced when dealing with light and specially heavy cases of pla-
giarism (Clough and Stevenson, 2011), which include paraphrasing.

In a previous work, we proposed Cross-Language Knowledge Graph
Analysis (CL-KGA) (Franco-Salvador et al., 2013a), an approach for CL pla-
giarism detection aiming at representing context, which employs knowledge
graphs both to expand and relate the concepts in a text. Knowledge graphs
are generated using BabelNet (Navigli and Ponzetto, 2012a), the most large
multilingual semantic network. Thanks to the multilingual representation of
concepts available, BabelNet allows for a straightforward comparison of the
knowledge graphs obtained in different languages.

In this work, we perform a systematic study of our CL-KGA model. We
analyse the impact of the implicit aspects of knowledge graphs on CL plagia-
rism detection. The research questions we aim to answer are:

• What is the contribution of the word sense disambiguation (WSD)
performed by the knowledge graphs? These graphs have been ex-
plored in the past to perform WSD; our current representation includes
disambiguated concepts, which are combined with their intermediate
concepts and other disambiguation candidates. We are interested in
analysing the performance when the representation is exclusively com-
posed by disambiguated words. This leads us to our next research
question.

• What is the contribution of the vocabulary expansion performed dur-
ing graph creation? In our previous work we assumed that the new
intermediate concepts that relate the original ones could be a key com-
ponent in order to obtain a common intersection between related texts.
In this work we study this aspect in order to determine if the vocab-
ulary expansion is needed as part of the representation or just as a
component during the WSD process itself.

• What is the relationship between CL-KGA and Cross-Language Ex-
plicit Semantic Analysis (CL-ESA)? These two models represent text
by exploiting a collection of multilingual concepts, for instance em-
ploying Wikipedia. We are interested in studying the similarities and
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the differences between the two models. We aim to clarify the particu-
larities that make the two models perform completely different.

In this paper, we also address key aspects such as the language indepen-
dence of the knowledge graphs. In addition, we study the relevance of the
concepts (nodes) and relations (edges) of the knowledge graphs, and the most
suitable threshold to consider that their weighted relations are semantically
related. Finally, we compare our model with the state of the art according to
different scenarios and criteria: (i) we evaluate CL plagiarism detection us-
ing a dataset composed by automatic and manually generated paraphrasing
cases of plagiarism; (ii) we study the performance of detection using only
paraphrasing cases; and (iii) we compare the computational efficiency of the
models and the size of the graphs.

The classical weighting scheme used for the relations between the con-
cepts of the knowledge graphs is based on bag of words generated from short
concept definitions as representation of WordNet’s concepts. Because it is
exclusively based on the original wording of the definition, this type of rep-
resentation is very explicit. In addition to the detailed study of our previous
model, in this work we follow the recent and popular trend in the use of dis-
tributed representations of words (Mikolov et al., 2013a; Pennington et al.,
2014), and present a new weighting scheme for relations between concepts
which generates distributed representations of concepts. Our distributed con-
cepts are generated using the continuous Skip-gram model to obtain vector
representations of definitions of concepts. In contrast to the classical weight-
ing, our proposed representation measures semantic relatedness modelling
not only of the original words in a definition, but also their context. This
allows our scheme to successfully measure similarity between definitions
which do not share the same words but have the same meaning.

Experimental results show that the vocabulary expansion is more useful
when it is only employed to perform the WSD, which is the essential com-
ponent of our model. The differences between CL-KGA and CL-ESA are
proved favouring the first model, which offers a higher performance thanks to
the high coverage of BabelNet and the concept relatedness. Our new weight-
ing scheme using distributed representations of concepts achieves state-of-
the-art performance compared to the classical weighting and several alterna-
tive CL plagiarism detectors. The study with CL paraphrasing cases proved
also CL-KGA superiority on this type of plagiarism. Finally, a comparison
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of the computational efficiency of the models demonstrated that our model is
more adequate for systems that only require a fast document similarity and
perform the indexing in a preprocessing stage.

The rest of the paper is organised as follows. In Section 3.2 we pro-
vide an overview of the state of the art in CL plagiarism detection and dis-
tributed representations of concepts. In Section 3.3 we describe the knowl-
edge graphs, their weighting schemes, including our new approach, and their
main characteristics. In Section 3.4 we describe the CL-KGA model for
CL plagiarism detection. Finally, in Section 3.5 we evaluate our approach
for Spanish-English and German-English plagiarism detection, comparing
our results with several state-of-the-art models. We compare also our new
weighting scheme based on distributed representations of concepts with the
classical weighting. As part of our analysis, we show the results when de-
tecting only paraphrasing cases and evaluate the computational efficiency of
the models.

3.2 Related Work

In this section we first review the approaches of CL similarity analysis that
have been used for CL plagiarism detection. Next, we summarise the last
advances in the use of distributed representations for conceptual semantic
relatedness.

3.2.1 CROSS-LANGUAGE PLAGIARISM DETECTION

Similarly to some monolingual models for plagiarism (Clough et al., 2003;
Maurer et al., 2006), an effective approach for languages with lexical and syn-
tactic similarities, such as Romance and Germanic languages, is the Cross-
Language Character N-Gram (CL-CNG) model (Mcnamee and Mayfield,
2004). This model employs vectors of character n-grams to model texts, and
uses a weighting scheme and a measure of similarity between vectors such
as the cosine similarity.

Several approaches have been proposed to measure CL similarity be-
tween any language pair. Cross-Language Explicit Semantic Analysis (CL-
ESA) (Potthast et al., 2008) extends the classical ESA (Gabrilovich and
Markovitch, 2007) to work in a cross-language scenario. This model rep-
resents each text by its similarities with a document collection D i.e., the
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topic of a document is qualified using the reference collection D. Despite
the fact that the indexing with D is performed at monolingual level, using
a multilingual document collection with comparable documents across lan-
guages (e.g. Wikipedia), the resulting vectors from different languages can
be compared directly. As we discuss in Section 3.3.4.4, our CL-KGA model
is slightly related with CL-ESA, i.e., using Wikipedia and representing text
using a collection of multilingual concepts. However, our model exploits
also vocabulary expansion and relatedness between concepts, and has a vari-
able concept inventory with regard to the text words.

The use of parallel corpora has been explored too. For example, the
Cross-Language Alignment-based Similarity Analysis (CL-ASA) model (Barrón-
Cedeño, 2012; Barrón-Cedeño et al., 2008; Pinto et al., 2009) is based on
statistical machine translation. This model uses a statistical bilingual dic-
tionary — generated with parallel corpora — to translate words and perform
text alignment. The alignment takes into account the translation probabilities
and the differences in length of equivalent texts in different languages.

An approach exploiting concepts like this paper is the MLPlag (Ceska
et al., 2008) model. It uses the EuroWordNet semantic network1 (Vossen,
2004) to address synonymy and to obtain language independent identifiers of
words which can be directly compared. Similarly, the Cross-Language Con-
ceptual Thesaurus based Similarity (CL-CTS) model (Gupta et al., 2012)
aims at measuring the similarity between the texts in terms of shared con-
cepts and named entities, using the Eurovoc conceptual thesaurus.2 It of-
fered an average performance compared to CL-ASA and CL-CNG specially
excelling in Spanish-English. In contrast to CL-KGA, these last two models
do not employ concept relatedness or vocabulary expansion or WSD, i.e.,
the assignment of concepts to words is direct and may produce ambiguity.
The Cross-Language Knowledge Graph Analysis (CL-KGA) model (Franco-
Salvador et al., 2013a,b) uses a multilingual semantic network to create
knowledge graphs that model the context of documents. The model achieved
interesting results for CL plagiarism detection, also in cases of paraphras-
ing (Franco-Salvador et al., 2014a). However, it left unanswered questions
— relationship with CL-ESA, contributions of WSD, vocabulary expansion,

1http://www.illc.uva.nl/EuroWordNet/
2http://eurovoc.europa.eu/

http://www.illc.uva.nl/EuroWordNet/
http://eurovoc.europa.eu/
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etc. — and room for improvement — weighting scheme and parameter tun-
ing —, that we address in this paper.

Other CL similarity analysis approaches such as the Cross-Language La-
tent Semantic Indexing (CL-LSI) (Dumais et al., 1997b) or Similarity Learn-
ing via Siamese Neural Network (S2Net) (Yih et al., 2011) linear projection
models, could be employed as well for plagiarism detection. In this work we
focus on comparing our model with those models that have been evaluated
in the past on CL plagiarism detection.

In recent years, plagiarism detection has been actively addressed in the
Evaluation lab on uncovering plagiarism, authorship, and social software
misuse (PAN)3 at the Conference and Labs of the Evaluation Forum (CLEF).
The plagiarism detection shared task (Potthast et al., 2014) encourages par-
ticipants to submit detectors and compete to identify plagiarism cases in the
provided corpus. The 2010 and 2011 editions (Potthast et al., 2010a, 2011b)
contained also cross-language partitions in German-English and Spanish-
English, which we used for our evaluation. In 2015 the task invited for the
first time to submit datasets (Franco-Salvador et al., 2015a; Potthast et al.,
2015), increasing participation and including new languages such as Urdu,
Persian and Chinese. Similarly to Corezola Pereira et al. (2010), the most
popular technique to handle CL plagiarism detection at PAN involved ma-
chine translation systems, translating all the documents to the language of
comparison beforehand. However, this introduces a heavy dependence on the
availability of Machine Translation (MT) systems and their quality. In addi-
tion, we consider that those methods are not pure CL detectors, but excellent
monolingual plagiarism detection systems with a MT preprocessing. Hence,
we compare our proposed model to CL plagiarism detection systems that do
not depend on fully-fledged MT systems.4 In Barrón-Cedeño et al. (2013) we
can find a comparison of CL-ASA and CL-CNG using the Spanish-English
partition of PAN’11 competition, where the models have been also compared
with a system (T+MA) employing MT to analyse the similarities at monolin-
gual level. The paper concluded that T+MA is superior in short cases of
plagiarism but very close to CL-ASA, which achieved a higher precision in
all experiments and better performance for long cases of plagiarism.

3http://pan.webis.de/
4CL-ASA employs a statistical dictionary but includes a complex language alignment

model.

http://pan.webis.de/
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A comparison of the CL-CNG, CL-ESA, and CL-ASA models for CL
plagiarism detection has been provided in Potthast et al. (2011a). Different
performances were observed depending on the task, languages, and dataset
employed. For instance, CL-ESA and CL-CNG were more stable across
datasets, obtaining a higher performance on the Wikipedia comparable dataset.
In contrast, CL-ASA obtained better results on the JRC-Acquis parallel dataset.
Finally, CL-CNG achieved lower quality for language pairs without lexical
and syntactic similarities. Therefore, in this work we decided to compare
CL-KGA with all these models.

3.2.2 DISTRIBUTED REPRESENTATIONS FOR CONCEPTUAL SEMANTIC

RELATEDNESS

We introduce a new weighting scheme, based on the use of distributed rep-
resentations of concepts, to measure the semantic relatedness between con-
cepts belonging to a knowledge graph. In recent years, the use of log-linear
models has been proposed as an efficient way to generate distributed repre-
sentations of words (Mikolov et al., 2013a), since they reduce the complexity
of the neural network hidden layer thereby improving efficiency. These repre-
sentations have proved to be an excellent alternative for computing semantic
relatedness with models such as the continuous Skip-gram model5 (Mikolov
et al., 2013a,b) or GloVe6 (Pennington et al., 2014). Recent works have
explored also the possibility of modelling words senses (i.e., synsets) for se-
mantic relatedness using distributed representations. Faruqui et al. (2015)
refine vector space representations using relational information from seman-
tic resources such as WordNet or FrameNet (Baker et al., 1998). Aletras and
Stevenson (2015) provide representations of synonym words derived from
WordNet and exploit its hierarchy to generate synset vectors. There has been
also interest in representing BabelNet synsets using distributed representa-
tions. SensEmbed (Iacobacci et al., 2015) uses Babelfy (Moro et al., 2014)
to disambiguate the complete Wikipedia to the BabelNet synset inventory.
Then, the continuous Bag of Words model (CBOW) (Mikolov et al., 2013a)
is used on top of Wikipedia’s disambiguated text to generate the distributed
representation of synsets. Finally, further refinements (including properties
of the BabelNet topology) are employed to measure semantic relatedness.

5The continuous Skip-gram model is available in the word2vec toolkit: https://
code.google.com/p/word2vec/

6http://nlp.stanford.edu/projects/glove/

https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
http://nlp.stanford.edu/projects/glove/


3.3. KNOWLEDGE GRAPHS 51

Since we aim at weighting the∼262 million of relations of BabelNet, we
have to employ a fast and efficient model. As disadvantages SensEmbed has
the computational complexity required to disambiguate the ∼5 million of
pages contained in the English Wikipedia, the possible errors that WSD may
introduce (despite the excellent∼70% of F1 score with Babelfy for English),
the unbounded range of weights that SensEmbed provides, and the low per-
formance of CBOW compared to the continuous Skip-gram model when
measuring semantic relatedness (Mikolov et al., 2013a). In Section 3.3.3.2
we opted for an efficient solution which exploits the high-quality definitions
provided for the BabelNet’s synsets (i.e., glosses) and the Skip-gram model.

3.3 Knowledge Graphs

A knowledge graph is a weighted and directed graph that expands and relates
the concepts7 belonging to a text. We may consider a knowledge graph as a
subset of an original knowledge base focused on the concepts pertaining to
a text. Knowledge graphs have been used for Natural Language Processing
(NLP) tasks such as network text analysis (Popping, 2003), semantic relat-
edness (Navigli and Ponzetto, 2012b), WSD (Navigli and Ponzetto, 2012a),
semantic parsing (Heck et al., 2013), sentiment analysis (Franco-Salvador
et al., 2015b) — also from a WSD perspective —, or in cross-language sce-
narios: CL plagiarism detection (Franco-Salvador et al., 2013a), and CL
document retrieval and categorization (Franco-Salvador et al., 2014b). In
Figure 3.1 we show an example of a knowledge graph.

In order to generate knowledge graphs that allow for a direct comparison
across languages, we need a knowledge base with a multilingual dimension
of the concepts. We could use EuroWordNet or Wikipedia,8 although in this
work we employ the BabelNet multilingual semantic network, since it offers
the larger set of concepts and languages to date.

3.3.1 BABENET

BabelNet9 2.5 (Navigli and Ponzetto, 2012a) is a multilingual semantic net-
work whose concepts and relations are obtained from the automatic mapping

7Each word has a number of senses. We define “concept” as any of those senses, which
may be represented via synsets (see Section 3.3.1).

8https://en.wikipedia.org/
9http://babelnet.org

https://en.wikipedia.org/
http://babelnet.org
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Figure 3.1. Knowledge graph built from the sentence “I opened a new bank account” (source
words: (“open#v, new#a, bank#n, account#n”)). Larger boxes represent concepts with higher
connectivity.

onto WordNet of Wikipedia, OmegaWiki,10 Wiktionary,11 Wikidata,12, and
Open Multilingual WordNet.13 Therefore, BabelNet is a multilingual “en-
cyclopedic dictionary” that combines lexicographic information with wide-
coverage encyclopedic knowledge. Concepts in BabelNet are represented
similarly to WordNet, i.e., by grouping sets of synonyms in the different
languages into multilingual synsets. The syntactic categories are exactly
the same offered by WordNet: noun, verb, adjective, and adverb. Multi-

10http://omegawiki.org
11http://wiktionary.org
12http://wikidata.org
13http://compling.hss.ntu.edu.sg/omw/

http://omegawiki.org
http://wiktionary.org
http://wikidata.org
http://compling.hss.ntu.edu.sg/omw/
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lingual synsets contain lexicalizations from WordNet and Open Multilingual
WordNet synsets, the corresponding Wikipedia pages, the OmegaWiki, Wik-
tionary, and Wikidata entries, and additional translations by a statistical ma-
chine translation system. The relations between synsets are collected from
WordNet, Open Multilingual WordNet, and from Wikipedia’s hyperlinks be-
tween pages. The version 2.5 of BabelNet includes 9,348,287 synsets, cov-
ers 50 languages,14 and has a WordNet-Wikipedia mapping correctness of
91% (Navigli et al., 2013).

3.3.2 CREATION OF THE KNOWLEDGE GRAPHS

Similarly to the aforementioned works, we followed the approach described
by Navigli and Lapata (2010) to create our knowledge graphs, which is a
four step-approach described as follows:

(i) Part-of-speech tagging and lemmatization Initially we process a text
fragment d with tokenization, multi-word extraction, part-of-speech (POS)
tagging, and lemmatization15 to obtain the list of tuples (lemma,tag) T. We
discard POS tags not available in BabelNet.

(ii) Populating the graph with initial concepts Next, we create an initially-
empty knowledge graph G = (V, E), i.e., such that V = E = ∅. We pop-
ulate the vertex set V with the set SK of all the synsets in BabelNet which
contain any <lemma,tag> tuple in T in the text fragment language L, that
is:

SK =
⋃
t∈T

SynsetsL(t), (3.1)

where SynsetsL(t) is the set of synsets which contains a <lemma,tag> tuple
t in the language of interest L.

14Although in this work we employed BabelNet 2.5, the more recent BabelNet 3.0 offers
13,789,332 synsets and 271 languages via a RESTful API. We selected the previous version
in order to avoid depending on the API and work offline which allows for a faster creation of
knowledge graphs.

15Due to our multilingual focus we used TreeTagger: http://www.cis.
uni-muenchen.de/~schmid/tools/TreeTagger/. For the multi-word extraction
we implemented our own tool based on pattern matching.

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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(iii) Creating the knowledge graph We create the knowledge graph by
searching in BabelNet the set of paths P connecting pairs of synsets in V.
Formally, for each pair {v, v′} ∈ V such that v and v′ do not share any lexi-
calization16 in T, for each path in BabelNet v→ v1 → · · · → vn → v′, we
set: V := V ∪ {v1, . . . , vn} and E := E ∪ {(v, v1), . . . , (vn, v′)}. That is,
we add all the path vertices and edges to G. Following the approach of Nav-
igli and Ponzetto (2012a), the path length is limited to maximum length of 3,
in order to avoid an excessive semantic drift.17

As a result of populating the graph with intermediate edges and vertices,
we obtain a knowledge graph which models the semantic context of text
fragment d.

(iv) Knowledge graph weighting The next step consists in weighting all
the concepts and semantic relations of the knowledge graph G. For weight-
ing concepts, different methods have been tested in the past, including the
PageRank (Page et al., 1998) algorithm. In this work, we score each concept
using its own outdegree, which has proved to obtain the best results (Nav-
igli and Ponzetto, 2012a). For weighting relations we will describe in detail
the two methods that we evaluated in this work. We normalise weights as a
function of the total sum of the outgoing relations.

3.3.3 WEIGHTING OF THE SEMANTIC RELATIONS

Relations in BabelNet are weighted to quantify the strength of the association
between synsets. Knowledge graphs use these weights in order to weight
their relations. In this section we describe the original approach which was
employed by Navigli and Ponzetto (2012a) in order to measure this degree
of association between synsets. Next, in Section 3.3.3.2 we present our new
method based on distributed representations of concepts for weighting their
relations.

16This prevents different senses of the same term from being connected via a path in the
resulting knowledge graph.

17At this point, we removed the edges below a certain threshold that represents a low
semantic relationship (see Section 3.5.3).
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Figure 3.2. Distribution of relation weights in BabelNet using the Dice’s coefficient-based
weighting.

3.3.3.1 Dice’s Coefficient-based Measure of Semantic Relatedness

The weights between relations provided in the original BabelNet 1.0 were
computed using methods based on Dice’s coefficient (Jackson et al., 1989).
Two different strategies were employed to leverage the high-quality defini-
tions from WordNet, and the large amounts of hyperlinked text from Wikipedia.
Similarly to the Extended Gloss Overlap measure (Banerjee and Pedersen,
2003), for computing the semantic relatedness between two WordNet synsets
s and s′, they first are independently represented using a bag-of-words (BOW)
representation including all the synonyms of the synsets and the lemmatised
words of their glosses.18 Stopwords are removed. The list of directly linked
synsets is also included for s and s′. Next, they employ the Dice’s coefficient
over s and s′ to measure the relationship between the two WordNet synsets:

Semantic Relatedness(s, s′) =
2|s ∩ s′|
|s|+ |s′| (3.2)

18A gloss is a short definition of the sense represented within that synset.
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The relationship between two synsets corresponding to Wikipedia pages
is computed using a co-occurrence based method (Ito et al., 2008; Ye et al.,
2009), which exploits the large amount of hyperlinked text available in Wikipedia.
Given two Wikipedia page synsets w and w′, the frequency of occurrence of
each individual page ( fw and fw′) is computed as the number of hyperlinks
found in Wikipedia which point to it. The co-occurrence frequency of w
and w′ ( fw,w′) is computed as the number of times these links occur together
within a context.19 The relationship between w and w′ applies the Dice’s
coefficient to these frequencies:

Semantic Relatedness(w, w′) =
2 fw,w′

fw + fw′
(3.3)

Using this weighting scheme, we depict in Figure 3.2 a histogram of
the distribution of BabelNet’s relation weights. We observe that only ∼15
million relations are weighted. In our evaluation we refer always to the CL-
KGA model with this weighting scheme unless otherwise stated (see sec-
tion 3.3.3.2).

3.3.3.2 Distributed Representations of Concepts for Computing Semantic
Relatedness

The weighting described in Section 3.3.3.1 is based on an accurate and ex-
plicit representation of concepts, i.e., a concept fingerprint uses the infor-
mation of its short and clear definition — in the case of WordNet —, or
information of samples of text explicitly mentioning that concept — in the
case of Wikipedia. However, those definitions and samples of text do not
cover all of the possible contexts in which a concept may appear, and the
weighting scheme is not able to infer more contexts. In contrast, the use
of distributed representations has proved that the context is modelled in a
more abstract20 but precise manner, e.g. citing the words of Mikolov et al.
(2013a), “it was shown for example that vector(”King“) - vector(”Man“) +
vector(”Woman“) results in a vector that is closest to the vector representa-
tion of the word Queen”. This property, allowed their authors to use these
representations in scenarios in which the word was never seen before, but its

19Navigli and Ponzetto (2012a) employed a sliding window of 40 words as context.
20The distributed representations, also known as continuous representations or embed-

dings, represent information (e.g. words or concepts) using vectors of floating numbers.
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context is the most adequate, e.g. tasks of sentence completion. In this work
we aim at measuring the strength of association between concepts modelling
their representing context using distributed representations. We introduce a
new weighting scheme based on the generation of distributed representations
of concepts. In order to generate our distributed representations of concepts,
we exploit the high-quality definitions provided by the BabelNet’s synsets
(i.e., glosses21) and the Skip-gram model.

Preamble and definitions The continuous Skip-gram model (Mikolov et al.,
2013a,b) is an iterative algorithm which attempts to maximise the classifica-
tion of the context surrounding a word. Formally, given a word wt and its
surrounding words wt−c, wt−c+1, ..., wt+c inside a window of size 2c + 1,
the goal is to maximise the average of the log probability:

1
T

T

∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt) (3.4)

Although p(wt+j|wt) can be estimated using the softmax function (Barto,
1998), its normalisation depends on the vocabulary size W which makes
its usage impractical for high values of W. For this reason, more compu-
tationally efficient alternatives are used instead. In this work we used the
negative sampling (Mikolov et al., 2013b), a simplified version of the Noise
Contrastive Estimation (NCE) (Gutmann and Hyvärinen, 2012; Mnih and
Teh, 2012), which basically uses logistic regression to distinguish the target
word from a noise distribution, having k negative samples for each word.
Experimental results in Mikolov et al. (2013b) showed that the negative sam-
pling offers better results at semantic level compared to NCE and Hierarchi-
cal softmax (Morin and Bengio, 2005). Sentence vectors (SenVec) (Le and
Mikolov, 2014) follow Skip-gram model to train a special vector~v represent-
ing a complete sentence. Basically, the model uses all words in the sentence
as context to train the vector representing its content. In contrast, the origi-
nal Skip-gram model employs a fixed size window to determine the context
(surrounding words) of the iterated words of a sentence. Next we detail the

21Although the approach described in Section 3.3.3.1 only uses the glosses provided in
BabelNet for WordNet synsets, our weighting scheme is based on the most recent versions
of the semantic network, which include also glosses for Wikipedia, OmegaWiki, Wiktionary,
and Wikidata-derived synsets.
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four-step method we used for weighting the BabelNet semantic relations us-
ing the continuous Skip-gram and SenVec models:

(i) Getting high-confidence word vectors The first step consists in ob-
taining a collection of vectors of words ~VW from encyclopedic knowledge
using the Skip-gram model.22 ~VW will provide a precise and accurate rep-
resentation of the type of context we are interested in modelling, i.e., sense
definitions. For this purpose we used the complete Wikipedia dump23 of
January 2015 and extracted vectors for ∼15 million of words.

(ii) Generating distributed representations of glosses Next, for all En-
glish glosses24 available in BabelNet, we employ SenVec to generate their
distributed representations ~VG. The ~VW collection is used as input word
vectors in order to provide the glosses with enough context to generate rep-
resentative vectors. The ~VG collection contains 3,857,795 gloss vectors.

(iii) Generating distributed representations of concepts (synsets) Ba-
belNet provides a gloss for each available source (WordNet, Wikipedia, OmegaWiki,
etc.) and it is very frequent to have more than one gloss per synset. We
take advantage of this observation by generating vectors for all glosses, in-
dependently of their source. We get the final representation ~vs of a synset
s by averaging all its available gloss vectors: ~vs = n−1 ∑n

i=1~vg(s)i, where
(~vg(s)1,~vg(s)2, ...,~vg(s)n) ∈ ~VG are all gloss vectors available for the synset
s. This averaging of distributed vectors has been successfully applied in the
past for classification tasks (Franco-Salvador et al., 2015c,d; Le and Mikolov,
2014).

22We used 300-dimensional vectors, context windows of size 8, and 25 negative words
for each sample. We preprocessed the text with lowercased word, tokenisation, and removing
the words of unit length. We used the same configuration for the SenVec vectors.

23https://en.wikipedia.org/wiki/Wikipedia:Database_download
24The multilingualism of BabelNet synsets allows to obtain multilingual vector represen-

tations using only English glosses.

https://en.wikipedia.org/wiki/Wikipedia:Database_download
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Figure 3.3. Distribution of relation weights in BabelNet using distributed concept weighting.

(iv) Weighting BabelNet’s semantic relations Finally, in order to com-
pute the strength of each pair of synsets (s, s′) with a semantic relation in
BabelNet, we use the cosine distance between the synset vectors ~vs and ~vs′ :

Semantic Relatedness(s, s′) =
~vs ·~vs′

‖~vs‖‖~vs′‖
(3.5)

In Figure 3.3 we can see a histogram with the distribution of the weights
of the relations of BabelNet using our new weighting scheme. Note that we
weighted ∼172 million of semantic relations compared to the ∼15 million
of relations originally weighted with the method described in Section 3.3.3.1.
In addition, if we observe Figure 3.2, we can appreciate differences in the
weight distributions. Ours is more similar to a Gaussian distribution, whereas
the former seems to fit a decreasing logarithmic scale. In our evaluation, we
refer to the CL-KGA model that employs the proposed weighting scheme
using the “Distributed Concept Weighting” (DCW) tag.
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3.3.4 CHARACTERISTICS OF THE KNOWLEDGE GRAPHS

Knowledge graphs have several implicit characteristics that make them ad-
equate for NLP tasks related to similarity analysis such as CL plagiarism
detection. These characteristics have been used by the CL-KGA model in
the past, but they have never been analysed independently for a CL plagia-
rism detection perspective. In this work we aim at studying the most relevant
ones: WSD, vocabulary expansion, language independence, and representa-
tion of text using a multilingual collection of concepts.

3.3.4.1 Word Sense Disambiguation

Knowledge graphs have been successfully used in the past to perform WSD (Nav-
igli and Ponzetto, 2012a). As we stated, the graphs created in Section 3.3.2
contain a set of SK synsets for each <lemma,tag> tuple extracted from an
original text fragment d. However, only one of these synsets corresponds to
the disambiguation of the tuple. That means that we are introducing paths
between synsets which are not real senses of the meaning of d. The original
CL-KGA model kept all candidate synsets of the tuples and the intermediate
paths in order to counterbalance possible errors that may be produced if we
keep only the disambiguation synsets. We assumed that if there is enough
context in d, the knowledge graph G will contain a considerably higher con-
cept mass surrounding the real concepts representing the text d and the error
will be reduced. In order to validate our theory, we introduce three additional
graph variations:

(i) Knowledge graphs restricted to disambiguation source synsets These
graphs use Equation 3.6 to select the disambiguation sWSD among the SK
synsets of each tuple, where score(s) is the outdegree of the synset s in the
graph G. Then we filter the path set P which created the graph G, and keep
only those paths which contain a disambiguation synset as starting and end-
ing point. As a result we obtain the filtered graph G f where we will remove
the noise provided for the concepts which are not related to the original text
d. We use the “WSD path filter” tag to refer to this model in the evaluation.

sWSD = arg max
s∈SK

score(s) (3.6)
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(ii) Knowledge graphs for extracting weighted disambiguations Using
the knowledge graph G f , this representation removes the intermediate con-
cepts between source synsets, i.e., we use the knowledge graphs only to dis-
ambiguate d and discard the vocabulary expansion. However, we keep the
original weights of the concepts of the graph G f , which are generated using
the vocabulary expansion. We use the “WSD concepts” tag to refer to this
model in the evaluation.

(iii) Knowledge graphs for extracting bag-of-words of disambiguations
Similarly to the previous model, we extract the disambiguations by keeping
only the source synsets of the knowledge graph G f . In contrast, in order
to analyse if the weighting produced when keeping only disambiguations is
noisy, we include these disambiguation concepts in a bag-of-words without
weights. We use the “WSD concepts w/o weighting” tag to refer to this
model in the evaluation.

3.3.4.2 Vocabulary Expansion

The vocabulary expansion of the knowledge graphs is an interesting charac-
teristic to study in CL plagiarism detection. When plagiarising, the text is
often obfuscated via paraphrasing. The use of knowledge graphs allows to
relate the original concepts of a text, including also intermediate concepts
between them. If the text has been modified, it is quite likely having an
intersection between the expanded concepts of the original text and the pla-
giarised one. This vocabulary expansion has proved to be useful in tasks such
as sentiment analysis (Franco-Salvador et al., 2015b). In the evaluation we
will compare the performance using vocabulary expansion for CL plagiarism
detection using the models introduced in Section 3.3.4.1.

3.3.4.3 Language Independence

As we mentioned at the beginning of Section 3.3, using BabelNet to generate
knowledge graphs allows to compare them directly despite being generated
from texts in different languages. This is possible because the multilingual
dimension of the BabelNet’s concepts. To illustrate this, let us describe an
example. When we query BabelNet with the English word “plagiarism”, the
first two sense ID’s we obtain are plagiarism#n#1 — “A piece of writing
that has been copied from someone else and is presented as being your own
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plagiarism#n#1 person#n#1 tagger#n#1 text#n#1

writing#n#2plagiarism#n#2

matter#n#6

paragraph#n#1

WIKI:EN:Plagiarism_(album)

WIKI:EN:Plagiarism_(EP)

WIKI:EN:Text_&_Talk

WIKI:EN:TEXT

textbook#n#1

WIKI:EN:TxT_(film)

text#n#2

Figure 3.4. Knowledge graph built from the English sentence “text with plagiarism” (source
words: (“text#n”,“plagiarism#n”)). The coloured nodes are the different senses of the original
words.

plagiarism#n#1 person#n#1 tagger#n#1 text#n#1

writing#n#2plagiarism#n#2

matter#n#6

paragraph#n#1

textbook#n#1

text#n#2

WIKI:EN:TEXT

Figure 3.5. Knowledge graph built from the Spanish sentence “texto con plagio” (source
words: (“texto#n”,“plagio#n”)).

work” —, and plagiarism#n#2 — “The act of plagiarizing; taking someone’s
words or ideas as if they were your own”. If we query now BabelNet with the
Spanish word “plagio” (plagiarism), we get exactly the same two sense ID’s
on top of the results. If we observe the words contained inside the senses,
we can see that BabelNet employed lexicalizations of the senses in different
languages to match our query. In Figures 3.4 and 3.5 we can see the knowl-
edge graphs obtained for the English sentence “text with plagiarism” and
its translation into Spanish. As can be seen, both graphs share the same core
concepts and can be compared directly with some graph similarity algorithm.
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3.3.4.4 Representation of Text using a Multilingual Collection of Concepts

We are interested in analysing the analogies of our knowledge graph-based
model with CL-ESA.25 Both represent text using a collection of multilingual
concepts. In addition, the concept inventory and the multilingual dimension
is extracted (not completely in our case) using Wikipedia.26 Finally, in the
worst case, if our model has not enough context to generate a representative
knowledge graph, we will have a non-related (and possibly dense) collection
of multilingual concepts. In that case, it is possible that our model would pro-
duce a similar “wrong” collection of concepts for both languages and would
exploit the similarities between them to counterbalance the conceptual and
relational errors, i.e., in a similar way to the nature of CL-ESA. However,
the differences do not go beyond. We employ a multilingual semantic net-
work to extract the concepts of a text and, in order to model its context, we
use knowledge graphs to expand and relate these concepts. In contrast, CL-
ESA employs a collection of Wikipedia pages as concepts, and computes the
similarities directly with the original text. This method allows to model the
context but it is not computing relatedness between concepts and nor expand-
ing the vocabulary or performing WSD. Finally, the fixed collection of pages
that CL-ESA employs (several thousands compared to the millions of Babel-
Net) is restricting the concept inventory and the possibility of modelling the
context exploiting the analogies with concepts. In Section 3.5 we compare
our model with CL-ESA to show the differences in performance at detecting
CL plagiarism.

3.4 Cross-language Knowledge Graph Analysis (CL-KGA)

In this section we describe more in detail the CL-KGA model for CL pla-
giarism detection. We discuss the original description of Franco-Salvador
et al. (2013a) and the algorithm for the detailed analysis and postprocess-
ing of similarities between text fragments. Given a source document dL in
a language L and a suspicious document d′L′ in a language L′, we compare
documents in a four-step process:

(i) Segmentation into text fragments In order to detect plagiarised sec-
tions of text between the documents dL and d′L′ , we first segment them to

25Most of our statements are valid also for ESA.
26We assume a classical CL-ESA model based on Wikipedia.
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obtain the sets of fragments FL and F′L′ . We use a 5-sentence sliding window
with a 2-sentence step to make the segmentation into fragments.

(ii) Creation of knowledge graphs We next use the method described in
Section 3.3.2 to create the graph collections GC and GC′ of the text frag-
ments FL and F′L′ . At this point the language tag has been removed due to the
graph multilingualism.

(iii) Comparison of knowledge graphs For each pair of graphs (G, G′),
G ∈ GC and G′ ∈ GC′, we adapt the algorithm of Montes y Gómez et al.
(2001) to compare their similarity and to obtain the set of similarities SG
between graph pairs. We calculate the similarity between the concepts in the
two graphs using Dice’s coefficient:

Sc(G, G′) =

2 ·∑
c∈V(G)∩V(G′)

w(c)

∑
c∈V(G)

w(c) + ∑
c∈V(G′)

w(c)
, (3.7)

where w(c) is the weight of a concept c (see Section 3.3.2). Likewise, we
calculate the similarity between the relations as:

Sr(G, G′) =

2 ·∑
r∈E(G)∩E(G′)

w(r)

∑
r∈E(G)

w(r) + ∑
r∈E(G′)

w(r)
, (3.8)

where w(r) is the weight of a semantic relation r (see Section 3.3.3). We in-
terpolate27 the two above measures of conceptual (Sc) and relational (Sr) sim-
ilarity to obtain an integrated measure Sg(G, G′) between knowledge graphs:

Sg(G, G′) = a · Sc(G, G′) + b · Sr(G, G′), (3.9)

where a and b, a + b = 1, are the parameters of the relevance of concepts
and relations respectively. In Figure 3.6 we can see the differences among

27The original CL-KGA combined Sc and Sr with Sg(G, G′) = Sc(G, G′)(a + b ·
Sr(G, G′). However, we observed that the current equation allows to ease the tuning of
relevance of concepts and relations without affecting the performance.
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Figure 3.6. Toy example to illustrate the capability of detection of the CL-KGA model
compared to the CL-ASA and the CL-C3G models. Higher intersection of same-coloured
boxes between languages represents a higher potential plagiarism case retrieval.

CL-KGA, CL-C3G, and CL-ASA when detecting CL plagiarism. Thanks to
the aforementioned characteristics (see Section 3.3.4), the use of knowledge
graphs allows to detect similarity even when the paraphrasing is employed
and the languages are not syntactically and semantically related. Note that
the procedure described so far is the basic model of the candidate retrieval
task (Barrón-Cedeño et al., 2013; Potthast et al., 2011a), which needs a de-
tailed analysis component to detect plagiarism cases.

(iv) Detailed analysis and postprocessing of similarities Once we ob-
tain the set SG with the similarities between the text fragments of the doc-
uments dL and d′L′ , we employ the method introduced in Barrón-Cedeño
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Algorithm 3.1 Detailed analysis and postprocessing.

Input: the set of similarities SG = {Sg(G, G′)} between all the pairs of
graphs (G, G′), G ∈ GC and G′ ∈ GC′

Output: PlagCases, a set containing the offsets of all the identified cases of
plagiarism

1: PlagCases← {}
2: for each G ∈ GC do # Detailed analysis
3: PG ←argmax5

G′∈GC′Sg(G, G′)
4: repeat # Postprocessing
5: for each combination of pairs p ∈ PG do
6: if δ(pi, pj) < thres1 then
7: merge_fragments(pi, pj)
8: until no change
9: PlagCases = PlagCases∪ {offsets(p ∈ PG | |p| > thres2)}

10: return PlagCases

(2012) and Barrón-Cedeño et al. (2013) to analyse the values and determine
which fragments of text are cases of plagiarism. This method was originally
designed to process the similarity scores of CL-ASA and CL-CNG and it is
described in Algorithm 3.1. Basically, for each text fragment of dL we obtain
PG, i.e., the top 5 most similar fragments of document d′L′ (line 3). Then, we
start an iterative process until convergence that merges the fragments of PG
with a distance δ lower than a threshold thres1 (lines 6-7). Finally, we select
as plagiarism the cases which combine more than thres2

28 text fragments
(line 9). The function offsets(·) provides with the beginning and end offsets
of the plagiarism case. This algorithm has been used for evaluating all the
models compared in the evaluation section.

3.5 Evaluation

In this section we compare the different variants of our CL-KGA model with
several state-of-the-art approaches in the task of CL plagiarism detection.
Given a suspicious document dL in a language L and a collection of source

28In this work we used the original thresholds employed in Barrón-Cedeño (2012)
and Barrón-Cedeño et al. (2013): thres1 = 1, 500 and thres2 = 2.
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documents D′L′ in a language L′, the task is to identity all the plagiarised
fragments of dL from the document collection D′L′ .

3.5.1 DATASETS

To evaluate our model we selected the datasets employed for the CL plagia-
rism detection competition of PAN at CLEF.29 The two available datasets,
PAN-PC-1030 and PAN-PC-11,31 contain the used Spanish-English (ES-EN)
and German-English (DE-EN) partitions. Both datasets contain plagiarism
cases generated using machine translation with Google translate.32 In addi-
tion, PAN-PC-11 contains also cases of plagiarism with manual correction
after automatic translation. These cases are CL paraphrasing cases of plagia-
rism. We selected the complete PAN-PC-10 dataset to perform the compar-
ison of the CL-KGA weighting schemes and the tuning of our parameters.
Then, we used the PAN-PC-11 dataset to perform the evaluation of the CL-
KGA model and the comparison with the state-of-the-art. In Table 3.1 we
can see the statistics of the datasets.

3.5.2 METHODOLOGY

As evaluation metric we selected the measures employed at the PAN shared
task: precision, recall, granularity, and plagdet (Potthast et al., 2010b). Let S
denote the set of plagiarism cases in the suspicious documents, and let R de-
note the set of plagiarism detections the detector reports for these documents.
A plagiarism case s ∈ S represents a reference to the characters that form
that case. Likewise, a plagiarism detection r ∈ R is represented as r. Based
on these representations, the precision and the recall at character level of R
under S are measured as follows:

precision(S, R) =
1
|R| ∑

r∈R

|⋃s∈S(s u r)|
|r| ; (3.10)

29http://www.clef-initiative.eu/
30http://www.uni-weimar.de/en/media/chairs/webis/corpora/

corpus-pan-pc-10/
31http://www.uni-weimar.de/en/media/chairs/webis/corpora/

corpus-pan-pc-11/
32https://translate.google.com/

http://www.clef-initiative.eu/
http://www.uni-weimar.de/en/media/chairs/webis/corpora/corpus-pan-pc-10/
http://www.uni-weimar.de/en/media/chairs/webis/corpora/corpus-pan-pc-10/
http://www.uni-weimar.de/en/media/chairs/webis/corpora/corpus-pan-pc-11/
http://www.uni-weimar.de/en/media/chairs/webis/corpora/corpus-pan-pc-11/
https://translate.google.com/
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PAN-PC-10

ES-EN documents DE-EN documents

Suspicious 277 Suspicious 280
Source 187 Source 414

Plagiarism cases {ES,DE}-EN

Automatic translation 9,598

PAN-PC-11

ES-EN documents DE-EN documents

Suspicious 304 Suspicious 251
Source 202 Source 348

Plagiarism cases {ES,DE}-EN

Automatic translation 5,142
Automatic translation + Manual correction 433

Table 3.1. Statistics of PAN-PC-10 and PAN-PC-11 cross-language plagiarism detection
partitions.

recall(S, R) =
1
|S| ∑s∈S

|⋃r∈R(s u r)|
|s| , (3.11)

where s u r = s ∩ r if r detects s and ∅ otherwise. Note that precision and
recall do not account for the fact that plagiarism detectors sometimes report
overlapping or multiple detections for a single plagiarism case. To address
this issue, we also measured the detector’s granularity:

granularity(S, R) =
1
|SR| ∑

s∈SR

|Rs|, (3.12)

where SR ⊆ S are cases detected by detectors in R, and Rs ⊆ R are detec-
tions of S, i.e., SR = {s|s ∈ S ∧ ∃r ∈ R : r detects s} and Rs = {r|r ∈
R ∧ r detects s}. The three previous measures were integrated together in
order to obtain an overall score for plagiarism detection (plagdet):

plagdet(S, R) =
F1(S, R)

log2(1 + granularity(S, R))
(3.13)
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System Description
(a) CL-KGA (BabelNet 1.0) Results of cross-language knowledge graph analysis using Babel-

Net 1.0 and the classical weighting.
CL-ASA Cross-language alignment based similarity analysis.
CL-ESA Cross-language explicit semantic analysis.
CL-C3G Cross-language character n-gram.

(b) statDict Translate all words with a statistical dictionary and apply Dice’s
coefficient to compare.

POS + statDict statDict with a POS tagging and lemmatization preprocessing.
POS + statDict + MFS Same as previous but disambiguating words using the most fre-

quent sense baseline.

(c) CL-KGA CL-KGA using classical weighting (See Section 3.3.3.1).
CL-KGA (DCW) CL-KGA using the distributed concept weighting (see Sec-

tion 3.3.3.2).
CL-KGA (WSD path filter) CL-KGA keeping only paths related to WSD concepts (see Sec-

tion 3.3.4.1).
CL-KGA (WSD concepts) CL-KGA keeping only weighted WSD concepts (see Sec-

tion 3.3.4.1).
CL-KGA (WSD concepts w/o weighting) CL-KGA keeping only a BOW of WSD concepts (see Sec-

tion 3.3.4.1).
CL-KGA (DCW) (WSD concepts w/o weighting) Same as previous using the distributed concept weighting.

Table 3.2. Models compared in the evaluation: (a) state-of-the-art approaches; (b) baselines;
(c) proposed CL-KGA model and variants (using BabelNet 2.5).

We compared our CL-KGA model with the state-of-the-art CL-ESA,33

CL-ASA34 and CL-C3G models.35 We included also the results obtained
previously by the original CL-KGA (Franco-Salvador et al., 2013a) — CL-
KGA (BabelNet 1.0) from here —, and those obtained by the CL-KGA vari-
ations introduced in Section 3.3.4.1: CL-KGA (WSD path filter), CL-KGA
(WSD concepts), and CL-KGA (WSD concepts w/o weighting). We showed
the results of our model using the distributed concept weighting for the CL-
KGA model and also for its better performing variant when employing the
classic weighting. We introduced also three baselines: (i) statDict, which
used a statistical dictionary — the same used by CL-ASA — to obtain all

33We used 10,000 Spanish-German-English comparable Wikipedia pages as document
collection. All pages contain more than 10,000 characters and were represented using the
term frequency-inverse document frequency (TF-IDF) weighting. The similarities are com-
puted using the cosine similarity and the IDF of the words of the documents to index is
calculated from Wikipedia.

34We used a statistical dictionary trained using the word-alignment model IBM M1 (Och
and Ney, 2003) on the JRC-Acquis (Steinberger et al., 2006) corpus. Similar performance for
Spanish-English is obtained using BabelNet as statistical dictionary (Franco-Salvador et al.,
2012), but not for German-English.

35CL-C3G is CL-CNG using character 3-grams, as recommended in Potthast et al.
(2011a).
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possible translations of each word. A BOW representation was obtained for
each text fragment.36 Text fragments were compared using the Dice’s coef-
ficient; (ii) POS + statDict, same as statDict but using TreeTagger to POS
tag and lemmatize words before translation; and (iii) POS + statDict + MFS,
which additionally used the Most Frequent Sense (MFS) baseline37 to dis-
ambiguate the words before generating the BOW. In Table 3.2 we can find a
summary of all the models included in the evaluation.

The experiments were divided into three subsections: (i) in Section 3.5.3
we used the PAN-PC-10 dataset to perform the comparison and tuning of the
CL-KGA weighting schemes of semantic relations; (ii) in Section 3.5.4 we
compared the different variants of CL-KGA and studied the characteristics
of the model using the PAN-PC-11 dataset; and (iii) in Section 3.5.5 we
compared our model with the state of the art, evaluating the performance
when detecting the CL plagiarism cases of the PAN-PC-11 dataset. In this
last section we also studied the performance on exclusively the CL cases with
paraphrasing, and compared the computational efficiency of the models.

3.5.3 EVALUATION OF CL-KGA WEIGHTING SCHEMES FOR SEMAN-
TIC RELATIONS

In this section we compared the classical graph weighting for semantic rela-
tions based on Dice’s coefficient (cf. Section 3.3.3.1) and the new method
using distributed representations of concepts (cf. Section 3.3.3.2). We used
these experiments to optimize also the parameters of the CL-KGA model.38

For these experiments we used the Spanish-English and German-English par-
titions of PAN-PC-10 and measured the overall score of plagiarism detection,
i.e., plagdet.

First, for each weighting scheme, we determined the threshold to con-
sider that the concepts of the knowledge graphs are semantically related (cf.
Section 3.3.2). Next, we selected the values of relevance for concepts and
relations used with CL-KGA (cf. Section 3.4) for both weightings.

36By generating a BOW with all possible translations, we attempted to counterbalance
possible errors introduced when using a statistical dictionary for translating.

37Basically, for each word it provides the first sense suggested by WordNet, which repre-
sents the most frequent use of that word.

38Since all the CL-KGA variants share the same basic structure and graphs, we used the
same parameters for all of them.
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Figure 3.7. Plagdet score in PAN-PC-10 dataset in function of the threshold between rela-
tions.

To determine the threshold of the semantic relations, we tested values
between 0.001 and 1.39 In Figure 3.7 we can see the results of the exper-
iments. For the model using the classical weighting, we obtained the best
results with the minimum threshold: 0.001. Similar results were obtained
using 0.005 as in previous works. In this case, because of the low number of
weighted edges, augmenting the threshold considerably reduced the connec-
tivity of the graphs and, consequently, the plagdet. In contrast, the CL-KGA
model using DCW had 0.5 as optimal value in both language pairs, with
close results using values between 0.3 and 0.7. The DCW scheme was less
sensitive to the threshold value, probably because the higher number of rela-
tions contained in the graphs, and remained stable with a strong decreasing
for high thresholds. We assume that the key concepts of the graphs were
present and connected until those values were higher than 0.8. In contrast

39We start at 0.001 because a value of zero would suppose using all the relations of Ba-
belNet and would generate too much dense and noisy graphs. For the DCW weighting we
started using 0.3 as threshold because lower values were computationally very expensive. In
this experiment, we set the values of relevance for concepts and relations to 50-50%.
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Figure 3.8. Plagdet score in the PAN-PC-10 dataset as function of percentage of relevance
of concepts and relations.

to the results shown in the next section using PAN-PC-11, the PAN-PC-10
dataset provided better results on the German-English partition.

To select the values of relevance of concepts and relations, we modi-
fied the percentage of relevance between 0% and 100% for both parameters.
Figure 3.8 shows the results of these experiments. We observed a similar
trend using both weighting schemes. The best values were obtained for
equal relevance for concepts and relations, with similar values for the close
percentages, excluding German-English with the classical weighting, which
obtained the best values using a 60-40% distribution. These results show
that CL-KGA benefits both from the weight of the concepts and the rela-
tions to detect CL plagiarism. Note that our DCW scheme obtained better
performance on each language pair in all the tested configurations. The use
of distributed representations to model concepts benefited our model with a
more accurate and human interpretable40 semantic relation weights.

40By “human interpretable” we refer to the values of the weights, that have in 50% the
optimal value to consider that a relation is semantically related.



3.5.4. EVALUATION OF THE CL-KGA VARIANTS AND CHARACTERISTICS 73

System Plagdet Recall Precision Granularity
CL-KGA (BabelNet 1.0) 0.594 0.518 0.705 1.008
CL-KGA 0.619 0.558 0.699 1.000
CL-KGA (DCW) 0.651 0.574 0.752 1.000
CL-KGA (WSD path filter) 0.598 0.521 0.707 1.005
CL-KGA (WSD concepts) 0.464 0.408 0.655 1.119
CL-KGA (WSD concepts w/o weighting) 0.646 0.571 0.744 1.000
CL-KGA (DCW) (WSD concepts w/o weighting) 0.663 0.588 0.761 1.000

Table 3.3. Results of PAN-PC-11 Spanish-English partition using the CL-KGA variants.

Finally, we highlight also the difference in size (number of concepts) of
the knowledge graphs using the classical or the DCW schemes. Using the
optimal parameters determined in this section, a graph using the first weight-
ing had on average 1,384 concepts. In contrast, using DCW graphs were
much dense, containing on average 17,495 concepts. This was produced for
the high number of weighted edges available when using DCW and may
be reduced using a higher relation threshold if the computational speed is a
priority.

We used also PAN-PC-10 to tune the threshold employed by CL-ESA to
make zero the low similarity scores of a text with a Wikipedia page. The best
results were obtained with 0.01. In the next section, we used the best values
obtained here for each language pair and model.

3.5.4 EVALUATION OF THE CL-KGA VARIANTS AND CHARACTERIS-
TICS

In this section we used the Spanish-English and German-English partitions
of the PAN-PC-11 to compare the proposed variants (cf. Section 3.3.3.1,
3.3.3.2 and 3.3.4.1) of the CL-KGA model and study the characteristics of
our approach.

In Table 3.3 we show the results for Spanish-English. The new experi-
ments with the CL-KGA variants achieved interesting results. Despite using
the same weighting, CL-KGA improved the results obtained using Babel-
Net 1.0. This difference is due to the new relations between concepts, and
the new lexicalizations for WordNet verbs, adjectives, and adverbs in Span-
ish inside BabelNet 2.5, which were only in English in the previous exper-
iments (Franco-Salvador et al., 2013a). Similarly to the results with PAN-
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System Plagdet Recall Precision Granularity
CL-KGA (BabelNet 1.0) 0.514 0.443 0.631 1.017
CL-KGA 0.520 0.460 0.601 1.003
CL-KGA (DCW) 0.564 0.495 0.65 1.000
CL-KGA (WSD path filter) 0.508 0.434 0.644 1.028
CL-KGA (WSD concepts) 0.324 0.276 0.531 1.174
CL-KGA (WSD concepts w/o weighting) 0.586 0.508 0.692 1.000
CL-KGA (DCW) (WSD concepts w/o weighting) 0.595 0.516 0.703 1.000

Table 3.4. Results of PAN-11 German-English partition using the CL-KGA variants.

PC-10 of Section 3.5.3, CL-KGA with the new weighting scheme based on
distributed representations of concepts, CL-KGA (DCW), obtained higher
results with a significant difference,41 and highlights the quality of the new
relation weights for computing semantic relatedness. Despite theoretically
providing with cleaner graphs, the version with WSD path filter was not able
to improve the results of CL-KGA although its results were close. This dif-
ference may be due to the wrong disambiguations and intermediate concepts
between them that we are keeping. Note that the use of knowledge graphs
to perform WSD offers an accuracy close to 70% (Navigli and Ponzetto,
2012a). The CL-KGA (WSD concepts), which keeps the WSD concepts and
removes the vocabulary expansion, reduced considerably the performance.
We observed that the problem was due to the weighting of the concepts,
which was estimated as a function of the outdegree of the complete graph.
The current variant, exclusively weighting the WSD concepts, offered too
sparse and unbounded values, which made it more difficult to be successfully
compared using Dice’s coefficient (cf. Section 3.3.2 and 3.4). We repeated
the experiments without weights for the conceptual similarity measure. That
model, CL-KGA (WSD concepts w/o weighting), obtained the best results
with the two weighting schemes for knowledge graphs. It seems that the use
of knowledge graphs to perform a multilingual WSD produced a specially
precise representation of the text fragments. If we analyse the need of vo-
cabulary expansion in knowledge graphs (cf. Section 3.3.4.2), we note that
this WSD exploits the expanded concepts to determine the disambiguations.
Therefore, although not using expanded concepts directly in the representa-
tion as CL-KGA, the vocabulary expansion is crucial for our model.

41In this work, statistically significant results of plagdet according to a χ2 test (p < 0.05)
were highlighted in bold.
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System Plagdet Recall Precision Granularity
(a) CL-KGA (BabelNet 1.0) 0.594 0.518 0.705 1.008

CL-ASA 0.517 0.448 0.689 1.070
CL-ESA 0.471 0.448 0.534 1.048
CL-C3G 0.170 0.127 0.616 1.372

(b) statDict 0.613 0.548 0.696 1.000
POS + statDict 0.632 0.558 0.730 1.000
POS + statDict + MFS 0.632 0.560 0.728 1.001

(c) CL-KGA 0.619 0.558 0.699 1.000
CL-KGA (DCW) 0.651 0.574 0.752 1.000
CL-KGA (WSD path filter) 0.598 0.521 0.707 1.005
CL-KGA (WSD concepts) 0.464 0.408 0.655 1.119
CL-KGA (WSD concepts w/o weighting) 0.646 0.571 0.744 1.000
CL-KGA (DCW) (WSD concepts w/o weighting) 0.663 0.588 0.761 1.000

Table 3.5. Results of PAN-PC-11 Spanish-English partition: (a) state-of-the-art approaches;
(b) baselines; (c) proposed approaches.

The results for German-English were a similar. In Table 3.4 we can ob-
serve the overall performance. Note that the best weighting scheme was the
DCW, and the best results were again with the WSD concepts w/o weighting
variant, which highlights the relevance of WSD in our model.

3.5.5 COMPARISON WITH THE STATE-OF-THE-ART

In this section we compare CL-KGA and its variants with several state-of-the-
art approaches and baselines (see Table 3.2) using the PAN-PC-11 dataset for
CL plagiarism detection.

In Table 3.5 we show the results obtained for Spanish-English. The low-
est results were obtained by CL-C3G. This is unsurprising if we consider
that Spanish and English do not share many lexical and syntactic similarities
— indispensable requirement for a high character n-gram overlap. The sec-
ond worst results were obtained by CL-ESA. The CL-ASA model obtained
a similar recall but with higher precision, resulting in a superior plagdet. It
seems that CL-ESA, based on similarities with a document collection, gave
a higher number of false positives. In fact, ESA was originally meant for
tasks of relatedness rather than plagiarism. The CL-KGA results obtained
previously using BabelNet 1.0 were the next in the ranking. Because of the
knowledge graphs, CL-KGA was able to model the text in a more precise
manner and provided better results in all measures. Note that the best pos-



76
CHAPTER 3. A SYSTEMATIC STUDY OF KNOWLEDGE GRAPH ANALYSIS FOR

CROSS-LANGUAGE PLAGIARISM DETECTION

System Plagdet Recall Precision Granularity
(a) CL-KGA (BabelNet 1.0) 0.514 0.443 0.631 1.017

CL-ASA 0.405 0.343 0.603 1.113
CL-ESA 0.336 0.293 0.466 1.101
CL-C3G 0.077 0.047 0.330 1.089

(b) statDict 0.553 0.469 0.683 1.007
POS + statDict 0.328 0.253 0.685 1.182
POS + statDict + MFS 0.347 0.271 0.687 1.175

(c) CL-KGA 0.520 0.460 0.601 1.003
CL-KGA (DCW) 0.564 0.495 0.653 1.000
CL-KGA (WSD path filter) 0.508 0.434 0.644 1.028
CL-KGA (WSD concepts) 0.324 0.276 0.531 1.174
CL-KGA (WSD concepts w/o weighting) 0.586 0.508 0.692 1.000
CL-KGA (DCW) (WSD concepts w/o weighting) 0.595 0.516 0.703 1.000

Table 3.6. Results of PAN-PC-11 German-English partition: (a) State-of-the-art approaches;
(b) baselines; (c) proposed approaches.

sible value of granularity is 1.0. However, the proposed baselines offered
higher performance. Despite the simplicity of statDict, even the basic vari-
ant — with higher results if we POS tag and lemmatize —, obtained a very
competitive performance. The disambiguation step using MFS improved
the results although without significant differences. The use of a statistical
dictionary to generate a BOW containing all the translations with equal rel-
evance, provided a simple but solid model against wrong translations. The
results with the CL-KGA variants provided significant differences and supe-
rior performance for the standard version with the proposed DCW scheme,
and even higher results for the CL-KGA (WSD concepts w/o weighting) vari-
ant. We can observe notable differences — specially with German-English
— compared to the other approach using WSD: POS + statDict + MFS. This
highlights the quality of the disambiguations using knowledge graphs. Note
also the differences in performance between the two models using a mul-
tilingual collection of concepts: CL-ESA and CL-KGA. These differences
were due to the characteristics of the models, which were studied in Sec-
tion 3.3.4.4: aimed at adjusting to the text words, our model has a variable
concept inventory. In addition, CL-KGA uses relatedness between concepts
and vocabulary expansion.

The differences between the models for German-English were similar
but with an overall and small performance reduction. In Table 3.6 we can
see the results. There are some interesting aspects to highlight. CL-C3G
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System Plagdet Recall Precision Granularity
(a) CL-KGA (BabelNet 1.0) 0.099 0.197 0.066 1.000

CL-ASA 0.061 0.150 0.038 1.000
CL-ESA 0.038 0.159 0.021 1.000
CL-C3G 0.028 0.058 0.019 1.000

(b) statDict 0.085 0.179 0.050 1.000
POS + statDict 0.135 0.236 0.732 1.000
POS + statDict + MFS 0.121 0.207 0.086 1.000

(c) CL-KGA 0.118 0.244 0.078 1.000
CL-KGA (DCW) 0.163 0.261 0.119 1.000
CL-KGA (WSD path filter) 0.102 0.223 0.066 1.000
CL-KGA (WSD concepts) 0.052 0.126 0.033 1.000
CL-KGA (WSD concepts w/o weighting) 0.149 0.258 0.104 1.000
CL-KGA (DCW) (WSD concepts w/o weighting) 0.167 0.264 0.122 1.000

Table 3.7. Results of PAN-PC-11 Spanish-English partition, evaluating only paraphrasing
cases: (a) State-of-the-art approaches; (b) baselines; (c) proposed approaches.

obtained even lower results than for Spanish-English. Although having the
same linguistic roots, these two Germanic languages do not share enough
lexical and syntactic similarities to model the content properly using charac-
ter n-grams. On the other hand, the variants of statDict using POS tagging
and lemmatization did not excelled as in Spanish-English. The use of the
TreeTagger tool introduced errors, which reduced the quality of the repre-
sentations. Note that the best results were with CL-KGA using our DCW
scheme and the WSD concepts w/o weighting variant. This proves that CL-
KGA is a competitive model for Spanish-English and German-English CL
plagiarism detection.

3.5.5.1 Detecting Cross-language Plagiarism Detection with Paraphrasing

As we mentioned in Section 3.5.1, the PAN-PC-11 dataset contains cases
of CL paraphrasing. This type of plagiarism is more difficult to detect be-
cause its text has been modified in order to hide the plagiarism action. We
were interested in observing the differences of the models when trying to
detect only those paraphrasing cases. We performed an additional experi-
ment to consider only paraphrasing cases as instances of plagiarism in the
corpus. In Tables 3.7 and 3.8 we can see the results. The differences in the
performance of all the models compared to the results obtained previously
using the complete dataset were substantial. We observed that most of these
paraphrasing cases were very short in length, and probably the use of Algo-



78
CHAPTER 3. A SYSTEMATIC STUDY OF KNOWLEDGE GRAPH ANALYSIS FOR

CROSS-LANGUAGE PLAGIARISM DETECTION

System Plagdet Recall Precision Granularity
(a) CL-KGA (BabelNet 1.0) 0.100 0.210 0.066 1.000

CL-ASA 0.046 0.097 0.030 1.000
CL-ESA 0.035 0.117 0.021 1.000
CL-C3G 0.018 0.038 0.012 1.000

(b) statDict 0.109 0.187 0.076 1.000
POS + statDict 0.064 0.113 0.044 1.000
POS + statDict + MFS 0.066 0.117 0.046 1.000

(c) CL-KGA 0.093 0.226 0.058 1.000
CL-KGA (DCW) 0.161 0.259 0.117 1.000
CL-KGA (WSD path filter) 0.100 0.201 0.067 1.000
CL-KGA (WSD concepts) 0.041 0.113 0.025 1.000
CL-KGA (WSD concepts w/o weighting) 0.165 0.264 0.120 1.000
CL-KGA (DCW) (WSD concepts w/o weighting) 0.171 0.269 0.125 1.000

Table 3.8. Results of PAN-PC-11 German-English partition, evaluating only paraphrasing
cases: (a) State-of-the-art approaches; (b) baselines; (c) proposed approaches.

System Text indexing Text similarity
(texts/second) (texts/second)

CL-ASA 1,741 3,627
CL-ESA 282 1,826
CL-C3G 3,547 2,761
statDict 2,492 2,593
CL-KGA 11 1,259
CL-KGA (DCW) 3 281
CL-KGA (WSD concepts w/o weighting) 9 5,685
CL-KGA (DCW) (WSD concepts w/o weighting) 3 5,827

Table 3.9. Comparison of time required to index and compare texts. Results are estimated
as the average for processing all the Spanish-English partition.

rithm 3.1, designed for longer cases, was the reason of this global quality
reduction. However, we can still appreciate that the differences among the
results of the models were similar at a smaller scale. CL-KGA obtained the
higher performance using DCW for the relations of the knowledge graphs.
In this experiments we did not observe such substantial differences between
CL-KGA (DCW) and CL-KGA (DCW) (WSD concepts w/o weighting), al-
though may be still appreciated for German-English.



3.5.5.2. EVALUATION OF THE COMPUTATIONAL EFFICIENCY 79

3.5.5.2 Evaluation of the Computational Efficiency

In order to select a model for CL plagiarism detection, its computational ef-
ficiency is a key aspect. The purpose and requirements of the system may
require a fast or an accurate model. In Table 3.9 we measured the number of
text fragments indexed and compared per second for each evaluated model
using the complete Spanish-English partition. These experiments were per-
formed using a Intel-i5@2.8Ghz with 16 GB of RAM. As we can see, CL-
KGA required considerably more time to index (or generate the graphs of)
text. This is due to the use of the BabelNet multilingual semantic network.
The 9,348,287 synsets and the ∼262 relations among them made the graph
generation a computationally expensive task. In addition, the use of DCW
made the graphs more dense and, consequently, they required more time
to be compared in the similarity step. Text indexing is usually part of the
preprocessing step, being the indexing of the new documents needed only
once. The text similarity step is the most important, and the two weight-
ing schemes using WSD concepts w/o weighting may be a solution. These
were the fastest models in calculating similarity because they only contain a
BOW of disambiguated words. In contrast, if the speed of indexing is crucial,
statDict offered a balance between performance and efficiency. Note that in
order to speed up graph indexing, parallel computing can be used, as we did
for our experiments.

3.6 Conclusions

In this paper we performed a systematic study of Cross-Language Knowl-
edge Graph Analysis, an approach that represents fragments of text using
knowledge graphs as a language independent model of its content. We stud-
ied the impact of relevant aspects of the model for the task of cross-language
plagiarism detection: word sense disambiguation, vocabulary expansion, lan-
guage independence and representation by similarities with a collection of
concepts. Experimental results showed that WSD is the essential component
of the model, being only necessary the use of vocabulary expansion during
the WSD processing. The differences between CL-ESA and CL-KGA —
the two models that exploit Wikipedia as multilingual collection of concepts
— favour the latter model, which thanks to the high coverage of BabelNet,
the vocabulary expansion and the concept relatedness employed, offered a
higher performance. In addition, we proposed a new weighting scheme of
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relations between concepts based on the use of distributed representations of
concepts. The use of this weighting provided our model with state-of-the-art
performance on the Spanish-English and German-English partitions of the
PAN-PC-11 dataset. The study of the model with cross-language paraphras-
ing cases proved also its superiority. However, a comparison of the compu-
tational efficiency of the models showed that our model is more adequate
when a fast document similarity is required and the indexing is performed in
a preprocessing step. In other situations, statDict — also introduced in this
paper — is the recommended solution due to its fast indexing and similarity
calculation, in addition to its high performance.

For future work we will continue exploring the use of knowledge graphs
and multilingual semantic networks for cross-language similarity tasks. The
use of semantic signatures allows to create a new type of knowledge graphs
which have been successfully used for multilingual WSD (Moro et al., 2014),
and will be studied in the future. The use of distributed representations will
also be investigated further. The generation of distributed representations of
concepts is only in its infancy, and works like SensEmbed, the study of Ale-
tras and Stevenson (2015), or this paper, could be extended for tasks such as
similarity analysis, conceptual relatedness or WSD.
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This chapter of the thesis presents the knowledge-based document sim-
ilarity model. It is a modified version of our CL-KGA model, that comple-
ments it with a vector-based representation in order to cover graph shortcom-
ings such as out-of-vocabulary words and verbal tenses. We evaluate and
compare it with the state of the art in the tasks of cross-language document
retrieval and categorization.
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Abstract

Current approaches to cross-language document retrieval and cat-
egorization are based on discriminative methods which represent doc-
uments in a low-dimensional vector space. In this paper we propose
a shift from the supervised to the knowledge-based paradigm and pro-
vide a document similarity measure which draws on BabelNet, a large
multilingual knowledge resource. Our experiments show state-of-the-
art results in cross-lingual document retrieval and categorization.

4.1 Introduction

The huge amount of text that is available online is becoming ever increas-
ingly multilingual, providing an additional wealth of useful information. Most
of this information, however, is not easily accessible to the majority of users
because of language barriers which hamper the cross-lingual search and re-
trieval of knowledge.

Today’s search engines would benefit greatly from effective techniques
for the cross-lingual retrieval of valuable information that can satisfy a user’s
needs by not only providing (Landauer and Littman, 1994) and translating
(Munteanu and Marcu, 2005) relevant results into different languages, but
also by reranking the results in a language of interest on the basis of the
importance of search results in other languages.

Vector-based models are typically used in the literature for representing
documents both in monolingual and cross-lingual settings (Manning et al.,
2008). However, because of the large size of the vocabulary, having each
term as a component of the vector makes the document representation very
sparse. To address this issue several approaches to dimensionality reduc-
tion have been proposed, such as Principal Component Analysis (Jolliffe,
1986), Latent Semantic Indexing (Hull, 1994), Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and variants thereof, which project these vectors
into a lower-dimensional vector space. In order to enable multilinguality, the
vectors of comparable documents written in different languages are concate-
nated, making up the document matrix which is then reduced using linear
projection (Platt et al., 2010; Yih et al., 2011). However, to do so, compara-
ble documents are needed as training. Additionally, the lower dimensional
representations are not of easy interpretation.
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The availability of wide-coverage lexical knowledge resources extracted
automatically from Wikipedia, such as DBPedia (Bizer et al., 2009), YAGO
(Hoffart et al., 2013) and BabelNet (Navigli and Ponzetto, 2012a), has con-
siderably boosted research in several areas, especially where multilinguality
is a concern (Hovy et al., 2013). Among these latter are cross-language
plagiarism detection (Franco-Salvador et al., 2013a; Potthast et al., 2011a),
multilingual semantic relatedness (Nastase and Strube, 2013; Navigli and
Ponzetto, 2012b) and semantic alignment (Matuschek and Gurevych, 2013;
Navigli and Ponzetto, 2012a). One main advantage of knowledge-based
methods is that they provide a human-readable, semantically interconnected,
representation of the textual item at hand (be it a sentence or a document).

Following this trend, in this paper we provide a knowledge-based repre-
sentation of documents which goes beyond the lexical surface of text, while
at the same time avoiding the need for training in a cross-language setting.
To achieve this we leverage a multilingual semantic network, i.e., Babel-
Net, to obtain language-independent representations, which contain concepts
together with semantic relations between them, and also include semantic
knowledge which is just implied by the input text. The integration of our
multilingual graph model with a vector representation enables us to obtain
state-of-the-art results in comparable document retrieval and cross-language
text categorization.

4.2 Related Work

The mainstream representation of documents for monolingual and cross-
lingual document retrieval is vector-based. A document vector, whose com-
ponents quantify the relevance of each term in the document, is usually
highly dimensional, because of the variety of terms used in a document col-
lection. As a consequence, the resulting document matrices are very sparse.
To address the data sparsity issue, several approaches to the reduction of di-
mensionality of document vectors have been proposed in the literature. A
popular class of methods is based on linear projection, which provides a low-
dimensional mapping from a high dimensional vector space. A historical ap-
proach to linear projection is Principal Component Analysis (PCA) (Jolliffe,
1986), which performs a singular value decomposition (SVD) on a document
matrix D of size n × m, where each row in D is the term vector represen-
tation of a document. PCA uses an orthogonal transformation to convert a
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set of observations of possibly correlated variables into a set of values of lin-
early uncorrelated variables called principal components, which make up the
low-dimensional vector. Latent Semantic Analysis (LSA) (Deerwester et al.,
1990) is very similar to PCA but performs the SVD using the correlation ma-
trix instead of the covariance matrix, which implies a lower computational
cost. LSA preserves the amount of variance in an eigenvector ~v by maximiz-
ing its Rayleigh ratio: ~vTC~v

~vT~v , where C = DTD is the correlation matrix of
D.

A generalization of PCA, called Oriented Principal Component Analysis
(OPCA) (Diamantaras and Kung, 1996), is based on a noise covariance ma-
trix to project the similar components of D closely. Other projection models
such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) are based on the
extraction of generative models from documents. Another approach, named
Explicit Semantic Analysis (ESA) (Gabrilovich and Markovitch, 2007), rep-
resents each document by its similarities to a document collection. Using
a low domain specificity document collection such as Wikipedia, the model
has proven to obtain competitive results.

Not only have these methods proven to be successful in a monolingual
scenario (Deerwester et al., 1990; Hull, 1994), but they have also been adapted
to perform well in tasks at a cross-language level (Platt et al., 2010; Pot-
thast et al., 2008; Yih et al., 2011). Cross-language Latent Semantic Index-
ing (CL-LSI) (Dumais et al., 1997b) was the first linear projection approach
used in cross-lingual tasks. CL-LSI provides a cross-lingual representation
for documents by reducing the dimensionality of a matrix D whose rows
are obtained by concatenating comparable documents from different lan-
guages. Similarly, PCA and OPCA can be adapted to a multilingual setting.
LDA was also adapted to perform in a multilingual scenario with models
such as Polylingual Topic Models (Mimno et al., 2009), Joint Probabilistic
LSA and Coupled Probabilistic LSA (Platt et al., 2010), which, however,
are constrained to using word counts, instead of better weighting strategies,
such as log(tf)-idf, known to perform better with large vocabularies (Salton
and McGill, 1986). Another variant, named Canonical Correlation Anal-
ysis (CCA) (Thompson, 2005), uses a cross-covariance matrix of the low-
dimensional vectors to find the projections. Cross-language Explicit Seman-
tic Analysis (CL-ESA) (Cimiano et al., 2009; Potthast et al., 2011a, 2008),
instead, adapts ESA to be used at cross-language level by exploiting the com-
parable documents across languages from Wikipedia. CL-ESA represents
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each document written in a language L by its similarities with a document
collection in the same language L. Using a multilingual document collection
with comparable documents across languages, the resulting vectors from dif-
ferent languages can be compared directly.

An alternative unsupervised approach, Cross-language Character n-Grams
(CL-CNG) (Mcnamee and Mayfield, 2004), does not draw upon linear pro-
jections and represents documents as vectors of character n-grams. It has
proven to obtain good results in cross-language document retrieval (Potthast
et al., 2011a) between languages with lexical and syntactic similarities.

Recently, a novel supervised linear projection model based on Siamese
Neural Networks (S2Net) (Yih et al., 2011) achieved state-of-the-art perfor-
mance in comparable document retrieval. S2Net performs a linear combina-
tion of the terms of a document vector ~d to obtain a reduced vector~r, which is
the output layer of a neural network. Each element in~r has a weight which is
a linear combination of the original weights of ~d, and captures relationships
between the original terms.

However, linear projection approaches need a high number of training
documents to achieve state-of-the-art performance (Platt et al., 2010; Yih
et al., 2011). Moreover, although they are good at identifying a few principal
components, the representations produced are opaque, in that they cannot ex-
plicitly model the semantic content of documents with a human-interpretable
representation, thereby making the data analysis difficult. In this paper, in-
stead, we propose a language-independent knowledge graph representation
for documents which is obtained from a large multilingual semantic network,
without using any training information. Our knowledge graph representation
explicitly models the semantics of the document in terms of the concepts and
relations evoked by its co-occurring terms.

4.3 A Knowledge-based Document Representation

We propose a knowledge-based document representation aimed at expanding
the terms in a document’s bag of words by means of a knowledge graph
which provides concepts and semantic relations between them. Key to our
approach is the use of a graph representation which does not depend on any
given language, but, indeed, is multilingual. To build knowledge graphs
of this kind we utilize BabelNet, a multilingual semantic network that we
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Figure 4.1. (a) initial graph from TK = {“European”, “apple”, “tree”, “Malus”, “species”,
“America”}; (b) knowledge graph obtained by retrieving all paths from BabelNet. Gray nodes
are the original concepts.

present in Section 4.3.1. Then, in Section 4.3.2, we describe the five steps
needed to obtain our graph-based multilingual representation of documents.
Finally, we introduce our knowledge graph similarity measure in Section
4.3.3.

4.3.1 BABELNET

BabelNet (Navigli and Ponzetto, 2012a) is a multilingual semantic network
whose concepts and relations are obtained from the largest available seman-
tic lexicon of English, WordNet (Fellbaum, 1998), and the largest wide-
coverage collaboratively-edited encyclopedia, Wikipedia, by means of an au-
tomatic mapping algorithm. BabelNet is therefore a multilingual “encyclope-
dic dictionary” that combines lexicographic information with wide-coverage
encyclopedic knowledge. Concepts in BabelNet are represented similarly
to WordNet, i.e., by grouping sets of synonyms in the different languages
into multilingual synsets. Multilingual synsets contain lexicalizations from
WordNet synsets, the corresponding Wikipedia pages and additional trans-
lations output by a statistical machine translation system. The relations be-
tween synsets are collected from WordNet and from Wikipedia’s hyperlinks
between pages.

We note that, in principle, we could use any multilingual network provid-
ing a similar kind of information, e.g., EuroWordNet (Vossen, 2004). How-
ever, in our work we chose BabelNet because of its larger size, its coverage
of both lexicographic and encyclopedic knowledge, and its free availability.1

In our work we used BabelNet 1.0, which encodes knowledge for six lan-
guages, namely: Catalan, English, French, German, Italian and Spanish.

1http://babelnet.org

http://babelnet.org
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4.3.2 FROM DOCUMENT TO KNOWLEDGE GRAPH

We now introduce our five-step method for representing a given document
d from a collection D of documents written in language L as a language-
independent knowledge graph.

Building a Basic Vector Representation Initially we transform a docu-
ment d into a traditional vector representation. To do this, we score each
term ti ∈ d with a weight wi. This weight is usually a function of term and
document frequency. Following the literature, one method that works well is
the log tf-idf weighting (Salton et al., 1983; Salton and McGill, 1986):

wi = log2( fi + 1)log2(n/ni). (4.1)

where fi is the number of times term i occurs in document d, n is the total
number of documents in the collection and ni is the number of documents
that contain ti. We then create a weighted term vector ~v = (w1, ..., wn),
where wi is the weight corresponding to term ti. We exclude stopwords from
the vector.

Selecting the Relevant Document Terms We then create the set T of base
forms, i.e., lemmas2, of the terms in the document d. In order to keep only
the most relevant terms, we sort the terms T according to their weight in
vector ~v and retain a maximum number of K terms, obtaining a set of terms
TK.3 The value of K is calculated as a function of the vector size, as follows:

K = (log2(1 + |~v|))2, (4.2)

The rationale is that K must be high enough to ensure a good conceptual
representation but not too high, so as to avoid as much noise as possible in
the set TK.

Populating the Graph with Initial Concepts Next, we create an initially-
empty knowledge graph G = (V, E), i.e., such that V = E = ∅.

2Following the setup of (Platt et al., 2010), our initial data is represented using term
vectors. For this reason we lemmatize in this step.

3Since the vector ~v provides weights for all the word forms, and not only lemmas, occur-
ring in d, we take the best weight among those word forms of the considered lemma.
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We populate the vertex set V with the set SK of all the synsets in Babel-
Net which contain any term in TK in the document language L, that is:

SK =
⋃

t∈TK

SynsetsL(t), (4.3)

where SynsetsL(t) is the set of synsets in BabelNet which contain a term
t in the language of interest L. For example, in Figure 4.1(a) we show
the initial graph obtained from the set TK = {“European”, “apple”, “tree”,
“Malus”, “species”, “America”}. Note, however, that each retrieved synset is
multilingual, i.e., it contains lexicalizations for the same concept in other lan-
guages too. Therefore, the nodes of our knowledge graph provide a language-
independent representation of the document’s content.

Creating the Knowledge Graph Similarly to Navigli and Lapata (2010),
we create the knowledge graph by searching BabelNet for paths connecting
pairs of synsets in V. Formally, for each pair v, v′ ∈ V such that v and
v′ do not share any lexicalization4 in TK, for each path in BabelNet v →
v1 → · · · → vn → v′, we set: V := V ∪ {v1, . . . , vn} and E := E ∪
{(v, v1), . . . , (vn, v′)}, that is, we add all the path vertices and edges to G.
After prototyping, the path length is limited to maximum length 3, so as to
avoid an excessive semantic drift.

As a result of populating the graph with intermediate edges and vertices,
we obtain a knowledge graph which models the semantic context of docu-
ment d. We point out that our knowledge graph might have different isolated
components. We view each component as a different interpretation of docu-
ment d. To select the main interpretation, we keep only the largest compo-
nent, i.e., the one with the highest number of vertices, which we consider as
the most likely semantic representation of the document content.

Figure 4.1(b) shows the knowledge graph obtained for our example term
set. Note that our approach retains, and therefore weights, only the subgraph
focused on the “apple fruit” meaning.

4This prevents different senses of the same term from being connected via a path in the
resulting knowledge graph.
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Figure 4.2. Knowledge graph examples from two comparable documents in different lan-
guages.

Knowledge Graph Weighting The final step consists of weighting all the
concepts and semantic relations of the knowledge graph G. For weighting
relations we use the original weights from BabelNet, which provide the de-
gree of relatedness between the synset end points of each edge (Navigli and
Ponzetto, 2012a). As for concepts, we weight them on the basis of the orig-
inal weights of the terms in the vector ~v. In order to score each concept in
our knowledge graph G, we applied the topic-sensitive PageRank algorithm
(Haveliwala et al., 2003) to G. While the well-known PageRank algorithm
(Page et al., 1998) calculates the global importance of vertices in a graph,
topic-sensitive PageRank is a variant in which the importance of vertices is
biased using a set of representative “topics”. Formally, the topic-sensitive
PageRank vector ~p is calculated by means of an iterative process until con-
vergence as follows: ~p = cM~p + (1− c)~u, where c is the damping factor
(conventionally set to 0.85), 1− c represents the probability of a surfer ran-
domly jumping to any node in the graph, M is the transition probability
matrix of graph G, with Mji = degree(i)−1 if an edge from i to j exists,
0 otherwise, ~u is the random-jumping transition probability vector, where
each ui represents the probability of jumping randomly to the node i, and ~p
is the resulting PageRank vector which scores the nodes of G. In contrast to
vanilla PageRank, the “topic-sensitive” variant gives more probability mass
to some nodes in G and less to others. In our case we perturbate ~u by con-
centrating the probability mass to the vertices in SK, which are the synsets
corresponding to the document terms TK (cf. Formula 4.3).
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4.3.3 SIMILARITY BETWEEN KNOWLEDGE GRAPHS

We can now determine the similarity between two documents d, d′ ∈ D in
terms of the similarity of their knowledge graph representations G and G′.

Following the literature (Montes y Gómez et al., 2001) we calculate
the similarity between the vertex sets in the two graphs using Dice’s coef-
ficient (Jackson et al., 1989):

Sc(G, G′) =

2 · ∑
c∈V(G)∩V(G′)

w(c)

∑
c∈V(G)

w(c) + ∑
c∈V(G′)

w(c)
, (4.4)

where w(c) is the weight of a concept c (see Section 4.3.2). Likewise, we
calculate the similarity between the two edge sets as:

Sr(G, G′) =

2 · ∑
r∈E(G)∩E(G′)

w(r)

∑
r∈E(G)

w(r) + ∑
r∈E(G′)

w(r)
, (4.5)

where w(r) is the weight of a semantic relation edge r.

We combine the two above measures of conceptual (Sc) and relational
(Sr) similarity to obtain an integrated measure Sg(G, G′) between knowl-
edge graphs:

Sg(G, G′) =
Sc(G, G′) + Sr(G, G′)

2
. (4.6)

Notably, since we are working with a language-independent representa-
tion of documents, this similarity measure can be applied to the knowledge
graphs built from documents written in any language. In Figure 4.2 we show
two knowledge graphs for comparable documents written in different lan-
guages (for clarity, labels are in English in both graphs). As expected, the
graphs share several key concepts and relations.
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Algorithm 4.1 Dictionary-based term-vector translation.

Input: a weighted document vector ~vL = (w1, . . . , wn), a source language L and
a target language L′

Output: a translated vector ~vL′

1: ~vL′ ← (0, . . . , 0) of length n
2: for i = 1 to n do
3: if wi = 0 continue
4: // let ti be the term corresponding to wi in ~vL
5: SL ← SynsetsL(ti)
6: for each synset s ∈ SL do
7: T ← getTranslations(s, L′)
8: if T 6= ∅ then
9: for each tr ∈ T do

10: wnew = wi· confidence(tr, ti)
11: // let index(tr) be the index of tr in ~vL
12: if ∃ index(tr) then
13: vL′(index(tr)) = wnew
14: return ~vL′

4.4 A Multilingual Vector Representation

4.4.1 FROM DOCUMENT TO MULTILINGUAL VECTOR

Since our knowledge graphs will only cover the most central concepts of a
document, we complement this core representation with a more traditional
vector-based representation. However, as we are interested in the cross-
language comparison of documents, we translate our monolingual vector ~vL
of a document d written in language L into its corresponding vector ~vL′ in
language L′ using BabelNet as our multilingual dictionary. We detail the
document-vector translation process in Algorithm 4.1.

The translated vector ~vL′ is obtained as follows: for each term ti with
non-zero weight in vL we obtain all the possible meanings of ti in BabelNet
(see line 5) and, for each of these, we retrieve all the translations (line 7), i.e.,
lexicalizations of the concept, in language L′ available in the synset. We set
a non-zero value in the translation vector ~vL′ ,5 in correspondence with each
such translation tr, proportional to the weight of ti in the original vector

5To make the translation possible, while at the same time keeping the same number
of dimensions in our vector representation, we use a shared vocabulary which covers both
languages. See Section 4.6 for details on the experimental setup.



92
CHAPTER 4. A KNOWLEDGE-BASED REPRESENTATION FOR CROSS-LANGUAGE

DOCUMENT RETRIEVAL AND CATEGORIZATION

and the confidence of the translation (line 10), as provided by the BabelNet
semantic network.6

In order to increase the amount of information available in the vector and
counterbalance possible wrong translations, we avoid translating all vectors
to one language. Instead, in the present work we create a multilingual vector
representation of a document d written in language L by concatenating the
corresponding vector ~vL with the translated vector ~vL′ of d for language L′.
As a result, we obtain a multilingual vector ~vLL′ , which contains lexicaliza-
tions in both languages.

4.4.2 SIMILARITY BETWEEN MULTILINGUAL VECTORS

Following common practice for document similarity in the literature (Man-
ning et al., 2008), we use the cosine similarity as the similarity measure
between multilingual vectors:

Sv(~vLL′ ,~v′LL′) =
~vLL′ ·~v′LL′

||~vLL′ || ||~v′LL′ ||
. (4.7)

4.5 Knowledge-based Document Similarity

Given a source document d and a target document d′, we calculate the simi-
larities between the respective knowledge-graph and multilingual vector rep-
resentations, and combine them to obtain a knowledge-based similarity as
follows:

KBSim(d, d′) = c(G)Sg(G, G′) + (1− c(G))Sv(~vLL′ ,~v′LL′), (4.8)

where c(G) is an interpolation factor calculated as the edge density of knowl-
edge graph G:

c(G) =
|E(G)|

|V(G)|(|V(G)| − 1)
. (4.9)

6Non-English lexicalizations in BabelNet have confidence 1 if originating from
Wikipedia inter-language links and ≤ 1 if obtained by means of statistical machine trans-
lation (Navigli and Ponzetto, 2012a).
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Note that, using the factor c(G) to interpolate the two similarities in
Eq. 4.8, we determine the relevance for the knowledge graphs and the mul-
tilingual vectors in a dynamic way. Indeed, c(G) makes the contribution of
graph similarity depend on the richness of the knowledge graph.

4.6 Evaluation

In this section we compare our knowledge-based document similarity mea-
sure, KBSim, against state-of-the-art models on two different tasks: compa-
rable document retrieval and cross-lingual text categorization.

4.6.1 COMPARABLE DOCUMENT RETRIEVAL

In our first experiment we determine the effectiveness of our knowledge-
based approach in a comparable document retrieval task. Given a document
d written in language L and a collection DL′ of documents written in another
language L′, the task of comparable document retrieval consists of finding
the document in DL′ which is most similar to d, under the assumption that
there exists one document d′ ∈ DL′ which is comparable with d.

4.6.1.1 Corpus and Task Setting

Dataset We followed the experimental setting described in (Platt et al.,
2010; Yih et al., 2011) and evaluated KBSim on the Wikipedia dataset made
available by the authors of those papers. The dataset is composed of Wikipedia
comparable encyclopedic entries in English and Spanish. For each document
in English there exists a “real” pair in Spanish which was defined as a compa-
rable entry by the Wikipedia user community. The dataset of each language
was split into three parts: 43,380 training, 8,675 development and 8,675 test
documents. The documents were tokenized, without stemming, and repre-
sented as vectors using a log(tf)-idf weighting (Salton and Buckley, 1988).
The vocabulary of the corpus was restricted to 20,000 terms, which were the
most frequent terms in the two languages after removing the top 50 terms.

Methodology To evaluate the models we compared each English docu-
ment against the Spanish dataset and vice versa. Following the original set-
ting, the results are given as the average performance between these two
experiments. For evaluation we employed the averaged top-1 accuracy and
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Mean Reciprocal Rank (MRR) at finding the real comparable document in
the other language. We compared KBSim against the state-of-the-art super-
vised models S2Net, OPCA, CCA, and CL-LSI (cf. Section 4.2). In contrast
to these models, KBSim does not need a training step, so we applied it di-
rectly to the testing partition.

In addition we also included the results of CL-ESA7, CL-C3G8 and two
simple vector-based models which translate all documents into English on
a word-by-word basis and compared them using cosine similarity: the first
model (CosSimE) uses a statistical dictionary trained with Europarl using
Wavelet-Domain Hidden Markov Models (He, 2007), a model similar to
IBM Model 4; the second model (CosSimBN) instead uses Algorithm 4.1
to translate the vectors with BabelNet.

4.6.1.2 Results

As we can see from Table 4.1,9 the CosSimBN model, which uses Babel-
Net to translate the document vectors, achieves better results than CCA and
CL-LSI. We hypothesize that this is due to these linear projection models
losing information during the projection. CosSimE yields results similar to
CosSimBN , showing that BabelNet is a good alternative statistical dictionary.
In contrast to CCA and CL-LSI, OPCA performs better thanks to its im-
proved projection method using a noise covariance matrix, which enables it
to obtain the main components in a low-dimensional space.

CL-C3G and CL-ESA obtain the lowest results. Considering that En-
glish and Spanish do not have many lexical similarities, the low performance
of CL-C3G is justified because these languages do not share many character
n-grams. The reason behind the low results of CL-ESA can be explained
by the low number of intersecting concepts between Spanish and English
in Wikipedia, as confirmed by Potthast et al. (2008). Despite both using
Wikipedia in some way, KBSim obtains much higher performance than CL-
ESA thanks to the use of our multilingual knowledge graph representation
of documents, which makes it possible to expand and semantically relate its

7 Document collections with sizes higher than 105 provide high performance (Potthast
et al., 2008). Here we used 15k documents from the training set to index the test documents.

8CL-C3G is CL-CNG using character 3-grams, which has proven to be the best
length (Mcnamee and Mayfield, 2004).

9In this work, statistically significant results according to a χ2 test are highlighted in
bold.
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Model Dimension Accuracy MRR

S2Net 2000 0.7447 0.7973
KBSim N/A 0.7342 0.7750
OPCA 2000 0.7255 0.7734
CosSimE N/A 0.7033 0.7467
CosSimBN N/A 0.7029 0.7550
CCA 1500 0.6894 0.7378
CL-LSI 5000 0.5302 0.6130
CL-ESA 15000 0.2660 0.3305
CL-C3G N/A 0.2511 0.3025

Table 4.1. Test results for comparable document retrieval in Wikipedia. S2Net, OPCA,
CosSimE, CCA and CL-LSI are from (Yih et al., 2011).

original concepts. As a result, in contrast to CL-ESA, KBSim can integrate
conceptual and relational similarity functions which provide more accurate
performance. Interestingly, KBSim also outperforms OPCA which, in con-
trast to our system, is supervised, and in terms of accuracy is only 1 point
below S2Net, the supervised state-of-the-art model using neural networks.

4.6.2 CROSS-LANGUAGE TEXT CATEGORIZATION

The second task in which we tested the different models was cross-language
text categorization. The task is defined as follows: given a document dL in a
language L and a corpus D′L′ with documents in a different language L′, and
C possible categories, a system has to classify dL into one of the categories
C using the labeled collection D′L′ .

4.6.2.1 Corpus and Task Setting

Dataset To perform this task we used the Multilingual Reuters Collec-
tion (Amini et al., 2009), which is composed of five datasets of news from
five different languages (English, French, German, Spanish and Italian) and
classified into six possible categories. In addition, each dataset of news is
translated into the other four languages using the Portage translation sys-
tem (Sadat et al., 2005). As a result, we have five different multilingual
datasets, each containing source news documents in one language and four
sets of translated documents in the other languages. Each of the languages
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has an independent vocabulary. Document vectors in the collection are cre-
ated using TFIDF-based weighting.

Methodology To evaluate our approach we used the English and Spanish
news datasets. From the English news dataset we randomly selected 13,131
news as training and 1,875 as test documents. From the Spanish news dataset
we selected all 12,342 news as test documents. To classify both test sets we
used the English news training set. We performed the experiment at cross-
lingual level using Spanish and English languages available for both Span-
ish and English news datasets, therefore we classified each test set selecting
the documents in English and using the Spanish documents in the training
dataset, and vice versa. We followed Platt et al. (2010) and averaged the
values obtained from the two comparisons for each test set to obtain the fi-
nal result. To categorize the documents we applied k-NN to the ranked list
of documents according to the similarity measure employed for each model.
We evaluated each model by estimating its accuracy in the classification of
the English and Spanish test sets.

We compared our approach against the state-of-the-art supervised mod-
els in this task: OPCA, CCA and CL-LSI (Platt et al., 2010). In addition, we
include the results of the CosSimBN and CosSimE models that we introduced
in Section 4.6.1.1, as well as the results of a full statistical machine transla-
tion system trained with Europarl and post-processed by LSA (Full MT), as
reported by Platt et al. (2010).

4.6.2.2 Results

Table 4.2 shows the cross-language text categorization accuracy. CosSimE
obtained the lowest results. This is because there is a significant number
of untranslated terms in the translation process that the statistical dictionary
cannot cover. This is not the case in the CosSimBN model which achieves
higher results using BabelNet as a statistical dictionary, especially on the
Spanish news corpus.

On the other hand, however, the linear projection methods as well as
Full MT obtained the highest results on the English corpus. The differences
between the linear projection methods are evident when looking at the Span-
ish corpus results; OPCA performed best with a considerable improvement,
which indicates again that it is one of the most effective linear projection
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Model Dim. EN News ES News
Accuracy Accuracy

KBSim N/A 0.8189 0.6997
Full MT 50 0.8483 0.6484
CosSimBN N/A 0.8023 0.6737
OPCA 100 0.8412 0.5954
CCA 150 0.8388 0.5323
CL-LSI 5000 0.8401 0.5105
CosSimE N/A 0.8046 0.4481

Table 4.2. Test results for cross-language text categorization. Full MT, OPCA, CCA, CL-LSI
and CosSimE are from (Platt et al., 2010).

methods. Finally, our approach, KBSim, obtained competitive results on the
English corpus, performing best among the unsupervised systems, and the
highest results on the Spanish news, surpassing all alternatives.

Since KBSim does not need any training for document comparison, and
because it is based, moreover, on a multilingual lexical resource, we per-
formed an additional experiment to demonstrate its ability to carry out the
same text categorization task in many languages. To do this, we used the Mul-
tilingual Reuters Collection to create a 3,000 document test dataset and 9,000
training dataset10 for five languages: English, German, Spanish, French and
Italian. Then we calculated the classification accuracy on each test set using
each training set. Results are shown in Table 4.3.

The best results for each language were obtained when working at the
monolingual level, which suggests that KBSim might be a good untrained al-
ternative in monolingual tasks, too. In general, cross-language comparisons
produced similar results, demonstrating the general applicability of KBSim
to arbitrary language pairs in multilingual text categorization. However, we
note that German, Italian and Spanish training partitions produced low re-
sults compared to the others. After analyzing the length of the documents in
the different datasets we discovered that they have different average lengths
in words: 79 (EN), 76 (FR), 75 (DE), 60 (ES) and 55 (IT). German, Span-
ish and especially Italian documents have the lowest average length, which

10Note that training is needed for the k-NN classifier, but not for document comparison.
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Testing Training datasets
datasets DE EN ES FR IT
DE 0.8053 0.6872 0.5373 0.6417 0.5920
EN 0.5827 0.8463 0.5540 0.6530 0.5820
ES 0.5883 0.6153 0.8707 0.6237 0.7010
FR 0.6867 0.7103 0.6667 0.8227 0.6887
IT 0.5973 0.5487 0.6263 0.5973 0.8317

Table 4.3. KBSim accuracy in a multilingual setup.

makes it more difficult to build a representative knowledge graph of the con-
tent of each document when it is performing at cross-language level.

4.7 Conclusions

In this paper we introduced a knowledge-based approach to represent and
compare documents written in different languages. The two main contri-
butions of this work are: i) a new graph-based model for the language-
independent representation of documents based on the BabelNet multilingual
semantic network; ii) KBSim, a knowledge-based cross-language similarity
measure between documents, which integrates our multilingual graph-based
model with a traditional vector representation.

In two different cross-lingual tasks, i.e., comparable document retrieval
and cross-language text categorization, KBSim has proven to perform on a
par or better than the supervised state-of-the-art models which make use of
linear projections to obtain the main components of the term vectors. We
remark that, in contrast to the best systems in the literature, KBSim does not
need any parameter tuning phase nor does it use any training information.
Moreover, when scaling to many languages, supervised systems need to be
trained on each pair, which can be very costly.

The gist of our approach is in the knowledge graph representation of doc-
uments, which relates the original terms using expanded concepts and rela-
tions from BabelNet. The knowledge graphs also have the nice feature of be-
ing human-interpretable, a feature that we want to exploit in future work. We
will also explore the integration of linear projection models, such as OPCA
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and S2Net, into our multilingual vector-based similarity measure. Also, to
ensure a level playing field, following the competing models, in this work
we did not use multi-word expressions as vector components. We will study
their impact on KBSim in future work.
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5Discussion of the Results

In this chapter we discuss in detail the results obtained in this thesis. We first
analyse the results of the publications presented in the Chapters 2, 3, and 4
with respect to the objectives of this research. We also include some further
results in order complete the picture at task level, i.e., we investigate the
performance of the CL-KGA and KBSim models when evaluated with our
new weighting scheme (see Section 3.3.3) in the three cross-language tasks.
Finally, we present our experiments and results with knowledge graphs in the
NLP tasks of community questions answering, native language identification,
and language variety identification.

5.1 Single- and Cross-domain Polarity Classification Results

The experiments of Section 2.4 in the single- and cross-domain polarity clas-
sification tasks show the potential of knowledge graphs and their features at
single- and specially cross-domain level.

Regarding the results of the proposed meta-learning approach, KE-Meta,
combining traditional features such as BOW and word n-grams with WSD-
and vocabulary expansion-based ones extracted from knowledge graphs, we
have several highlights. In Tables 2.5 and 2.6 we observe how the combi-
nation of different features and classifiers make KE-Meta the most stable
model across domains.1 Thanks to the stacking generalization, the second
level classifier learns how to exploit the base classifier probabilities to coun-
terbalance wrong classifications. In addition, the results of these tables joint
with the statistics of Table 2.7 manifest that our model is able to excel also in
domains such as books and DVDs with larger texts, generally produced for
summaries of the histories being reviewed. Finally, we note that KE-Meta

1Note that the use of string kernels for the same dataset and task also offers an excellent
stability (Giménez-Pérez et al., 2017).
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extracts knowledge from the source domains, ML-SentiCon, and the Babel-
Net multilingual semantic network, and performs at par or better than the
state of the art without using any domain adaptation.

The advantages of the proposed model are specially relevant from the
polarity classification viewpoint. However, in the framework of this thesis,
we are more interested in the potential of the knowledge graph-based fea-
tures in a cross-domain scenario. The Figure 2.4 shows the information gain
ratio of the base classifier features at single- and cross-domain level. Key
are the cross-domain values of the WSD- and vocabulary expansion-based
features: “All synsets (Post-WSD)” and “Vocab. Exp.”, respectively. They
manifest that the amount of information of these features is similar to the
ones provided by BOW and word n-grams. The isolated results of the base
classifiers in Tables 2.3 and 2.4 validate more this fact. However, what is
more important is not the equality of relevance of the features, but the dif-
ference in type of information, which conducts to additional improvements
when these base classifiers are combined. This can be appreciated in Figures
2.5 and 2.6. Each new base classifier included in KE-Meta contributes, on
average, with additional improvements of classification. The only exception
is the vocabulary expansion-based one at cross-domain level, that produces a
small average decrease. It seems that the vocabulary expansion of the source
domains provides with too much unrelated concepts regarding the target do-
main, and the resulting classifier is affected by this noise. However, in Table
2.6 we show the results of KE-Meta and KE-MetaB, that do not include this
base classifier, and the differences in accuracy are not statistically significant.

At this point, we would like to point out that the experiments of Tables
2.5 and 2.6, published in Franco-Salvador et al. (2015b), use 10-fold cross-
validation. However, this means that the number of training instances is
much higher at cross-domain level (5,400 instances), where we train with
all the available domains but the one to classify. Note that the state-of-the-
art approaches compared in those tables use the same number of training
instances at single and cross-domain level (1,800 instances).2 For the sake of
correctness, in Table 5.1 we show the results of our KE-Meta model training
with 1,800 random instances taken from the original 5,400 ones. As we can
see, for this dataset and task, 1,800 instances are enough to make KE-Meta a

2As we already pointed out, the results of the compared approaches at cross-domain level
are taken from Bollegala et al. (2013).
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competitive approach. We note that our second level meta-classifier has only
eight features. Therefore, a few thousands of instances may provide with
enough diversity of feature combinations to create a good classifier.

Method Books Electronics DVDs Kitchen

(a) SST 0.763 0.839 0.783 0.852
SFA 0.777 0.753 0.763 0.815
SCL-MI 0.746 0.789 0.763 0.820

(b) BOW 0.756 0.804 0.791 0.809
(1+2+3)-grams 0.744 0.798 0.771 0.769
KE-Meta (#Tr=5,400) 0.779 0.789 0.804 0.825
KE-Meta (#Tr=1,800) 0.768 0.767 0.807 0.819

Table 5.1. Accuracy results in cross-domain polarity classification. (a) State-of-the-art ap-
proaches; (b) baselines; (c) proposed approaches.

After the analysis of the features extracted from knowledge graphs, we
conclude that WSD-based features are useful at cross-domain level and con-
tribute to obtain additional improvements when combined with traditional
ones. In contrast, the features of the vocabulary expansion only benefited at
single-domain level and their cross-domain potential is questionable.

5.1.1 CLARIFICATION ABOUT THE POLARITY CLASSIFICATION MOD-
ELLING

In Chapter 4 we show how to perform a cross-language classification task
using KBSim. However, we can appreciate that we did not choose that model
for this classification task. We made this decision because of the nature of
this task. As we mentioned in Section 2.2, Pang et al. (2002) concluded that
polarity classification achieves worse results than other text classification
tasks when approaching them in the same way. This is produced because
the text polarity is based on more abstract aspects of text, words, and their
meaning. The existence of sentiment analysis variants of semantic networks
such as the WordNet’s one — SentiWordNet —, also highlights that standard
knowledge is not enough. This affects to the BabelNet multilingual semantic
network too. It is also the same that we observed at the beginning of this
study when we applied KBSim. Its results were notably inferior to the state
of the art and even to the BOW baseline. We obtained values of accuracy
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close to 60% that made us reconsider the modelling with knowledge graphs
for this task. In consequence, we selected the meta-learning scheme and the
features employed in Chapter 2.

5.2 Cross-language Plagiarism Detection Results

Chapter 3 covers several objectives of this work: (i) we develop the CL-
KGA model for cross-language similarity analysis (cf. Section 3.4); (ii)
we study the characteristics of the knowledge graphs (cf. Section 3.3.4);
and (iii) we evaluate its performance in the task of cross-language plagia-
rism detection comparing it with the state of the art obtaining good results
(cf. Section 3.5). However, in Chapter 4 we introduced KBSim, an im-
proved version of CL-KGA that has a vector component in order to cover
knowledge graph shortcomings such as out-of-vocabulary words and verbal
tenses. That model has not been evaluated in the plagiarism detection task
and has not been employed jointly with the new, and better (cf. Section 3.5),
weighting scheme of knowledge graph relations proposed in Section 3.3.3.2.
On the other hand, Chapter 4 shows the good performance that distributed
representation-based models obtain in other cross-language similarity tasks.
Therefore, aiming to complement the study with the knowledge graphs of
Chapter 3, in this section we show the results of KBSim employing our new
weighting scheme and compare our models with several cross-language dis-
tributed representation-based models. In addition, following Barrón-Cedeño
et al. (2013), we perform an in-depth study of the results as function of the
different types of cases of plagiarism and the ranking of similarities that the
models return for each document.

This section is structured as follows. In Section 5.2.1 we review sev-
eral reference methods for cross-language similarity analysis that employ
distributed representations. Next, in Section 5.2.2 we evaluate these meth-
ods and compare them with the most relevant ones of Chapter 3 and the
KBSim model with our new weighting scheme. Finally, in Section 5.2.3 we
discuss the results of this part of the thesis.

5.2.1 DISTRIBUTED REPRESENTATIONS FOR CROSS-LANGUAGE PLA-
GIARISM DETECTION

This section presents details of the distributed representation learning algo-
rithms for cross-language similarity analysis. These models are usually cate-
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gorised according to the objective function they optimise and the type of data
they receive as input. Most of these models learn cross-lingual distributed
representations using parallel or comparable corpus. For a fair comparison,
all of these models are trained using the same parallel corpus. We used
250k English-Spanish and English-German parallel sentences from DGT-
Translation Memory distributed by JRC3. For monolingual preinitialisation
in XCNN (Section 5.2.1.3) we used CLEF ad-hoc retrieval corpus document
titles.

5.2.1.1 Similarity Learning via Siamese Neural Network

In this section we describe more in detail the S2Net model that has been
employed in Chapter 4. Following the general Siamese neural network archi-
tecture (Bromley et al., 1993), Similarity Learning via Siamese Neural Net-
work (S2Net) trains two identical neural networks concurrently. The S2Net
receives as input parallel data with binary or real-valued similarity score and
updates the model parameters accordingly (Yih et al., 2011). It optimises a
dynamic objective function which is directly modelled by using the cosine
similarity. The projection operation can be described as follows:

yd = W ∗ xd, (5.1)

where, xd is the input term vector for the document d, W is the learnt projec-
tion matrix (represented by the model parameters) and yd is the latent repre-
sentation of document d. The parameters of the S2Net are tuned accordingly
to the details provided in Yih et al. (2011).

5.2.1.2 Bilingual Autoencoder

Salakhutdinov and Hinton (2009) demonstrated that semantic modelling by
means of dimensionality reduction through deep autoencoders lead to supe-
rior performance compared to the conventional LSA approach. Deep autoen-
coders were extended to model cross-language data and are referred to as
Bilingual Autoencoders (BAE) (Gupta et al., 2014; Lauly et al., 2014a,b).
These networks learn cross-language associations by optimising the recon-
struction error of the cross-language data.

3https://ec.europa.eu/jrc/en/language-technologies/
dgt-translation-memory

https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
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The building block of the autoencoder is the Restricted Boltzmann Ma-
chine (RBM). These deep networks are trained through a greedy layer-by-
layer pretraining stage followed by a supervised fine-tuning. The structures
of the network and the training architecture are shown in Figure 5.1. For
more details, please refer to Gupta et al. (2014).

w1

w2

RBM2

RBM1

w1+b1

w2+b2

w′
2+b3

w′
1+b4

(bottleneck)

Input (x)

Output (x̂)

Input (x)

y1
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y

y

Greedy pretraining Unrolling and fine-tuning

Figure 5.1. Left panel: pretraining of stacked RBMs where the upper RBM takes as input the
output of the lower RBM. Right panel: After pretraining the structure is “unrolled” to create
a multi-layer network which is fine-tuned by means of backpropagation to learn an identity
function x̂ ≈ x.

5.2.1.3 External-data Composition Neural Networks

External-data Composition Neural Network (XCNN) is based on a compo-
sition function that is implemented on top of a deep neural network that
provides a distributed learning framework (Gupta et al., 2015). Different
from many other models including S2Net and BAE, which solely rely on
parallel/comparable data for training, XCNN exploits also monolingual data
for model training purposes. Specifically, it incorporates external relevance
signals such as pseudo-relevance data or clickthrough data into the learn-
ing framework. The main motivation behind this strategy is that, monolin-
gual models can be initialised from such largely available relevance data and
then, with the help of a smaller amount of parallel data, the cross-lingual
model can be trained. This property helps to gain more confidence for under-
represented terms in parallel data, i.e. terms with very low frequency.
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Figure 5.2. Architecture of external-data composition neural network model for cross-lingual
training.

The architecture of XCNN model training is shown in Figure 5.2. XCNN
learns distributed representations of words in cross-lingual setting using the
objective function defined in Eq. 5.2. It maximises the cosine similarity ϕ
for a training example for a positive sample and miminises it for a negative
sample. The network parameters are updated through backpropagation as
follows:

Jcl(θ) = ϕ(yl1 , y+l2 )− ϕ(yl1 , y−l2 ) (5.2)
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The representation of an input text is obtained through an addition com-
position function as described below:

y(l1)i = g(W1 ∗ xi + b1)

y
(lj)

i = g(Wj ∗ y
l(j−1)
i + bj), j = 2, ..., m

y =
n

∑
i=1

y(lm)i

(5.3)

where y(l
j)

i represents the ith term xi in text in the layer j of a neural net-
work, lm represents the output layer. More details about XCNN can be found
in Gupta et al. (2015).

5.2.1.4 Continuous Word Alignment-based Similarity Analysis

The aforementioned distributed representation models learn a real-valued
high dimensional representation of texts of different length. All of them com-
bine the word level representations by summing over all the terms present
in a text as bag-of-words model. In this section, we present an alternative
method to combine word level vectors by means of alignments to represent
text. The Continuous Word Alignment-based Similarity Analysis (CWASA)
model (Franco-Salvador et al., 2016a) modifies the text-to-text relatedness
proposed by (Hassan and Mihalcea, 2011) in order to estimate the similarity
between documents by efficiently aligning their distributed representations
of words using directed edges, i.e., we exploit the fact that closest words
between documents may have not reciprocal relationships, e.g. in the sen-
tences “Michelle_Obama from United_States" and “Barak_Obama and the
First_Lady", United_States could have Barak_Obama as closest, and this
could have Michelle_Obama, who in turn could be the closest to First_Lady
in both directions. Formally, the similarity S(d, d′) between two documents
d and d′ is estimated as follows:

S(d, d′) =
1
|Φ| ∑

ck∈Φ
ck, (5.4)
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where d = (x1, ..., xn) and d′ = (y1, ..., ym) are represented as lists of dis-
tributed representations of words, and Φ is generated from the list Φ′ =
{c′1, ..., c′n+m} that satisfies Eq. 5.5:

c′k =


arg max

i=k,xi∈d,yj∈d′
ϕ(xi, yj), if k ≤ n

arg max
j=k−n,xi∈d,yj∈d′

ϕ(xi, yj), otherwise
(5.5)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n + m, ϕ is the cosine similarity
function, and being Φ = {c1, ..., cz | max(n, m) ≤ z ≤ n + m}, Φ ⊆ Φ′,
the set of cosine similarities without pairing repetitions4 that represents the
strongest semantic pairing between the distributed representations of words
of documents d and d′.

Basically, in Eq. 5.5 we align each word in d with the closest one in
d′ and vice versa using directed relationships. Next, we remove duplicated
alignments, i.e., those equally aligned in both directions. Finally, we use
Eq. 5.4 to estimate the similarity score between d and d′ as the average of the
different alignments. We note that this problem has been efficiently solved
by dynamic programming. In addition, although this section is focused on
a cross-lingual setting, CWASA can be directly employed with monolingual
distributed representations of words (see Section 5.4.1). We compare our
CWASA model with the classical bag-of-words sum representation in the
next section.

5.2.2 COMPLEMENTARY EVALUATION OF CROSS-LANGUAGE PLAGIA-
RISM DETECTION

In this section we complement the evaluation of Chapter 3 in the task of
cross-language plagiarism detection. We employ the PAN-PC-11 dataset and
the PAN shared task measures described in Section 3.5: precision, recall,
granularity, and plagdet. In addition, following Barrón-Cedeño et al. (2013),
we also perform a deeper study of the results as function of the different types
of cases of plagiarism and the ranking of similarities that models return for
each document.

4We do not permit the same pair of words aligned twice.
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Spanish-English (ES-EN) documents German-English (DE-EN) documents

Suspicious 304 Suspicious 251
Source 202 Source 348

Plagiarism cases {Spanish,German}-English

Case length Obfuscation
– Long length cases 1,506 – Translated automatic obfuscation 5,142
– Medium length cases 2,118 – Translated manual obfuscation 433
– Short length cases 1,951

Table 5.2. Statistics of PAN-PC-11 cross-language plagiarism detection partitions.

In Section 5.2.2.1, our first experiment shows the recall at character level
of the models. This experiment serves to show the potential of the models
detecting plagiarism cases before the detailed analysis and postprocessing
described in Algorithm 3.1. Recall is measured using the top k (R@k) most
similar fragments of text, where k = {1, 5, 10, 20}. However, in order to in-
crease precision, we conduct a second experiment in Section 5.2.2.2. There,
as in the evaluation of Section 3.5, detections are filtered using Algorithm 3.1
to determine which cases are plagiarism. Finally, in Section 5.2.2.3 we com-
pare the computational efficiency of the models. In both experiments of Sec-
tion 5.2.2.1 and 5.2.2.2 we also include in a separated subsection the analysis
of results as function of the type of obfuscation and document length of the
plagiarism cases. In Table 5.2 we present the statistics of the PAN-PC-11
dataset considering these types of cases.

For this evaluation, we selected from Chapter 3 the CL-C3G, CL-ESA,
CL-ASA, and CL-KGA models.5 We also show the S2Net, BAE, and XCNN
distributed representation-based models detailed in Section 5.2.1. In addi-
tion, we use our CWASA model (cf. Section 5.2.1.4) in order to repre-
sent documents by means of distributed word alignments: CWASA (S2Net),
CWASA (BAE), and CWASA (XCNN). Finally, we show the performance
of the original KBSim model, KBSim (VSM) from here, the isolated results
of its vector component (VSM), and the results when replacing that vector
component with the document vectors of the distributed representation-based
models: KBSim (S2Net), KBSim (BAE), and KBSim (XCNN). We perform
this combination of distributed representations and knowledge graphs be-

5We decided to not include the alternative CL-KGA variants presented Chapter 3 to focus
on the comparison between reference models.
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Model Spanish-English (ES-EN) German-English (DE-EN)

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20
(a) CL-KGA 0.924 0.952 0.960 0.963 0.803 0.871 0.899 0.916

VSM 0.791 0.880 0.905 0.924 0.630 0.786 0.831 0.872
CL-ASA 0.663 0.787 0.819 0.853 0.523 0.693 0.755 0.806
CL-ESA 0.677 0.784 0.824 0.858 0.481 0.611 0.666 0.720
CL-C3G 0.497 0.672 0.743 0.805 0.204 0.393 0.489 0.593

(b) S2Net 0.637 0.763 0.809 0.852 0.508 0.675 0.744 0.799
XCNN 0.468 0.648 0.721 0.786 0.362 0.561 0.647 0.728
BAE 0.509 0.717 0.784 0.836 0.308 0.513 0.607 0.697

(c) CWASA (XCNN) 0.881 0.921 0.937 0.946 0.739 0.823 0.849 0.873
CWASA (S2Net) 0.859 0.909 0.921 0.936 0.601 0.731 0.779 0.818
CWASA (BAE) 0.536 0.695 0.754 0.803 0.543 0.701 0.760 0.806

(d) KBSim (S2Net) 0.932 0.958 0.962 0.962 0.818 0.885 0.904 0.922
KBSim (VSM) 0.940 0.965 0.968 0.972 0.809 0.883 0.904 0.921
KBSim (BAE) 0.926 0.951 0.959 0.963 0.798 0.876 0.896 0.912
KBSim (XCNN) 0.868 0.915 0.934 0.938 0.753 0.852 0.879 0.902

Table 5.3. ES-EN and DE-EN performance analysis in terms of R@k, where k = {1, 5, 10,
20}.

cause we believe that these representations, which separately perform bet-
ter than VSM in other tasks (Yih et al., 2011), are also able to complement
better the knowledge graph component of KBSim. We recall that our DCW
weighting scheme of semantic relations of knowledge graphs proved its su-
periority for this task (cf. Section 3.5). Therefore, in this section CL-KGA
and KBSim only employ the DCW weighting scheme (cf. Section 3.3.3.2).

All our tables separate the models according to their category: (a) state-
of-the-art approaches; (b) continuous word representation-based approaches;
(c) proposed word-vector alignment-based approaches; and (d) hybrid ap-
proaches.

5.2.2.1 Experiment A: Cross-language Similarity Ranking

In this section we compare the R@k of the models when ranking the most
similar fragments of text with the plagiarism cases. First, we analyse the
results of the complete PAN-PC-11 dataset. Next, in Section 5.2.2.1 we anal-
yse the results on the basis of the type of plagiarism case. In Table 5.3 we
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show the results for ES-EN and DE-EN.6 As we can see, DE-EN similar-
ity is more difficult to detect for all the models. Overall, no differences are
found between the models with respect to the ranking order. Therefore, we
can jointly analyse the differences between them. The models which em-
ploy knowledge graphs, CL-KGA and KBSim, obtain the best results. The
difference between CL-KGA and other state-of-the-art models in R@1 is su-
perior to 25% (absolute value), and highlights the potential of such type of
representations. The use of bilingual vectors and the TF-IDF re-weighting
benefits VSM that obtains interesting results too. It is followed, in order of
performance, by CL-ASA, CL-ESA, and CL-C3G, that is the baseline in all
our experiments. These results are in line with those analysed in Section 3.5.

Despite the good performance of distributed representations in other tasks
(see Section 4.6), the models of group (b) offer average performance com-
pared to the state of the art. The S2Net model obtains superior results than
XCNN and BAE, specially in DE-EN. Note that S2Net and BAE directly
learn representations of text using a bag-of-words format. Therefore, dis-
tributed representations of large fragments of text are still representative.
In contrast, XCNN learns word-level distributed representations and hence
when projecting a large fragment of text (∼1000 words) the summed dis-
tributed representations flatten vectors and loose discriminative power, af-
fecting XCNN performance. However, these comments refer to the case
when the cosine similarity is employed to compare continuous vectors of
documents based on the sum of word vectors. The performance differs when
the word vectors are used without this sum-based composition.

The use of word alignments, i.e., by means of CWASA, produces notable
improvements respect to the sum of word vectors. e.g. CWASA (XCNN)
is 40% superior to XCNN even when it is employing the same word vec-
tors. As we analyse in Section 5.2.2.1, the use of CWASA allows to success-
fully measure similarity between texts of any length. This allows to employ
XCNN word vectors to measure similarity between fragments of text with su-
perior results than CWASA (S2Net) and CWASA (BAE). In addition, despite
CWASA does not outperform the CL-KGA model, for computational time
constraints we restrict the vocabulary to 20,000 words when using distributed
representations, and we are rivalling with a model that employs BabelNet, a

6In this experimentation, in all the tables, the best results — at type-of-model level —
are highlighted in bold.
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multilingual semantic network with more than 9M concepts. The vocabulary
coverage of the languages is about 82% for English, 72% for Spanish, and
42% for German. This also justifies the decrease of performance in DE-EN.
A higher variety of stemmed words is observed for the German agglutina-
tive language, which is not covered by the vocabulary in the same amount
than the other languages. We also note that the performance of BAE shows
the highest variation from R@1 to R@5 among all models: ∼21%. After
a manual analysis of the resulting distributed representations and the values
of similarity between texts, we observe a very reduced variance: lower than
∼10−2. This led the model to be less precise when differentiating close ele-
ments and affects the performance of CWASA (BAE).

Finally, the combination of knowledge graphs with vectors produces the
best results. Similarly to our results in cross-language document retrieval
and categorization (cf. Section 4.6), thanks to the dynamic interpolation,
the original KBSim (VSM) model obtains higher results than CL-KGA and
VSM separately. We may appreciate that the use of distributed vector repre-
sentations allows to successfully complement knowledge graphs too. KBSim
(S2Net) obtains on average the highest results in this experiment. Although
KBSim (XCNN) does not obtain such high results, the differences in R@5
are small. As we will see in Section 5.2.2.2, such differences are not relevant
when detecting plagiarism and the models performance may change as func-
tion of the postprocessing algorithm employed. In Section 5.2.2.2 we will
also study the statistical differences of all the models to analyse if the ob-
served differences are significant from a statistical viewpoint. We note that
with the current parameters of Algorithm 3.1, R@5 is the recall upper-bound
for the plagiarism detection performed in Section 5.2.2.2.

Cross-language Similarity Ranking in Function of the Type of Plagia-
rism Cases

In this section we analyse the R@k of the models as function of the type
of plagiarism. We divide plagiarism cases according to the type obfuscation
— translated obfuscation and translated manual obfuscation — employed to
generate the case, and according to the case length — short, medium, and
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Type of
obfuscation

Model Spanish-English (ES-EN) German-English (DE-EN)

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20
(a) CL-KGA 0.860 0.919 0.939 0.945 0.721 0.810 0.857 0.869

VSM 0.696 0.796 0.841 0.877 0.549 0.721 0.781 0.832
CL-ESA 0.607 0.737 0.795 0.837 0.406 0.548 0.614 0.686
CL-ASA 0.533 0.662 0.712 0.756 0.387 0.569 0.643 0.713
CL-C3G 0.450 0.599 0.674 0.738 0.231 0.420 0.537 0.642

Translated (b) S2Net 0.545 0.672 0.725 0.799 0.444 0.622 0.685 0.742
manual BAE 0.458 0.635 0.713 0.767 0.297 0.500 0.579 0.677

obfuscation XCNN 0.414 0.610 0.669 0.744 0.358 0.572 0.653 0.743

(c) CWASA (XCNN) 0.799 0.864 0.888 0.899 0.641 0.749 0.782 0.808
CWASA (S2Net) 0.760 0.842 0.857 0.880 0.524 0.669 0.730 0.759
CWASA (BAE) 0.459 0.623 0.689 0.760 0.345 0.494 0.566 0.653

(d) KBSim (S2Net) 0.863 0.917 0.928 0.941 0.741 0.813 0.844 0.877
KBSim (VSM) 0.876 0.930 0.938 0.943 0.721 0.805 0.855 0.871
KBSim (BAE) 0.855 0.912 0.932 0.940 0.725 0.806 0.843 0.865
KBSim (XCNN) 0.773 0.846 0.875 0.895 0.652 0.783 0.836 0.877

(a) CL-KGA 0.935 0.957 0.963 0.964 0.805 0.880 0.902 0.919
VSM 0.799 0.886 0.910 0.928 0.638 0.793 0.837 0.876
CL-ASA 0.674 0.797 0.828 0.861 0.537 0.706 0.767 0.816
CL-ESA 0.682 0.788 0.826 0.860 0.488 0.617 0.671 0.723
CL-C3G 0.500 0.678 0.749 0.810 0.201 0.390 0.485 0.588

Translated (b) S2Net 0.645 0.770 0.816 0.856 0.514 0.681 0.751 0.805
automatic BAE 0.513 0.724 0.790 0.841 0.309 0.514 0.610 0.699

obfuscation XCNN 0.472 0.651 0.725 0.789 0.363 0.559 0.646 0.727

(c) CWASA (XCNN) 0.887 0.925 0.941 0.949 0.749 0.831 0.856 0.879
CWASA (S2Net) 0.867 0.914 0.926 0.940 0.609 0.738 0.784 0.824
CWASA (BAE) 0.543 0.701 0.760 0.806 0.409 0.557 0.620 0.682

(d) KBSim (S2Net) 0.939 0.962 0.965 0.966 0.829 0.894 0.915 0.929
KBSim (VSM) 0.941 0.965 0.967 0.967 0.810 0.889 0.906 0.925
KBSim (BAE) 0.914 0.955 0.964 0.967 0.814 0.890 0.907 0.923
KBSim (XCNN) 0.875 0.920 0.925 0.941 0.762 0.857 0.882 0.903

Table 5.4. ES-EN and DE-EN performance analysis in terms of the obfuscation type for the
plagiarism cases and R@k, where k = {1, 5, 10, 20}.

long.7 Most of the highlights of Section 5.2.2.1 persist when discriminating
considering the type of case. However, there are several points to note. In
Table 5.4 results are reported on the basis of the obfuscation type. The trans-
lated manual obfuscation has manual correction after the automatic transla-
tion and generates cases with paraphrasing in order to hide the plagiarism.
Therefore, it is more difficult to detect similarity between such type of cases.

7We follow the PAN-PC-11 setup and consider as short cases those with less than 700
characters. Long cases are those larger than 5,000 characters.
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Type of
obfuscation

Model Spanish-English (ES-EN) German-English (DE-EN)

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20
(a) CL-KGA 0.944 0.964 0.967 0.969 0.819 0.895 0.911 0.928

VSM 0.820 0.903 0.925 0.939 0.655 0.802 0.842 0.881
CL-ASA 0.701 0.820 0.847 0.878 0.554 0.719 0.779 0.828
CL-ESA 0.707 0.808 0.841 0.872 0.503 0.631 0.681 0.729
CL-C3G 0.508 0.690 0.761 0.822 0.197 0.382 0.475 0.580

Long (b) S2Net 0.662 0.785 0.830 0.867 0.523 0.688 0.757 0.812
length XCNN 0.486 0.663 0.735 0.800 0.351 0.545 0.634 0.717
cases BAE 0.524 0.741 0.807 0.857 0.307 0.513 0.608 0.699

(c) CWASA (XCNN) 0.906 0.941 0.952 0.958 0.762 0.840 0.865 0.888
CWASA (S2Net) 0.886 0.928 0.939 0.950 0.618 0.744 0.788 0.828
CWASA (BAE) 0.559 0.715 0.772 0.818 0.419 0.560 0.620 0.679

(d) KBSim (S2Net) 0.952 0.968 0.970 0.971 0.842 0.903 0.922 0.934
KBSim (VSM) 0.959 0.975 0.976 0.979 0.828 0.898 0.915 0.931
KBSim (BAE) 0.949 0.964 0.969 0.970 0.825 0.898 0.914 0.929
KBSim (XCNN) 0.897 0.933 0.943 0.948 0.777 0.865 0.888 0.909

(a) CL-KGA 0.933 0.960 0.965 0.967 0.803 0.879 0.901 0.916
VSM 0.800 0.886 0.910 0.928 0.637 0.792 0.836 0.876
CL-ASA 0.673 0.796 0.827 0.860 0.530 0.701 0.761 0.812
CL-ESA 0.688 0.794 0.831 0.865 0.488 0.618 0.671 0.723
CL-C3G 0.502 0.678 0.748 0.809 0.201 0.389 0.485 0.591

Medium (b) S2Net 0.647 0.771 0.815 0.856 0.516 0.681 0.749 0.802
length XCNN 0.476 0.656 0.727 0.794 0.365 0.563 0.648 0.728
cases BAE 0.517 0.728 0.793 0.842 0.309 0.515 0.611 0.699

(c) CWASA (XCNN) 0.888 0.926 0.939 0.947 0.746 0.828 0.853 0.877
CWASA (S2Net) 0.870 0.917 0.927 0.941 0.611 0.738 0.784 0.823
CWASA (BAE) 0.546 0.704 0.761 0.809 0.412 0.560 0.621 0.683

(d) KBSim (S2Net) 0.939 0.962 0.965 0.965 0.829 0.894 0.914 0.928
KBSim (VSM) 0.942 0.964 0.967 0.968 0.814 0.886 0.905 0.922
KBSim (BAE) 0.929 0.954 0.960 0.964 0.810 0.882 0.901 0.915
KBSim (XCNN) 0.880 0.923 0.935 0.943 0.759 0.856 0.881 0.903

(a) CL-KGA 0.944 0.952 0.959 0.963 0.790 0.867 0.892 0.908
VSM 0.787 0.876 0.902 0.922 0.621 0.780 0.825 0.867
CL-ASA 0.659 0.783 0.815 0.850 0.513 0.684 0.748 0.800
CL-ESA 0.673 0.780 0.820 0.855 0.473 0.602 0.658 0.713
CL-C3G 0.494 0.669 0.740 0.802 0.201 0.389 0.486 0.590

Short (b) S2Net 0.633 0.758 0.806 0.848 0.501 0.668 0.738 0.793
length XCNN 0.463 0.644 0.716 0.782 0.361 0.559 0.646 0.728
cases BAE 0.503 0.713 0.780 0.831 0.305 0.508 0.601 0.691

(c) CWASA (XCNN) 0.877 0.918 0.934 0.943 0.732 0.818 0.844 0.868
CWASA (S2Net) 0.856 0.906 0.918 0.933 0.593 0.724 0.772 0.812
CWASA (BAE) 0.532 0.692 0.751 0.800 0.393 0.543 0.606 0.672

(d) KBSim (S2Net) 0.930 0.956 0.961 0.964 0.814 0.881 0.903 0.921
KBSim (VSM) 0.939 0.964 0.966 0.968 0.799 0.874 0.896 0.914
KBSim (BAE) 0.925 0.950 0.958 0.963 0.795 0.872 0.893 0.908
KBSim (XCNN) 0.865 0.912 0.927 0.937 0.746 0.846 0.872 0.896

Table 5.5. ES-EN and DE-EN performance analysis in terms of plagiarism case length and
R@k, where k = {1, 5, 10, 20}.



116 CHAPTER 5. DISCUSSION OF THE RESULTS

CL-ESA, that is based on a representation by similarities with a collection
of documents, outperforms CL-ASA in cases with manual obfuscation. This
is somehow expected due that ESA was originally meant for tasks of related-
ness rather than plagiarism.

In Table 5.5 we can see the results as function of the case length. In
opposition to the short cases, the similarity between long cases of plagiarism
is the easiest to detect. The additional information that long cases provide,
makes it easier to the models to represent and to discriminate between texts.
However, those differences in performance rarely excel 2%. The exception
is the CL-ASA model, that suffers a higher decay when cases became shorter.
This may be produced by the document length component of the model, that
is more precise normalising larger cases of plagiarism. Note that KBSim
(S2Net) obtains the highest results independently of the type of obfuscation
and case length analysed, which highlights its robustness for CL similarity
analysis and plagiarism detection.

5.2.2.2 Experiment B: Cross-language Plagiarism Detection

In this section we compare the CWASA continuous word representation and
KBSim models with several state-of-the-art approaches on the PAN-PC-11
dataset for CL plagiarism detection. We show the results in Table 5.6. Al-
though both English and German are Germanic languages, due to their gram-
matical differences, the additional difficulty of the detection in DE-EN is also
visible in this experiment. The decay of plagdet — the overall score for pla-
giarism detection — ranges between 8%-27% when comparing DE-EN with
ES-EN results. The lowest results are obtained with CL-C3G, that does not
find enough lexical and syntactic similarities to model the content properly
using character n-grams. The CL-ESA and CL-ASA models obtain a similar
recall but the latter one excels in precision and increases its plagdet. In fact,
CL-ESA offers a higher number of false positives. Finally, the CL-KGA
model is the best state-of-the-art approach and obtains the highest results in
both ES-EN and DE-EN language pairs. Note that the best possible value of
granularity is 1.0, which means that our model is not detecting a single case
as multiple cases of plagiarism or vice versa. These comments are a short
summary of those highlighted in Section 3.5.

As we also pointed out in Section 5.2.2.1, the continuous word represen-
tation models, which represent documents based on the sum of word vectors,
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Model Spanish-English (ES-EN) German-English (DE-EN)

Plag Prec Rec Gran Plag Prec Rec Gran
(a) CL-KGA 0.651 0.752 0.574 1.000 0.564 0.650 0.495 1.000

VSM 0.564 0.630 0.517 1.010 0.414 0.524 0.362 1.048
CL-ASA 0.517 0.690 0.448 1.071 0.406 0.604 0.344 1.113
CL-ESA 0.471 0.535 0.448 1.048 0.269 0.402 0.230 1.125
CL-C3G 0.373 0.563 0.324 1.148 0.115 0.316 0.080 1.166

(b) S2Net 0.514 0.734 0.440 1.098 0.379 0.669 0.304 1.148
XCNN 0.386 0.738 0.310 1.189 0.270 0.664 0.196 1.174
BAE 0.440 0.736 0.360 1.142 0.212 0.482 0.150 1.120

(c) CWASA (XCNN) 0.609 0.686 0.547 1.001 0.492 0.611 0.430 1.037
CWASA (S2Net) 0.607 0.693 0.542 1.002 0.408 0.585 0.353 1.111
CWASA (BAE) 0.354 0.546 0.296 1.121 0.237 0.478 0.176 1.122

(d) KBSim (XCNN) 0.673 0.793 0.585 1.000 0.586 0.741 0.485 1.000
KBSim (VSM) 0.656 0.745 0.586 1.000 0.574 0.661 0.508 1.000
KBSim (S2Net) 0.652 0.741 0.583 1.000 0.572 0.671 0.499 1.000
KBSim (BAE) 0.651 0.743 0.579 1.000 0.567 0.659 0.499 1.000

Table 5.6. ES-EN and DE-EN performance analysis in terms of plagdet (Plag), precision
(Prec), recall (Rec) and granularity (Gran). This table complements the results of Tables 3.5
and 3.6.

offer an average performance in this task.8 The S2Net model outperforms
BAE and XCNN but obtains lower values than CL-KGA. We can see close
values in terms of precision for S2Net and XCNN. However, S2Net’s recall
is 10% higher in all the tests. This, along with the highest granularity, pe-
nalises XCNN’s plagdet.

The models of group (c) — where CWASA is used to measure similar-
ity — notably improve the performance of S2Net, BAE, and XCNN. We
appreciate how, especially with XCNN, recall and granularity improve with
a low impact on precision. In contrast to S2Net and BAE, that use a bag-
of-words format to learn vectors of documents, XCNN directly generates
continuous vectors of words. These vectors find in CWASA an excellent
complement in order to accurately measure the CL similarity. Note that in
this experiment we use Algorithm 3.1 to analyse the similarities and to iden-

8Although S2Net and BAE directly learn representations of text, note that this composi-
tion is internally based on the use of a bag-of-words format, that employs the sum of word
vectors.
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CL-KGA

Plagiarism case in “suspicious-document04541.txt”, offset=101,683:
You would have a successor Vice-President in cases of dismissal, resignation
or death. As for the rest was great to affinity that existed between it and the
Constitutional Code sanctioned in 1811 by Congress Miranda met on 2 March.

Plagiarism case in “suspicious-document06272.txt”, offset=43,421:
The last part of my journey, night and raining, dark corridors of the house, the
kitchen so big, so dark at first, then look strange in light of the huge bonfire fur
and things of my uncle, the woman appeared suddenly gray, the dark moorland
dining room, explored the dim light of lantern four glasses clouded by scab; the
silence of "outside" ... worse than silence: a distant sound and intermittent rough,
something which put fear into the valiant Don Quixote chest one night in near
Sierra Morena, and the other silent house stopped talking about My uncle had
impressed me badly.

XCNN

Plagiarism case in “suspicious-document07684.txt”, offset=454:
And you better well, because we would have been worse had both fallen in deep-
est pit and most serious sin. “I do not regret it, having rejected your honor, what
I regret is drawing him with unprecedented treachery to reject later.”

Plagiarism case in “suspicious-document06175.txt”, offset=0:
“Not like you go” she said. I fear something terrible happens to you: but go,
because they want and can not be avoided. Take, however, this box, and very
careful not to open it. If you open it, will never be able to see me again.

Table 5.7. Example of the type of cases detected by CL-KGA and XCNN. In this table,
the cases detected by CL-KGA are not detected by XCNN and vice versa. The bold words
highlight semantically related ones in the case of CL-KGA and frequent ones in the case of
XCNN.

tify the plagiarism cases. To do this, Algorithm 3.1 retrieves the five most
similar fragments with each text fragment in the other language. This pe-
nalises BAE that, as we mentioned in Section 5.2.2.1, has a low variance
between continuous vectors and makes it more difficult to correctly align the
text fragments.

Finally, the combination of vector representations with knowledge graphs,
makes the KBSim models of group (d) to obtain on overall the highest results.
In fact, KBSim (XCNN) outperforms the original KBSim (VSM), and is the
best model, independently of the language pair analysed. This proves the
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potential of KBSim for the tasks of CL similarity analysis and plagiarism
detection. This also confirms that knowledge graphs and continuous mod-
els capture different aspects of text and complement each other. In order to
illustrate this fact, we selected from the English partition four cases of plagia-
rism generated with translated automatic obfuscation.9. Two cases (referred
as CL-KGA) were detected by CL-KGA and not by XCNN. The other two
cases (referred as XCNN) represent the opposite situation. We can see these
cases in Table 5.7. Thanks to the wide coverage of the BabelNet multilingual
semantic network, our knowledge graph-based model eases the detection of
cases with semantically related words. On the other hand, the XCNN model
based on continuous representations covers knowledge graph shortcomings
such as the out-of-vocabulary words and has the potential to take into account
also their frequencies. We note that in this thesis we stemmed the input of
the continuous representation models.

Despite the high R@k of some models (see Section 5.2.2.1), the final
values of recall, and consequently plagdet, considerably decrease. We note
that this is normal if we consider that recall must be reduced in order to obtain
a precise model. This also demonstrates the potentialities and limitations of
Algorithm 3.1 for plagiarism detection.

After analysing the performance of the models, we are also interested in
analysing whether or not the observed differences across the obtained results
are statistically significant. In order to analyse this, we use bootstrap resam-
pling10 (Efron and Tibshirani, 1994) to measure the plagdet of the models
in ES-EN and DE-EN including also their confidence intervals. We show
the results in Figure 5.3. As we can see, the KBSim and CL-KGA mod-
els do not show significant differences. Despite KBSim (XCNN) obtains on
average a higher performance, these results show that CL-KGA or other KB-
Sim models perform similarly. However, the larger confidence intervals of
some models denote a higher variability in performance, e.g. with KBSim
(VSM) in DE-EN. With respect to the CWASA model, CWASA (XCNN) and
CWASA (S2Net) are notably superior to XCNN and S2Net. This highlights
again the potential of CWASA and its alignments for distributed word-based

9There is no need to include the source of plagiarism because it is basically a translation
into either Spanish or German.

10Bootstrap methods obtain generally better results in parametric tests for small datasets
— as the dataset in hand — or where sample distributions are non-normal. The statistical tests
are calculated with an α of 0.05 and 1,000 samplings.
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Figure 5.3. Plagdet score (%) of the compared models with confidence intervals for the
Spanish-English and German-English partitions. Non-overlapped intervals among models
represent statistically significant differences.

similarity analysis. In addition, CWASA (XCNN) proves to be also superior
to CWASA (S2Net) in DE-EN and, therefore, the most stable. Finally, note
that KBSim (XCNN) has the shortest distance between intervals of the same
model across language pairs. This 3% of division suggests that the model is
the most stable across languages for CL plagiarism detection.

Cross-language Plagiarism Detection as Function of the Type of Plagia-
rism Cases
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Type of
obfuscation

Model Spanish-English (ES-EN) German-English (DE-EN)

Plag Prec Rec Gran Plag Prec Rec Gran
(a) CL-KGA 0.161 0.175 0.150 1.000 0.196 0.171 0.229 1.000

VSM 0.102 0.121 0.088 1.000 0.109 0.147 0.086 1.000
CL-ASA 0.100 0.146 0.076 1.000 0.085 0.137 0.062 1.000
CL-ESA 0.092 0.107 0.081 1.000 0.078 0.122 0.057 1.000
CL-C3G 0.072 0.104 0.054 1.000 0.042 0.053 0.035 1.000

Translated (b) S2Net 0.091 0.141 0.067 1.000 0.115 0.173 0.086 1.000
manual BAE 0.085 0.191 0.055 1.000 0.088 0.113 0.072 1.000

obfuscation XCNN 0.077 0.116 0.058 1.000 0.085 0.160 0.058 1.000

(c) CWASA (XCNN) 0.117 0.143 0.099 1.000 0.168 0.212 0.140 1.000
CWASA (S2Net) 0.124 0.147 0.107 1.000 0.139 0.184 0.111 1.000
CWASA (BAE) 0.081 0.131 0.059 1.000 0.056 0.095 0.040 1.000

(d) KBSim (S2Net) 0.175 0.174 0.178 1.000 0.214 0.248 0.189 1.000
KBSim (VSM) 0.166 0.182 0.153 1.000 0.198 0.254 0.163 1.000
KBSim (BAE) 0.159 0.165 0.154 1.000 0.199 0.245 0.168 1.000
KBSim (XCNN) 0.151 0.173 0.134 1.000 0.197 0.241 0.167 1.000

(a) CL-KGA 0.706 0.785 0.641 1.000 0.607 0.684 0.547 1.000
VSM 0.603 0.673 0.553 1.011 0.445 0.562 0.391 1.053
CL-ASA 0.552 0.736 0.479 1.077 0.439 0.652 0.373 1.125
CL-ESA 0.503 0.571 0.479 1.052 0.288 0.431 0.247 1.137
CL-C3G 0.398 0.602 0.347 1.160 0.122 0.343 0.085 1.183

Translated (b) S2Net 0.550 0.784 0.471 1.106 0.406 0.719 0.326 1.164
automatic BAE 0.470 0.781 0.386 1.154 0.224 0.520 0.158 1.132

obfuscation XCNN 0.412 0.791 0.331 1.205 0.289 0.715 0.210 1.191

(c) CWASA (XCNN) 0.650 0.732 0.585 1.001 0.525 0.651 0.460 1.040
CWASA (S2Net) 0.648 0.739 0.579 1.002 0.436 0.626 0.378 1.123
CWASA (BAE) 0.377 0.581 0.316 1.131 0.255 0.517 0.190 1.134

(d) KBSim (XCNN) 0.730 0.852 0.639 1.000 0.647 0.815 0.537 1.000
KBSim (S2Net) 0.709 0.773 0.656 1.000 0.608 0.691 0.543 1.000
KBSim (VSM) 0.707 0.770 0.655 1.000 0.610 0.703 0.540 1.000
KBSim (BAE) 0.708 0.781 0.649 1.000 0.609 0.687 0.547 1.000

Table 5.8. ES-EN and DE-EN performance analysis in terms of the obfuscation type, plagdet
(Plag), precision (Prec), recall (Rec) and granularity (Gran).

In this last experiment we analyse the performance of the models consid-
ering the type of plagiarism case for CL plagiarism detection. As in Sec-
tion 5.2.2.1, we divide the plagiarism cases depending on the obfuscation
type employed to generate the case, and on the basis of the case length. We
only note the most relevant differences among the models with respect to the
general plagiarism detection analysis of the previous subsection.

In Table 5.8, depending on the obfuscation type, we note again the ad-
ditional difficulty to detect cases with manual obfuscation. In this exper-
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Type of
obfuscation

Model Spanish-English (ES-EN) German-English (DE-EN)

Plag Prec Rec Gran Plag Prec Rec Gran
(a) CL-KGA 0.410 0.418 0.404 1.000 0.383 0.408 0.361 1.000

CL-ASA 0.411 0.535 0.375 1.106 0.339 0.513 0.299 1.168
VSM 0.399 0.416 0.391 1.016 0.320 0.386 0.300 1.077
CL-ESA 0.351 0.388 0.352 1.076 0.220 0.329 0.198 1.176
CL-C3G 0.299 0.467 0.269 1.207 0.090 0.275 0.064 1.227

Long (b) S2Net 0.411 0.587 0.368 1.145 0.322 0.589 0.269 1.212
length XCNN 0.327 0.655 0.271 1.253 0.230 0.619 0.170 1.234
cases BAE 0.369 0.631 0.314 1.200 0.178 0.449 0.127 1.159

(c) CWASA (XCNN) 0.407 0.420 0.397 1.002 0.361 0.430 0.337 1.063
CWASA (S2Net) 0.413 0.432 0.398 1.003 0.323 0.470 0.294 1.173
CWASA (BAE) 0.283 0.433 0.250 1.171 0.211 0.405 0.164 1.158

(d) KBSim (XCNN) 0.458 0.501 0.423 1.000 0.435 0.519 0.375 1.000
KBSim (BAE) 0.439 0.436 0.442 1.000 0.389 0.401 0.378 1.000
KBSim (VSM) 0.438 0.439 0.438 1.000 0.388 0.408 0.370 1.000
KBSim (S2Net) 0.432 0.437 0.429 1.000 0.376 0.389 0.365 1.000

(a) CL-KGA 0.261 0.259 0.263 1.000 0.245 0.265 0.229 1.000
VSM 0.205 0.215 0.196 1.000 0.155 0.183 0.134 1.000
CL-ASA 0.174 0.224 0.142 1.000 0.149 0.204 0.117 1.000
CL-ESA 0.164 0.174 0.156 1.000 0.092 0.113 0.078 1.000
CL-C3G 0.131 0.175 0.105 1.000 0.041 0.070 0.029 1.000

Medium (b) S2Net 0.176 0.240 0.139 1.000 0.135 0.217 0.098 1.000
length XCNN 0.127 0.221 0.089 1.000 0.096 0.204 0.063 1.000
cases BAE 0.148 0.241 0.107 1.000 0.072 0.126 0.051 1.000

(c) CWASA (XCNN) 0.221 0.223 0.218 1.000 0.194 0.221 0.173 1.000
CWASA (S2Net) 0.219 0.226 0.212 1.000 0.155 0.196 0.129 1.000
CWASA (BAE) 0.115 0.157 0.090 1.000 0.068 0.107 0.050 1.000

(d) KBSim (XCNN) 0.274 0.293 0.257 1.000 0.261 0.307 0.228 1.000
KBSim (S2Net) 0.258 0.254 0.263 1.000 0.260 0.278 0.245 1.000
KBSim (VSM) 0.260 0.256 0.265 1.000 0.254 0.270 0.240 1.000
KBSim (BAE) 0.260 0.259 0.263 1.000 0.251 0.269 0.267 1.000

(a) CL-KGA 0.015 0.011 0.023 1.000 0.014 0.010 0.021 1.000
VSM 0.009 0.006 0.014 1.000 0.007 0.005 0.011 1.000
CL-ESA 0.009 0.006 0.015 1.000 0.005 0.003 0.008 1.000
CL-ASA 0.006 0.005 0.009 1.000 0.006 0.005 0.009 1.000
CL-C3G 0.005 0.004 0.006 1.000 0.004 0.003 0.005 1.000

Short (b) S2Net 0.008 0.007 0.010 1.000 0.008 0.006 0.010 1.000
length XCNN 0.006 0.006 0.006 1.000 0.009 0.009 0.009 1.000
cases BAE 0.003 0.003 0.004 1.000 0.005 0.004 0.007 1.000

(c) CWASA (XCNN) 0.011 0.008 0.019 1.000 0.009 0.007 0.015 1.000
CWASA (S2Net) 0.012 0.009 0.018 1.000 0.007 0.005 0.011 1.000
CWASA (BAE) 0.005 0.003 0.007 1.000 0.004 0.004 0.005 1.000

(d) KBSim (S2Net) 0.018 0.014 0.027 1.000 0.017 0.013 0.026 1.000
KBSim (XCNN) 0.018 0.014 0.025 1.000 0.014 0.011 0.021 1.000
KBSim (BAE) 0.017 0.013 0.023 1.000 0.014 0.011 0.021 1.000
KBSim (VSM) 0.017 0.013 0.023 1.000 0.014 0.011 0.021 1.000

Table 5.9. ES-EN and DE-EN performance analysis in terms of plagiarism case length,
plagdet (Plag), precision (Prec), recall (Rec) and granularity (Gran).
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iment there is an additional handicap compared to the experiment of Sec-
tion 5.2.2.1: the detailed analysis and proprocessing of Algorithm 3.1. In the
statistics of Table 5.2 we observe ten times less cases with manual obfusca-
tion. In addition, we verified that most of them are short length cases, which
are generally covered by a single text fragment (see Section 3.4 for more in-
formation about the size of fragments, the division of documents with slide
window and Algorithm 3.1). Therefore, Algorithm 3.1 fails in detecting most
of this type of cases: it needs offset overlaps of at least two detections in the
five most similar fragments. Despite this fact, we observe that KBSim is the
best detector independently of the type of obfuscation, with special mention
to KBSim (S2Net) in DE-EN for manual obfuscation cases of plagiarism. In
contrast, the KBSim (XCNN) model obtains the best results for automatic
obfuscation cases. Since these cases are more numerous, this model obtains
the overall best results in Section 5.2.2.2. We also note that the 1.0 value of
granularity is normal when detecting cases with large distance between them
in the document. Hence the high occurrence in the tables.

In Table 5.9 we can see the results depending on the case length. It is
interesting to see that CL-ASA outperforms CL-KGA for ES-EN long cases.
The alignment model included in CL-ASA eases the detection of long cases
— mostly composed by automatic translated cases — and increases the pre-
cision. In fact, this model was originally meant for detecting verbatim pla-
giarism cases. In contrast, we observe that the model does not excel for short
cases of plagiarism, and is outperformed by CL-ESA. Overall, with excep-
tion of short DE-EN cases, KBSim (XCNN) obtains the best results in all the
experiments. We also note its difference in performance for longer cases of
plagiarism compared to KBSim (S2Net). These facts show the versatility of
the KBSim (XCNN) model for the task of CL plagiarism detection.

5.2.2.3 Study of the Computational Efficiency

In this section we study the computational efficiency of the models. We
specially focus on the models not studied in Section 3.5. In Table 5.10 we
show the time necessary to transform the texts to the space of the models
(indexing), and the time for measuring the similarity once that transforma-
tion is done. We use an Intel-i5@2.8Ghz with 16 GB of RAM to perform
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System Text indexing Text similarity
(texts/second) (texts/second)

(a) CL-KGA 3 281
VSM 2,083 2,291
CL-ASA 1,741 3,627
CL-ESA 282 1,826
CL-C3G 3,127 2,619

(b) XCNN 390 8,599
S2Net 433 8,599
BAE 380 8,598

(c) CWASA (XCNN) 497 3,824
CWASA (S2Net) 500 3,812
CWASA (BAE) 510 3,784

(d) KBSim (VSM) 3 287
KBSim (XCNN) 3 278
KBSim (S2Net) 3 283
KBSim (BAE) 3 278

Table 5.10. Comparison of time required to index and estimate similarity between texts.
Results are estimated as the average for processing all the ES-EN partition.

these tests over the complete ES-EN partition.11 As we can see, there is
more variability in the indexing time. The CL-KGA and KBSim knowledge
graph-based models are slow due to the time required to search paths in the
BabelNet multilingual semantic network. Note that it contains more than
9 million of concepts and more than 262 million of relations among them.
More simple approaches such as VSM are recommended for fast document
indexing. However, text indexing is usually part of the preprocessing step,
being the indexing of the new documents needed only once. The XCNN,
S2Net, and BAE models offer an acceptable indexing time and excel at text
similarity level. Thanks to the cosine similarity between low-dimensional
vectors, these three approaches are the fastest ones. Finally, the efficiency of
the CWASA model make its similarity calculation also fast. This, together
with its good performance in the experiments of this work, highlights its
potential for large scale systems.

11Since the time for indexing a text does not depend on its language but its length, we
only measure average times using the ES-EN partition.
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5.2.3 DISCUSSION

The purpose of our research on the task of cross-language plagiarism detec-
tion was to create new and more capable models for cross-language similarity
analysis. We employed the BabelNet multilingual semantic network to gen-
erate knowledge graphs as a cross-language and cross-domain representation
of text and its meaning. In addition, we studied the most relevant character-
istics of this representation (cf. Section 3.3.4): word sense disambiguation,
vocabulary expansion, and representation by similarities with a collection of
concepts.

In this section we extended the evaluation of Chapter 3. We included the
following new aspects: (i) the comparison with reference cross-language dis-
tributed representation-based models; (ii) the evaluation of the KBSim model
that combines knowledge graphs with document vectors; (iii) the combina-
tion of KBSim with cross-language distributed representation-based models;
and (iv) the analysis of the models as function of the obfuscation type em-
ployed to generate the plagiarism case, and on the basis of the case length.

In this study we provided with sufficient evidences to prove that knowl-
edge graphs have a strong potential as a cross-language representation of
text and its meaning. In addition, after analysing the results of the evalu-
ations of Section 3.5 and 5.2.2, including a comparison with the reference
models for this task, we conclude that knowledge graph-based models offer
state-of-the-art performance for the task of cross-language plagiarism detec-
tion. However, we have not found statistical significant differences between
the CL-KGA and KBSim models in this task. Therefore, despite the gen-
eral higher values of KBSim (XCNN), there were no differences between
the KBSim model combined with the traditional VSM and the distributed
representation-based ones. In consequence, in Section 5.3 we will not ex-
plore this line in the tasks of cross-language document retrieval and catego-
rization in the extended evaluation of the Chapter 4.

With respect to the combination of knowledge graphs and distributed rep-
resentations, in Section 1.1 we showed the relationship between these two
representations with an example that also highlights the relationship with
how our mind represents knowledge. We note that, despite the KBSim model
combined with distributed representations was not statistically superior, all
the knowledge graph-based models in this evaluation used the distributed
concept weighting scheme proposed in Section 3.3.3.2. Therefore, all the
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models with statistical significant differences on top of our ranking (cf. Fig-
ure 5.3), employ the combination of knowledge graphs and distributed repre-
sentations to excel over the rest.

5.3 Cross-language Document Retrieval and Categorization Re-
sults

In Chapter 4 we presented our KBSim model for cross-language similarity
analysis (cf. Section 4.3). That chapter also studied the performance of the
model in the tasks of cross-language document retrieval and categorization
comparing it with the state of the art obtaining good results (cf. Section 4.6).
However, KBSim is a modified version of our CL-KGA model (cf. Section
3.4) and they have not been compared in these two tasks. Similarly, we have
not compared KBSim with the results of its vector component separately. In
addition, the original KBSim employed the weighting scheme of relations of
BabelNet 1.0. That scheme was based on Dice’s coefficient overlaps between
gloss and Wikipedia hyperlink information. In Section 3.3.3.2 we proposed
a new weighting scheme for knowledge graph semantic relations that offered
better performance for cross-language plagiarism detection (cf. Section 3.5
and 5.2.2). Therefore, in order to complement the study with knowledge
graphs of Chapter 4, in Section 5.3.1 we show these results together with the
ones reported in Section 4.6. Finally, in Section 5.3.2 we discuss the results
of this study and close the cross-language part of this thesis.

5.3.1 COMPLEMENTARY EVALUATION OF CROSS-LANGUAGE DOCUMENT

RETRIEVAL AND CATEGORIZATION

In this section we complete the evaluation of Section 4.6. We employ the
same datasets, evaluation measures, and state of the art models. In addition,
we include some additional models in order to show the complete knowl-
edge graph picture at task level. First we show our new experiments in
cross-language document retrieval. Next, in Section 5.3.1.2 we show our
new experiments in cross-language document categorization.

5.3.1.1 Experiments in Cross-language Document Retrieval

For cross-language document retrieval we compare the following models.
As baselines we selected the CosSimE, CosSimBN (cf. Section 4.6.1.1),
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CL-C3G, CL-ESA, and VSM models.12 We also employ the distributed
representation-based13 CL-LSI, CCA, OPCA, and S2Net models.14 Finally,
we show the results of the original KBSim model, the CL-KGA model, and
the results of these models using our Distributed Concept Weighting (DCW)
scheme: KBSim (DCW) and CL-KGA (DCW). We evaluate all the models
over the test partition of the Wikipedia dataset described in Section 4.6.1.1
that contains 8,675 documents. We show the accuracy of ranking the real
Wikipedia comparable document across languages as the most similar one —
which is equivalent to estimate the R@1 —, and the Mean Reciprocal Rank
(MRR) of Eq. 5.6. We do not note again the insights of Section 4.6 and focus
on the study of the results related to our knowledge graph models.

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

, (5.6)

where |Q| is the number of documents to rank and the function ranki returns
the document retrieval ranking of the document i.

The Table 5.11 shows the results15 of this evaluation. The use of our
bilingual vector representation makes VSM to excel over other vector rep-
resentations such as CosSimBN . However, despite VSM also outperforms
CL-KGA, we can see that both offer an average performance. These results
are in line with the results that we obtained during the development of our
KBSim model, and were the ones that motivated the study of the CL-KGA
and VSM combination and consequently, the KBSim proposal. We note that
the dataset employed is distributed online using the TF-IDF weighting pre-
processing and contains only 20k different words.16 This constraint makes

12As we did in Section 5.2.2, VSM refers to the vector component of KBSim described
in Section 4.4.

13Despite in the publication included as Chapter 4 of this thesis we refer to this type of
models as linear projection ones, their nature is based on the distributional semantics theory
(see Section 1.1). Therefore, for being consistent with the rest of this thesis, in this section
we refer to them as distributed representation-based models.

14Since the BAE and the XCNN models did not excel over other distributed representation-
based ones such as S2Net (cf. Section 5.2.2), we do not include them in this extended evalu-
ation.

15In this study, statistically significant results according to a one-tailed χ2 test with Yates’
correction (p < 0.05) are highlighted in bold.

16Since the dataset is represented by the TF-IDF of isolated words, we cannot detect
multi-words in order to map them to the most appropriated knowledge graph concepts.
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Model Accuracy MRR

KBSim (DCW) 0.754 0.800
S2Net 0.745 0.797
KBSim 0.734 0.775
OPCA 0.726 0.773
VSM 0.709 0.763
CL-KGA (DCW) 0.707 0.759
CosSimE 0.703 0.747
CosSimBN 0.703 0.755
CCA 0.689 0.738
CL-KGA 0.684 0.736
CL-LSI 0.530 0.613
CL-ESA 0.266 0.330
CL-C3G 0.251 0.302

Table 5.11. Test results for comparable document retrieval in Wikipedia. This table updates
the results of Table 4.1.

it more difficult to our CL-KGA model to generate representative document
graphs. In consequence, more simple representations such as the CosSimBN
and the VSM models are able to outperform it. In contrast, KBSim combines
VSM and CL-KGA exploiting the amount of information in the knowledge
graphs as interpolation basis (cf. Section 4.5), and it is able to work at par
than the state of the art. Finally, we highlight the improvements obtained
when the DCW is employed. The CL-KGA (DCW) model is at par with
VSM. Moreover, KBSim (DCW) outperforms S2Net and they both are sta-
tistically significant in top of these results. All these facts manifest the qual-
ity of the DCW scheme and the KBSim model, as well as the potential of
knowledge graphs for cross-language document retrieval.

5.3.1.2 Experiments in Cross-language Document Categorization

For this task we compare the same additional models included in the previous
section — VSM, CL-KGA, CL-KGA (DCW), and KBSim (DCW) — with
those employed in the original evaluation of Section 4.6.2: the CosSimE and
CosSimBN baselines, the CL-LSI, CCA, OPCA and Full MT distributed rep-
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Model EN News Accuracy ES News Accuracy

KBSim (DCW) 0.839 0.722
KBSim 0.819 0.700
Full MT 0.848 0.648
VSM 0.809 0.681
CL-KGA (DCW) 0.806 0.681
CosSimBN 0.802 0.674
CL-KGA 0.795 0.669
OPCA 0.841 0.595
CCA 0.839 0.532
CL-LSI 0.840 0.510
CosSimE 0.805 0.448

Table 5.12. Test results for cross-language text categorization. This table updates the results
of Table 4.2.

resentation models, and our KBSim model.17 We show the accuracy of clas-
sification of the two cross-language test partitions defined in Section 4.6.2:
EN News and ES News, with 1,875 and 12,342 documents, respectively. We
do not note again the insights of Section 4.6.2 and focus on the study of the
results related to our knowledge graph models.

In Table 5.12 we show the results of categorization. Most of the insights
about knowledge graphs of Section 5.3.1.1 persist in this evaluation. The
VSM model is superior to other vector representations such as CosSimBN .
It outperforms CL-KGA and marginally also CL-KGA (DCW). However,
when knowledge graphs and VSM are combined together in KBSim, the per-
formance is notably superior. The comment about the TF-IDF text prepro-
cessing also persists here. The Multilingual Reuters Collection is distributed
online in that format, which makes it more difficult to create representative
knowledge graphs. Finally, we note again that the results when DCW is em-
ployed are higher. KBSim (DCW) outperforms the original KBSim and is at
par with the statistically significant models on top of the EN news partition.
In addition, it is statistically the best model in the ES news partition. This
result is specially relevant if we consider that the ES news partition is much

17We note that all our knowledge graph models use the k-NN process employed in Section
4.6.2 with KBSim for categorization.
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larger than the EN one. Note that larger test collections are able to provide
with more accurate results in terms of significance.

5.3.2 DISCUSSION

In Chapter 4 we introduced KBSim, a new model of cross-language sim-
ilarity analysis that improves CL-KGA including a vector component that
counterbalances possible knowledge graph shortcomings. We applied this
new model to cross-language document retrieval and categorization and com-
pared it with the state of the art. That included the comparison with the ref-
erence distributed representation models and other models also popular in
cross-language plagiarism detection. Moreover, in the extended evaluation
of this section we independently analysed the performance of the KBSim
components: knowledge graphs and multilingual vectors. Finally, we evalu-
ated the performance of KBSim and CL-KGA employing our new distributed
concept weighting scheme.

Results in the tasks of cross-language document retrieval and categoriza-
tion showed that KBSim using the new weighting scheme is much better
than its independent components. They also showed that the model is able
to work at par or better than the state of the art. All these facts manifest the
quality of the DCW scheme and the KBSim model, as well as the potential of
knowledge graphs for cross-language document retrieval and categorization.

To conclude the cross-language part of this thesis, we would like to sum-
marise some important aspects. We studied our knowledge graph-based
models in three representative tasks of the cross-language scenario: cross-
language plagiarism detection, document retrieval, and categorization. We
also analysed the characteristics that make knowledge graphs adequate for
these tasks. The results of the CL-KGA and KBSim models compared to
several reference models provided with state-of-the-art performance and also
showed interesting insights about the models. These results were obtained
employing several datasets and language pairs. All these facts prove the qual-
ity and potential of knowledge graphs as a cross-language representation of
text and meaning. In addition, they show the versatility of the developed
models, specially KBSim, for cross-language NLP and IR tasks.
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5.4 Knowledge Graphs in Other NLP Tasks

In this thesis we showed how we successfully employ knowledge graphs as
a cross-language and cross-domain representation of text and its meaning.
We thoughtfully studied the tasks of single- and cross-domain polarity cate-
gorization, and the cross-language tasks of plagiarism detection, document
retrieval and categorization. However, we are interested in studying if knowl-
edge graphs can be used as a general representation of text and its meaning
for other non-cross-language or cross-domain NLP tasks.

In this section we detail our experiments and results with knowledge
graphs in the tasks of community question answering, native language iden-
tification, and language variety identification. We perform the question an-
swering task with a model that could be considered an extension of KBSim
in order to take advantage of training data and several similarity models. The
native language and the language variety identification tasks are conducted
with our KBSim (DCW) model for classification. That part of the study aims
to bridge these two close language identification tasks which until now have
been addressed separately by two different research communities.

The rest of this section is structured as follows. First, in Section 5.4.1 we
describe our participation in the SemEval 2016 community question answer-
ing shared task. Next, in Section 5.4.2 we study together the native language
and the language variety identification tasks. Finally, in Section 5.4.3 we
draw some conclusions on this part of the thesis.

5.4.1 COMMUNITY QUESTION ANSWERING

The SemEval 2016 Task 3 on Community Question Answering (CQA) (Nakov
et al., 2016) is focused on automatically identifying good answers to new
questions by searching a discussion forum for similar questions and by iden-
tifying, among their answers, those that answer the new question. Last edi-
tion of this task (Nakov et al., 2015) classified the answers as good, bad,
or potentially relevant with respect to one question. However, this type of
automatic systems are imperfect from the user perspective. Therefore, the
2016 edition is focused on ranking subtasks that employ the probability or
relevance between the questions and comments.

The SemEval 2016 Task 3 is composed by four subtasks:
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• Subtask A) English question-comment similarity ranking. Given
one question and its 10 comments, rank them in function of their rele-
vance.

• Subtask B) English question-related question similarity ranking.
Given one new question, rank 10 related questions according to their
relevance with respect to the original one.

• Subtask C) English question-external comment similarity ranking.
Given one new question and 10 related questions with their 10 respec-
tive comments, rank these 100 comments according to the original
question. This subtask tries to cover the complete task of CQA.

• Subtask D) Arabic question-related question with correct answer
re-ranking. This subtask simplifies Subtask C and require users to
rank 30 related questions — with one comment each one — respect to
one original question.

Automatic question answering has been a popular interest of research
in NLP from the beginning of the Internet (Rosso et al., 2012). The use of
BOW representations allowed to correctly answer 60% of the questions of
the first large-scale question answering evaluation at the TREC-8 Question
Answering track (Voorhees, 1999). More complex systems used inference
rules to connect expressions between questions and answers (Lin and Pantel,
2001). Similarly, Ravichandran and Hovy (2002) employed bootstrapping
to generate surface text patterns in order to successfully answer questions.
Other works such as Buscaldi et al. (2010) are based on the redundancy of
n-grams in order to find one or more text fragments that include tokens of
the original question and the answer. Jeon et al. (2005) studied the seman-
tic relatedness between texts for question answering. They used translation
obfuscation to paraphrase the text and to detect which terms are closer in
meaning. Probabilistic topic models have been also useful for detecting the
semantics in this task. Celikyilmaz et al. (2010) used LDA for representing
questions by means of latent topics.

With respect to the previous edition of the SemEval CQA task, several
teams experimented with complex solutions that included meta-learning, ex-
ternal resources, and linguistic features such as syntactic relations and dis-
tributed word representations. Similarly to the model described in this sec-
tion, the highest performing approach employed a combination of lexical and
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semantic-based similarity measures (Tran et al., 2015). Another interesting
approach, Hou et al. (2015), included textual features — word lengths and
punctuation — in addition to syntactical-based features — POS tags.

In this section we detail our participation in the three English-related
Task 3 subtasks on CQA (subtasks A, B, and C). We describe an approach
that is based on our KBSim (cf. Section 4.5) model. The latter employs
knowledge graphs and document vectors to measure similarity at semantic
and lexical level, respectively, and combines these values with a dynamic
interpolation. Note that KBSim does not use any training data. In contrast,
here we employ knowledge graphs and document vectors at monolingual
level along with other additional representations for a similarity ranking task
that provides with training data. Our new model is designed to take advan-
tage of this shared task training data in order to learn the interpolation thresh-
olds of all the similarity models employed. We first represent each instance
to rank — question versus (vs.) comments, question vs. related questions,
or question vs. comments of related questions — with a set of similarities
computed at two different levels: lexical and semantic. Similarly to our KB-
Sim model, this representation allows us to estimate the relatedness between
text pairs in terms of what is explicitly stated and what it means. Our lexical
similarities employ representations such as word and character n-grams, and
BOW. The semantic similarities include the use of our CWASA model (cf.
Section 5.2.1.4), distributed representations of text, knowledge graphs, and
frames from the FrameNet lexical database (Baker et al., 1998).

We first detail our model for this CQA shared task in Section 5.4.1.1.
Next, in Section 5.4.1.2 we analyse its results and draw some conclusions
about this task.

5.4.1.1 Lexical and Semantic-based Community Question Answering

In this section we describe the model that we designed for this CQA task.
Similarly to our KBSim model, this new model for CQA exploits both the
verbatim and the contextual similarities between texts, i.e., questions and
comments.18

18We note that all our features are similarity scores obtained with different text similarity
measures. More details and examples can be found in the respective papers or sections of this
thesis.
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Lexical Features

The lexical features that we employ are the following:

• Cosine Similarity. We use cosine similarity to measure lexical simi-
larity between two text snippets. We calculate cosine similarity based
on word n-grams (n=1,2), character 3-grams and TF-IDF scores of
words.

• Word Overlap. We use the count of common words between two
texts. This count is normalized by the length.

• Noun Overlap. We use NLTK19 to part-of-speech tag the text and
compute the normalized count of overlapping nouns in two texts as a
similarity measure.

• N-gram Overlap. We compute the normalized count of common n-
grams (n=1,2,3) between two texts.

Semantic Features

The semantic features that we employ are the following:

• Distributed representations of texts. We use the continuous Skip-
gram model (see Section 3.3.3.2) of the word2vec toolkit to gener-
ate distributed representations of the words of the complete English
Wikipedia.20 Next, for each text, e.g. question or comment, we av-
erage its word vectors in order to have a single representation of its
content as this setting has shown good results in other NLP tasks (e.g.
for language variety identification (Franco-Salvador et al., 2015c) and
discriminating similar languages (Franco-Salvador et al., 2015d) (cf.
Section 5.4.2.1)). Finally, the similarity between texts, e.g. question
vs. comment, is estimated using the cosine similarity.

19http://www.nltk.org/
20We use 200-dimensional vectors, context windows of size 10, and 20 negative words

for each sample.

http://www.nltk.org/
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• Distributed word alignments. We use our CWASA model (cf. Sec-
tion 5.2.1.4) to measure the similarity by double-direction aligning dis-
tributed word representations of texts.

• Knowledge graphs. We use our CL-KGA model21 (cf. Section 3.4)
to measure the similarity of texts at knowledge graph space.

• Common frames. We use Framenet (Baker et al., 1998) to extract
the frames associated with the lexical items in the text. For each frame
present in the text, we calculate the common lexical items between
sentences associated with this frame. The goal is to allow inference of
similarity at the level of semantic roles.

As additional feature, for Subtasks B and C we also use the ranking
provided by the Google search engine for the questions related to the original
questions.

Data Representation and Ranking

Due to the representation of questions (composed by subject and body fields)
and answers (a comment field) we adapt our system for the different English
subtasks:

• Subtask A (question-comment similarity ranking): we use the afore-
mentioned similarity-based features at three levels: question subject
vs. comment, question body vs. comment, and full question vs. com-
ment.

• Subtask B (question-related question similarity ranking): for this
subtask we measure the similarities at body, subject, and full question
level.

• Subtask C (question-external comment similarity ranking): we
employ all the features of Subtasks A and B, plus the similarities of the

21We do not use KBSim to generate features because it is a combination of two represen-
tations and their similarity scores. In this task we want to automatically learn the combination
of several representations by means of machine learning techniques. However, the proposed
model follows the KBSim nature of combining more than one similarity measure.
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original question — subject, body, and full levels — with the related
question comments.

In order to rank the questions and comments, we select a variant of SVM
optimized for ranking problems: SVMrank (Joachims, 2002).22 We use a
linear kernel and optimize the SVM cost factor parameter using Bayesian
optimizations23 (Snoek, 2013). In addition to the ranking, the task requires
also to provide with a label for each instance that reflects if the question or
comment is relevant to the compared question. For each subtask we optimize
a threshold to determine the relevance of each instance that is based on our
predicted relevance ranking. In other words, we binarize our ranking.24

5.4.1.2 Results and Discussion of the Community Question Answering Study

In this section we study the results of our approach in the SemEval 2016 Task
3 on CQA.

Methodology

For evaluating our approach we use the CQA-QL English corpus (version
3.2) (Nakov et al., 2016) provided for the SemEval 2016 Task 3 on CQA.25

In Table 5.13 we can see the statistics of the corpus.

We compare the results of our approach with those provided by the ran-
dom baseline and the Google search engine when ranking the questions and
comments.26 We also show the results of the best performing system for each

22Preproscessing steps include stopword removal, lemmatization, and stemming. How-
ever, for the distributed representation and knowledge graph-based features we do not employ
stemming. These decisions are motivated for performance reasons during our prototyping.

23We used the Spearmint toolkit: https://github.com/HIPS/Spearmint
24Note that each subtask originally allowed to submit three runs per team. For the sake of

simplicity, in our tables we show only the one with better results.
25Despite the Subtask A allows to use the corpus of the SemEval 2015 CQA task, we did

not observe improvements when using it. Therefore, we just use the 2016 corpus. In addition,
in this study we combine the two available 2016 training partitions.

26Some considerations about the evaluation: these subtasks employed binary classifica-
tion. At testing time, Bad and PotentiallyUseful are both considered false. The same occurs
with PerfectMatch and Relevant, which are both considered true. In addition, following the
rules of the task, the employed measures use only the top 10 ranked instances.

https://github.com/HIPS/Spearmint
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Train. Dev. Test

Original questions
Total 267 50 70

Related questions
Total (Subtask B) 2,669 500 700

PerfectMatch 235 59 81
Relevant 848 155 152
Irrelevant 1,586 286 467

Related comments
wrt Original question

Total (Subtask C) 26,690 5,000 7,000
Good 2,837 345 654
Bad 21,473 4,061 5,943
PotentiallyUseful 2,380 594 403

wrt Related question
Total (Subtask A) 17,900 2,440 3,270

Good 6,651 818 1,329
Bad 8,139 1,209 1,485
PotentiallyUseful 3,110 413 456

Table 5.13. Statistics of the CQA-QL version 3.2 English corpus.

subtask.27 The official measure of the task is the Mean Average Precision
(MAP) (see Eq. 5.7), but we include also two alternative ranking measures:
Average Recall (AvgRec) (see Eq. 5.9) and Mean Reciprocal Rank (MRR)
(cf. Eq. 5.6). In addition, we include four classification measures: Accuracy
(acc.), Precision (P), Recall (R), and F1-measure (F1). Next we detail the
measures not defined in the previous chapters and sections:

MAP =
1
|Q|

|Q|

∑
i=1

AvgPrec(i), (5.7)

27Since their development set results are not available, we only show their test set results.
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Figure 5.4. IGR of our similarity-based features for the three English CQA subtasks.

where Q is the number of documents to rank and AvgPrec(i) is the average
precision of the top i documents. It is estimated as follows:

AvgPrec(n) =
1

min(m, n)

n

∑
k=1

P(k), (5.8)

where P(k) means the precision at cut-off k in the item list, i.e., the ratio
of number of users followed up to the position k over the number k. P(k)
equals 0 when the k-th item is not followed upon recommendation and m is
the number of relevant documents. If the denominator is zero, AvgPrec(n)
is set to zero. Similarly, the average recall is estimated as follows:

AvgRec(n) =
1

min(m, n)

n

∑
k=1

R(k). (5.9)
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Ranking measures Classification measures
Model MAP AvgRec MRR Acc. P R F1

Development set results
(a) Random baseline 0.456 0.654 0.535 0.433 0.344 0.764 0.475

Search engine 0.538 0.728 0.631 n/a n/a n/a n/a

(b) Proposed approach 0.630 0.811 0.722 0.672 0.510 0.545 0.527
Test set results
(a) Random baseline 0.528 0.665 0.587 0.525 0.452 0.405 0.428

Search engine 0.595 0.726 0.678 n/a n/a n/a n/a

(b) Proposed approach 0.676 0.795 0.771 0.624 0.541 0.501 0.520

(c) Filice et al. (2016) 0.792 0.888 0.864 0.751 0.770 0.553 0.644

Table 5.14. Results of Subtask A: English Question-Comment Similarity. (a) Baselines;
(b) proposed approach; (c) best performing subtask approach.

Results and Discussion

In order to study the relevance of our features, we show their Information
Gain Ratio (IGR) (cf. Eq. 2.4) divided per task in Figure 5.4.28 As we can
see, the features are notably more informative for subtask B. That is in line
with the results that we analyse later for the classification and ranking mea-
sures. Moreover, the comparison between the lexical and the semantic fea-
tures seems to favour the latter ones, with exception of the common frames,
that are not very informative. It is also interesting that the distributed word
alignments of our CWASA model outperform on average the distributed rep-
resentations of texts estimated by averaging word vectors. This highlights
the potential of CWASA for similarity. In addition, we note that the search
engine rank offers the lowest contribution for subtask B and C. Finally, we
note that the similarity between knowledge graphs estimated with our CL-
KGA model is on average the most informative one among all the employed
features due to its stability.

28Since the features of our model represent similarity values at different levels (cf. Section
5.4.1.1), the total number of features for some subtasks is larger than 100. For the sake of
simplicity, in this figure we ignored that level distinction and averaged that IGR values.
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Ranking measures Classification measures
Model MAP AvgRec MRR Acc. P R F1

Development set results
(a) Random baseline 0.559 0.732 0.622 0.488 0.443 0.766 0.562

Search engine 0.713 0.861 0.766 n/a n/a n/a n/a

(b) Proposed approach 0.755 0.910 0.817 0.758 0.714 0.724 0.719
Test set results
(a) Random baseline 0.470 0.679 0.510 0.452 0.404 0.326 0.361

Search engine 0.747 0.883 0.838 n/a n/a n/a n/a

(b) & (c) Proposed approach 0.773 0.908 0.840 0.767 0.636 0.704 0.668

Table 5.15. Results of Subtask B: English Question-Question Similarity. (a) Baselines;
(b) proposed approach; (c) best performing subtask approach.

Ranking measures Classification measures
Model MAP AvgRec MRR Acc. P R F1

Development set results
(a) Random baseline 0.138 0.096 0.160 0.284 0.070 0.759 0.128

Search engine 0.306 0.346 0.360 n/a n/a n/a n/a

(b) Proposed approach 0.383 0.421 0.425 0.897 0.252 0.249 0.250
Test set results
(a) Random baseline 0.150 0.114 0.152 0.167 0.296 0.094 0.143

Search engine 0.404 0.460 0.459 n/a n/a n/a n/a

(b) Proposed approach 0.434 0.480 0.484 0.888 0.386 0.327 0.354

(c) Filice et al. (2016) 0.556 0.634 0.612 0.834 0.322 0.702 0.442

Table 5.16. Results of Subtask C: English Question-External Comment Similarity. (a)
Baselines; (b) proposed approach; (c) best performing subtask approach.

With respect to the ranking and classification subtasks, we can see the
results of Subtask A (question-comment similarity ranking) in Table 5.14.29

In terms of ranking measures, our system outperforms both the random and
the search engine baselines. Using the development set, we observe a MAP
improvement of 9.4% compared with the results obtained by the search en-
gine. We can see similar differences with respect to the other two ranking

29The best results per partition and subtask are highlighted in bold. In addition, our per-
centage comparisons use always absolute values.
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measures. Classification results are also superior. We obtain improvements
in accuracy and F1 of 24.9% and 5.2%, respectively. These results show the
potential of the selected lexical and semantic-based features for this subtask.
However, our model is outperformed by the one of Filice et al. (2016). They
learn semantic relations between questions and answers using kernels and
previously-proposed features from Barrón-Cedeño et al. (2015). This con-
tributes to strongly increase the precision and consequently the accuracy and
all the ranking measures based on that metric.

Similar to Subtask A, the performance of our approach is also superior
to the baselines in Subtask B (question-related question similarity ranking).
As we can see in Table 5.15, using the development set, the improvement of
MAP, AvgRec, and MRR is of 4.6%, 5%, and 6.4% respectively compared to
the search engine baseline. In this case, the similarity between questions is
easier to estimate — also for the baselines — and the improvements in per-
formance are slightly reduced. With respect to the classification measures,
we outperform the random baseline with 27.4% and 16.1 % of accuracy and
F1-measure respectively. We note that our approach obtains the highest re-
sults among all the submitted systems — with considerable margin (1.04%)
— for subtask B.

In Table 5.16 we can see the results of the Subtask C (question-external
comment similarity ranking). In this case, we are ranking 100 comments (10
times more compared to the other subtasks). Therefore, this is the most diffi-
cult subtask. However, we obtain improvements in line with those reported
for the other subtasks. Compared to the search engine baseline, the MAP,
AvgRec, and MRR improves 8.7%, 8.5%, and 7.5% respectively when using
the development partition. The accuracy and F1-measure improves 61.5%
and 12.2% respectively. The largest number of comments to rank, and the
use of top 10 results when measuring results, benefits our approach with this
especially high difference in accuracy. However, Filice et al. (2016) obtains
in general higher results than our approach. Their results in subtask A high-
light the versatility of their model for CQA. Note that the comparison of
results of all the submitted systems and task participants can be found in the
task overview (Nakov et al., 2016).

In this part of the thesis we studied the performance of an approach that
is based on our KBSim model but extended to employ training data and to
combine more similarity models. Experimental results showed that our ap-
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proach is able to outperform — with considerably differences — the random
and Google search engine baselines in the three English subtasks. After
the analysis of our results, we highlight that the combination of lexical and
semantic-based features that we employ in this study offers a competitive per-
formance for the CQA task. This is true also when comparing results with
other task participants. Our approach obtains the highest results for subtask
B, which is the most related task to classical text similarity. However, for
the other two subtasks, we obtain an average ranking position. That differ-
ence in performance is logical if we consider the IGR values of Figure 5.4.
Those values are three times higher for subtask B. Therefore, we conclude
that our approach is more adequate for similarity tasks — as the plagiarism
detection and document retrieval evaluated in this thesis — rather than ques-
tion answering. In addition, on the contrary to KBSim and CL-KGA, this
approach performs at monolingual level, which shows the potential of knowl-
edge graphs for monolingual similarity tasks. Finally, as in Section 5.2 with
cross-language plagiarism detection, we proved that knowledge graphs and
distributed representations can be combined together to obtain additional im-
provements. This makes sense if we consider that both representations are
related (see their relations, also with the cognitive science, in Section 1.1).

5.4.2 BRIDGING THE NATIVE LANGUAGE AND THE LANGUAGE VARI-
ETY IDENTIFICATION TASKS

The task of Native Language Identification (NLI) is to determine the native
language of the author (LA) of a text which he wrote in another language
(LT); for example, deciding whether an English essay was written by a Chi-
nese or German student. By contrast, Language Variety Identification (LVI)
aims at classifying texts of different varieties of a single language; for ex-
ample, distinguishing between American and British English. These two
tasks are related to author profiling (Rangel et al., 2015), which identifies
the linguistic profile of an author on the basis of its writing style, and deter-
mines author’s traits such as gender, age, personality, or in this case native
or language variety. That task is important in marketing, forensic, and edu-
cational applications. Despite the Internet destroyed frontiers among regions
or traits, industry representatives are still very interested into author profiling
segmentation — specially in social media. For example, when a new prod-
uct is released, identifying the geographical distribution and nationality of
the authors of the opinions may help to improve marketing campaigns.
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The NLI task was introduced by Koppel et al. (2005), who employed
features such as character and POS n-grams, as well as spelling and gram-
matical errors. The NLI Shared Task (Tetreault et al., 2013) allowed different
systems to be directly compared for the first time. One of the submitted sys-
tems, based on string kernels, was subsequently refined to establish state of
the art on several corpora (Ionescu et al., 2014). A recent study of the cross-
corpora effects by Malmasi and Dras (2015b) demonstrates the existence of
corpora-independent language transfer features.

The LVI task has attracted much interest in the last few years. Char-
acter n-grams and other features have been employed to identify varieties
of Portuguese in news texts (Zampieri and Gebre, 2012), Arabic in blogs
and forums (Sadat et al., 2014), and Spanish in tweets (Maier and Gómez-
Rodríguez, 2014). Franco-Salvador et al. (2015c) proposed to use distributed
representations of words to classify varieties of Spanish from blogs and jour-
nalistic texts (Franco-Salvador et al., 2015d). The Shared Task on Discrim-
inating between Similar Languages (DSL) set the objective of classifying
texts representing several sets of closely related languages and language va-
rieties (Zampieri et al., 2014, 2015).

The starting point of this part of the thesis is the observation that, al-
though the two tasks have been considered separately, and investigated by
different teams of researchers, they share a common focus. In the NLI task,
we are interested in the language of the author (LA), which is different from
the known language of the text (LT). By contrast, in the LVI task, LA is the
same as LT, which we want to determine. We posit that identifying LA is
the objective of both tasks, and that it can be achieved by identifying similar
types of lexical and semantic characteristics of LA.

In this section, we test our hypothesis by testing generic representations
and models in both tasks without any task-specific adaptation. We employ
knowledge graphs with our KBSim (DCW) model (cf. Section 4.5 and 5.3),
henceforth referred to as KBSim. We also employ distributed representations
and string kernels, the state of the art in LVI and NLI, respectively. Although
the representations have been applied by previous works to either of the tasks,
to the best of our knowledge, this is the first study to apply string kernels to
LVI, distributed representations to NLI, and knowledge graphs to both tasks.
We evaluate the methods on several datasets, including the data from the
respective shared tasks.
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The rest of this section is structured as follows. We first describe in
Section 5.4.2.1 the methods that we employ to compare with our KBSim
model. Next, in Section 5.4.2.2 we analyse the results and draw conclusions
about this study.

5.4.2.1 Methods for NLI and LVI

String kernels and distributed representations have been shown to achieve
high accuracy on the NLI and LVI tasks, respectively. In this section we
briefly describe the two approaches that we compare with our KBSim model.

String Kernels

String Kernels (SK) are functions that measure the similarity of string pairs
at lexical level. They have been successfully employed in text categorization
(Lodhi et al., 2002), authorship attribution (Popescu and Grozea, 2012), and
NLI (Ionescu et al., 2014).

In this section, we follow the formulation and implementation of Ionescu
et al. (2014).30 A simple measure of the similarity of two strings s,t is the
number of shared substrings of length p. The general form of a p-grams
kernel is:

kp(s, t) = ∑
v∈Lp

f (numv(s), numv(t)),

where numv(s) is the number of occurrences of string v as a substring of
s over an alphabet L. Three variants of the kernel differ in the definition
of the function f (x, y): (i) x·y in the p-spectrum kernel; (ii) sgn(x)·sgn(y)
in the p-grams presence bits kernel31; and (iii) min(x, y) in the p-grams
intersection bits kernel. The kernels combine different n-gram sizes (p =
[5, 8]), and are normalized using the following formula:

k̂(s, t) = k(s, t)/
√

k(s, s) · k(t, t).

We perform the classification with kernel discriminant analysis (Hastie
and Tibshirani, 2003), which returns the eigenvector matrix U. We compute
the feature matrices Y = KU and Yt = KtU, where K and Kt are the training

30http://string-kernels.herokuapp.com/
31”sgn“ is the sign function.

http://string-kernels.herokuapp.com/
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and test instance kernels. For each class c, we create the prototype Yc as the
average of all vectors of Y that correspond to the instances of class c. Finally,
we classify each test instance by identifying the class of the prototype with
the lowest mean squared error between Yt(i) and Yc.

Distributed Representations

The use of Distributed Representations (DR) of words capture semantic re-
lationships between words (Mikolov et al., 2013c). They have been success-
fully employed in classification tasks such as polarity classification (Le and
Mikolov, 2014).

In this section we generate distributed representations of words using
the continuous Skip-gram model and the negative sampling (Mikolov et al.,
2013b) that we described in Section 3.3.3.2.32

We investigate two methods of deriving a distributed representation~e of
a document or instance d: (i) by averaging all distributed representations of
words ~wi ∈ d, and (ii) via Sentence Vectors (SenVec) (cf. Section 3.3.3.2),
which represent the entire sentence, and are derived using Skip-gram archi-
tecture.

5.4.2.2 Results and discussion of the NLI and LVI Study

In this section we compare the SK, DR, and KBSim models on the NLI and
LVI tasks.

Datasets and Methodology

In this evaluation we measure the accuracy of classification in several datasets.
The NLI task is represented by two datasets (see Table 5.17), which contain
essays written by English language students. TOEFL11 (henceforth referred
to as TOEFL) is the official dataset of the NLI Shared Task (Tetreault et al.,
2013). It is composed by English essays of natives of the following lan-
guages: Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean,
Spanish, Telugu, and Turkish. ICLE is a normalized version of a corpus

32We use 300-dimensional vectors, context window of size 10, and 20 negative words
for each sample. Our preprocessing consists of tokenization, word lowercase, and removing
tokens of length one.
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that has been used for the NLI research in the past (Tetreault et al., 2012).
In contains essays of native speakers of the following languages: Bulgarian,
Chinese, Czech, French, Japanese, Russian, and Spanish. Since it lacks of
a test set, we follow previous work by performing 5-fold cross validation
instead.

The LVI task is also represented by two datasets. (i) DSLCC 2.0 is the of-
ficial dataset of the DSL shared task (Zampieri et al., 2015). It contains jour-
nalistic texts that represent several sets of closely related languages and lan-
guage varieties: Bulgarian, Macedonian, Serbian, Croatian, Bosnian, Czech,
Slovak, Argentinian Spanish, Peninsular Spanish, Brazilian Portuguese, Eu-
ropean Portuguese, Malay, Indonesian and a group containing texts written
in a set of other languages. (ii) HispaBlogs (HB) is a collection of blogs
from different Spanish-speaking countries (Franco-Salvador et al., 2015c):
Argentina, Chile, Mexico, Peru, and Spain. Each blog contains approxi-
mately 10 posts.

We compare the SK, DR, and KBSim models with several approaches.
The baseline is a BOW approach with 10,000 most frequent words repre-
sented as binary features, which is implemented as an SVM model with a
linear kernel. Previous work results include the best performing systems on
the respective shared tasks: Jarvis et al. (2013) for TOEFL, who use lexical
and POS n-grams with SVM, and Malmasi and Dras (2015a) for DSLCC,
who use an ensemble of models based on word and character n-grams. The
ICLE results are from Tetreault et al. (2012), who use an ensemble of mod-
els based on features such as character, word and POS n-grams, as well as
spelling errors and function word counts. For HispaBlogs, we report the
results of the low dimensional representation model based on text statistics
proposed by Rangel et al. (2016).

Development Experiments

During development, we experimented with several variants of the SK and
DR approaches, as well as with four different combination methods.33 We
note that our KBSim model does not tune parameters. Therefore, we employ
it directly with the test partitions.

33On the datasets that lack of separate development partitions, we tuned the parameters
with 10-fold cross-validation over the training set.
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NLI LVI
Dataset TOEFL ICLE DSLCC HB
|L| 11 7 14 5
Training 9,900 770 252,000 2,250
Development 1,100 - 28,000 -
Test 1,100 - 14,000 1,000
avg. length 243 689 37 3,168

Table 5.17. Datasets used in this study, with the number of languages, the number of in-
stances, and the average instance length in words.

The results of the development experiments demonstrated several trends.
The p-grams presence kernel slightly outperformed the intersection kernel in
most cases, with the p-spectrum kernel a distant third. The DR model based
on averaging all the distributed representations of words was marginally su-
perior to SenVec in all cases. For classification, logistic regressions worked
better than SVM.

We note that the DSLCC datset includes two types of language pairs.
The first type are closely related languages, such as Czech vs. Slovak, which
have distinct written standards. The second type are different national vari-
ants of so-called pluricentric languages, such as Argentinian vs. European
Spanish, which largely follow the same standard. The accuracy of our com-
bined model is in the range of 99-100% accuracy on the first type, as opposed
to 88-92% on the second type. We conclude that only the latter should be
considered within the LVI task, while the former belongs to the well-studied
language identification task (Gold, 1967). Nevertheless, we follow previous
work in reporting the average accuracy on the entire DSLCC dataset.

Results and Discussion

Based on the development results, we selected three models for the final
testing: the averaging of distributed representations of words with logistic
regression, the presence bits string kernel, and our KBSim model with the
k-NN process employed in Section 4.6.2 for categorization.
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NLI LVI
Dataset TOEFL ICLE DSLCC HB
BOW 0.601 0.782 0.903 0.527

String kernels 0.828 0.892 0.944 0.749
Distributed repr. 0.661 0.594 0.921 0.722
KBSim 0.619 0.851 0.915 0.694

Previous work 0.836 0.901 0.955 0.711

Table 5.18. Classification accuracy (in %) on the evaluated datasets.

The final results are shown in Table 5.18.34 These values confirm that
string kernels have the potential to achieve state-of-the-art results on the NLI
task. Ionescu et al. (2014) report the accuracy in the range of 77.5–85.3% on
TOEFL, and 82.3–91.3% on ICLE. However, we found that string kernels
excel on the LVI task as well. They substantially outperform the best pub-
lished results on HispaBlogs, and are only about 1% below the best system
in the DSL shared task.

String kernels are effective on the LVI task for the similar reasons as
in the NLI task. For example, the Spanish word coger “to take” is used
frequently in European news, but not in Latin America, where it has acquired
a taboo meaning. The occurrence of this word, which fits within an eight
character n-gram, is a strong clue for the SK classifier.

Distributed representations of words work well on the LVI task. On His-
paBlogs, our result is better than the result obtained by Rangel et al. (2016).
However, their performance is poor on the NLI task, especially on ICLE,
which is likely due to the small size of the dataset. Conversely, the consid-
erable DR improvement over the baseline on HispaBlogs may be attributed
to the average instance length (see Table 5.17). Another reason may be the
frequency of named entities, which we estimate at 5–7% of the tokens in the
English essays on general topics that make up TOEFL and ICLE vs. 11-12%
in the LVI datasets.

34In this study, statistically significant results according to a one-tailed χ2 test with Yates’
correction (p < 0.05) are highlighted in bold.
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The KBSim model and its combination of knowledge graphs and vector
representations does not excel in these tasks and obtains average values. The
NLI results are distant from those obtained with string kernels. However, it is
notably superior to the distributed representations in the ICLE dataset. This
highlights one of the KBSim advantages. The reduced training data of ICLE
leads to obtain not very representative distributed representations of words.
In contrast, KBSim, that extracts its knowledge from BabelNet, does not
need any training data. The results for LVI follow a similar trend. We obtain
results between those of the baseline and the distributed representations and
string kernels. We note that due to the short texts of DSLCC (see Table 5.17),
KBSim uses there its vector component almost at 100%.

We may conclude that these two classification tasks are mainly based on
detecting lexical differences. In general, abstract representations of knowl-
edge such as the KBSim and DR ones are less effective than lexical-based
ones as SK at leveraging individual “give-away” word tokens like coger. In
addition, they fail at detecting the lexical and grammatical regularities which
are discriminant in these tasks. On the other hand, the distributed represen-
tations have the potential to take into account the frequencies of words. For
example, a high frequency of the English function word he in TOEFL essays
is more indicative of Turkish than of Arabic native speakers. In contrast,
knowledge graphs excel in tasks were not much training data is available
for the other models. In Section 4.6.2 we used KBSim for a cross-language
classification task. However, in this section we outperform the baseline in a
monolingual task. These facts highlight its potential for that type of settings.
Finally, since we obtained results at par with the state of the art with string
kernels on both tasks, without any task-specific adaptation, we confirm our
hypothesis regarding the inherent similarity of the two tasks.

5.4.3 DISCUSSION ABOUT KNOWLEDGE GRAPHS IN OTHER NLP TASKS

After our study of knowledge graphs for single- and cross-domain classifica-
tion, we focused large part of this thesis in cross-language tasks. However,
during our research we employed knowledge graphs, to a lesser extent, also
in other applications. In this part of the thesis we applied knowledge graphs
to the NLP tasks of community question answering, native language identifi-
cation, and language variety identification.
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Our results in community question answering proved that our CL-KGA
model can be combined together with several similarity measures employing
training data in order to learn the interpolation weights of the measures. The
study of the information gain ratio of these measures showed that knowledge
graphs offer a high amount of information, even compared to the popular dis-
tributed representations of words. Experimental results in the SemEval 2016
community question answering shared task provided with the best results
among all the participants of its subtask B — a question-question similarity
task. However, the results in the other two subtasks were average. Therefore,
we concluded that the proposed approach is more suitable for similarity tasks
rather than, for instance, question answering. We also showed the good per-
formance of knowledge graphs for monolingual similarity analysis.

With respect to the other two studies, we worked under the hypothesis
that the native language and the language variety identification tasks are re-
lated because both are based on determining the original language of the
author. We applied to both tasks our KBSim model and compared it to state
of the art approaches: distributed representations of words and string ker-
nels, respectively. That was, to the best of our knowledge, the first study
to apply, without any task-specific adaptation, these representations to both
tasks. We evaluated the models in several reference datasets. Our results
proved that KBSim is very useful when not much training data is available.
Our analysis also highlighted that the tasks are mainly based on detecting
lexical differences. That produced a very high performance with string ker-
nels on both tasks and average results for our knowledge graph-based model
and the distributed representation-based one. The state of the art results of
string kernels on both tasks, without any task-specific adaptation, confirmed
our hypothesis regarding the relationship of the two tasks.

We conclude this part of the thesis highlighting the knowledge graphs
potential for tasks or domains were not training data is available. Finally,
we note that these representations worked with competitive results — espe-
cially in community question answering — in three monolingual tasks. This
highlights its potential as general single- and cross-language representation
of text and its meaning.
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5.5 Conclusions

In this chapter we tried to connect the contents of the chapters of this thesis
which have been published as research articles. We first discussed in detail
the results of those chapters with respect to the objectives of this thesis, in-
cluding also new results in order to complete the picture for each addressed
task. Next, we showed our experiments with knowledge graphs in the NLP
tasks of community questions answering, native language identification, and
language variety identification.

Our main conclusion with respect to the cross-domain polarity classifi-
cation task is that WSD-based features are useful and contribute to obtain
additional improvements when combined with traditional ones. In contrast,
the features of the vocabulary expansion only contributed at single-domain
level and their cross-domain performance is questionable.

The potential of knowledge graphs for cross-language IR and NLP tasks
have been proved too. The results of the CL-KGA and KBSim models com-
pared to several reference models provided with state-of-the-art performance
in the cross-language tasks of plagiarism detection, document retrieval and
categorization, and also showed interesting insights about the models.

Finally, the use of knowledge graphs in other NLP tasks showed the po-
tential of knowledge graphs for tasks or domains were training data is not
available. These representations worked with competitive results in the tasks
of community questions answering, native language identification, and lan-
guage variety identification.





6Conclusions

The work presented in this thesis has focused on the study of the use of
knowledge graphs as a cross-domain and cross-language representation of
text and its meaning. A knowledge graph is a graph that expands and re-
lates the original concepts belonging to a set of words. The use of a wide-
coverage multilingual semantic network to generate knowledge graphs pro-
vides them with a language coverage of hundreds of languages and millions
human-general and -specific concepts.

In Chapter 2 we employed knowledge graph-based features — along
with other traditional ones and meta-learning — for the NLP task of single-
and cross-domain polarity classification. The next part of the thesis focused
on cross-language IR tasks. In Chapter 3 we proposed CL-KGA, a fully
knowledge graph-based model of similarity analysis for cross-language pla-
giarism detection. Next, in Chapter 4 we improved that approach to cre-
ate the KBSim model, which covers knowledge graph shortcomings such as
out-of-vocabulary words and verbal tenses. We applied it to cross-language
document retrieval and categorization. Finally, in Chapter 5 we analysed
the results obtained in the aforementioned chapters and completed the cross-
language part of this thesis by extending the evaluation of Chapter 3 and 4 in
order to investigate further knowledge graphs at task level, i.e., we evaluated
and compared the proposed models in the three cross-language tasks. We fin-
ished that chapter studying the use of knowledge graphs for the other NLP
tasks. We applied them to community questions answering, native language
identification, and language variety identification.

We have studied in depth the cross-domain and cross-language poten-
tial of knowledge graphs in the different evaluations and discussions of this
work. That study allows us to answer the research questions made in the
introduction of this thesis:
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Questions about the cross-domain scenario

• What is the contribution of the knowledge graph-based features for
cross-domain NLP tasks?

The results of Section 2.4 and 5.1 showed that WSD-based features
are useful at cross-domain level and contribute to obtain additional
improvements when combined with traditional ones. In contrast, the
features of the vocabulary expansion only benefited at single-domain
level and their cross-domain potential is questionable. However, we
note that vocabulary expansion is still needed during the WSD step
(see Section 2.3.1). Therefore, despite its potential as feature has not
been proved, it is indirectly relevant for the cross-domain scenario.

Questions about the cross-language scenario

• What is the contribution of the knowledge graph characteristics in
cross-language similarity?

Similarly to the answer of the previous research question, the study
of these characteristics in the task of cross-language plagiarism detec-
tion (see Section 3.5) showed that WSD is the essential component of
the representation, being only necessary the use of vocabulary expan-
sion during the WSD processing. The contribution of the language
independence is directly related to the performance offered when we
used it in our representation. This leads us to the next question.

• Could knowledge graphs be employed to successfully solve cross-language
similarity tasks?

In Section 3.5, 4.6, 5.2, and 5.3 we compared the performance of our
knowledge graph-based models, CL-KGA and KBSim, for the tasks
of cross-language plagiarism detection, document retrieval, and cate-
gorisation. Those results showed the strong potential and versatility
of knowledge graphs as a cross-language representation of text and its
meaning. In addition, they proved that knowledge graph-based mod-
els, specially KBSim, offer state-of-the-art performance in these cross-
language similarity tasks.
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Questions about the use of knowledge graphs in other NLP tasks

• What is the performance of knowledge graphs in other NLP tasks?

The performance of our combination of similarity models for com-
munity questions answering obtained the best results among all the
participants of the subtask B of the SemEval 2016 Task 3 on Commu-
nity Question Answering. That combination included the CL-KGA
model, which was one of the most determinant similarity measures —
in terms of classification — according to our study of their informa-
tion gain ratio. However, that performance was obtained in a question-
question similarity subtask, which is closely related to the CL-KGA
similarity nature. The performance of our system was average for the
other two subtasks. Similarly, we also obtained average results when
we employed KBSim for the native language and the language vari-
ety identification tasks. Our results proved that KBSim is very useful
for tasks were not much training data is available. Our analysis also
highlighted that these two tasks are mainly based on detecting lexical
differences, which is contrary to knowledge graphs, that provide with
abstract representations of meaning.

In summary, knowledge graphs offered different performances depend-
ing on the tasks. However, we note that our representation obtained
always competitive — or at least better than the average — results in
three monolingual NLP tasks.

To sum up, we believe that the answers to these questions show the po-
tential of knowledge graphs as a cross-domain and cross-language represen-
tation of text and its meaning for NLP and IR tasks. This is also supported
by the scientific contributions of this thesis.

6.1 Scientific Contributions

The different contributions of this thesis have been materialised in several
publications. As a result, 5 journal, 7 conference, and 2 workshop papers
have been generated. Below we sum up the different scientific contributions
highlighting their quality using the reference scoring system, i.e. the ERA
CORE Conference Ranking and the journal impact factor, respectively.
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6.1.1 CROSS-LANGUAGE PLAGIARISM DETECTION

We approached the cross-language plagiarism detection task and the Babel-
Net multilingual semantic network in:

• Franco-Salvador, M., Gupta, P., and Rosso, P. (2012). Cross-language
plagiarism detection using BabelNet’s statistical dictionary. Computación
y Sistemas, Revista Iberoamericana de Computación, 16(4):383–390.

A first version of our cross-language knowledge graph analysis model
was published in:

• Franco-Salvador, M., Gupta, P., and Rosso, P. (2013). Cross-language
plagiarism detection using a multilingual semantic network. In Pro-
ceedings of the 35th European Conference on Information Retrieval
(ECIR’13), LNCS(7814), pages 710–713. Springer-Verlag. (CORE
B)

• Franco-Salvador, M., Gupta, P., and Rosso, P. (2013). Graph-based
similarity analysis: a new approach to cross-language plagiarism de-
tection. Journal of the Spanish Society of Natural Language Pro-
cessing (Sociedad Española de Procesamiento del Languaje Natural),
num. 50.

We evaluated the knowledge graph analysis model with cross-language
cases of paraphrasing in:

• Franco-Salvador, M., Gupta, P., and Rosso, P. (2014). Knowledge
graphs as context models: Improving the detection of cross-language
plagiarism with paraphrasing. In Ferro, N., editor, Bridging Between
Information Retrieval and Databases, volume 8173 of Lecture Notes
in Computer Science, pages 227–236. Springer Berlin Heidelberg.

We improved the knowledge graph analysis model and studied its char-
acteristics deeper in:
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• Franco-Salvador, M., Rosso, P., and Montes-y-Gómez, M. (2016). A
systematic study of knowledge graph analysis for cross-language pla-
giarism detection. Information Processing & Management, 52(4):550–570.
(Impact Factor: 1.26)

Finally, we evaluated the knowledge-based document similarity model
for this task and compared it with cross-language distributed representation-
based models in:

• Franco-Salvador, M., Gupta, P., Rosso, P., and Banchs, R. E. (2016).
Cross-language plagiarism detection over continuous-space- and knowl-
edge graph-based representations of language. Knowledge-Based Sys-
tems, 111:87-99. (Impact Factor: 2.92)

We collaborated with the committee of the international competition of
plagiarism at PAN by evaluating the user submissions of cross-language
datasets in:

• Franco-Salvador, M., Bensalem, I., Flores, E., Gupta, P., and Rosso,
P. (2015). PAN 2015 Shared Task on Plagiarism Detection: Evaluation
of Corpora for Text Alignment. In Working Notes Papers of the CLEF
2015 Evaluation Labs, volume 1391 of CEUR Workshop Proceedings.
CLEF and CEUR-WS.org.

6.1.2 CROSS-LANGUAGE DOCUMENT RETRIEVAL AND CATEGORIZA-
TION

We extended the cross-language knowledge graph analysis model to cover
knowledge graph shortcomings such as out of vocabulary words and verbal
tenses with our knowledge-based document similarity model in:

• Franco-Salvador, M., Rosso, P., and Navigli, R. (2014). A knowledge-
based representation for cross-language document retrieval and catego-
rization. In Proceedings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics (EACL 2014),
pages 414–423. Association for Computational Linguistics. (CORE
A)
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6.1.3 SINGLE- AND CROSS-DOMAIN POLARITY CLASSIFICATION

We proposed our knowledge-enhanced meta-learning model and studied the
performance of knowledge graphs for single- and cross-domain polarity clas-
sification in:

• Franco-Salvador, M., Cruz, F. L., Troyano, J. A., and Rosso, P. (2015).
Cross-domain polarity classification using a knowledge-enhanced meta-
classifier. Knowledge-Based Systems, 86:46–56. (Impact Factor:
2.92)

We compared that approach with string kernels in:

• Giménez-Pérez, R. M., Franco-Salvador, M., and Rosso, P. (2017).
Single and Cross-domain Polarity Classification using String Kernels.
In Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 2017). Association
for Computational Linguistics. (CORE A)

6.1.4 LANGUAGE VARIETY IDENTIFICATION

We first studied how to employ embeddings for this task and compared it
with the author profiling state of the art in:

• Franco-Salvador, M., Rangel, F., Rosso, P., Taulé, M., and Martí, M.
A. (2015). Language variety identification using distributed represen-
tations of words and documents. In Proceeding of the 6th Interna-
tional Conference of CLEF on Experimental IR meets Multilinguality,
Multimodality, and Interaction (CLEF 2015), volume LNCS(9283).
Springer-Verlag.

Next we employed that model for the international shared task on dis-
criminating between similar languages in:

• Franco-Salvador, M., Rosso, P., and Rangel, F. (2015). Distributed
representations of words and documents for discriminating similar lan-
guages. In Proceeding of the Joint Workshop on Language Technology
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for Closely Related Languages, Varieties and Dialects (LT4VarDial),
RANLP.

Finally we compared that model with other state-of-the-art ones in lan-
guage variety identification in:

• Rangel, F., Franco-Salvador, M., and Rosso, P. (2016). A low dimen-
sionality representation for language variety identification. In Proceed-
ings of the 17th International Conference on Computational Linguis-
tics and Intelligent Text Processing (CICLing 2016). Springer-Verlag.

6.1.5 NATIVE LANGUAGE IDENTIFICATION

We proved the relationship between the native language and the language
variety identification tasks in:

• Franco-Salvador, M., Kondrak, G., and Rosso, P. (2017). Bridg-
ing the native language and the language variety identification tasks.
In Proceedings of the 21st International Conference on Knowledge-
Based and Intelligent Information & Engineering Systems (KES’17).
(CORE B)

6.1.6 COMMUNITY QUESTION ANSWERING

We published the results of a knowledge graph and word embedding-based
ensemble model in a SemEval 2016 community question answering shared
task paper:

• Franco-Salvador, M., Kar, S., Solorio, T., and Rosso, P. (2016). UH-
PRHLT at SemEval-2016 Task 3: Combining lexical and semantic-
based features for community question answering. In Proceedings of
the 10th International Workshop on Semantic Evaluation (SemEval

’16), San Diego, California. Association for Computational Linguis-
tics.
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6.2 Future Work

Finally, we identify the future research directions we intend to explore to ex-
tend the research carried out in the framework of our Ph.D. One of these
directions consists in investigating further the performance of knowledge
graphs in the cross-domain and cross-language scenarios. For instance, we
are interested in the task of cross-lingual text similarity described in Agirre
et al. (2016).

In Chapter 3 we presented the distributed concept weighting for semantic
relations between concepts. That method is based on the use of distributed
representations of concept definitions. However, these definitions are mono-
lingual and our distributed concept representations worked at multilingual
level only because the concepts have a multilingual identifier. In order to
obtain a completely multilingual representation of concepts, as future work
we are interested in exploring other alternatives non-dependent of these def-
initions and, in consequence, of their language. That research would affect
and hopefully improve our knowledge graph weighting scheme.

Another direction that we want to study is related to the knowledge graph
construction. In this thesis we followed Navigli and Lapata (2010) to create
knowledge graphs. That method is based on searching and merging paths
between concepts using a knowledge base. However, more recent WSD tech-
niques derived graph representations from a knowledge base using semantic
signatures (Moro et al., 2014). Those signatures represent concepts by a bag
of close concepts. Their use removes the path searching-based method, al-
lows for a fast graph creation, and apparently provides with more precise
knowledge representations for WSD. Future works will include the develop-
ment of more fine-grained semantic representations of documents that com-
bine entity-centric document understanding with explicit semantic relations
from a knowledge base. We are also interested in new representations which
capture events and event chains in text, and link their arguments and relations
to a reference knowledge base. Additionally, knowledge base-centric text un-
derstanding also calls for new kinds of wide-coverage knowledge bases that
include temporal information (e.g., at what point in time facts stated in the
knowledge base are true?), and, consequently, novel time-aware semantifica-
tion methods.

Finally, in order to adapt our graphs to the most common machine learn-
ing models, we intend to study vector representations derived from our knowl-
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edge graphs. The use of graph kernels (Gärtner et al., 2003) is a popular
technique to perform such type of transformations. These kernels are func-
tions that compute the similarity between two graphs employing a similarity
measure such as the one presented in Section 3.4. The graph-based vector
is obtained by representing a graph as a function of its similarities with a
collection of graphs. Note the large amount of literature using semantic tree
kernels, i.e., acyclic connected graph kernels. Recent works offered good re-
sults with those kernels in open information extraction (Xu et al., 2013) and
have proved their potential for similarity tasks in structured lexical similarity
(Croce et al., 2011).
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