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Phone: +34 963 87 70 07, Ext. 83533
bComputer Science Department, Carlos III University of Madrid, Avda.

Universidad 30, 28911 Leganés (Madrid), Spain,
Phone:+34 916 24 91 15

Abstract

Context: The increasing adoption of process-aware information systems to-
gether with the high variability in business processes has resulted in collec-
tions of process families. These families correspond to a business process
model and its variants, which can comprise hundreds or thousands of dif-
ferent ways of realizing this process. Managing process variability in this
context can be very challenging, labor-intensive, and error-prone, and new
approaches for managing process families are necessary.
Objective: We aim to facilitate variability management in process families,
ensure process family correctness, and reduce the effort needed for such pur-
poses.
Method: We have derived a set of change patterns for process families from
variability-specific language constructs identified in the literature. For vali-
dation, we have conducted a case study with a safety standard in which we
have measured the number of operations needed to model and evolve the
variability of the standard with and without the patterns.
Results: We present 10 change patterns for managing variability in process
families and show how they can be implemented. The patterns support the
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modeling and evolution of process families and ensure process family correct-
ness by automatically introducing and deleting modeling elements. The case
study results show that the application of the defined change patterns can
reduce the number of operations when modeling a process family by 34% and
when evolving it by 40%.
Conclusions: The application of the change patterns can help in effectively
modeling and evolving large and highly-variable process families. Their ap-
plication can also considerably reduce variability management effort.

Keywords: business process modeling, business process variability,
process-aware information system, process family, change patterns

1. Introduction

Process-aware information systems (PAISs) manage, execute, and ana-
lyze the business processes of an enterprise (e.g., sales business processes)
based on explicitly specified process models [55, 19]. The increasing adoption
of PAISs during the last decade has resulted in large process model repos-
itories [54, 15], which usually comprise collections of related process model
variants (process variants for short) [40]. Process variants pursue the same
or a similar business objective (e.g., product sale) and can have activities
(and their ordering constraints) in common. Nevertheless, process variants
differ in their application context, such as the regulations to comply with
in different countries, and some activities may be relevant only for certain
contexts [10, 15, 40]. All the context factors causing process variability are
typically known at design time [40, 17].

A collection of related process variants can be referred to as process fam-
ily [40]. In practice, such a family may comprise hundreds or thousands of
process variants. Hallerbach et al. describe a process family from automo-
tive that comprises over 900 process variants [26] and Li reports on over
90 variants for medical examinations [31]. Finally, check-in procedures at
airports are similar irrespective of the airport or airline, but variations exist
depending on the type of check-in (e.g., online or at the counter) or passenger
(e.g., unaccompanied minors) [10]. Example 1 describes the check-in process,
discussing its different sources of variability. We will use this process as a
running example throughout the paper.
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Example 1 (Check-in process). Numerous variations exist for this
process depending on different factors. For example, variability is caused by
the type of passenger (e.g., unaccompanied minors and handicapped people
might require extra assistance and special seats). Another source of vari-
ability includes the flight destination (e.g., accommodation information is
required when traveling to the USA). Finally, depending on the type of lug-
gage (e.g., bulk or overweight luggage), the process may differ because an
extra fee has to be paid.

Figures 1 and 2 show six simplified variants of the check-in process rep-
resented in BPMN (Business Process Modeling Notation) [12]. The variants
have been modeled in collaboration with domain experts. While these process
variants share commonalities (colored in grey), they also show differences.
Variants 1 and 2 (cf. Fig. 1) presume that the check-in is done online by
the passenger, who is identified and assigned in a seat. Variant 1 describes
the case of a passenger flying from Europe to the USA, which requires ac-
commodation information as well as filling in the electronic form for travel
authorization (i.e., ESTA form). An electronic boarding card is printed and
the passenger drops off the luggage at the business class counter. The pay-
ment of an extra fee at the ticket office is required in Variant 2 due to luggage
overweight. For Variant 3, the check-in is done at the self-servicing machine
and the luggage is dropped off at the fast bag-drop counter. Check-in for
these three process variants becomes available 23 hours before departure.

In contrast, Variants 4-6 (cf. Fig. 2) represent the check-in process ac-
complished at the counter at the airport. Variant 4 describes the check-in
for an unaccompanied minor (UM). A special seat is assigned, an extra form
is filled in, and a copy of the boarding card is required for the relative accom-
panying the minor to the gate. Variant 5 refers to a handicapped passenger
requiring extra assistance to accompanying him, whereas Variant 6 corre-
sponds to the check-in process of a passenger carrying bulk luggage. In these
three process variants, check-in may only be performed at maximum 3 hours
before departure, once the counters are opened. The boarding card is printed
in paper format.

1.1. Problem Statement

Modeling and evolving process families and ensuring their correctness can
be very challenging mainly due to their size and heterogeneous application
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Variant 3: Check-in at the self-servicing machine for an adult passenger with an economy class ticket from EU to EU

Figure 1: Variants of the check-in process (1)

context (e.g., type of passenger, flight destination, and type of luggage) [40].
This has resulted in the development of approaches that support process
variability along the process lifecycle, such as C-EPC (Configurable Event-
driven Process Chain) [23]. These approaches enable the analysis, design,
configuration, enactment, diagnosis, and evolution of process families, and
specify process variants by means of configurable process models that rep-
resent a complete process family [10]. By treating variability as a first class
citizen, configurable process models contribute to avoiding model redundan-
cies, fostering model reusability, and reducing modeling efforts [40]. Fig. 3
shows a configurable process model for the check-in process family, created
with C-EPC (introduced in Sect. 2.2).

When using process variability approaches, PAIS engineers need assis-
tance because they have to manually model and manage all the elements
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Figure 2: Variants of the check-in process (2)

and dependencies of a configurable process model individually [26]. In the
model of Fig. 3, a PAIS engineer needs to represent that the activity Print
duplicated boarding card for the relative for the relative is allowed only if a
seat for UM has been assigned before. Modeling such constraints manually
with the primitives currently offered by the existing process variability ap-
proaches can be tedious and error-prone, especially when a process family
comprises a high number of variants and with many dependencies. There is
a lack of approaches to deal with this variability in an explicit manner, espe-
cially at a level of abstraction higher than the one provided by the existing
process variability approaches [10].

The use of modeling patterns (reusable solutions to a commonly occurring
problem [53]) is a promising way to address these issues. For example, adap-
tation patterns have been proposed for creating and managing (individual)
process models [53]. These patterns allow creating and modifying process
models and ensure correctness by construction. They also provide systematic
means for realizing change operations and aim to reduce modeling efforts
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[16]. However, these patterns do not deal with process variability in an ex-
plicit manner [7] and hence are not accurate for process family management
[9].

1.2. Contribution

The major contributions of this paper are twofold:

1. A set of 10 change patterns specifically tailored for managing variability
in process families. Our change patterns for process families (hereafter
referred to as CP4PF ) enable the modeling and evolution of the vari-
ability of a configurable process model, and are intended to reduce
the effort needed for such purposes. CP4PF have been derived from
variability-specific language constructs used in the literature to capture
variability within a process family. The patterns allow the insertion,
deletion, and modification of these constructs and hence CP4PF can
be implemented in process variability approaches supporting such con-
structs. As an example, we present the implementation of CP4PF in
C-EPC. This implementation allows us to show that the proposed pat-
terns support process variability management and can ensure process
family correctness by providing systematic means for introducing and
deleting modeling elements. For example, a pattern can facilitate the
insertion of the function Drop off bulk luggage in the model of Fig. 3. A
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PAIS engineer would indicate the position of the function in the model,
and the implementation of the pattern would automatically take all the
rest of necessary actions for its correct insertion.

2. Evidence of feasibility and effort reduction for variability management
of real process families by applying CP4PF. We have conducted a case
study with a safety standard with a high degree of variability. Its results
show that CP4PF reduce the effort for modeling and evolving a highly-
variable process family in comparison with state-of-the-art approaches.
To the best of our knowledge, it is the largest case study that has
been conducted on process variability management, the first one that
has dealt with process family evolution, and the first one that has
compared the results of different approaches.

This paper extends the work presented in [9], where we described only
three of the patterns as a proof of concept of their potential for managing
process variability. According to the variability-specific language constructs
identified in [10], this set of three patterns has been revised and extended
in this paper to properly support all the constructs. As a result, we have
obtained a set of ten patterns, which are presented and implemented in detail
in this paper. We have also put the patterns into practice in a case study on
a real scenario with a high degree of variability. Empirically validating the
patterns is crucial to assess their benefits.

The remainder of the paper is organized as follows. Section 2 presents
the background of CP4PF. Section 3 describes CP4PF. Section 4 reports on
the case study for validating CP4PF. Finally, Section 5 reviews related work
and Section 6 concludes the paper with a summary and outlook.

2. Background

This section presents the background that we use in Sect. 3 to define
CP4PF and thus is necessary to understand the definition of the patterns.
More concretely, we describe adaptation patterns, C-EPC, and the variability-
specific language constructs that serve as a basis for our CP4PF. Adapta-
tion patterns are used as a basis for implementing some of our CP4PF, we
use C-EPC for illustrating how the defined patterns can be implemented in
a process variability approach, and variability-specific language constructs
have been used as a basis for pattern derivation.
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2.1. Adaptation patterns

Adaptation patterns (APs) [53] allow users to structurally change a pro-
cess model using high–level change operations (e.g., to insert a process frag-
ment between two nodes) instead of low level change primitives (e.g., add or
delete node). Defining a set of pre- and post–conditions for the operations,
APs allow a PAIS to guarantee soundness when applying the respective oper-
ations [53]. In addition, they have served as basis for implementing changes
at different phases of the process lifecycle (e.g., process model creation [25]
and configuration [26]).

There are 14 APs. They can be applied along to the entire process life-
cycle (i.e., process analysis, design, configuration, enactment, diagnosis, and
evolution) and are well suited for realizing process changes at both design
and runtime. In particular, AP1 and AP2 allow inserting and deleting pro-
cess fragments (e.g., insert/delete activity), respectively. In turn, moving and
replacing fragments is supported by AP3 (Move Process Fragment), AP4 (Re-
place Process Fragment), AP5 (Swap Process Fragment), and AP14 (Copy
Process Fragment). AP6 and AP7 allow adding or removing levels of hier-
archy, AP8-AP12 support adaptations of control dependencies: embedding
process fragments in loops (AP8), parallelizing process fragments (AP9) or
embedding them in a conditional branch (AP10), and adding/removing con-
trol dependencies (AP11, AP12). Finally, AP13 allows changing transition
conditions.

Although APs are well suited for creating and managing (individual)
process models, they are not sufficient to cope with the complexity that
process variability introduces [9]. Thus, our CP4PF complement APs by
addressing the variability-specific needs of process families.

2.2. Configurable EPC

A possible way of realizing a configurable process model is to enrich a
process model with configurable nodes. A modeling language supporting this
approach is C-EPC, which extends EPC by introducing configurable elements
[23]. We select this approach for implementing our CP4PF because it is well
established and there exists a mature tool support for it [10]. C-EPC is also
the most common process variability approach in the literature [10].

For better illustrating C-EPC, we refer to the check in process depicted
in Fig. 3. Configurable nodes are depicted with a thicker line. We do not
add intermediate events between functions in order to keep the size of the
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configurable process model as small as possible. This helps us mitigate pos-
sible undesirable effects on understandability and likelihood of errors due to
model size [33]. In addition, practitioners recommend not to include events
between functions in EPC for the sake of simplicity [5]. Thus, configurable
nodes correspond to the variable process fragments that have one single entry
and single exit (SESE fragment). They may have two different forms. On the
one hand, a SESE fragment may consist of a splitting configurable connector,
immediately followed by a set of branches representing configuration options,
and a joining configurable connector (e.g., Configurable region 1 in Fig. 3).
Alternatively, a SESE fragment may correspond to a configurable function
(e.g., Configurable region 2 in Fig. 3). Depending on the context, such func-
tions may be configured as ON (the function shall be kept in the configured
process model), OFF (the function shall not be included in the configured
process model), or OPT (the function shall be conditionally included in the
configured process model deferring the decision about its execution to enact-
ment time). In turn, SESE fragments representing the different configuration
options are included as branches between two configurable connectors (e.g.,
Localize assistance to accompany passenger in Fig. 3). Further, the applica-
tion context of each process variant is represented in a questionnaire model
[29] (cf. Fig. 4).

q1: Which type of check-in 
is going to be performed?

f1: web system 

f2: self-servicing machine

f3: counter

T M

M

M

q2: Is any kind of assistance 
required? 

f4: regular passenger 
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f6: handicapped passenger

T M

M
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CONSTRAINTS:
 C1:  f4    SEQ1a                                             
 C2:  f5    SEQ1b  AND  (“Fill in UM form” = ON)                                   
 C3:  f6    SEQ1c     
 C4:  f7    (“Provide info about accomodation” = ON)   
 C5:  f9    SEQ3a
 C6: f10   “Pay excess fee” = ON
 C7: f11  “Drop off bulk luggage” = ON

QUESTIONNAIRE:

Figure 4: Questionnaire model and associated constraints for the check-in process

This questionnaire comprises a set of questions that capture the applica-
tion context in terms of domain aspects (e.g., type of check-in). Each question
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refers to a set of facts (e.g., check-in in a web system or in a self-servicing
machine). Additionally, a set of constraints in the form of propositional logic
expressions can be defined over the facts. They represent the mapping be-
tween the questionnaire model and the configurable process model. Thus, as
the questions are answered, the selected facts, in combination with the de-
fined constraints determine which actions should be performed to configure
the configurable process model (i.e., which configurations are taken in each
configurable node). Finally, semantic constraints with respect to the con-
figuration of configurable functions and connectors (e.g., mutual exclusion,
inclusion) may be specified in terms of configuration requirements linked to
the configurable nodes. For example, Configuration Requirement 1 in Fig. 3
states that the configurable function Fill in UM form is only included if
SEQ1b is selected in XOR1 (i.e., activity Assign seat for UM is selected).

2.3. Language Constructs for Process Variability

We derived our CP4PF based on the variability-specific language con-
structs that are used to capture the variability within a process family. These
constructs were identified conducting a systematic literature review. It in-
cluded 34 different process variability approaches [10], where five variability-
specific language constructs were identified: configurable region, configura-
tion alternative, configuration context condition, configuration constraint,
and configurable region resolution time. These constructs capture the ex-
pressiveness needed to represent process variability in a configurable process
model. Although other studies might use different terminology (e.g., con-
figurable region vs. variation point) and realize the constructs in different
ways, these five languages constructs are the most prevalent in the literature
on process variability. Thus, we take these constructs as a basis for defining
the CP4PF. In the following, we present the identified constructs and illus-
trate how they are realized with C-EPC. Further details on the systematic
literature review and its results can be found in [10].

Configurable Region Language Construct (LC1). A configurable re-
gion corresponds to an area of a configurable process model for which different
configuration choices exist, depending on the application context. A config-
urable region in C-EPC may be specified by process fragments with exactly
one entry and one exit (i.e., SESE fragment) delimited by two configurable
connectors (e.g., Configurable region 1 in Fig. 3), or it may be a configurable
function (e.g., Configurable region 2 in Fig. 3).
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Configuration Alternative Language Construct (LC2). A configu-
ration alternative corresponds to a particular configuration choice that may
be selected in the context of a specific configurable region (LC1). In C-
EPC, a configuration alternative is specified by a SESE fragment that may
be included as a branch between two configurable connectors (e.g., Localize
assistance to accompany passenger in Configurable region 1 in Fig. 3).

Configuration Context Condition Language Construct (LC3). A
configuration context condition defines the conditions under which a partic-
ular configuration alternative (LC2) of a configurable region (LC1) shall be
selected. Regarding C-EPC, configuration context conditions are captured
as facts in the questionnaire model (e.g., f1 in Fig. 4).

Configuration Constraint Language Construct (LC4). A configura-
tion constraint is defined as a restriction regarding the selection of configura-
tion alternatives (LC2). The constraints are based on semantic restrictions to
ensure the proper use of the defined configuration alternatives (e.g., exclusion
or inclusion relationships). In C-EPC, a configuration constraint is specified
by a configuration requirement. This requirement is linked to the config-
urable nodes that delimit the configurable region to which the respective
configuration alternatives belong. For example, Configuration Requirement
4 in Fig. 3 states that if the configurable function Fill in UM form is included
in the model, then SEQ5a in XOR5 is chosen.

Configurable Region Resolution Time Language Construct (LC5).
The configurable region resolution time allows process designers to distin-
guish between configurable regions (LC1) whose configuration depends on
either the initial or the current context of a process instance (i.e., configu-
ration or enactment time). In C-EPC, configurable region resolution time is
supported in the configurable functions since they can be configured to OPT,
deferring their configuration to enactment time when the context information
is available (e.g., configurable function Pay excess fee in Fig. 3).

3. CP4PF: Change Patterns for Process Families

Taking as a basis the variability-specific language constructs introduced
above, this section presents the set of change patterns for modeling and evolv-
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ing process families. Since adaptation patterns have been effectively applied
in (individual) process models previously [53], we follow this perspective and
provide patterns to deal with process variability in an explicit manner (i.e.,
based on the variability-specific constructs). In addition, our patterns ad-
dress process variability at a level of abstraction higher than the one provided
by the existing process variability approaches [10] (e.g., C-EPC). In fact, we
intend to provide a set of generic patterns that can be implemented in any
of these approaches [8].

For deriving the patterns, we applied the three basic operations over the
identified variability-specific language constructs: insertion, deletion, and
modification (cf. Table 1). As a result, we obtained four patterns to add
variability-specific language constructs to a configurable process model (CP1,
CP3, CP5, and CP8), four patterns to remove them (CP2, CP4, CP6, and
CP9), and two patterns to modify them (CP7 and CP10). We do not con-
sider patterns for modifying configurable regions, configuration alternatives,
and configuration constraints. These modifications can be realized combining
other change patterns and existing adaptation patterns. For example, modi-
fying a configuration alternative may be implemented applying patterns CP3
and CP4. However, we defined CP7 and CP10 in order to modify in a more
efficient way the variability-specific language constructs they affect (i.e., con-
figuration context condition and configurable region resolution time).

CP1: Insert Configurable Region 
CP2: Delete Configurable Region 
CP3: Insert Configuration Alternative in a Configurable Region 
CP4: Delete Configuration Alternative from a Configurable Region 
CP5: Insert Configuration Context Condition of a Configuration Alternative 
CP6: Delete Configuration Context Condition of a Configuration Alternative 
CP7: Modify Configuration Context Condition of a Configuration Alternative 
CP8: Insert Configuration Constraint between Configuration Alternatives 
CP9: Delete Configuration Constraint between Configuration Alternatives 
CP10: Modify Configurable Region Resolution Time 

Table 1: CP4PF - change patterns for process families

We describe CP4PF in detail in Figs. 4–13. For each pattern, we provide
a name, a brief description, a description of the problem addressed, an il-
lustrative example, and the design choices (indicating pattern variants). For
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example, CP1 (cf. Sect. 3.1) presents three design choices: (1) insert a con-
figurable region as a new region with a set of new configuration alternatives,
(2) insert it by transforming a commonality into a configuration alternative
(i.e., a common process fragment now is only applied in a specific process
variant), or (3) insert it by transforming a set of commonalities into a set of
configuration alternatives. To demonstrate that the patterns–despite their
intended generic nature–still cover the essence of process variability, we show
their implementation in C-EPC. For example, for each design choice for CP1,
we indicate how it can be implemented in C-EPC. This implementation in
C-EPC guarantees correctness-by-construction in terms of structure and be-
havior (i.e., modeling elements are not introduced incorrectly) [20, 55]. For
example, we guarantee that deadlocks are not introduced. In addition, for
some cases pattern implementation is based on the use of adaptation pat-
terns (e.g., implementation of design choice 1 in Fig. 5). This allows us to
promote reuse between the new patterns and the existing ones. We fur-
ther provide implementation details distinguishing between (i) configurable
functions and (ii) configurable connectors since both allow representing con-
figurable regions in C-EPC. In addition, we provide information about the
parameters needed for each pattern. For example, realizing CP1 requires (1)
the precise position in the configurable process model where the configurable
region shall be inserted and (2) the configuration alternatives to be inserted
in the configurable region (if needed). This information is highlighted in gray
in the figures.

3.1. CP1: Insert Configurable Region

Description: A configurable region is added in a configurable process
model.
Problem addressed: At a certain position in the configurable process
model, different configuration alternatives that exist are not reflected in the
configurable process model so far. Hence, a configurable region covering these
configuration alternatives shall be added.
Example: The way how boarding cards are handled depends on the type
of check-in (e.g., paper-based vs. electronic boarding cards). Assume that
the configurable process model has not considered these configuration alter-
natives yet. Hence, a configurable region needs to be added to reflect this
variability.
Design choices (DC):
(DC1) Insertion as a new configurable region with up to n configuration al-
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ternatives (n ≥ 0)
(DC2) Insertion as a new configurable region by transforming a common pro-
cess fragment into a configuration alternative
(DC3) Insertion as a new configurable region by transforming existing pro-
cess fragments into a set of configuration alternatives
Implementation in C-EPC:
For DC1, CP1 is realized by
1. applying adaptation pattern AP1 (Insert Process Fragment) to insert the
configurable region using either (i) a configurable function (i.e., configurable
function Print paper boarding card) or (ii) two configurable connectors (i.e.,
split and join) at the precise position where the configurable region should
be located (i.e., after activity Assign seat), and
2. applying repeatedly CP3 (Insert Configuration Alternative in a Config-
urable Region) to insert a process fragment representing the configuration
alternative (only relevant for configurable connectors), i.e., the configuration
alternative is added as a branch between the two configurable connectors
delimiting the configurable region (i.e., activity Print paper boarding card).
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Figure 5: CP1: Design choice 1 implemented in C-EPC

For DC2, CP1 is realized by
1. applying adaptation pattern AP1 (Insert Process Fragment) to insert the
configurable region using either (i) a configurable function (i.e., configurable
function Assign seat or (ii) two configurable connectors (i.e., split and join)
at the precise position where the configurable region should be located (i.e.,
after activity Assign seat),
2. applying adaptation pattern AP2 (Delete Process Fragment) to delete
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the common process fragment from its current position (i.e., activity Assign
seat), and
3. applying CP3 (Insert Configuration Alternative in a Configurable Region)
to re-insert the common process fragment as a configuration alternative of
the configurable region (only relevant for configurable connectors), i.e., the
alternative is added as a branch between the two configurable connectors
delimiting the configurable region (i.e., activity Assign seat).
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Figure 6: CP1: Design choice 2 implemented in C-EPC

For DC3, CP1 is realized by
1. applying adaptation pattern AP1 (Insert Process Fragment) to insert the
configurable region (only relevant for configurable connectors) at the precise
position where the configurable region should be located (i.e., after the join
XOR gateway),
2. applying adaptation pattern AP2 (Delete Process Fragment) to delete the
existing process fragment from its current position, and
3. applying repeatedly CP3 (Insert Configuration Alternative in a Config-
urable Region) once per configuration alternative to re-insert the existing
process fragments as configuration alternatives of the configurable region,
i.e., each process fragment is added as a branch between the two configurable
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connectors delimiting the configurable region (i.e., activity Print paper board-
ing card is inserted as one alternative and activity Pring electronic boarding
card as another one).
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Figure 7: CP1: Design choice 3 implemented in C-EPC

Parameters:
– the position in the configurable process model where the configurable region
shall be inserted
– the configuration alternative(s) to be added to the configurable region

3.2. CP2: Delete Configurable Region

Description: A configurable region of a configurable process model is
deleted.
Problem addressed: A configurable region is no longer needed and thus it
is deleted.
Example: Assume that a configurable region, capturing the variability for
obtaining a boarding card, exists (i.e., paper vs. electronic document). How-
ever, in order to save money, the airline now only offers the electronic-based
boarding card (i.e., other configuration alternatives are no longer offered)
and hence the configurable region is no longer needed.
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Design choices (DC):
(DC1) Deletion by removing all the configuration alternatives
(DC2) Deletion by keeping exactly one of the configuration alternatives (i.e.,
the configuration alternative remains as a common process fragment)
(DC3) Deletion by keeping the set of configuration alternatives
Implementation in C-EPC:
For DC1, CP2 is realized by
1. applying repeatedly change pattern CP4 (i.e., Delete Configuration Alter-
native in a Configurable Region) to delete each existing configuration alter-
native; i.e., once per configuration alternatives (only relevant for configurable
connectors, i.e., activity Print paper boarding card), and
2. applying adaptation pattern AP2 (Delete Process Fragment) to delete the
configurable region in form of either (i) a configurable function or (ii) two
configurable connectors (i.e., split and join).
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Figure 8: CP2: Design choice 1 implemented in C-EPC

For DC2, CP2 is realized by
1. applying repeatedly CP4 (Delete Configuration Alternative in a Config-
urable Region) to delete the existing configuration alternatives of the config-
urable region (only relevant for configurable connectors, i.e., activity Assign
seat),
2. applying adaptation pattern AP2 (Delete Process Fragment) to delete the
configurable region in form of either (i) a configurable function or (ii) two
configurable connectors (i.e., split and join), and
3. applying adaptation pattern AP1 (Insert Process Fragment) to re-insert
the remaining configuration alternative as a (common) process fragment in
the exact position where the configurable region was located (i.e., activity
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Assign seat).
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Figure 9: CP2: Design choice 2 implemented in C-EPC

For DC3, CP2 is realized by
1. applying adaptation pattern AP2 (Delete Process Fragment) to delete the
existing process fragment (including the configurable region and its alterna-
tives) from its current position,
2. applying adaptation pattern AP1 (Insert Process Fragment) to re-insert
at the precise position where the configurable region was located a process
fragment consisting of a two non-configurable connectors, and
3. applying repeatedly adaptation pattern AP1 (Insert Process Fragment) to
re-insert the deleted configuration alternatives as branches between the two
recently added non-configurable connectors (i.e., activity Print paper board-
ing card is inserted as one branch and activity Print electronic boarding card
as another one).
Parameters:
– the configurable region to be deleted
– the configuration alternative(s) that should be kept
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Figure 10: CP2: Design choice 3 implemented in C-EPC

3.3. CP3: Insert Configuration Alternative in a Configurable Region

Description: A configuration alternative is added in a specific configurable
region of a configurable process model.
Problem addressed: For a specific configurable region of the configurable
process model, existing configuration alternatives do not cover all possible
configuration choices so far.
Example: Assume that a configurable region, capturing the variability for
obtaining a boarding card, exists (i.e., paper vs. electronic document). As-
sume further that the airline now wants to offer the possibility of obtaining
the boarding card for smart phones as well. Thus, an alternative shall be
added to this configurable region.
Implementation in C-EPC:
CP3 is realized by applying adaptation pattern AP1 (Insert Process Frag-
ment) to insert the process fragment representing the configuration alter-
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native, i.e., the configuration alternative is added as a branch between the
two configurable connectors delimiting the configurable region (i.e., activity
Print smart boarding card).
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Figure 11: CP3 implemented in C-EPC

Parameters:
– the configurable region to which the configuration alternative belongs
– the configuration alternative to be inserted

3.4. CP4: Delete Configuration Alternative from a Configurable Region

Description: A configuration alternative is removed in a specific config-
urable region of a configurable process model.
Problem addressed: A configuration alternative is no longer needed and
thus it is deleted.
Example: Assume that a configurable region capturing the variability for
obtaining a boarding card exists (i.e., paper vs. electronic document). As-
sume further that for economic reasons, the airline does not offer paper-
based boarding cards anymore allowing only electronic and mobile phone
ones. Thus, the configuration alternative printing a paper boarding card is
no longer needed.
Implementation in C-EPC:
CP4 is realized by applying adaptation pattern AP2 (Delete Process Frag-
ment) to delete the process fragment representing the configuration alterna-
tive, i.e., the configuration alternative is deleted as a branch between the
two configurable connectors delimiting the configurable region (i.e., activity
Print paper boarding card). If the configuration alternative is associated with
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configuration requirements, these may be deleted as well by applying CP9
(Delete Constraint between Configuration Alternatives), i.e., Configuration
requirement 1.
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Figure 12: CP4 implemented in C-EPC

Parameters:
– the configurable region to which the configuration alternative belongs
– the configuration alternative to be deleted

3.5. CP5: Insert Configuration Context Condition of a Configuration Alter-
native

Description: A context condition related to a configuration alternative of
a configurable region is added to define when the configuration alternative
shall be selected.
Problem addressed: A context condition is added to a configurable pro-
cess model to specify the condition under which a particular configuration
alternative shall be selected.
Example: A passenger who carries bulk luggage must pay an extra fee
(where bulk luggage refers to the new context condition).
Implementation in C-EPC:
Since the configuration context conditions are included in a separate ques-
tionnaire model, CP5 is realized by adding a new fact to the question referred
to the application context of the condition. If the questionnaire model does
not include a question for the specific application context, a new question
should be added. In addition, if the new fact implies new constraints, these
should be included as well.
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C1:  Regular  XOR  Overweight  XOR  Bulk

Figure 13: CP5 implemented in C-EPC

Parameters:
– the context condition to be inserted

3.6. CP6: Delete Configuration Context Condition of a Configuration Alter-
native

Description: A context condition related to a configuration alternative of
a configurable region of a configurable process model is deleted.
Problem addressed: A configuration context condition is no longer needed
for selecting a configuration alternative in a configurable region and thus it
is deleted.
Example: VIP passengers do not have to pay a fee for luggage overweight
so far. However, the airline decides that from now on all passengers must
pay such fee.
Implementation in C-EPC:
Since the configuration context conditions are included in a separate ques-
tionnaire model, CP6 is realized by removing an existing fact from the ques-
tion referred to the application context of the condition. If the question of
the removed fact is not used by any other configuration alternatives, the
question should be removed as well. In addition, the constraints referred to
the removed fact should be removed as well.
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Figure 14: CP6 implemented in C-EPC
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Parameters:
– the context condition to be deleted

3.7. CP7: Modify Configuration Context Condition of a Configuration Al-
ternative

Description: A context condition related to a configuration alternative of
a configurable region of a configurable process model is modified.
Problem addressed: A context condition is no longer adequate and shall
be modified in the configurable process model.
Example: The payment of an extra fee is required when luggage weight
exceeds over 20kg. Due to new business goals, this is changed and the extra
fee is only required when the luggage weights more than 15kg.
Implementation in C-EPC:
Since the configuration context conditions are included in a separate ques-
tionnaire model, CP7 is realized by modifying the fact or the constraint
referred to the application context of the alternative.

How heavy is 
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Figure 15: CP7 implemented in C-EPC

Parameters:
– the context condition to be modified

3.8. CP8: Insert Configuration Constraint Between Configuration Alterna-
tives

Description: A constraint regarding the selection of configuration alter-
natives from one or more configurable regions is added to the configurable
process model.
Problem addressed: The selection of configuration alternatives can only
be done under certain conditions.
Example: When unaccompanied minors are travelling, a duplicated board-
ing card is printed to the relative who accompany them to the boarding gate,
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i.e., an inclusion constraint exists.
Implementation in C-EPC:
CP8 is realized by inserting a configuration requirement, which is then linked
to the involved configurable nodes (either configurable functions or connec-
tors) that delimit the configurable region of the configuration alternatives to
be constrained.
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Figure 16: CP8 implemented in C-EPC

Parameters:
– the configuration region to which the alternatives whose selection will be
constrained
– the configuration constraint to be inserted

3.9. CP9: Delete Configuration Constraint Between Configuration Alterna-
tives

Description: A constraint between two or more configuration alternatives
from one or more configurable regions is deleted.
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Problem addressed: A constraint between two or more configuration al-
ternatives is no longer needed and thus it is deleted.
Example: When unaccompanied minors are travelling, a relative accom-
pany them to the boarding gate (i.e., inclusion constraint). Due to emerging
legal regulations, from now on the staff from the airline shall accompany
them, i.e., the inclusion constraint is no longer needed.
Implementation in C-EPC:
CP9 is realized by deleting a configuration requirement, which is linked to the
configurable nodes that delimit the configurable region of the configuration
alternatives to be constrained.
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Figure 17: CP9 implemented in C-EPC

Parameters:
– the configuration constraint to be deleted

3.10. CP10: Modify Configurable Region Resolution Time

Description: In a configurable process model, the resolution time of a con-
figurable region is modified.
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Problem addressed: The resolution time of a configurable region in a con-
figurable process model is no longer adequate and is modified.
Example: Passengers travelling to US should fill in the ESTA form. How-
ever, due to new regulations, if the passenger already travelled to the US in
smaller period than six months with the same airline, the latter may decide
that the ESTA form is not needed again. This means that the activation of
the activity “Fill in ESTA form” depends on the passenger and the airline
(i.e., activity “Fill in ESTA form” becomes optional).
Implementation in C-EPC:
Since resolution time is only supported by the optionality of configurable
functions (i.e., OPT configuration), CP10 is implemented by modifying to
OPT the configuration requirements that restricts the configuration of the
configurable function; e.g., from ON to OPT. The constraints of the question-
naire model referred to the function which resolution time has been changed
should be adapted accordingly.
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Figure 18: CP10 implemented in C-EPC

Parameters:
– the configurable region whose resolution time is modified
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3.11. Discussion

In absence of an established method to deal with process variability in
an explicit manner, we provide a set of change patterns that enable the
modeling and evolution of process families. In addition, these patterns are
intended to reduce the effort needed for such purposes and ensure process
family correctness. In this context, in the following we discuss the complete-
ness, generalizability and application order of our patterns.

Regarding the completeness of the proposed patterns, we ground the pat-
terns on a set of variability-specific language constructs obtained from a large-
scale systematic literature review. As a consequence of this methodological
choice, our patterns describe how process variability is supported in the liter-
ature. Therefore, CP4PF is complete with regards to their support for such
constructs. We have not specified patterns for modifying configurable re-
gions, configuration alternatives, and configuration constraints because they
can be realized by combining other change patterns and existing adaptation
patterns. However, CP7 and CP10, which correspond to the combination
of other patterns for some approaches (e.g., Provop, cf. Sect. 5), have been
defined in order to modify in a more efficient way the variability-specific lan-
guage constructs that they affect (i.e., configuration context condition and
configurable region resolution time). As a consequence, our pattern set is
not minimal.

Regarding the generalizability of CP4PF, our systematic review identi-
fied the variability-specific language constructs in 34 different approaches
for process family management. Although these approaches use different
terminology (e.g., configurable region vs. variation point) and may realize
the language constructs in different ways, the five languages constructs are
widely used in the literature on process variability. Using this set of con-
structs as a basis, we can ensure that the proposed patterns are expressive
enough to model and evolve process families in such approaches. That is,
CP4PF can be implemented in any of these approaches for the constructs
that they support.

When modeling with only CP4PF, the application order of the patterns
is implicitly determined by the type of operation (insertion, modification,
and deletion) and the constructs of each pattern. For example, configura-
tion alternatives cannot be inserted if configurable regions have not been
inserted previously. The same happens when inserting configuration context
conditions and constraints, they need the previous insertion of configuration
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alternatives. Fig. 19 shows the application dependence graph between the
patterns.
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CP2 CP4 CP6

CP8

CP9CP10
Application 
dependence: Y can 
be applied if X has 
been applied before

X Y

Figure 19: Application dependence graph between CP4PF

Process variability management distinguishes between design-time and
runtime variability [30, 40]. Variability at design time deals with choices
whose resolution is known before process execution. For example, in the
check-in process, the way a boarding card could be printed (i.e., electronic
or paper format) is resolved when the process varint to execute is configured
(selecting) out of the process family (e.g., Variant 1 in Fig. 1). Variability at
runtime deals with choices that are only resolved once a specific process vari-
ant instance (i.e., a concrete case) is being executed. For example, whether
or not a passenger carries overweight luggage is not known until he arrives
at the counter. In addition, variability at runtime may refer to the dynamic
resolution of a concrete region of a process variant based on runtime data
(e.g., late modeling) [10]. CP4PF allow managing both types of variability
because the different choices are foreseen at design time, and hence can be
represented in a configurable process model independently of when they are
resolved. On the contrary, CP4PF do not manage ad-hoc changes supported
in adaptive PAISs [40]. Usually, ad-hoc changes correspond to unplanned
dynamic changes which are not foreseen before process execution.

Finally, CP4PF are also intended to reduce the effort needed for modeling
and evolving configurable process models. This is analyzed in the following
section through a case study.
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4. Validation

This section reports on a case study conducted with a safety standard
for validating CP4PF. We have selected this empirical method because it is
a well-established and widely accepted approach for studying phenomena in
their real life context [42], including for software and systems engineering
research [49, 43]. Case studies are usually classified as flexible research and
aim to provide new knowledge from and about actual situations. Their con-
clusions are based on evidence collected in a planned and consistent manner.
We followed the guidelines and procedures proposed in [43].

The case study allows us to validate the feasibility of our proposed CP4PF
in a real scenario as well as analyzing the effort of applying them. Case
studies with similar or the same purposes (i.e., feasibility and effort analyses)
can be easily found in the literature on e.g. business process modeling [34, 10]
and system assurance modeling [37, 35].

In the following, we present the context of the case study, the research
questions, the case selection and data collection procedure, the case study
results, and a discussion of these results. Finally, we discuss the validity of
our case study.

4.1. Context

A safety–critical system is one whose failure can lead to injury or death
to people or damage to the environment [18]. These systems are subject to
rigorous assurance processes so that they do not pose undue risks. These
processes are usually based on safety standards whose compliance with must
be shown. An example of this type of standards is IEC 61508 [22], which deals
with functional safety of electrical, electronic, and programmable electronic
systems. IEC 61508 is a generic standard that has been used as basis for
sector-specific ones (e.g., automotive).

Safety standards indicate requirements to fulfill, artifacts to create, and
activities to execute in a system’s lifecycle. The standards also recommend
techniques that represent alternative ways to reach the standards’ objectives.
Table 2 shows an example of the techniques recommended for a software
development. The content of the figure is based on the software architecture
design phase of IEC 61508-3.

Safety standards indicate when a technique should be used. For example,
in IEC 61508 the techniques are assigned to safety integrity levels (SIL),
which represent the relative level of risk reduction. IEC 61508 defines four
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Technique SIL 1 SIL 2 SIL 3 SIL 4 
1 Dynamic reconfiguration -- -- NR NR 

2a Structured methods -- R HR HR 

2b Formal methods -- R HR HR 

3 Modular approach HR HR HR HR 
 

Table 2: Example of the techniques extracted from a safety standard

SILs, being SIL 1 the lowest risk-reduction and SIL 4 the highest one. In
addition, the standard provides a recommendation regarding the use of a
technique: highly recommended (HR), recommended (R), no recommendation
for or against being used (- -), and not recommended (NR). In Fig. 2 the
technique Dynamic reconfiguration has no recommendation for SIL 1 and
SIL 2, while it is not recommended for SIL 3 and SIL 4. As a rule of thumb,
the use of HR techniques is compulsory and NR techniques must not be used.
Finally, IEC 61508 indicates the alternative use of some techniques to specify
that only one of them might be used (e.g., techniques 2a and 2b in Fig. 2).

The variability associated to safety standard compliance (hereafter re-
ferred to as variability of a safety standard) is high and complex. For exam-
ple, IEC 61508-3 recommends around 150 techniques, which in combination
with the number of SILs, the given recommendations, and the existence of
alternative techniques, result in thousands of possible ways of applying the
standard. For example, the technique Structured methods has three different
recommendations in Fig. 2. In addition, Structured methods is only used
if the technique Formal methods is not used (i.e., alternative techniques).
These variations even increase if it is considered that, for example, some sys-
tems might not use a HR technique because of the specific characteristics of
the systems (e.g., code automatically generated). Safety standards do not
and cannot provide a unique algorithm for combining the techniques that
will be correct for any application of the standard [22].

In order to facilitate their application, safety standards can be represented
with models [35]. Practitioners use process models [36] and commercial tools
for representing safety standards’ processes with BPMN [3, 51], including the
modeling of techniques as BPMN activities [6]. In addition, specific models
for safety assurance have been proposed during the last years. For example,
SafetyMet is a metamodel for specifying how to comply with a safety standard
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[18]. Fig. 20 shows an excerpt of this metamodel. In general terms, and using
Fig. 2 as a reference, the class Reference Applicability is used to represent
a row of the table, and the class Reference Technique is used to specify a
technique (e.g., Structured methods). The classes Reference Criticality Level
and Reference Applicability Level are used to specify the SILs (SIL 1 - SIL
4) and the types of recommendation (e.g., HR), respectively, whereas the
class Reference Criticality Applicability is used to link a technique with a
recommendation for a specific SIL (e.g. technique Structured methods has
a HR recommendation for SIL 4). The class Reference Requirement can
be used to specify that some techniques are alternative to each other (e.g.,
techniques 2a and 2b in Fig. 2).
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Reference 
Technique

Reference Criticality 
Applicability

Reference Criticality 
Level

Reference 
Applicability Level

1...n

0..1

0...n

1

Reference 
Requirement

0..1

Figure 20: Excerpt of the SafetyMet metamodel (adapted from [18])

Finally, new versions of safety standards can be released for including
emerging techniques as well as making adjustments; e.g., IEC 61508 has two
versions: 1998 and 2010. As a consequence, existing representations of the
standards must be evolved in order to represent the changes.

4.2. Research Questions

The goal of the case study was to analyze the application of CP4PF in
a real and industrial modeling scenario. For such a purpose, we focused on
the variability of safety standards. In particular, we formulate the following
research questions:

• RQ1: Is the application of CP4PF a feasible approach for modeling the
variability of a safety standard?

This question refers to whether CP4PF can be used effectively for (1)
creating a configurable process model representing the variability of a safety
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standard (e.g., when to use a technique) and (2) evolving this model in
accordance to the changes introduced by a new version of the standard.

• RQ2: Does the application of CP4PF reduce the effort for modeling
the variability of a safety standard?

This question is based on the level of effort spent throughout the creation
and evolution of the configurable process model representing a safety stan-
dard when compared to state-of-the-art approaches. Effort is an important
factor for determining if CP4PF can be successfully adopted. If the effort for
modeling and evolving a configurable process model using CP4PF is higher
than with the approaches currently used (e.g., BPMN), then CP4PF adop-
tion will be hindered.

4.3. Case Selection and Data Collection

The subject of the case study is the IEC 61508 standard. We chose IEC
61508 because it is a general standard that is applied in different sectors
and for different systems. Among its parts, we chose part 3, which deals
with software development. For answering RQ1, both the first (1998) and
the second version (2010) were taken into account. More precisely, we used
CP4PF for creating a configurable process model representing the variability
of the IEC 61508-3:1998 and used them again for evolving the resulting model
in order to comply with the 2010 version. We used C-EPC and applied
therefore CP4PF using their implementation in this notation (cf. Sect. 3).

Regarding RQ2, we used the number of operations as the effort metric.
The main advantages of operation measurement for effort analysis over, for
instance, time measurement are that: (1) it allowed us to compare the mod-
eling effort with different approaches without having to engage experts (in
each approach) with similar levels of expertise and modeling skills; (2) find-
ing experts that can spend the time necessary to create large models can be
extremely difficult, especially if the experts must meet the above conditions;
(3) it avoided threats to validity related to the modelers’ fatigue in creating
large models, and; (4) the results were more reliable since the operations
could be measured twice and the outcome would be the same. In partic-
ular, we compared the number of operations needed with CP4PF with the
number of operations needed to create and evolve a IEC 61508 model using
two state-of-the-art approaches: BPMN and the SafetyMet metamodel. We
chose BPMN because it is the de-facto standard for process modeling [12]
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and it is used in industry for modeling safety standards [3, 51]. We chose
SafetyMet because it is a generic metamodel specifically targeted at repre-
senting safety standards [18]. In addition, to determine the exact impact that
CP4PF have in the representation of the standard in a configurable process
model, we also compared the number of operations applying CP4PF with
the number of operations needed to create and evolve the same configurable
process model in C-EPC but without applying the patterns. In summary,
we compared the number of operations using four approaches:

• Create and evolve a C-EPC model using CP4PF

• Create and evolve a C-EPC model adding/deleting/modifying language
primitives (e.g., configurable connector)

• Create and evolve a BPMN model adding/deleting/modifying language
primitives (e.g., activity)

• Create and evolve a SafetyMet model adding/deleting/modifying lan-
guage primitives (e.g., Reference Technique)

Data collection involved two main activities. The first one consisted in
creating the models representing the variability of the standard IEC 61508-
3:1998 using the four approaches. In turn, the second activity consisted in
evolving the four resulting models to comply with the 2010 version. For
both activities, we measured the number of operations needed for creat-
ing/evolving the models. More precisely, we considered four types of actions:

1. Insert a modeling element (e.g., a link)

2. Insert a named modeling element (e.g., a BPMN activity) or apply an
insert pattern (e.g., CP1)

3. Delete a modeling element (e.g., a link) or apply a delete pattern (e.g.,
CP2)

4. Modify a modeling element (e.g., rename a BPMN activity, rearrange
a link) or apply a modify pattern (e.g., CP10)

We measured the first, third, and fourth type of action as one operation,
and the second one as two operations (i.e., one operation for the insertion
and another for writing a name). We made this difference in order to reflect
that both inserting an element and naming it require a higher effort than only
inserting, deleting, or modifying it. We considered that no distinction was
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necessary for the aspects common to all the types of actions (e.g., indication
of element location, when either selecting an element for modification or
deletion or specifying where to insert it).

Prior to data collection, we defined how the variability of the standard can
be systematically represented with the selected approaches. Fig. 21 shows
the configurable process model of the techniques presented in Fig. 2 with the
C-EPC notation.2

Use dynamic 

reconfiguration

˅
Start 

event
˅

End

event

X

Use formal 

methods

Use 

structured methods

X

Configuration Requirement 1:

“Use dynamic reconfiguration” = OPT 
 “Use structured methods“ = OPT

Configuration Requirement 2:

“Use dynamic reconfiguration” = OFF 
 “Use structured methods“ = ON

Configuration Requirement 4:

“Use structured methods” = ON   
“Use formal methods“ = ON

Configuration Requirement 3:

“Use structured methods” = OPT  
 “Use formal methods“ = OPT

Configurable 

function
XOR connectorOR connector X˅ Configuration 

Requirement 
Event

3 4

2
1

q1: Which SIL need 
to be achieved?

f1: SIL 1

f2: SIL 2

f3: SIL 3

T M

f4: SIL 4

CONSTRAINTS:
C1:  f1    (“Use dynamic reconfiguration” = OPT)
C2:  f2    (“Use dynamic reconfiguration” = OPT)
C3:  f3    (“Use dynamic reconfiguration” = OFF)
C4:  f4    (“Use dynamic reconfiguration” = OFF)

M

M

M

question fact link question-factfact true by default mandatory factMT

QUESTIONNAIRE:

CONFIGURABLE PROCESS MODEL:

Use modular 

approach

Figure 21: C-EPC model of the techniques presented in Fig. 2 and the associated ques-
tionnaire and constraints

Techniques were represented depending on the provided recommenda-
tions. Techniques with two (or more) recommendations were defined as con-
figurable functions, which can be configured to ON (i.e., the function is in-
cluded), OFF (i.e., the function is not included), or OPT (i.e., the function
is optionally included) depending on the SIL to achieve and the recommen-
dation of use. Thus, the SILs corresponded to the application context of the
configurable functions. For a given SIL, we considered that

2The name of each technique has been adapted to the format “verb + object” in order
to make them process-oriented [33].
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• HR techniques must be used. Thus, the configurable function should
be configured to ON.

• R techniques and techniques with no recommendation (- -) are optional.
Thus, the configurable function should be configured to OPT.

• NR techniques must not be used. Thus, the configurable function is
configured to OFF.

However, techniques with only one recommendation for all the SILs were
represented as regular functions; i.e., no configurations were needed (e.g.,
function Use modular approach in Fig. 21). The concrete configuration of
each function for each SIL was defined in the configuration requirements.
Since the application context in C-EPC is represented in a questionnaire
model (cf. Fig. 21), configuration requirements were defined based on pre-
vious configurations [29]. For example, Configuration Requirement 3 states
that the configurable function Use formal methods is configured based on
the configuration of the function Use structured methods. Finally, we defined
that alternative techniques (e.g., 2a and 2b of Fig. 2) should be represented
using XOR connectors (e.g., XOR 3 and 4 in Fig. 21). We used OR con-
nectors to represent that there is not predefined precedence order in the use
of the techniques (e.g., OR 1 and 2 in Fig. 21). In IEC 61508-3, the use of
the techniques is provided in different tables, which are associated to specific
lifecycle activities. For example, Fig. 2 shows the techniques for the activity
software architecture design. Thus, for each table provided in the standard,
we created a configurable process model for representing the variability of
the corresponding lifecycle activity.

Fig. 22 shows how the content of Fig. 2 can be represented with BPMN.
In line with the way of modeling presented in [6], we modeled each technique
as an activity. In turn, we used XOR gateways to differentiate among the
recommendations. For example, XOR 3 and 4 in Fig. 22 are used to fork the
sequence flow into two paths, one for each type of recommendation for the
activity (i.e., technique) Use dynamic reconfiguration. SILs are then used
as conditions of these gateways to decide which path should be taken. For
example, the path of SIL 3 and 4 in XOR3 is taken when the technique is NR
and thus must not be used. In the case of R techniques and techniques with
no recommendation (- -), we modeled them using XOR gateways in order
to represent that the techniques might be used or not (e.g., XOR gateways
5 and 6 in Fig. 22). Like in C-EPC, alternative techniques are represented

35



Use dynamic 
reconfiguration

SIL1, SIL2

SIL3, SIL4

Use structured 
methods

SIL1, SIL2

SIL3, SIL4
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Figure 22: BPMN model of the techniques presented in Fig. 2

using XOR gateways (e.g., XOR 7 and 8 in Fig. 22). Finally, we used OR
gateways again to represent that there is no precedence order in the use of
the techniques. We created a BPMN model for each table of the standard,
as we did with C-EPC.

Finally, regarding the SafetyMet metamodel, we represented the variabil-
ity of the IEC 61508 using the classes and relationships of the metamodel
(cf. Fig. 23).

During the data collection, the first author was the main responsible for
systematically creating and evolving the models and measuring the opera-
tions. Nonetheless, she did not create the models alone. The third author
iteratively validated the resulting models, as well as the measurement results.
He has wide knowledge on safety assurance and certification (e.g., [35, 36]),
and is co-creator of SafetyMet [18]. The rest of authors also reviewed the
collected data.

4.4. Results

In this section, we describe the outcomes of the case study.
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4.4.1. Results for Model Creation

Since the IEC 61508 documents are under copyright, we refrained from
sharing the created models. We are not allowed to publish, for example, the
content of their tables. However, for illustration purposes, we detail in Ta-
ble 3 the results obtained for representing the table presented in Fig. 2 using
the four approaches (i.e., the results for obtaining the models presented in
Figs. 16-18). More concretely, Table 3 shows the total number of modeling
elements for the resulting models as a way to show their scale. In addition, it
shows the number of actions needed for creating the models. Since we mod-
eled from scratch, we mostly used insertions of modeling elements, insertions
with name, and insert patterns. The total number of operations is the result
of adding the number of inserted elements plus two times the number of inser-
tions of named elements or the application of insert patterns. For example,
for creating the configurable process model in C-EPC in combination with
CP4PF, we needed 15 insertions of modeling elements (2+2+1+1+9), one
insertion of a function, 11 applications of insert patterns (3+4+4), and four
applications of modify patterns to change the constraints of the question-
naire model associated to the facts. This resulted in a total of 43 operations
(15+1x2+11x2+4=43). Regarding the application of CP4PF, CP1 automat-
ically introduces sequence flows and CP5 automatically introduces a question
of the questionnaire and the respective constraints (cf. Sect. 3).

Table 4 summarizes the results of the creation of the models representing IEC
61508-3:1998. A total of 119 techniques were represented. For creating the
configurable process model with CP4PF, four patterns were used. We applied
CP1 once per technique represented, CP5 once per existing SIL, CP8 for
inserting the configuration requirements needed to specify the configuration
of each configurable function, and CP7 for modifying the constraints of the
questionnaire. In total, we needed 295 pattern applications.

4.4.2. Results for Model Evolution

Table 5 shows the differences between the 1998 and 2010 versions of IEC
61508-3. Thus, we evolved the created models to represent these changes.

Table 6 summarizes the results of this evolution. More precisely, it shows
the number of the elements of the evolved models as well as the operations

38



Approach 
Total of 

modeling 
elements 

Type of actions 

Total of 
operations 1. Insert element 

2. Insert named element / 
apply INSERT pattern 

3. Delete modeling 
element /  
apply DELETE 
pattern 

4. Modify modeling 
element / apply 
MODIFY pattern 

C-EPC + CP4PF 
 

(model presented 
in Fig. 16) 

47 

- 2 XOR connectors 
- 2 OR connectors 
- 1 start event 
- 1 end event 
- 9 sequence flows 

- 1 function  
- 3 app. of CP1 
- 4 app. of CP5 
- 4 app. of CP8 

------------- - 4 app. of CP7 43 

C-EPC 
 

(model presented 
in Fig. 16) 

47 

- 2 XOR connectors 
- 2 OR connectors 
- 1 start event 
- 1 end event  
- 12 sequence flows 
- 8 requirement connectors 
- 4 links question/facts 

- 1 function 
- 3 configurable functions 
- 4 configuration 
requirements 
- 1 question 
- 4 facts 
- 4 constraints 

------------- 
- 4 modification 
constraints 

68 

BPMN 
 

(model presented 
in Fig. 17) 

48 

- 12 XOR gateways 
- 2 OR gateways 
- 1 start event 
- 1 end event 
- 22 sequence flows 

- 4 activities 
- 6 labeled sequence flows  

------------- ------------- 58 

SafetyMet 
 

(model presented 
in Fig. 18) 

57 

- 4 Reference Applicability 
- 9 Reference Criticality 
Applicability 
- 31 links 

- 4 Reference Technique 
- 1 Reference Requirement 
- 4 Reference Criticality Level 
- 4 Reference Applicability 
Level  

------------- ------------- 70 

Table 3: Summary of the results for representing the table of Fig. 2

needed for the evolution. With CP4PF, we applied four patterns, resulting
in a total number of 181 pattern applications. More precisely, we applied
CP1 once per new technique with two different recommendations, CP2 once
per technique with two different recommendations deleted, CP8 for adding
the configuration constraints of the techniques introduced, and CP9 for mod-
ifying the constraints in the questionnaire model.

4.4.3. Synthesis of the Results

Table 7 synthesizes the results of the case study. As shown, in the cre-
ation of the models, the use of CP4PF in combination with C-EPC reduces
the number of operations in a 19.1% with respect to using only C-EPC, a
34.5% with respect to BPMN, and a 33.3%, with respect to SafetyMet. For
evolving the models, the use of CP4PF in combination with C-EPC reduces
the number of operations in a 25.1% with respect to only C-EPC, a 40.4%
with respect to BPMN, and a 33.1%, with respect to SafetyMet.

4.5. Discussion

In this section, we discuss the results of the case study focusing on an-
swering the research questions.
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Approach 
Total of 

modeling 
elements 

Type of actions 

Total of 
operations 1. Insert element 

2. Insert named element / 
apply INSERT pattern 

3. Delete modeling 
element /  
apply DELETE 
pattern 

4. Modify 
modeling 
element /  
apply MODIFY 
pattern 

C-EPC + CP4PF 841 

- 62 XOR connectors 
- 38 OR connectors 
- 19 start event 
- 19 end event 
- 288 sequence flows 

- 46 functions  
- 73 app. of CP1 
- 4 app. of CP5 
- 70 app. of CP8 

------------- - 148 app. of CP7 960 

C-EPC 841 

- 62 XOR connectors 
- 38 OR connectors 
- 19 start event 
- 19 end event  
- 361 sequence flows 
- 140 requirement connectors 
- 4 links question/facts 

- 46 functions 
- 73 configurable functions 
- 70 configuration requirements 
- 1 question 
- 4 facts 
- 4 constraints 

------------- 
- 148 constraint 
modifications 

1187 

BPMN 1203 

- 282 XOR gateways 
- 38 OR gateways 
- 19 start event 
- 19 end event 
- 582 unlabeled sequence flows 

- 119 activities 
- 144 labeled sequence flows  

------------- ------------- 1466 

SafetyMet 1305 
- 119 Reference Applicability 
- 216 Reference Criticality Applicability 
- 835 links 

- 119 Reference Technique 
- 8 Reference Requirement 
- 4 Reference Criticality Level 
- 4 Reference Applicability Level  

------------- ------------- 1440 

Table 4: Summary of the results for creating the models representing the IEC 61508-3:1198
standard

Techniques introduced 63 

Techniques deleted 30 

Techniques renamed 17 

Techniques with different recommendations 5 

Table 5: Differences between the IEC 61508-3:1998 and IEC 61508-3:2010 versions

Regarding RQ1 (Is the application of CP4PF a feasible approach for
modeling the variability of a safety standard? ), we could successfully model
and evolve a configurable process model for IEC 61508-3 using CP4PF. We
needed 295 pattern applications for creating the configurable process model
and 181 for evolving it. The main challenge was to define how the infor-
mation of the standard had to be represented with C-EPC. More precisely,
we had to decide how to capture all the variability in a C-EPC configurable
process model and at the same time how to ensure model understandabil-
ity and accuracy. For example, we discussed how to properly represent the
techniques and the associated recommendations in the most suitable man-
ner (e.g., represent techniques as configurable functions). For evolving the
configurable process model, we also had to determine the impact that the
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Approach 
Total of 

modeling 
elements 

Type of actions 

Total of 
operations 1. Insert element 

2. Insert named element / 
apply INSERT pattern 

3. Delete modeling 
element /  
apply DELETE pattern 

4. Modify 
modeling 
element /  
apply MODIFY 
pattern 

C-EPC + CP4PF 1137 
- 44 XOR connectors 
- 140 sequence flows 

- 18 functions  
- 45 app. of CP1 
- 72 app. of CP8 

- 20 app. of CP2 
- 10 functions 
- 18 XOR connectors 

- 44 app. of CP7 
- 17 function 
rename 

563 

C-EPC 1137 

- 44 XOR connectors 
- 185 sequence flows 
- 144 requirement connectors 

- 18 functions 
- 45 configurable functions 
- 72 configuration 
requirements 

- 20 configurable functions 
- 10 functions 
- 18 XOR connectors 

- 44 constraint 
modifications 
- 17 function 
rename 

752 

BPMN 1558 
- 181 XOR gateways 
- 325 unlabeled sequence flows 

- 63 activities 
- 92 labeled sequence flows  

- 30 activities 
- 82 XOR gateways 

- 17 activity 
rename 

945 

SafetyMet 1701 
- 63 Reference Applicability 
- 117 Reference Criticality Applicability 
- 443 links 

- 63 Reference Technique 
- 7 Reference Requirement  

- 30 Reference Technique 
- 30 Reference Applicability 
- 1 Reference Requirement 

- 17 technique 
rename 

841 

Table 6: Summary of the results for evolving the created models

Approach 

Model creation Model evolution 

Number of 
modeling 
elements 

Number of 
operations 

% of effort 
reduction 

Number of 
modeling 
elements 

Number of 
operations 

% of effort 
reduction 

C-EPC + CP4PF 841 960 na 1137 563 na 

C-EPC 841 1187 19.1% 1137 752 25.1% 

BPMN 1203 1466 34.5% 1558 945 40.4% 

SafetyMet 1305 1440 33.3% 1701 841 33.1% 

Table 7: Synthesis of the results of the case study

differences between both versions of the standard had on the already created
configurable process model. For example, we needed to decide how to reflect
in the configurable process model that a recommendation had changed for a
specific SIL (e.g., adding new configuration requirements).

For modeling and evolving the configurable process model, we used a to-
tal of six change patterns (CP1, CP2, CP5, CP8, CP9, and CP10) out of the
10 defined. More precisely, we applied patterns referred to four variability-
specific language constructs: configurable region, configuration context con-
dition, configuration constraint, and configurable region resolution time. We
did not apply patterns related to configuration alternatives (i.e., CP3 and
CP4) because we decided to model techniques as configurable functions,
which implicitly define the configuration alternatives (i.e., ON, OFF, OPT).
In addition, we did not use patterns for deleting or modifying the application
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context (i.e., CP6 and CP7) because the application context (i.e., SILs) did
not change between the versions of the standard.

Regarding RQ2 (Does the application of CP4PF reduce the effort for
modeling the variability of a safety standard? ), we consider that the results
show that the application of CP4PF can significantly reduce the effort for
modeling the variability of a safety standard. When compared to state-of-
the-art approaches (i.e., BPMN and SafetyMet metamodel), CP4PF in com-
bination with C-EPC can reduce up to 34.5% the number of operations for
creating a configurable process model of the variability of a safety standard,
and up to 40.4% for evolving it. We acknowledge that CP4PF were used in
combination with a variability-specific approach that deals with process vari-
ability in an explicitly manner (i.e., C-EPC). This might be advantageous,
for example, in respect to BPMN, since it was not conceived to explicitly
deal with process variability. In addition, we need to consider that the Safe-
tyMet metamodel was conceived for being compliant with any safety stan-
dard, supporting any kind of information they may include (e.g., guidelines
and techniques explanations). This adds a set of extra modeling actions (e.g.,
inserting a Reference Applicability element) that need to be done but are not
needed for representing the selected information of IEC61508-3. However,
even when compared to modeling with only C-EPC, the application of the
change pattern is clearly advantageous to us (over 19% reduction in the num-
ber of operations). In this sense, we consider that most of the benefit comes
from using CP4PF, not from the process variability approach.

Finally, the results for RQ2 coincide with the benefits that we envisioned
when defining CP4PF. The case study allowed us to determine the actual
extent to which the application of CP4PF can reduce the effort for modeling a
process family in a real scenario. This is mainly due to the fact that CP4PF
can automatically insert or delete several modeling elements with a single
modeling action (i.e., pattern application).

4.6. Validity

Like any other modeling situation, modeling IEC 61508-3 comprised de-
cisions about how to create the models (e.g., modeling gateways in pairs).
In addition, one author was the main responsible for creating the models.
These factors affect internal validity. To mitigate possible threats, we de-
cided prior to data collection how to systematically represent the variability
of the standard with the selected approaches. The obtained models were also
validated.
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Regarding conclusion validity, CP4PF were implemented and applied
with only one process variability approach (C-EPC). The results of the case
study and thus the conclusions drawn could differ when implementing CP4PF
with other approaches (e.g., Provop [26]).

Single case studies as the one conducted (with only one safety standard)
pose threats to external validity. However, we expect similar results for stan-
dards with similar characteristics (e.g., other safety standards, and especially
those based on IEC 61508). We also believe that variability management
of process families from other domains can benefit from CP4PF. Since the
implementation of CP4PF with C-EPC automatically introduces or deletes
modeling elements, we may expect an effort reduction when modeling and
evolving other process families.

5. Related Work

In addition to the background of the paper (cf. Sect. 2), research on
process variability modeling and workflow patterns is closely related to our
work.

First, in the context of process families, a way for defining process vari-
ability is by restricting the behavior captured in a configurable process model
[30, 10]. For example, in C-EPC, configuration requirements constraint the
behavior of configurable functions and connectors (e.g., defining mutual ex-
clusions or inclusions). The same applies for C-YAWL where process variants
can be configured by applying hiding and blocking operators, which restrict
different execution paths by making them unobservable or disable [2]. In
turn, the PESOA approach includes a set of annotations attached to the
activities that may be subject to variation [39]. In addition, the application
context of these variable activities is specified in terms of features attached to
them. Accordingly, process variants are configured by selecting (restricting)
the features that refer to each variant.

Another way for defining process variability is via extension or modifi-
cation of the behavior captured in configurable process model [30, 10]. For
example, in Provop, a pre-specified base process model is structurally ad-
justed to the given application context through a sequence of model changes
(e.g., delete, insert, and move process fragments) [26]. In turn, the ADOM
approach, cardinality attributes are used to annotate the elements of a con-
figurable process model in order to specify their available number of instan-
tiations (i.e. how many times an activity can be used in a process variant).
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Then, process configuration is achieved by instantiating elements with mul-
tiple cardinality, and adding application-specific elements [41]. Finally, there
are also approaches that apply business rules (i.e., change artifacts) to con-
figure process variants from a process template [27]. Our patterns deal with
process variability at a level of abstraction higher than the one provided by
these approaches. CP4PF are intended to be implemented in any of these
approaches as we did with C-EPC.

Empirical evaluations of process variability approaches have also been
conducted [10]. Case studies are the most frequent method and have been
conducted in different domains such as egovernment [24], logistic [32], risk
management [48], and retail [38]. To the best of our knowledge, the case
study conducted in this work is the largest one in the context of process
variability. The high variability presented in safety standards (e.g., possible
combinations of techniques and recommendations) has resulted in a con-
figurable process model with over 1000 elements. In addition, we did not
only create a configurable process model, but also evolved it to meet chang-
ing requirements. Finally, unlike other case studies, we also compared the
results of CP4PF with how process variability can be managed with other
approaches (i.e., BPMN and SafetyMet metamodel). Thus, we could analyze
the suitability of CP4PF in terms of effort reduction.

Regarding other types of evaluations in the context of process variability,
the Goal/Question/Metric method is used to evaluate how good the design of
a configurable process model is [4]. In turn, similarity metrics to measure the
complexity (e.g., size) of a configurable process model are used in [52]. Map-
ping patterns to compare different process variability approaches in terms of
complexity (e.g., size of resulting models) are also used in [11]. This paper
complements these evaluations because we have analyzed the effort reduction
of applying CP4PF in a real scenario.

In the context of software process lines, there exist approaches dealing
with variability in software processes. For example, [50] describes and an-
alyzes different methods for modeling variability in processes that are built
from a set of core assets. More concretely, it analyzes SPEM, vSPEM, feature
models, and OVM in terms of their expressiveness for modeling software vari-
ability, as well as their understandability and related tools. However, these
approaches were not deeply analyzed since their focus is not on business
process variability.

Second, regarding workflow patterns, they have been defined for analyz-
ing the expressiveness of process modeling languages. These patterns cover
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different perspectives such as control flow [1], data [44], resources [45], time
[28], and exceptions [46]. Pattern compounds [25] are similar to adaptation
patterns (cf. Sect. 2.1) and enable context-sensitive selection and pattern
composition during process modeling. However, and as adaptation patterns,
workflow patterns are not sufficient for effectively dealing with process fam-
ilies. They do not consider variability-specific needs introduced by process
families and hence are complementary to CP4PF.

Finally, the management of process families through patterns has also
been proposed in [47]. It presents a set of theoretical patterns for promoting
the reuse of activities, resources, and data in configurable process models.
However, these patterns have not been obtained in a systematic way and
lack support for the entire set of variability-specific language constructs (cf.
Sect. 2.3). Our work is broader in the sense that it covers more the vari-
ability needs of process families. In addition, CP4PF have been empirically-
grounded and applied in a real scenario through a case study.

6. Summary and Outlook

Managing the variability of process families can be very difficult in prac-
tice due to their size and complexity, and means that facilitate the creation
and evolution of configurable process models are necessary. Such means
should also aim to be cost-effective, reducing modeling and evolution effort
and being able to ensure model correctness.

Our work complements existing work on patterns for creating and modi-
fying process models and on process variability management by introducing
10 patterns for modeling and evolving process families. Our change patterns
for process families were derived from the five variability-specific constructs
used for capturing process variability. To show that our patterns–despite
their intended generic nature–are specific enough to manage process variabil-
ity, we have presented their implementation in C-EPC, a well-known process
variability approach.

In addition, we conducted a case study with the process family of a safety
standard (IEC 61508-3). The case study results allow us to show the feasi-
bility of the patterns and their suitability in terms of effort reduction. When
compared to other state-of-the-art approaches, the defined patterns were
able to reduce the effort needed for modeling a process family by 34% and
for evolving it by 40%.
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Our future work includes extending the patterns for aspects different to
control flow (e.g., data and resources). We also aim to identify complemen-
tary patterns for covering other phases of the process lifecycle (e.g., runtime
variability). Finally, we would like to conduct further empirical studies in
order to determine the outcome of using our patterns in other application
domains with a high degree of variability (e.g., healthcare). We would also
like to perform controlled experiments with subjects in order to analyze how
users apply the patterns and their perceptions of this application.
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