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HIGHLIGHTS 
 

 

 3D Moving Element Method (MEM) to model the track is proposed. 

 The model considers an Eulerian coordinate system attached to the moving 

vehicle. 

 The resulting formulation permits to reduce the computational cost compared 

to the FE models commonly used. 

 The proposed 3D MEM track model is suitable to describe the high frequency 

dynamics. 
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ABSTRACT 

As it is well known, there are various phenomena related to railway train-track interaction, 

some of them caused by the high frequency dynamics of the system, such as rolling noise when 

the vehicle runs over the track, as well as squeal noise and short-pitch rail corrugation for 

curved tracks. Due to these phenomena and some others unsolved so far, a large effort has been 

made over the last 40 years in order to define suitable models to study the train-track 

interaction. The introduction of flexibility in wheelset and rail models was required to have a 

more realistic representation of the wheel-rail interaction effects at high frequencies. In recently 

published train-track interaction models, the rails are modelled by means of Timoshenko beam 

elements, valid up to 1.5 kHz for lateral rail vibration and up to 2 kHz for vertical vibration. 

This confines the frequency range of validity for the complete train-track model to 1.5 kHz. 

With the purpose of extending the range of validity above 1.5 kHz, a 3D track model based on 

the Moving Element Method (MEM) is developed in this paper to replace the Timoshenko 

beam considered in earlier studies, adopting cyclic boundary conditions and Eulerian 

coordinates. The MEM approach considers a mobile Finite Element (FE) mesh which moves 

with the vehicle, so the mass of the rail ‘flows’ with the vehicle speed but in the opposite 

direction through the mesh. Therefore, the MEM permits to fix the contact area in the middle of 

a finitely long track and to refine the mesh only around the contact area, where the forces and 

displacements will be more significant. Additionally, a modal approach is adopted in order to 

reduce the number of degrees of freedom of the rail model. Both strategies lower substantially 

the computational cost. Simulation results are presented and discussed for different excitation 

sources including random rail roughness and singularities such as wheel flats. All the 

simulation cases are carried out for a Timoshenko beam and a 3D MEM track model in order to 

point out the differences in the contact forces above the range of validity of the Timoshenko 



beam. 
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1. INTRODUCTION 

The complexity of the train-track interaction comes from the vibration coupling between the 

railway vehicle and the track, in which wheel-rail contact forces couple both sub-systems and 

their surface imperfections, such as rail roughness and wheel out-of-roundness, excite the 

global system. Unwanted phenomena such as damage of the rolling surfaces in the form of high 

levels of noise and vibration [1], corrugation [2], wheelset axle fatigue [3] and stress damage 

may appear in some cases due to large levels of vibration and dynamic fluctuations of the 

contact forces. 

Many suitable train-track interaction models have been developed over the last 40 years, 

incorporating more recently flexibility in the wheelset in order to widen the frequency range of 

analysis [1,4]. Finite Element (FE) models have strongly entered in railways research to extend 

the frequency range above 1 kHz to address the rolling noise phenomenon [5,6] and, only very 

recently, further works have considered the inertial effects due to wheelset rotation running on a 

tangent [3] and curved track [7].  

Historically, a frequency domain approach has been used to address the moving load problem 

by means of the Fourier Transform Method (FTM) and a moving coordinate system. Mathews 

[8,9] considered an arbitrary load moving along an infinite beam resting on an elastic 

foundation and solved the problem by using FTM. Jézéquel [10] utilised the same methodology 

for an Euler-Bernoulli infinite beam (considering the rotational and transverse stiffness) with a 

Winkler foundation subjected to a concentrated force moving with constant speed. Other 

extended focus [11] is based on a time domain approach based on Timoshenko flexible beam 

model which considers a simply supported infinite beam subjected to moving loads.  



These mentioned works consider rail beams as continuum and solve the equation of motion 

through an analytical approach. This makes them inappropriate when replacing a moving load 

by a complete moving vehicle system of massive number of degrees of freedom; for instance, 

the Timoshenko beam is only valid up to 1.5 kHz for lateral rail vibration and up to 2 kHz for 

vertical vibration [1]. Therefore, researchers have widely been using the well-known Finite 

Element Method (FEM), which physically discretises the track into a finite number of elements. 

Numerical time-stepping integrators are needed to solve the resulting equations of motion after 

assembling the element matrices. The FEM permits to extend the range of validity above the 

previous limit of 1.5 kHz and allows hence the complete wheelset-track model to comprise high 

frequency dynamic phenomena. 

While considering a fixed global coordinate system in the FEM, the vehicle moves along the 

elements with time, thus the load vector has to be updated at each time step of the integration 

scheme. Additionally, there is the need of truncating the infinitely long track into a finite one 

with two corresponding artificial boundary ends, but the vehicle is moving forwards to the 

‘downstream’ side. Therefore, the rail length required for reasonable simulation time-spans 

(without the vehicle exceeding the ‘downstream’ end), while preserving the refinement of the 

mesh, leads to an unapproachable number of degrees of freedom in the FEM. 

To overcome both problems, Koh et al. [12] presented a formulation called Moving Element 

Method (MEM) based on an Eulerian coordinate system attached to the moving vehicle, instead 

of a fixed coordinate system. This method was initially adopted for a finite Euler-Bernoulli 

beam (1D). A new class of finite elements associated with the moving coordinate system is 

defined. Hence, the mesh is moving with this mobile frame and consequently the material of the 

rail ‘flows’ into this mesh. Another way to look at it is that these conceptual (not physical) 

elements ‘flow’ through the rail with the moving vehicle. This relative motion requires 



considering the material derivative for the formulation of the rail dynamics. The concept was 

afterwards extended to 2D moving elements in order to study moving load on continuum [13]. 

The novelty of the present article is the extension of the MEM concept to a tangent 3D track 

extruded from the UIC60 profile, adopting a FE technique and introducing cyclic boundary 

conditions [14]. The new methodology is herein referred to as the 3D Moving Element Method 

(3D MEM) and replaces the Timoshenko beam considered in earlier studies [2,3,7]. The 3D 

MEM avoids the moving vehicle exceeding the ‘downstream’ boundary end since this class of 

moving rail elements is attached to the vehicle. In fact, the vehicle remains fixed on a unique 

moving rail element instead of crossing from one element into another. This has two immediate 

and important consequences: firstly, there is no need to update the force or displacement 

vectors in the contact area because they are fixed on the same element; secondly, it permits to 

refine the mesh just around the fixed contact area, where forces and displacements are more 

pronounced. Both are hence important advantages in terms of computational cost compared to 

the FEM models commonly employed. 

The 3D MEM formulation developed in Section 3 is utilised to compute numerically the 

resulting linear equation of motion, obtaining the element matrices and assembling them in 

global matrices by following the standard FE technique. These global matrices are not time 

dependent, and therefore they can be precalculated before the simulation starts and enable to 

adopt a modal approach. Using modal coordinates, the displacement vector of any point from 

the rail can be calculated through modal superposition. The number of modes calculated from 

the equation of motion is truncated to reduce the number of degrees of freedom of the 

governing system of differential equations and Newmark scheme is used to solve it at each time 

step. 



Regarding the wheelset, a flexible model negotiating a tangent track developed by 

Martínez-Casas et al. [3] is used. This model also takes into account the gyroscopic and inertial 

effects associated with the rotation by using Eulerian-modal coordinates, which reduce the 

dimension of the dynamic system and thus the computational cost. Only one single wheelset is 

incorporated instead of one complete bogie in order to simplify the computational problem, and 

forces are prescribed at the primary suspension seats, according to a procedure described in 

Section 2.1. 

Results for the proposed modelling approach are presented and discussed for a selected vehicle 

type and a tangent track for different excitation sources including rail roughness and wheel 

flats. All the simulation cases are made for a Timoshenko beam and a 3D MEM rail model. 

Results with both rail models are compared focusing on the differences in the contact forces 

above the range of validity of the Timoshenko beam (from 1.5 kHz). 

The paper is organised as follows: the vehicle-track interaction model is detailed in Section 2, 

where the flexible wheelset model, the Timoshenko beam track model and the contact coupling 

are discussed. Section 3 presents the complete formulation of the 3D MEM for a flexible track. 

Simulation results for different running conditions are presented in Section 4 and the paper 

closes with the conclusive remarks in Section 5. 

 

2. THE VEHICLE-TRACK INTERACTION MODEL 

For the vehicle-track interaction model, a substructuring technique [14,15] is followed in this 

paper, permitting to divide the whole system into three substructures (see Fig. 1): the vehicle, 

the rails and the rail supports. The equations of motion of each substructure are coupled by the 

wheel-rail contact forces and by the forces generated at the rail pads [14]. 



The vehicle is confined to one wheelset with primary suspension. This has been modelled as a 

flexible and rotating wheelset [3] detailed in Section 2.1, in which Eulerian-modal coordinates 

are employed due to the axial symmetry of the body. 

 

2.1. The vehicle model 

The wheelset is mostly subjected to dynamic forces from the train-track interaction in a range 

above 20 Hz, in which short wavelength geometric imperfections in the wheel and rail profiles 

and singularities such as rail dips and wheelflats excite the vehicle. In this frequency range, the 

mechanical filter introduced by the suspensions effectively isolates the sprung masses (bogie 

frame and car body) from the motion of the un-sprung masses (wheelsets and axle boxes). 

Therefore, the vehicle is modelled through one single elastically flexible wheelset together with 

the primary suspension represented using viscoelastic lumped parameter elements. Two static 

forces on the primary suspensions are included to represent the weight of the bogie and the car 

body. 

The flexible wheelset model negotiating a tangent track used in this work was previously 

developed by Martínez-Casas et al. [3]. Fig. 2 shows the axisymmetric mesh adopted. The 

model takes into account the gyroscopic and inertial effects associated with the rotation. 

The coordinates that are implemented in the wheelset model do not follow the material points of 

the solid, but they are associated with spatial points (Eulerian approach). Any property of the 

solid  t,u  corresponds to the material point whose undeformed configuration is in the spatial 

point u  at instant t. 

A modal approach is adopted, in which )(uΦ  is the mode shape function matrix of the 

free-boundary wheelset. This matrix does not depend on time since the rotation of the solid 



does not change the mode shape functions in fixed coordinates due to the axial symmetry of the 

wheelset. The use of the mode shapes in fixed coordinates as basis functions when the solid is in 

motion is called Eulerian-modal approach. 

The modal properties are computed from a FE model, resulting the following modal equation of 

motion 

    QcΦqΦCAΦDqΦVΦq  T2T2T2 FEFEFEFEFE
  (1) 

)(tq  being the modal coordinates,   the angular velocity of the wheelset, FEΦ  the assembled 

mode shapes computed through the FE model, D  a diagonal matrix that contains the squared 

undamped natural frequencies of the free-boundary solid and Q  the generalized forces. The 

term containing V  can be identified as an inertial force due to Coriolis acceleration associated 

with the convective velocity, A  is related to convective acceleration, C  is associated with 

centrifugal forces that appear after the deformation of the solid and c  corresponds to constant 

centrifugal forces. These matrices are obtained for each element as 
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2.2. The track model 

The track is included by two different flexible models in the present paper: a Timoshenko beam 

[11,14] with a limited frequency range of validity, and the 3D Moving Element Method (MEM) 

which enables to extend the range to the high frequency domain. The 3D MEM model will be 

formulated in detail in Section 3. 

A cyclic approach [14] is considered in both cases since it provides some benefits with respect 

to classical track modelling. As seen in Fig. 3, according to this reference [14], the model can be 

interpreted as an infinite track negotiated by an infinite number of identical vehicles separated 

uniformly by a distance L and travels at the same velocity V. The constant distance L is set large 

enough to avoid the dynamic interaction between the vehicles and cyclic boundary conditions 

are introduced at the ends of the model (same displacements and their derivatives at the ends of 

the finite rail having length L). Hence, due to the periodicity of the structure and load 

conditions, the study of the track is reduced to a single section with finite length L. 

Timoshenko beam was adopted in previous works [2,3,7] to model the rails. This model allows 

to include vertical/lateral bending and torsional deformations. Rail vibration is formulated as 

modal superposition for the unconstrained rail with cyclic boundary conditions, hence resulting 

into a set of decoupled 1-d.o.f. (degrees of freedom) equations. For a tangent track, only one 

single Timoshenko beam is considered to model the rail due to the symmetry of the track 

system with respect to its centreline. 



According to reference [1], for one single Timoshenko beam the frequency range of validity is 

up to 1.5 kHz for lateral rail vibration and up to 2 kHz for vertical vibration. In order to 

minimise errors due to modal truncation, the procedure presented in Ref. [14] was followed and 

rail modes up to 8.5 kHz were considered. 

The sleepers are introduced as discrete rail supports as seen in Fig. 4. The rail pads are modelled 

as lumped viscoelastic elements connecting and, hence, coupling the rails and the sleepers, 

represented as lumped masses. Ballast dynamics are not relevant for the dynamic behaviour of 

the wheelset, and thus they have been replaced by an equivalent ballast stiffness and damping 

below the lumped masses.  

 

2.3. The model of wheel-rail contact forces 

The wheel-rail contact forces on the contact patch are the responsible of the coupling between 

the flexible wheelset and the track. These forces depend on the relative wheel-rail displacement 

and velocity in the contact area. Considering the same materials for both bodies, the tangential 

contact is coupled with the normal contact, but not vice versa. Hertzian model is adopted here 

for the normal contact and FASTSIM [16] is the software used for the tangential contact that 

depends on the normal contact force and creepages. Wheel-rail displacements and velocities are 

updated at each time step to evaluate the online contact forces. 

 

3. 3D MOVING ELEMENT METHOD (3D MEM) 



This section presents the effort of extending the 3D FEM to the MEM formulated by Koh et al. 

[12] in order to widen the frequency range of validity of the Timoshenko beam model used in 

previous works [2,3,7]. Both the MEM and the FEM need the following mathematical step: 

   
elements

volume
element

volume
solid

ff , (6) 

As seen, the integral of the function f  over the volume of the solid is the sum of the integrals 

over the finite element volume. This is correct if some conditions of continuity are satisfied. 

The MEM needs to compute the integral in Eq. (6) with f  being the second derivative of the 

shape functions. In the proposed model, quadratic shape functions are used with C
0
 continuity 

between elements. Thus, Eq. (6) can only be applied if the maximum order of differentiation is 

1 [17], which means that integration by parts is necessary in the current formulation to obtain 

lower order derivatives. The present model solves this mathematical gap on the convective 

acceleration term which has not been treated in previous works. 

 

The MEM was presented first in Ref. [12] through discretising a finite Euler-Bernoulli beam 

into 1D moving beam elements (conceptual elements attached to the moving vehicle that ‘flow’ 

with it). The present work extends the MEM to the 3D domain. A UIC60 profile is meshed and 

the 2D mesh generated is extruded longitudinally as seen in Fig. 5, which is out of scale. The 

finitely long rail mesh consists of 3D brick elements and the MEM is applied. Cyclic boundary 

conditions are adopted, which simulate the results of an infinite beam with a single load in the 

middle of the rail if the track length is sufficiently large and the displacements and their 

corresponding velocities at the edges are close to zero. 



A Cartesian coordinate system 321 xxx  is adopted which moves with velocity V . An Eulerian 

position vector u  defined through the coordinate system 321 xxx  is considered. Vector 

udefines the position of a spatial point and it does not depend on time. Vector  ,tw w u  is 

the displacement of a material point that occupies the position u  at the instant t  with respect 

the undeformed configuration. The position vector of the material point is 

  t,uwur   (7) 

The cyclic boundary condition is satisfied if the displacements at the left edge of the model are 

equal to the ones of the right edge, that is 
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32 ww   (8) 

The velocity and acceleration of the material point are computed through the material 

derivative as follows 
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The virtual work associated with the inertial forces is 
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As mentioned above, the convergence of the last integral cannot be guaranteed due to third term 

of Eq. (11),  d δ 
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2
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w , which contains a second derivative of the displacement vector, 



and quadratic shape functions are used with C
0
 continuity between elements. So, this term must 

be integrated by parts 
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The surface integral is only computed over the lateral surfaces corresponding to the rail edges. 

A rail length L  long enough to have negligible displacements at the model edges has been 

selected; thereby the integrand is close to zero and the influence of the surface integral can be 

neglected from a numerical point of view (this has been confirmed with a number of 

computational results that are not shown here for the sake of brevity). Hence, the convergence 

of Eq. (11) is guaranteed, resulting as 
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Now, the FE interpolation is adopted. The mesh is moving with 321 xxx  frame and consequently 

the material of the rail flows into this mesh. The displacements in the volume of the e -th 

element 
eVol  are computed by means of the shape functions as follows 

       eee Voltt    if         ,  uwuNuw , (14) 

e
w  being the nodal displacements. If Eq. (14) is implemented in Eq. (13), the following 

expression is obtained 
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The stiffness matrix 
e

K  is the standard one because the potential energy associated with the 

elastic deflection does not distinguish between the Eulerian and the Lagrangian coordinates. 

Consequently, the equation of motion is 
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where the corresponding element matrices are the following: 
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Matrix 
e

C  is associated with the inertial force due to the convective velocity, e
A  is related to 

the convective acceleration, and e
F  is the force vector which contains the rail pad forces as 

well as the contact normal and tangential forces from the wheel-rail interaction applied on the 

head of the rail in its middle longitudinal position. Nodal coordinates are implemented in a 

global displacement vector w , obtaining the global matrices M , C , A , K  and the global 

vector F . 

A modal approach is adopted at this point, so that the global displacement vector w  can be 

expressed through superposition of mode shapes: 

      tt quΦuw =, , (20) 



where )(uΦ  is the mode shape function matrix of the cyclic boundary rail and )(tq  is the 

modal coordinate vector. Matrix Φ  is built solving the eigenproblem from the global standard 

matrices M  and K . Since these matrices are symmetric, Φ  is orthogonal ( T1
ΦΦ  ). The 

small rigid body displacements of the solid are considered through the rigid body modes of the 

rail. It must be pointed out that the mode shape functions do not depend on time since the ‘flow’ 

of the mesh through the material coordinates does not change the mode shape functions in 

spatial coordinates, because the cross-sectional area remains invariable after the extrusion of 

the profile.  

Once the modal transform of Eq. (20) is applied in Eq. (16), the resulting equation is 

pre-multiplied by T
Φ . The modal equation of motion results as 
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T2 ~~~
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where the modal matrices are calculated from the global matrices as follows: 
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r  being the undamped natural frequencies. Since matrix Φ  is orthogonal, it diagonalises M
~

 

and K
~

, while C
~

and A
~

 are not diagonalised, thus the equation of motion is not uncoupled.  



For the simulations carried out, 900 vibration modes of each rail have been considered, 

covering a frequency range up to 8.5 kHz. As recommended in the literature [1], a damping loss 

factor 01.0  is introduced in the rail. Therefore, a new modal damping matrix is included in 

the modal equation of motion as a diagonal matrix: 
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Hence, the modal equation of motion is 
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Eq. (27) is a linear second-order differential equation and then the matrices are calculated only 

once at the beginning of the simulation.  

 

 

4. RESULTS 

This section presents results for the proposed wheelset-track modelling approach when excited 

by random rail roughness and wheelflat. All the simulations consider the vehicle running at 300 

km/h through a tangent track and the system is excited up to 8.5 kHz. Each case is run 

separately for a Timoshenko beam and a 3D MEM modelling the track. Both models are 

compared by the vertical and lateral contact forces obtained from the simulations above the 

range of validity of the Timoshenko beam (from 1.5 to 8.5 kHz) in order to study the 

contributions of the 3D MEM in the high frequency range. Finally, the pseudo-static 

deformation of the finitely long rail supported on a viscoelastic Winkler bedding is obtained 



using the 1D MEM model from Koh et al. [12] and the implemented 3D MEM. Results are 

shown for different speeds of the moving load. 

The case studied here refers to the trailed car of a concentrated power train for high speed 

passenger service. The vehicle is equipped with a solid axle wheelset with monobloc, light 

design wheels. The track considered features UIC60 rails and track parameters are based on the 

EUROBALT project [18], considering a “stiff” track. Table 1 summarises the input data used to 

set up the simulation model. 

Figs. 6 and 7 show the time history of the vertical and lateral contact forces respectively for 

excitation caused by randomly corrugated rails, assuming a corrugation spectrum 

corresponding to the ISO 3095 limit [19], which establishes a third-octave band spectrum of the 

rail roughness. As expected, the dynamic fluctuations of the vertical and lateral contact forces 

show a complex waveform, arising from the dynamic response of the wheelset-track system to 

broadband random excitation. The results for both track models present a similar trend and 

mean values, although a higher frequency content is observed for the 3D MEM in the vertical 

contact force. 

An alternative plot for the wheel-rail contact force is depicted in the frequency domain. Fig. 8 

represents the third-octave band spectrum of the vertical contact forces. There appear peaks in 

the antiresonances of the track frequency between the P2 and pinned-pinned frequencies in the 

100-300 Hz band, and also in the band between 900 and 1400 Hz, whereas the smaller 

responses are at the P2 frequency (below 100 Hz), pinned-pinned frequency (below 1 kHz) and 

at a resonance frequency below 3 kHz. It can be observed that the Timoshenko beam shows 

greater vertical contact forces in the low and medium frequency range (up to 1 kHz, range of 

validity for the Timoshenko beam) due to the fact that Timoshenko model has greater stiffness 

than the 3D MEM model, since the straight section of the Timoshenko beam cannot be 



deformed. On the other hand, 3D MEM shows higher frequency content for higher frequencies 

(1-8.5 kHz band). These higher harmonics seem to be crucial to describe the high frequency 

phenomena, such as rolling and squeal noise. 

Figs. 9 and 10 show the time history of the vertical and lateral contact forces with both rail 

models caused by a wheelflat when the wheelset runs over a perfectly even tangent track. In the 

simulations, a rounded geometry of the wheel flat with size 0.05 m is adopted. Intense dynamic 

effects are observed in both contact forces, initially leading to the occurrence of full loss of 

contact in the wheels, then followed by a severe impact causing peaks, and finally by a transient 

vibration that generates further dynamic fluctuations in all the force components. Results for 

both track models present again similar trends and mean values, the differences between both 

models being small in terms of duration of the contact loss. The maximum value of the vertical 

contact force, however, is larger when the 3D MEM is used. These results may indicate vertical 

contact forces will cause accelerated damage and degradation of the contacting surfaces as well 

as increased noise and vibration. The first overloading for this model is about 265% of the 

steady-state load, being 250% for the Timoshenko beam. For the second overloading, the 3D 

MEM reaches 210% of the steady-state load, while Timoshenko approach yields 170%. 

Finally, a higher frequency content in vertical contact force with the 3D MEM model is 

observed. 

Fig. 11 represents the third-octave band spectrum of the vertical contact forces caused by a 

wheelflat. It can be observed that the Timoshenko beam model shows a slightly higher vertical 

contact force in low-medium frequency range up to 450 Hz, but the 3D MEM reveals a 

markedly content for higher frequencies (450 Hz - 8.5 kHz band). The results depicted in Fig. 

11 are consistent with the previous figure in time domain, concluding that the 3D MEM 

describes the high frequency dynamics more accurately than the Timoshenko model. 



The effect of the vehicle speed on the 3D MEM has been evaluated for the pseudo-static 

deformation of the rail supported on a viscoelastic Winkler bedding with a stiffness per unit 

length of 
710  N/m

2
 and a damping per unit length of 4900 Ns/ m

2
 [12]. The 'pseudo' prefix is 

added because it cannot be considered a static case since there is a load moving along the rail. 

For the Eulerian approach taken, the load is fixed in a spatial point while its corresponding 

speed is introduced in the formulation. For this purpose, the centreline of the rail has been 

selected to represent the deformation. Fig. 12a) shows a negligible influence for the Winkler 

foundation used, in agreement with Thompson [1]. The pseudo-static deformation for 150 km/h 

has been compared with the results given by the original 1D MEM from Koh et al. [12], which 

has been implemented for this purpose. This model is based on an Euler-Bernoulli beam 

discretised in N nodes, each one having the vertical displacement and rotation as degrees of 

freedom. Shape functions for 1D beam elements are used in order to apply the FE technique. 

Fig. 12b) shows a good agreement between both models, with a discrepancy of 3% at the 

contact point. 

 

5. CONCLUSIONS 

This paper has presented a new 3D model for a finitely long railway track which has been 

formulated through the MEM and developed as a FE approach in order to improve the 

modelling of the high frequency dynamics. The model considers an Eulerian coordinate system 

attached to the moving vehicle instead of a fixed coordinate system and adopts cyclic boundary 

conditions. This approach permits to decrease the computational cost compared to the FE 

models commonly used. 

Results for the vertical and lateral contact forces are presented for two types of excitation: 

randomly corrugated tangent track and excitation arising from a wheelflat when the wheelset 



runs over a perfectly even track at 300 km/h. The 3D MEM and Timoshenko beam have been 

compared in all the simulations. Both models show a similar behaviour in the low and mid 

frequency domain for two excitation cases, where similar trends and mean values are observed.  

In the randomly corrugated track case considered, the Timoshenko beam model shows a larger 

vertical contact force in low and mid frequency range up to 1 kHz (range of validity for the 

Timoshenko beam), but the 3D MEM shows a higher frequency content for the 1-8.5 kHz band. 

These higher harmonics seem to be crucial to describe the high frequency phenomena, such as 

rolling and squeal noise. 

For wheelflat excitation, the first and second overloading of the vertical contact force using 3D 

MEM are larger than those obtained with the Timoshenko beam model. Therefore, it may be 

expected to cause accelerated damage and degradation of the contacting surfaces as well as 

increased noise and vibration. In frequency domain, the Timoshenko beam shows slightly 

greater vertical contact forces in low and mid frequency range up to 450 Hz, but 3D MEM 

model shows a remarkably higher frequency content in the 450 Hz - 8.5 kHz band. 

The pseudo-static deformation of the rail supported on a viscoelastic foundation has been 

compared to the 3D MEM and 1D (Euler-Bernoulli beam) MEM models. Both results 

practically overlap with a maximum discrepancy of 3% at the contact point. The speed of the 

moving load does not have a significant influence on the solution.  

Finally, these results validate the 3D MEM as an efficient flexible track model whereas it 

reproduces consistently the contrasted behaviour of the Timoshenko beam for its range of 

validity according to the literature. It is concluded that the proposed 3D MEM track model 

seems to be suitable to describe the high frequency dynamics associated with different railway 

phenomena such as short pitch rail corrugation, wheelflat excitation, axle fatigue, rolling, 

squeal and braking noise. 
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FIGURE CAPTIONS 

Fig. 1. Scheme of the vehicle-track interaction model. 

Fig. 2. Finite element mesh of the flexible wheelset. 

Fig. 3. Cyclic track model. 

Fig. 4. Details of the track model. Left: sleeper bays. Right: sleeper and rail pad. 

Fig. 5. Finite element mesh of the flexible rail. 

Fig. 6. Vertical wheel-rail contact forces when the vehicle circulates at 300 km/h speed on a 

randomly corrugated tangent track. Amplitudes corresponding to the ISO 3095 limit. 

Fig. 7. Lateral wheel-rail contact forces when the vehicle circulates at 300 km/h speed on a 

randomly corrugated tangent track. Amplitudes corresponding to the ISO 3095 limit. 

Fig. 8. Frequency domain plot of the vertical wheel-rail contact forces when the vehicle 

circulates at 300 km/h speed on a randomly corrugated tangent track. Amplitudes 

corresponding to the ISO 3095 limit. 

Fig. 9. Vertical wheel-rail contact forces when the vehicle circulates at 300 km/h speed on a 

perfectly even tangent track in presence of a 0.05 m wheelflat. 

Fig. 10. Lateral wheel-rail contact forces when the vehicle circulates at 300 km/h speed on a 

perfectly even tangent track in presence of a 0.05 m wheelflat. 

Fig. 11. Frequency domain plot of the vertical wheel-rail contact forces when the vehicle 

circulates at 300 km/h speed on a perfectly even tangent track in presence of a 0.05 m wheelflat. 



Fig. 12. Pseudo-static deformation of the finitely long rail supported on a viscoelastic 

foundation: a) different moving load speeds; b) different MEM models for V = 150 km/h. 



TABLE CAPTIONS 

Table 1. Simulation parameters and properties. 

 



 

Fig. 1. Scheme of the vehicle-track interaction model. 
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Fig. 2. Finite element mesh of the flexible wheelset. 
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Fig. 3. Cyclic track model. 

 

 

Figure03



 

Fig. 4. Details of the track model. Left: sleeper bays. Right: sleeper and rail pad. 
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Fig. 5. Finite element mesh of the flexible rail. 
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Fig. 6. Vertical wheel-rail contact forces when the vehicle circulates at 300 km/h speed on a randomly 

corrugated tangent track. Amplitudes corresponding to the ISO 3095 limit. 
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Fig. 7. Lateral wheel-rail contact forces when the vehicle circulates at 300 km/h speed on a randomly 

corrugated tangent track. Amplitudes corresponding to the ISO 3095 limit. 
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Fig. 8. Frequency domain plot of the vertical wheel-rail contact forces when the vehicle circulates at 300 

km/h speed on a randomly corrugated tangent track. Amplitudes corresponding to the ISO 3095 limit. 
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Fig. 9. Vertical wheel-rail contact forces when the vehicle circulates at 300 km/h speed on a perfectly 

even tangent track in presence of a 0.05 m wheelflat. 
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Fig. 10. Lateral wheel-rail contact forces when the vehicle circulates at 300 km/h speed on a perfectly 

even tangent track in presence of a 0.05 m wheelflat. 
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Fig. 11. Frequency domain plot of the vertical wheel-rail contact forces when the vehicle circulates at 300 

km/h speed on a perfectly even tangent track in presence of a 0.05 m wheelflat. 
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Fig. 12. Pseudo-static deformation of the finitely long rail supported on a viscoelastic foundation: a) 

different moving load speeds; b) different MEM models for V = 150 km/h. 
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Wheelset model data Track model data 

Mass of wheelset 1375 kg Sleeper bay 0.6 m 

Axle load 120 kN Sleeper number 70 

Primary suspension longitudinal stiffness 7.5 MN/m Sleeper mass 324 kg 

Primary suspension lateral stiffness 7.1 MN/m Track bed stiffness 200 MN/m 

Primary suspension vertical stiffness 0.81 MN/m Track bed damping 150 kN 

s/m 

Primary suspension longitudinal damping 100 kN s/m Rail pad stiffness 1 GN/m 

Primary suspension lateral damping 100 kN s/m Rail pad damping 50 kN s/m 

Primary suspension vertical damping 30 kN s/m Rail section UIC60 

Table 1. Simulation parameters and properties. 

 

 

Table01



Captions are : 

•       Figure06_Revised.fig : "Fig. 6. Vertical wheel‐rail contact forces when the vehicle circulates 
at 300 km/h speed on a randomly corrugated tangent track. Amplitudes corresponding to the 
ISO 3095 limit." 

•       Figure07_Revised.fig : "Fig. 7. Lateral wheel‐rail contact forces when the vehicle circulates 
at 300 km/h speed on a randomly corrugated tangent track. Amplitudes corresponding to the 
ISO 3095 limit." 

•       Figure08_Revised.fig : "Fig. 8. Frequency domain plot of the vertical wheel‐rail contact 
forces when the vehicle circulates at 300 km/h speed on a randomly corrugated tangent track. 
Amplitudes corresponding to the ISO 3095 limit."  

•       Figure09_Revised.fig : "Fig. 9. Vertical wheel‐rail contact forces when the vehicle circulates 
at 300 km/h speed on a perfectly even tangent track in presence of a 0.05 m wheelflat." 

•       Figure10_Revised.fig : "Fig. 10. Lateral wheel‐rail contact forces when the vehicle 
circulates at 300 km/h speed on a perfectly even tangent track in presence of a 0.05 m 
wheelflat." 

•       Figure11_Revised.fig : "Fig. 11. Frequency domain plot of the vertical wheel‐rail contact 
forces when the vehicle circulates at 300 km/h speed on a perfectly even tangent track in 
presence of a 0.05 m wheelflat." 

•       Figure12.fig : "Fig. 12. Pseudo‐static deformation of the finitely long rail supported on a 
viscoelastic foundation: a) different moving load speeds; b) different MEM models for V = 150 
km/h." 

 


