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de València.
Release date: May 9, 2017

Grupo de Redes de Computadores (GRC)
Universitat Politècnica de València
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& all at Università della Calabria, to Francisco Mart́ınez & all at University of
Zaragoza, to Johann Marquez & the Connect Group.

Jorge Eloy Luzuriaga
Valencia, May 9, 2017

v





Abstract

The Internet of Things (IoT) refers to the idea of internetworking physical de-
vices, vehicles, buildings, and any other item embedded with the appropriate
electronics, software, sensors, actuators, and network connectivity to allows them
to interchange data and to provide highly effective new services. In this thesis
we focus on the communications issues of the IoT in relation to mobility and we
provide different solutions to alleviate the impact of these potential problems and
to guarantee the information delivery in mobile scenarios.

Our reference context is a Smart City where various mobile devices collabora-
tively participate, periodically sending information from their sensors. We assume
that these services are located in platforms based in cloud infrastructures where
the information is protected through the use of virtualisation ensuring their secu-
rity and privacy.

This thesis is structured into seven chapters. We first detail our objectives and
identify the current problems we intend to address. Next, we provide a thorough
review of the state of the art of all the areas involved in our work, highlighting how
we improved the existing solutions with our research. The overall approach of the
solutions we propose in this thesis use prototypes that encompasses and integrates
different technologies and standards in a small infrastructure, using real devices
in real scenarios with two of the most commonly used networks around the world:
WiFi and 802.15.4 to efficiently solve the problems we originally identified.

We focussed on protocols based on a producer/consumer paradigm, namely
Advanced Message Queuing Protocol (AMQP) and particularly Message Queue
Telemetric Transport (MQTT). We observed the behaviour of these protocols
using in lab experiments and in external environments, using a mesh wireless net-
work as the backbone network. Various issues raised by mobility were taken into
consideration, and thus, we repeated the tests with different messages sizes and
different inter-message periodicity, in order to model different possible applica-
tions. We also present a model for dimensioning the number of sources for mobile
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nodes and calculating the number of buffers required in the mobile node as a
function of the number of sources and the size of the messages.

We included a mechanism for avoiding data loss based on intermediate buffer-
ing adapted to the MQTT protocol that, in conjunction with the use of an al-
ternative to the Network Manager in certain contexts, improves the connection
establishment for wireless mobile clients. We also performed a detailed study
of the jitter behaviour of a mobile node when transmitting messages with this
proposal while moving through a real outdoor scenario.

To emulate simple IoT networks we used the Cooja simulator to study and de-
termine the effects on the probability of delivering messages when both publishers
and subscribers were added to different scenarios. Finally we present an approach
that combines the MQTT protocol with Delay Tolerant Network (DTN) which we
specifically designed for constrained environments and guarantees that important
information will never be lost.

The advantage of our proposed solutions is that they make an IoT system more
resilient to changes in the point of attachment of the mobile devices in a IoT net-
work without requiring IoT application & service developers to explicitly consider
this issue. Moreover, our solutions do not require additional support from the
network through protocols such as MobileIP or Locator Identifier Separation Pro-
tocol (LISP). We close the thesis by providing some conclusions, and identifying
future lines of work which we unable to address here.
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Resumen

Internet de las cosas (IoT) se refiere a la idea de interconectar sensores, actua-
dores, dispositivos f́ısicos, veh́ıculos, edificios y cualquier elemento dotado de la
electrónica, aśı como del software y de la conectividad de red que los hace capaces
de intercambiar datos para proporcionar servicios altamente efectivos.

En esta tesis nos centramos en temas relacionados con la comunicación de
sistemas IoT, espećıficamente en situaciones de movilidad y en los problemas que
esto conlleva. Con este fin ofrecemos diferentes soluciones que alivian su impacto
y garantizan la entrega de información en estas situaciones.

El contexto de referencia es una ciudad inteligente donde varios dispositivos
móviles participan de forma colaborativa enviando periódicamente información
desde sus sensores hacia servicios ubicados en plataformas en la nube (cloud com-
puting) donde mediante el uso de virtualización, la información está protegida
garantizando su seguridad y privacidad.

Las soluciones propuestas en esta tesis se enfocan en probar sobre una pequeña
infraestructura un prototipo que abarca e integra diferentes tecnoloǵıas y estánda-
res para resolver eficientemente los problemas previamente identificados. Hemos
enfocado nuestro esfuerzo en el uso de dispositivos sobre escenarios reales con dos
de las redes más extendidas en todo el mundo: WiFi y enlaces 802.15.4.

Nos enfocamos en protocolos que ofrecen el paradigma productor/consumidor
como el protocolo avanzado de colas de mensajes (AMQP) y particularmente el
protocolo de transporte de mensajes telemétricos (MQTT), observamos su com-
portamiento a través de experimentos en laboratorio y en pruebas al aire libre,
repitiendo las pruebas con diferentes tamaños de mensajes y diferente periodicidad
entre mensajes. Para modelar las diferentes posibles aplicaciones de la propuesta,
se tomaron en consideración varias cuestiones planteadas por la movilidad, resul-
tando en un modelo para dimensionar eficientemente el número de fuentes para un
nodo móvil y para calcular el tamaño requerido del buffer, en función del número
de fuentes y del tamaño de los mensajes.
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Proponemos un mecanismo adaptado al protocolo MQTT que evita la pérdida
de datos en clientes móviles, basado en un buffer intermedio entre la producción y
publicación de mensajes que, en conjunto con el uso de una alternativa al gestor
de conexiones inalámbricas “Network Manager”, en ciertos contextos mejora el
establecimiento de las conexiones. Para la evaluación de esta propuesta se presenta
un estudio detallado de un nodo móvil que se mueve en un escenario real al aire
libre, donde estudiamos el comportamiento del jitter y la transmisión de mensajes.

Además, hemos utilizado emuladores de redes IoT para estudiar y determinar
los efectos sobre la probabilidad de entrega de mensajes, cuando se agregan tanto
publicadores como suscriptores a diferentes escenarios. Finalmente, se presenta una
solución totalmente orientada a entornos con dispositivos de recursos limitados
que combina los protocolos MQTT con redes tolerantes a retardos (DTN) para
garantizar la entrega de información.

La ventaja de las soluciones que proponemos reside en el hecho de que los
sistemas IoT se vuelven resilientes a la movilidad y a los cambios de punto de
acceso, permitiendo aśı que los desarrolladores creen fácilmente aplicaciones y ser-
vicios IoT evitando considerar estos problema. Otra ventaja de nuestras soluciones
es que no necesitan soporte adicional de la red como sucede con protocolos como
MobileIP o el protocolo que separa el identificador del localizador (LISP). Se desta-
ca cómo hemos mejorado las soluciones existentes hasta el momento de la escritura
de esta disertación, y se identifican futuras ĺıneas de actuación que no han sido
contempladas.
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Resum

Internet de les coses (IoT) es refereix a la idea d’interconnectar sensors, actuadors,
dispositius f́ısics, vehicles, edificis i qualsevol element dotat de l’electrònica, aix́ı
com del programari i de la connectivitat de xarxa que els fa capaces d’intercanviar
dades per proporcionar serveis altament efectius.

En aquesta tesi ens centrem en temes relacionats amb la comunicació de sis-
temes IoT, espećıficament en situacions de mobilitat i en els problemes que això
comporta. A aquest efecte oferim diferents solucions que alleugeren el seu impacte
i garanteixen el lliurament d’informació en aquestes situacions.

El context de referència és una ciutat intel·ligent on diversos dispositius mòbils
participen de forma col·laborativa enviant periòdicament informació des dels seus
sensors cap a serveis situats en plataformes en el núvol (cloud computing) on
mitjançant l’ús de virtualització, la informació està protegida garantint la seva
seguretat i privadesa.

Les solucions proposades en aquesta tesi s’enfoquen a provar sobre una xicoteta
infraestructura un prototip que abasta i integra diferents tecnologies i estàndards
per a resoldre eficientment els problemes prèviament identificats. Hem enfocat el
nostre esforç en l’ús de dispositius sobre escenaris reals amb dos de les xarxes més
esteses a tot el món: WiFi i enllaços 802.15.4.

Ens enfoquem en protocols que ofereixen el paradigma productor/consumidor
com el protocol avançat de cues de missatges (AMQP) i particularment el protocol
de transport de missatges telemètrics (MQTT), observem el seu comportament a
través d’experiments en laboratori i en proves a l’aire lliure, repetint les proves
amb diferents grandàries de missatges i diferent periodicitat entre missatges. Per
a modelar les diferents possibles aplicacions de la proposta, es van prendre en
consideració diverses qüestions plantejades per la mobilitat, resultant en un model
per a dimensionar eficientment el nombre de fonts per a un node mòbil i per a
calcular la grandària requerida del buffer, en funció del nombre de fonts i de la
grandària dels missatges.
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Proposem un mecanisme adaptat al protocol MQTT que evita la pèrdua de
dades per a clients mòbils, basat en un buffer intermedi entre la producció i pu-
blicació de missatges que en conjunt amb l’ús d’una alternativa al gestor de con-
nexions sense fils “Network Manager”, en certs contextos millora l’establiment de
les connexions. Per a l’avaluació d’aquesta proposta es presenta un estudi detallat
d’un node mòbil que es mou en un escenari real a l’aire lliure, on estudiem el
comportament del jitter i la transmissió de missatges.

A més, hem utilitzat emuladors de xarxes IoT per a estudiar i determinar
els efectes sobre la probabilitat de lliurament de missatges, quan s’agreguen tant
publicadors com subscriptors a diferents escenaris. Finalment, es presenta una
solució totalment orientada a entorns amb dispositius de recursos limitats que
combina els protocols MQTT amb xarxes tolerants a retards (DTN) per a garantir
el lliurament d’informació.

L’avantatge de les solucions que proposem resideix en el fet que els sistemes
IoT es tornen resilients a la mobilitat i als canvis de punt d’accés, permetent
aix́ı que els desenvolupadors creuen fàcilment aplicacions i serveis IoT evitant
considerar aquests problema. Un altre avantatge de les nostres solucions és que no
necessiten suport addicional de la xarxa com succeeix amb protocols com MobileIP
o el protocol que separa l’identificador del localitzador (LISP). Es destaca com hem
millorat les solucions existents fins al moment de l’escriptura d’aquesta dissertació,
i s’identifican futures ĺınies d’actuació que no han sigut contemplades.
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Chapter 1

Introduction

The Internet of Things (IoT) refers to the idea of internetworking physical
devices, vehicles, buildings, and other items which are embedded with elec-

tronics, software, sensors, actuators, and network connectivity that enable them to
collect and exchange data. Items can be anything from cell phones, coffee makers,
washing machines, headphones, lamps, wearable devices, or any other device that
can have an associated IP address. The current expectations revolving around this
new concept are focussed on building and extending what are known as intelligent
spaces. The idea behind these spaces is to connect computing elements through a
distributed network where they all cooperatively interact in order to offer services
to users.

Connectivity therefore plays a determining role in the IoT and the efficient
handling of mobility is crucial for the overall performance of any IoT applications.
To provide stable and reliable communications performance the following aspects,
among others, must be considered: (a) links can be frequently modified or broken
without control, (b) channels can suffer from interference, (c) nodes can become
isolated, (d) the service offered may not be available at any time. The presence
of one or several of these factors has negative effects on the quality of information
transmission, producing data loss, service-access failure, and poor overall perfor-
mance.

A large number of communication protocols, also referred to as “middleware”,
are used in today’s IoT proposals. From the industrial protocols used to collect
data from sensors, to the communication protocols used to send this information
to a server in the cloud, various alternative options are used to build end-to-
end IoT solutions. Currently, the most commonly adopted protocols in IoT (but
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1. Introduction

also in Machine to Machine (M2M) communications), Message Queue Telemet-
ric Transport (MQTT), Constrained Application Protocol (CoAP) or Lightweight
M2M (LWM2M) are directly dependent on the Transmission Control Protocol/In-
ternet Protocol (TCP/IP) protocols suite. This suite is highly reliable when using
wired networks but is not the best solution with intermittently-connected scenar-
ios. For example, in the case of a broken connection, when using TCP over IP the
receiver will inform the sender that the packets must be re-sent. This approach
would work well if, after the re-connecting, the IP address of the nodes remained
the same, however, it fails when one of the nodes changes its address. Unfortu-
nately, the majority of applications do not support IP address changes and are
therefore severely affected by these events. These issues are totally out of the
control of application developers, who normally assume that the middleware used
will take care of these problems.

1.1 Context

It is predicted that human interaction with everyday objects will revolutionise
the world as profoundly as the Internet has revolutionised personal and business
interactions. In fact, an endless number of small autonomous devices already notify
remote stations what they are observing in their environment through integrated
sensors. Countless devices contain such sensors, including: smartphones, laptops,
game consoles controls, vehicles, and devices for environmental or sports, among
others.

Smartphones for example have an average of eleven sensors [79] and hybrid cars
also have many of these sensors, several of which are critical for the functioning of
the vehicle itself; a typical weather station contains sensors that record the tem-
perature, humidity, wind speed and direction, barometric pressure, etc. Devices
for sport activities are carried close to the chest and may sense the heartbeat,
breathing and speaking vibrations parameters, among others. When placed in the
water pipes of a home, they can sense the water flow, and tell when a toilet is
flushed or when a dishwasher is running. In a refrigerator, a bio-sensor can detect
food decay. In more novel applications such as public waste collection, containers
can alert cleaning teams that a given container needs attention. With such a wide
field for applications, it is estimated that a trillion sensor nodes may already be in
service today and statistics predict that by 2021, about seven billion people will
have a smartphone [65], a number that can be multiplied by the dozen or more
sensors future smartphones might contain.

This area is an ongoing challenge for different areas such as networking, se-
curity, and privacy, as well as for energy management. Thus, a global proposal
providing a holistic and comprehensive solution should be sought in order to pro-
vide a reliable and efficient system to end users.
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1.2 Objectives

In this thesis we focus on the communications problems of the IoT related to mo-
bility and we provide different solutions to alleviate their impact and to guarantee
the delivery of information in mobile scenarios. The advantage of the solutions we
propose resides in the fact that they make the system becomes more resilient to
changes in the point of attachment of mobile devices, without requiring the IoT
services developers to explicitly consider this issue. Moreover, our solutions do
not require extra support from the network through protocols such as MobileIP
or Locator Identifier Separation Protocol (LISP).

We focus on node mobility among different types of networks because this
generally causes data loss, service interruptions, and has a serious impact on the
functionality of applications. The main aim is to satisfy the message delivery
requirements under mobility conditions for open collaborative distributed appli-
cations, where users and mobile devices that are moving (either walking or using
some kind of vehicle) are publishing sensor data to the cloud infrastructure using
their wireless connections.

The thesis focusses on the mobility management of a generic node; in partic-
ular, we analyse the delivery of messages used by some specific IoT protocols and
standards. This thesis will explore these application protocols, which we specif-
ically adapted for transporting information, even from constrained devices while
efficiently managing the use of the device’s resources. The objective is to offer dif-
ferent flexible architectures to guarantee the delivery of information to a complete
range of heterogeneous devices.

In order to accomplish the main objectives of this thesis the following specific
tasks were set out:

• Thoroughly investigate the state of the art in design, architectures, and
implementations created to support the mobility of IoT devices handled
through application layer protocols.

• Evaluate the use of community mesh networks to integrate mobile devices,
including IoT devices, into smart cities.

• Validate the proposals using prototypes tested in real mobility patterns in
order to obtain traces that can be analysed off-line.

• Model the scalability of the standards and technologies used.

1.3 Thesis structure

This thesis is organised into seven chapters. In Chapter 1 the context, motiva-
tions and objectives of the work are described, followed by Chapter 2 (“Back-
ground”), which gives an overview of all the technologies and standard protocols

3



1. Introduction

referenced throughout the thesis. In Chapter 3 (“State of the Art”) we review
different solutions described in the literature which deal with the handling of mo-
bility in the IoT world.

The novel contributions of the thesis are described in the chapters 4-6. In
Chapter 4 we present a performance comparison evaluation of the MQTT and
Advanced Message Queuing Protocol (AMQP) standards in a mobile environ-
ments, as well as a queueing model based on network handovers. Following on
from this, Chapter 5 describes a solution based on an adaptation of the MQTT
protocol on the client side together with a connection manager to improve the es-
tablishment of connectivity across different mobile device networks. This solution
was evaluated using a real-deployment testbed at the Jaume I University. Finally,
Chapter 6 presents a disruption-tolerant architecture that guarantees the deliv-
ery of information even with long disconnection periods, designed to fully benefit
offline systems. The methodology used to test, prove, validate, and evaluate each
of our contributions ranges from real experiments to model-based simulations.

The thesis conclusions are presented in Chapter 7, and in addition this chap-
ter also contains a list of publications which have been produced by this research
as well as identifying potential tasks that remain open for future work. The final
part of the document includes a list of acronyms and the bibliography.
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Chapter 2

Background

This chapter presents a review of the background concepts necessary to describe
and understand the efforts and projects performed in the last years related to the
Internet of Things and to Smart Cities from a researching and technical point of
view.

2.1 Introduction

Currently, Internet is the base infrastructure for the exchange of information,
where multitude of services and applications are designed to end users access to
ubiquitously any time, anywhere using smart phones, tablets, TVs, etc.

The devices, objects or things are characterized principally by wireless connec-
tivity capacity, but not all of these devices are interconnected due to low hardware
resources in terms of computation power, memory space and energy capacity of
their lifetime batteries or due to do not all the devices are using the same com-
munication protocols. They can measure their functioning or a specific variable
and communicate this to other systems or machines (machine to machine commu-
nication) or in a human language to user’s (machine to human communication)
indeed they usually do not require human interaction (human to machine commu-
nication).

In the last few years the pervasive presence of objects or things is widely
accepted in our every-day life, billions of people have a smartphone in their pockets
and bring with them a series of different accessories that will be equipped with
sensors of any kind that if they are connected between them will work, interact
and cooperate in order to reach a common aim. Does not matter whether the
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2. Background

clock, the mobile phone, the fridge, or the weight-scale, in the 2021 is calculated
that 28 thousand millions of devices will be connected to Internet[65]. Although
most optimistic companies hope that reach 50 thousand millions[17]. This implies
that the huge amount of traffic generated will explode. By this reason, nowadays
an innumerable research efforts had made in order to reach standardized interfaces
as well as to reach innovative solutions to many challenging issues, such as:

• reduce the size of the computer components,

• make better batteries,

• produce cheap sensors,

• use efficient data transfer protocols,

• create and develop autonomous devices and systems,

• understand data to be useful information,

• deploy smart software in the cloud,

• guarantee privacy and data integrity,

• naming management of unique node identities,

• plan routing and addressing strategies.

• support mobility,

• support seamless and flexible networking,

• search new potentials for optimizations,

• allow scalability,

• develop intelligent and flexible data acquisition methods.

These issues have been represented in Figure 2.1 making reference where they
are located in a common IoT infrastructure.
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Figure 2.1: Challenging Issues in a common IoT infrastructure.

In this context, the collection, transmission, processing and visualization of
data from sensors to the users are used in several application fields like assisted
living and monitoring of human body features in e-health; home management and
energy optimizations; improve of the track and trace systems in logistics scenarios;
remote management of plantations or forests in environmental monitoring context;
identification of moving vehicles in Intelligent Transport System (ITS) and so on.
All these solutions where the Internet of Things paradigm plays a leading role can
be easily extended to a huge number of sectors and scenarios.

In the rest of the chapter a brief presentation and comparison between the
main communication technologies, protocols, platform and operative systems that
things need to be mobile and ubiquitous. Are given to show how constrained
devices interact with the internet.
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2.2 Wireless Connectivity Technologies

Communication networks play a starring role in the computer world. This section
presents a summary of the major communication technologies that enable wireless
communications among different devices in order to exchange general data, status
messages, sensor outputs, triggers, and so forth.

Different standards are commonly used depending on the application specifi-
cations and the interfaces that the devices have, paying attention to the power
constraints, simplicity, unobtrusiveness, cost, and so on. In Figure 2.2 we can see
a representation of connectivity technologies, protocols and standards ordered and
grouped in categories based in terms of bandwidth and reachability.

Figure 2.2: Wireless Connectivity Technologies.

The previous classification allows to highlight the high-level differences among
each one. Some of the principal characteristics of them are presented below and
summarized in Table 2.1; our goal here is to present an overall view of these
wireless technologies.

• WLAN Wireless Local Area Network

Wi-Fi (IEEE 802.11b/g/n/ac) is one of the most widely deployed and
popular wireless standards, its relative simplicity allows anyone to deploy
anywhere a wireless extension to the Local Area Network. The required
hardware is simple and cheap and nowadays every new device is Wi-Fi en-
abled. Continuously new versions are released with better modulation tech-
niques, higher throughputs, multi streaming capabilities, among other fea-
tures. The standard evolution could be simplified as: the b and g standards
use 20 MHz of bandwidth, and support at most one radio data stream, while
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2.2. Wireless Connectivity Technologies

the n and ac standards double the bandwidth from 20 to 40 MHz per chan-
nel, and add multiple radios multiple-input and multiple-output (MIMO) to
transmit multiple streams in parallel [80].

• Cellular Mobile Networks (2G-5G) evolution through various technolo-
gies such as GSM, CDMA, HSPA, and LTE, carry implicit the demand for
huge numbers of connected devices, high-speed connectivity, and ubiquitous
wireless broadband accessibility. The pros and cons for every generation can
be consulted in detail in [40].

• WPAN Wireless Personal Area Network

Among the various short range radio technologies we can find:

Bluetooth (IEEE 802.15.1) connectivity became very successful in mo-
bile phones. It is primarily used in a point-to-point or in a star network topol-
ogy, although more complex topologies are included in its specifications. It
operates at 2.4GHz and employs a frequency hopping transceiver to prevent
interferences and fading. The BLE Bluetooth Low Energy version is op-
timized for ultra low power applications reducing the power consumption
dramatically. Due to the support of a few number of network topologies the
coverage range is limited. BLE uses the 2.4 GHz band from 2402 MHz to
2480 MHz. It has 37 data channels and 3 advertisement channels, with a 2
MHz spacing and GFSK modulation1.

NFC (Near field communication (NFC)) uses contactless technology
operating at 13.56 MHz to simplify networking using Bluetooth, WLAN, or
mobile telecommunication equipment without requiring any action on the
part of the user. NFC-capable devices can exchange all types of data at
distances up to 20 cm. The communication is half-duplex thus the slave
device responds to commands from the master device. It automatically
identifies and establishes data links. NFC supports various modulation and
coding methods to determine the actual speed and protocol parameters. To
avoid collisions, each device verifies the carrier frequency before it starts to
transmit (listen before talk) [31].

RFID (Radio-Frecuency IDentification (RFID)) systems are composed
by at least one reader and several RFID tags. Tags are quite similar to
an adhesive sticker composed by one microchip with an antenna, with a
unique identifier and can be applied to any object, person or even animal.
Readers generate a signal as a query for the possible presence of tags in the
surrounding area that triggers the tag transmission at the reception it. The
frequency bands used are from low frequencies (LF) at 124-135 kHz up to
ultra high frequencies (UHF) at 860-960 MHz. The transmissions do not
require line-of-sight [5].

1https://www.bluetooth.org/en-us/bluetooth-brand/

9

https://www.bluetooth.org/en-us/bluetooth-brand/
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IEEE 802.15.4 allows a widespread usage with little or no infrastruc-
ture. The main objectives are low power consumption as well as low cost.
The IEEE 802.15.4 specifications define the lowest two layers, the physical
layer and the media access control for WPANs [61]. On the top of 802.15.4
there is the flexibility to introduce additional protocols to complete and form
a full network stack, protocols like ZigBee, 6LoWPAN and even DTN.

ZigBee standard defines the higher networking layers on top of the
802.15.4 MAC layer. It offers different application profiles that enable full-
system interoperable implementations.

Z-Wave is based on a proprietary design and a sole chip vendor; an
open source implementation of the protocol stack is offered by open-zwave2.
It transmits on sub GHz frequencies. It offers retransmissions, packet ac-
knowledgement and, waking up low power network nodes. It allows form
mesh networks with one primary controller device and up to 232 nodes.

• LPWAN Low Power Wide Area Network

This technology enables wide area communications complementing the ex-
isting cellular mobile network and the short range technologies. It allows for
far greater freedom in terms of deployment locations at lower cost and low
power consumption [63]. In Europe, LoRa-WAN and Sigfox stand out for
their use, deployment and availability.

LoRa-WAN (Long Range for WANs) provides long range bi-directional
communications, operating over the ISM bands 433, 868, 915 MHz. It sup-
ports mobility and localization and ensures a low battery usage. The transfer
data rates ranging from 0.3 up to 50 Kbps. Their topology is formed by a
hierarchical star network, which offers 3 types of devices: endpoints, hubs/-
gateways and servers. To compose a entire structure of LoRa network the
user must manage the devices defined as nodes and hubs [18].

Sigfox main features are: long range, ubiquity, easy configuration, low
consumption, low cost, all the advantages inherited from the cellular net-
works. The band used in Europe is the ISM 868 MHz and 900 MHz in the
US. It allows to send up to 140 messages per day with a size of 12 bytes.
Using an API and a web administrative system is possible access to the
Sigfox system, display devices’ status connected to it, and configure actions
according to the received data.

2.3 Operating Systems

Operating systems developed specifically for constrained devices are mostly just
kernels with a very small number of specialized modules such as: a real-time

2https://code.google.com/p/open-zwave/.
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Table 2.1: Comparation of Wireless Connectivity Protocols and Standards.

Connectivity Standard (if) Appeared
Freq.Band

(MHz)
Network Size

Data Rate
(kbps)

Phy.Range Features

WLAN

WiFi Yes; 802.11

b
g
n
ac

1999
2003
2009
2013

2400 32/255

1100
5400

300mbps
1Gbps

100 m Speed, flexibility

WPAN

Bluetooth Yes, 802.15.1 1998 2400 7 720 10 m Cost, application profiles

BLE Yes, Core 4.0 2010 2400 3 simultaneous 270 100 m Ultra low power

ZigBee Yes, 802.15.4 2003
eu: 868
us: 915
w: 2400

255-65000 250 10 m Low-power,
low Cost,

realiability,
low-latency

Z-Wave close standard 2005
eu: 868
us: 908

232 9.6/40 30 m

LPWAN

SigFox No 2009
eu: 868
us: 902
la: 920

millions/base station 0.1
urban: 3-10km
rural: 30-50km

Long range
low data rate

low power consumption
LoRa-WAN No 2015

eu: 868
us: 915

200k-300k/base station 0.3-50
urban: 2-5km

rural: 15-22km

Cellular

2G Yes, GSM, GPRS, EDGE, CDMA 1980/1999 alloc. by country Kbit/s SMS text messaging

3G Yes, UMTS, HSPA, LTE 1990/2002 alloc. by country Mbit/s Mobile broadband

4G Yes, LTE-A, HSPA+ 2000/2010 alloc. by country Gbit/s Ultra-broadband internet access

5G Not yet, 2010/2020 alloc. by country 10Gbit/s Unified IP

process management, a resource allocator, a scheduler, a file-management system,
device drivers, and networking and communication protocols [59].

They are required to build, compile, generate, package, deploy and test output
binaries of applications and systems with different ecosystem. The main function
of an embedded OS is to work autonomously in the initialisation of the system and
the execution of a main loop. Since embedded systems are resource constrained,
the memory requirements of an embedded OS have to be as little as 10KB and no
more than 100KB [71].

In the embedded systems arena we can find several options where a kernel is
needed up to options where just an image is burnt in the embedded system. The
following section introduces the leading open-source embedded operative systems,
currently used across a wide range of constrained devices to the development of
Internet of Things applications. Most of them have a growing community that in-
cludes hundreds of developers, thousands of users, and companies, universities, and
government institutions involved from several countries. These OSs are based on
common design objectives, such as provide interfaces and components for common
hardware abstractions such as packet communication, routing, sensing, actuation
and storage, trying to be highly:

• energy-efficient,

• lightweight,

• reliable,

• real time capable (RTOS),
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Table 2.2: Operative Systems for Embedded Devices.

O.S. Appearance Kernel Execution Model Wrote in Dev.Lang. Simulator Low power Protocol

TinyOS 2000 microkernel Events nesC nesC Tossim Yes
Embedded Linux 2001 kernel Multithreading Assembler Multi. Qemu [67] Yes

Contiki 2002 microkernel Protothreads C C Cooja Yes
FreeRTOS 2004 microkernel Multithreads C C Posix GCC No

Mansos 2007 microkernel Multithreads C C on PC Yes
mBed 2009 microkernel Multithreads C/C++ C/C++ Emulator(QEmu) Yes

Arduino 2009 tiny kernel Singlethread C++ C++ 123D Yes
OpenWSN 2010 microkernel Tasks C C OpenSim Yes

Riot 2013 microkernel Multithreads Ansi C C/C++ Cooja Yes

• memory efficient (small memory footprint),

• adaptable,

• portable (hardware agnosticism) ,

• flexible,

• scalable (billions of devices).

In table 2.2 we show some of the principal characteristic of these OSs that will
be useful to rapidly determine the requirements to develop specific applications.

• Embedded Linux, expands its presence in the embedded market address-
ing the demands of smaller footprints and real-time capabilities. The Linux
programming API is very similar to Unix [29]. The main advantage of Em-
bedded Linux is the Linux kernel which enables the execution of an endless
number of software packages to easily and quickly add new features to de-
vices. But Embedded Linux requires powerful enough microprocessors on
the nodes like ARM Cortex-A8 [32].

• TinyOS, as the name suggests is a tiny operating system, it is written in
nesC programming language as a set of reusable components that support
asynchronous events and task in an event-driven concurrency model. TinyOS
is very used in the academic world [43] [42].

• Contiki is an open source embedded operating system created by Adam
Dunkels in 2002. It uses a mechanism to provide sequential flow control
that mixes an event-driven model with threats called “protothreat model”.
Contiki supports dynamic loading and linking, due to the fact that is based
on a modular kernel [21]. Contiki provides principally two network mecha-
nisms: the uIP TCP/IP v4/v6 stack that allows IPv4/v6 networking, and
the Rime stack, which is a set of custom lightweight networking protocols
designed specifically for low-power wireless networks [19]. Contiki can run
in different types of embedded networked devices. To save time and effort in
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developing, debugging and deploying applications, Contiki can run on fully
emulated hardware devices over the Cooja Simulator [20].

• FreeRTOS was developed by Richard Barry in 2004, now it is maintained
and distributed by Real Time Engineers Ltd. It is the base of several re-
search, industrial and commercial projects. FreeRTOS implements a simple
architecture of a microkernel with support for multithreading in just 4 C
files[45]. FreeRTOS offers only core features, it does not provide networking
capabilities; to add a networking stack there some tools and libraries offered
by third parties that need to be added[15].

• Mansos, Multiple Agent Netted Sensor Operating System was designed
under influenced ideas of other OS like Contiki, Mantis, and TinyOS. By
the definition of abstraction layers it improves, simplifies and optimise the
usability of certain features of them[78]. The application development in
MansOS is event-based and support multithreading using plain C and UNIX-
like [23].

• RIOT “The friendly Operating System for the Internet of Things”, is a
real-time, multithreading, energy-efficient operating system. It has a small
memory footprint, a uniform API independent from the underlying hardware
as well as a scalable modular micro kernel architecture to minimize the
dependencies with system components. There are several available libraries
to develop programs for RIOT in C or in C++[7].

• mBed is an operating system for low-end IoT devices based on ARM em-
bedded 32-bit architecture. It provides native support of Thread, 6LowPAN,
LoRa, Sub-GHz and Bluetooth Low Energy networking stacks, in addition
to SSL and TLS security protocols, with an API offered to simplify the ap-
plication development. mbed OS supports deterministic, multithreaded real
time software execution[3].

• OpenWSN is an open-source implementation wrote entirely in C language
of a fully standards-based protocol stack that combines ultra-low power, high
reliability and full Internet connectivity with standards such as IEEE802.15.4e
“Time Synchronized Channel Hopping”, 6LoWPAN and CoAP. This stack
can run on a different operating system like FreeRTOS or RIOT. The kernel
scheduler implementation of OpenWSN is based on runnable task lists [87].

2.4 Devices

This subsection provides some information about the different devices that have
been developed, prototyped, and offered by several manufactures and smaller spin
offs. They are commonly used in IoT projects to develop and build a wide range
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Table 2.3: Main features of devices oriented to developers.

Manufacturer Product System-On-Chip RAM FLASH Connectivity Availability

Intel
Galileo Intel Quark X1000 256 MB 8 MB Ethernet Yes
Edison Intel Quark (100 MHz) 1 GB 4 GB WiFi/BLE Yes

Libelium WaspMote ATMega 1281 (15 MHz) 8 KB 128 KB all compatible Yes
Memsic TelosB MSP430F1611 (16-bit) 10 KB 48 KB 802.15.4 (CC2420) No
moteIV Tmote Sky MSP430F1611 10 KB 48 KB 802.15.4 (CC2420) No
OpenWSN.org OpenMote CC2538 (32 MHz) 32 KB 512 KB 802.15.4 (CC2520) Yes
Premier Farnell BBC micro:bit Nordic nRF51822 16 KB 256 KB BLE Yes
Texas Instruments SensorTag CC2650STK 20 KB 128 KB BLE/802.15.4 Yes

Zolertia
Z1 MSP430 (16MHz) 10 KB 92 KB 802.15.4 (CC2420) No

Re-mote CC2538 (32 MHz) 32 KB 512 KB 802.15.4/CC1200 Yes

of applications and systems, principally to integrating them in multidisciplinary
environments to obtain and record data.

Most of these devices are low-cost open-hardware platforms characterised by
a credit-card size and the constrained resources of processing power, memory and
batteries. They are single-board computers without fan that features interfaces to
extend their functionality by connecting several sensors, other devices, actuators,
etc. There are more than 110 sensors already available to measure the surrounding
environment, usually including: temperature, humidity, vibration, pressure, sound
and light3.

To facilitate their use and to allow a fast prototyping, several open source de-
velopment environments (IDE, Application Programming Interface (API) libraries
+ compiler) are available [34], to work with different communication protocols and
technologies as depicted by the device features [44].

Among the most widely known hardware are: Arduino4, Raspberry Pi5, and
BeagleBone6 that are oriented to general purposes projects.

The main features of IoT devices principally used by developers around the
world as WSN motes, wearable devices, etc. are summarised in Table 2.3.

2.5 Protocols and middleware

During the last decade, different solutions to accelerate the development of scal-
able, flexible, and reliable applications, services and products have been proposed.
They are based on inter-communicating several heterogeneous devices and on mak-
ing possible the cooperation among different entities and their environment [2].
These solutions, known as middleware can be viewed as a software layer that
hide the communication details of a system to the developers. For many years
HTTP has been used as the reference communications protocol in this context

3http://www.libelium.com/products/waspmote/sensors/.
4http://arduino.cc/.
5http://raspberrypi.org/.
6http://beagleboard.org/.
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since is a very wide spread protocol, and APIs for its use are available basically
for every programming language. However, more flexible middleware systems have
been developed to ease the design of cloud-based applications in conjunction with
significant research efforts dedicated to define new communication paradigms to
connect distributed components, implementing and composing services dealing
with the integration of different classes of information.

Among the various approaches we can highlight two main groups: those ori-
ented to services, that follow the Service Oriented Architecture (SOA) princi-
ples[57], and those oriented to messages, called Message Oriented Middleware
(MOM). The basic idea of MOM is that communication takes place by inserting
and extracting messages from distributed queues. Based on the model of Message
Oriented Middleware, many protocols have been developed, e.g. DDS, STOMP,
XMPP, but two of the most relevant protocols in this context are AMQP and
MQTT. They are extensively used for exchanging messages since they provide an
abstraction of the different participating system entities, alleviating their coordi-
nation and simplifying the communication programming details without taking
care of the network, operating systems and physical medium they are using.

In fact before to start the development process of IoT applications the selection
of an existing IoT communication protocol is an important decision to be made
in order to have the ability to interact in an easy and fast way with the resource
constrained devices as data producers as well as actuators. In this section we will
overview the most used IoT protocols as well as their basic operations, highlighting
their capabilities and weaknesses.

2.5.1 Communication Models

The delivery of information from sources to numerous destinations across the net-
work, and the way how it is made can have a greater or lesser impact on the use of
resources, like memory and energy. Nowadays many different types of communica-
tion patterns exist offered by protocols that allow services from data collection to
data dissemination. They enable not only point-to-point communications with re-
quest/response patterns, but also asynchronous messaging with publish/subscribe
patterns and multicast patterns, among others. These patterns are designed to be
scalable and usable at Internet scale. The most relevant are:

Table 2.4: Communication Models.

Model Pattern Topology

1-to-1
one way socket, Device to Device (D2D)

request and reply service bus, Server to Server (S2S)

1-to-many
publisher/subscriber data distribution tree, D2S

push/pull parallelised pipeline, S2D
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• Peer-to-Peer communication eliminates the need for specific infrastructure
and proxy support. Each node can act as a provider or as a requester to
exchange information, to share resources and services [64].

• Request-Response mechanism is the most common use case for a sensor
network applications where a meter is read-out. The read request is started
by clients who send a request to devices, the device will sent back a response
to the client [86].

• Publish and Subscribe, the information is the main entity in this model.
It is identifiable and the users have to announce the availability of informa-
tion or their interest in such information. The service involves two types of
entities: publishers and subscribers. Basically a data consumer subscribes to
receive advertisements/measurements generated/acquired by the producers.

To support a seamless mobility of users and information, this architecture
offers caching and replication abilities in a uniform and asynchronous manner
simplifying the node resynchronization after their handoffs [64].

• Push-Pull, with a Push service the content is actively pushed to the sub-
scribers, that is the opposed to the pull service where the user is who initiates
the requests.

2.5.2 AMQP

AMQP is an application layer protocol designed to facilitate the dialogue among
the components of a system, by making easy the exchange of messages indepen-
dently of their underlying platforms taking into account Message-oriented middle-
ware (MOM) standards [57]. AMQP is used in challenging applications, including
Autonomous Computing [28], Cloud computing even in security aspects related
to the Internet of Things.

AMQP comprises both: (a) the network protocol, which specifies the entities
(producer, consumer, broker) to interoperate with each other, and (b) the protocol
model, which specifies the message representation and the methods to interoperate
among the entities.

The data content of the payload in an AMQP message is opaque, immutable
and self-contained. AMQP cares about security and confidentiality issues without
affecting significantly the communication’s performance. There is no limit for the
size of a message, it can be as large as or greater than several gigabytes7.

For message delivering, several alternatives are possible: point-to-point, store-
and-forward or publish-and-subscribe. When a message is sent to an AMQP broker,
it is actually sent to a queue from where it is delivered to all the subscribed

7http://www.amqp.org/about/what.
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customers as a push notification [57] [84]. With AMQP the number of subscribers
is unbounded.

There are libraries available for most popular programming languages, and
there are implementations for most of the common operating systems.

2.5.3 MQTT

MQTT was developed in 1999 for the monitoring of an oil pipeline through the
desert. The goals were to have a bandwidth-efficient protocol that used little
battery power, because the devices were connected via satellite link and this was
extremely expensive at that time [11] [60].

The protocol uses a publish/subscribe architecture in contrast to HTTP with
its request/response paradigm. Publish/Subscribe is event-driven and enables
messages to be pushed to clients. The central communication point is the MQTT
broker which is in charge of dispatching all messages between the senders and
the proper receivers. This architecture enables highly scalable solutions without
dependencies between the data producers and the data consumers. It is opti-
mised for communication over networks with limited bandwidth and intermittent
connections to guarantee the delivery of information over no trust links and high
latency networks [11]. Specifically aimed for mobile applications and machine to
machine communications.

To guarantee that a message have been received, MQTT has a mechanism
based on the exchange of acknowledgements between the client and the broker.
This mechanism is associated with a Quality of Service level specified to each
message. The protocol defines three levels of QoS.

• With QoS=0 which means “fire and forget” [8] it depends totally on the
reliability of TCP/IP. If a TCP/IP session is broken the messages are lost.

• With QoS=1 the system ensures that a message arrives at the server “at
least once”. A published message is stored in the publisher internal buffer
until it receives the ACK packet. Once received the acknowledgement, the
message is discarded from the buffer, and the delivery is complete. If a
TCP/IP session is broken, only a few number of messages can be stored
in the buffer up to when the session would be restarted correctly and to
send the unacknowledged messages again, there may be cases of duplicated
messages. Here the variable Clean Session is introduced; if this variable is
set, the broker doesn’t store the client state and after the reconnection any
state and connection will be clean.

• Using QoS=2 level, the protocol guarantees that a published message will
be delivered “exactly once”. Neither loss or duplication of messages are
acceptable, by a two-step acknowledgement process [8]. The problem associ-
ated with this level is the increased overhead, since the transmission of one
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message involves the interchange of four messages. However, the decision to
use one of these levels impact on the application performance and the use of
bandwidth and battery life on the devices.

MQTT works on top of the TCP/IP protocol stack. This stack is anyway too
complex for a simple, small, low-cost devices such as wireless sensors and actuators
[11]. To address these problems, in 2008 Stanford-Clark A. and H. Linh Truong
both from IBM published the MQTT-SN protocol specifications [30]. MQTT-SN
can be considered as an adapted version of MQTT that use the User Datagram
Protocol (UDP) instead TCP as transportation protocol.

2.5.4 Other protocols

• CoAP is an application layer protocol standardised for use in constrained
nodes and networks. It was designed for devices that need to be supervised
and controlled remotely using the Internet [75]. It maintains the client-server
model, using Resources Identifiers (URI) and content-types like HTTP and
REST architectures. To make requests to the server the clients use methods
as: GET, PUT, POST and DELETE.

The differences between CoAP and HTTP are principally two. First is less
verbose, thus a generated CoAP message has a lower overload and second,
the use of UDP as the transport protocol for datagram interchanging al-
lows asynchronous messaging without requiring an established connections
between the endpoints.

CoAP introduce features such as: services discovery, simple subscription
process to resources, push delivery of notifications, multicast and broadcast
in the data sending and reliable message transmissions by using stop-and-
wait retransmissions with an exponential back-off mechanism to correct the
packet order and to avoid duplicates [27]. A full specification of CoAP is
available at [75].

• Lightweight M2M Protocol (LWM2M) defines an application layer
based on the client/server communication protocol. A server application
is able to send commands to registered clients with a POST. The client
applications check received commands for syntax and access rights, then
dispatches them to the correspondent object. LWM2M makes use of CoAP
which defines the operations and data formats bindings to RESTful commu-
nications.

The resource and object model states that client holds objects each of which
contain some resources. The objects can be instantiated by either a server
or by the client itself, and operated depending on different access control
rights [38].
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The most used open source implementations of the protocol are offered by
Eclipse.org. These implementations define a layer above the Eclipse IoT
Californium project for a more flexible use of CoAP and DTLS. This means
that an application can be developed with Java using Eclipse Leshan8 or
using C with Eclipse Wakaama9.

• Data Distribution Service (DDS) is an Object Management Group
(OMG) machine-to-machine standard that aims to enable scalable, real-
time, dependable, high-performance and interoperable data exchanges using
a publish–subscribe pattern. DDS addresses the needs of applications like
financial trading, air-traffic control, smart grid management, and other big
data applications. The standard is used in applications such as smartphone
operating systems, transportation systems and vehicles, software-defined ra-
dio, and by healthcare providers. DDS was promoted for use in the Internet
of things [58].

• Streaming Text-Orientated Messaging Protocol (STOMP) formerly
known as TTMP, is a simple text-based protocol, designed for working with
message-oriented middleware (MOM). It provides an interoperable wire for-
mat that allows STOMP clients to talk with any message broker supporting
the protocol. It is thus language-agnostic, meaning a broker developed for
one programming language or platform can receive communications from
client software developed in another language [77].

• Extensible Messaging and Presence Protocol (XMPP) is a com-
munications protocol for message-oriented middleware based on Extensible
Markup Language (XML). It enables the near-real-time exchange of struc-
tured yet extensible data between any two or more network entities. Origi-
nally named Jabber, the protocol was developed by the Jabber open-source
community in 1999 for near real-time instant messaging (IM), presence in-
formation, and contact list maintenance. Designed to be extensible, the pro-
tocol has been used also for publish-subscribe systems, signalling for VoIP,
video, file transfer, gaming, IoT applications, smart grids, and social net-
working services [86].

Table 2.5 provides a summary of the above mentioned data transfer protocols.

2.6 Frameworks

A framework is a middleware platform for the development and global deployment
of applications for IoT. They offer solutions to communicate several computing el-
ements and to integrate and handle several communication technologies. They

8https://eclipse.org/leshan/.
9http://projects.eclipse.org/projects/iot.wakaama/.
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integrate application logistics with techniques like data fusion and data mining
algorithms with search methods and dynamic mechanisms to locate and retrieve
content. All this in conjunction with techniques to transform the available infor-
mation of the obtained data into knowledge in a single place.

Among the various existing alternatives, we would like to highlight the follow-
ing:

• FI-WARE, a middleware platform, driven by the European Union, for the
development and global deployment of applications for Future Internet. The
API specification of FIWARE is open and royalty-free. The objective of
FIWARE is to facilitate a cost-effective creation and delivery of Future In-
ternet applications and services in a variety of areas, including smart cities,
sustainable transport, logistics, renewable energy, and environmental sus-
tainability. FI-WARE is supported by the Future Internet Public-Private
Partnership (FI-PPP) project of the European Union. In March 2015, a Eu-
ropean consortium built around Atos Engineering, Telefónica, and Orange
S.A. announced a project to standardise their offerings around FI-WARE.

• AllJoyn, an open source software framework that makes it easy for devices
and apps to discover and communicate with each other. Developers can
write applications for interoperability regardless of transport layer, manu-
facturer, and without the need for Internet access. The software is openly
available for developers to download, and runs on popular platforms such as
Linux and Linux-based Android, iOS, and Windows, including many other
lightweight real-time operating systems. This framework can be seen as a
Remote Method Invocation system (RMI) for opportunistic networks. Appli-
cations use, to communicate, a virtual distributed software bus implemented
to be used when the devices are in or out of the coverage range. Also, the
bus offer mechanisms such as: naming, service discovery, communication
sessions10.

• IOC. The IBM platform “Intelligent Operations Center (IOC)” aims to
help government leaders manage complex city environments, incidents and

10https://allseenalliance.org/framework/.

Table 2.5: Principal characteristics of different application protocols.

Protocol Sponsor Messaging Model Real Time QoS Transport Comm. Model Topology Interoperability Security

AMQP OASIS Pub/Sub No 3 TCP S2S P2P/Brokered Yes TLS,SASL
CoAP IETF Req/Rep No 2 UDP D2S P2P Yes DTLS,PSK,PKI
DDS Object Management Group Pub/Sub Yes 23 UDP/TCP D2D P2P/Brokered Yes PKI–RSA

LWM2M Open Mobile Alliance Req/Rep No 2 UDP/SMS D2S P2P Yes DTLS,PSK
MQTT OASIS Pub/Sub No 3 TCP D2S Brokered Yes TLS,X509

MQTT-SN OASIS Pub/Sub No 2 UDP D2S Brokered Yes AES
OPC UA OPC Foundation Req/Rep No - TCP D2S P2P/Brokered Yes OpenSSL
STOMP Community Pub/Sub No 10 TCP D2S Brokered Yes SSL
XMPP XMPP Stand. Foundation Pub/Sub,Req/Rep No - TCP D2S/S2S P2P No TLS,SASL
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emergencies with a city solution that delivers operational insights. It offers
integrated data visualisation, near real-time collaboration and deep analytics
to help city agencies enhance the ongoing efficiency of city operations, plan
for growth and coordinate and manage response efforts. IBM Intelligent Op-
erations Center provides integrated maps, online dashboards, customisable
reports, multiple analytic algorithms, interactive standard operating proce-
dures and other tools for improved city operations and incident or emergency
response

• SOFIA2, a middleware that allows the interoperability of multiple systems
and devices, offering a semantic platform to make real world information
available to smart applications (Internet of Things). It is multi-language
and multi-protocol, enabling the interconnection of heterogeneous devices.
It provides publishing and subscription mechanisms, facilitating the orches-
tration of sensors and actuators in order to monitor and act on the environ-
ment. Cross-platform and multi-device through its SDK, APIs and extension
mechanisms that allow integration with any device.

In addition, there are other IoT platforms that although they are less widespread,
have a high development potential over the coming years. Among them are
ThingSpeak, Nimbits, WikiSensing, Xively, Carriots, OpenPicus, Open.sen.se and
Lhings.

They all assume a very centralised and “cloud based” architecture.

2.7 Mobility

Mobility support for the next generation of smart devices is one of the most
important issues in the future Internet [33]. IPv4 did not include by design any
specific solution to this factor, that’s why the problems related with mobility have
been thoroughly investigated in the last decades, with many research groups and
individuals approaching it from many different points of views providing many
useful solutions. In this section we present a brief review of different mobility
management solutions located in different layers based on the OSI reference model
that have been implemented for provide seamless mobility in the Internet.

2.7.1 Mobility Models

The mobility patterns of mobile elements can be characterised as two- or three-
dimensional depending on the medium and the circumstances [73] and can be
represented by models in numerical solutions.

Some mobility models studied in the literature, e.g., in [26] like:

• Random Mobility Model, due to its simplicity and availability is used as the
basic synthetic model;
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• Social Mobility Model, where the movement of a node is influenced by the
nodes around;

• Unrestricted Model, a movement without any dependencies nor restrictions;

• Geographic Restricted Model, where the movement is restricted by an area;

• Hybrid Model, a combination of the previous models.

These models are classified in two categories based on the controllability of the
nodes. Research use them in simulations to observe the performance of system
optimizations, trajectory design, motion control, mobility-aware data routing, lo-
cation updates, etc. It is also used to study the interaction behaviour of the mobile
elements, like for the access routers managing the mobile node’s handover process.

2.7.2 Handover types

Different types of handover have been defined to describe the disconnection and
connection of nodes during their movement [70]:

• Intra/Inter-Network Handover, when the mobile node roams between points
of attachment deployed within the same network or in different networks
respectively.

• Intra/Inter-Technology Handover, when the mobile node roams between
points of attachment based on the same technology (horizontal handover) or
change of technology (vertical handover).

• Intra/Inter-Domain Handover, depending if the new point of attachment
of the mobile node is controlled by the same (intra) or a different (inter)
administrative authority.

The movement of a mobile node (MN) between different subnets inside of a
same WLAN domain is an intra-Technology handover know also as micro mobility
or horizontal handover. While the MN movement covered by different networks
technologies is an inter-Technology handover know also as macro mobility or ver-
tical handover [74]. A graphical representation of these concepts is depicted in
Figure 2.3.
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Figure 2.3: Mobility scheme.

2.7.3 Layering Mobility Approaches

Traditionally mobility in the Internet is accomplished by making sure the moving
host is reachable by its originally assigned IP address even when the address
leaves the network area the address belongs to. In this Section we present some
approaches/schemes that take care of mobility at different layers of the OSI model
trying to make mobility transparent to the upper layers.

Application layer mobility

The Session Initiation Protocol (SIP) is a signalling protocol at application layer
to control multimedia communication sessions such as voice and video calls among
network entities over IP networks. It maintains end-to-end semantics of a connec-
tion for multimedia flows including IP telephony, instant messaging, multimedia
distribution, and multimedia conferences with one or more parties over the Inter-
net. SIP runs on top of several different transport protocols (TCP, UDP, SCTP).
The maximum transmission unit of a packet in SIP is 1500 bytes. To the ap-
plication development SIP can be extended to offer new services in conjunction
with other protocols. SIP supports IP mobility without use a tunnelling scheme,
through proxy servers using SIP’s name mapping and redirection services with the
user’s current locations [69], [13].
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There are also some works based on the IETF CoAP protocol that provide
mobility of the nodes guaranteeing the absence of data loss. The first one, CoMP
[13], extends mobility management functions to CoAP to retrieve sensing data
from sensor nodes while they are moving designing signalling procedures that
include: discovery, registration, binding and holding. In the second one, called
BoAP[6], the authors propose to replace UDP as the transportation protocol
used by CoAP by the Bundle Protocol offered by IBR-DTN. The bindings are
made via TCP sockets without regard to the security features. In the evaluation
they compare their proposal against a standard CoAP implementation.

Transport layer mobility

Transport layer mobility schemes attempt to keep the Internet infrastructure un-
changed implementing the whole functionality in the transport layer at both ends
of the network [4].

SCTP (Stream Control Transmission Protocol) is a transport-layer pro-
tocol, serving in a similar role to the popular protocols TCP and UDP. It is stan-
dardized by IETF in RFC 4960. SCTP provides some of the same service features
of both UDP and TCP: it is message-oriented like UDP and ensures reliable, in-
sequence transport of messages with congestion control like TCP; it differs from
these in providing multi-homing and redundant paths to increase resilience and
reliability. In the absence of native SCTP support in operating systems it is possi-
ble to tunnel SCTP over UDP, as well as mapping TCP API calls to SCTP ones.
The reference implementation was released as part of FreeBSD version 7. It has
subsequently been widely ported[66] [39].

Network layer mobility

Mobile Internet Protocol version 4 or 6 (MIPv4/v6), were designed by [62]
and [37] and were standardised by the Internet Engineering Task Force (IETF).

These protocols offers transparent movement of mobile nodes allowing the mo-
bile node (MN) to use two IP addresses: (a) a permanent home address and (b)
a care-of address that changes at each new point of attachment. They require
installing an agent in the home area (home agent HA) to take care and forwards
of all packets sent to a mobile node that currently is outside of its native network
area. The HA knows about the foreign location of the MN HA and foreign agent
(FA) are connected by tunnels and employ tunnels to hide mobile nodes.

Mobile IP enforces triangular routing, thus needs injects extra traffic to the
Internet for authentication when mobile nodes update their home agent of their
current location. There are several complements to the original protocol like Hi-
erarchical Mobile IPv4/v6 (HMIPv4/v6) among others.
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Data link layer mobility

Medium access control (MAC) plays an important role in neighbour discovery, con-
nection set-up and connection maintain between mobile nodes with its neighbours
in heterogeneous access networks [1].

Designed management techniques and protocols in this layer focussed on the
issues of inter system roaming with different wireless radio technologies while are
energy efficient.

Among the solutions in MAC Layer are e.g., the standard IEEE 802.11b with
the handover mechanism that enables localized handover to hide them from the
mobile core network, decreasing the signalling load caused by activate/deactivate
bearers [81].

Other layer mobility approaches

Two approaches that incorporate a new layer with different techniques on the
traditional Internet model protocol are LISP and HIP. The first introduces a layer
obtained with the split of the IP address in a locator and an identifier of a host
while the second describes a convergence layer to store and forward messages
over the transport protocol [16]. The LISP was proposed by the IETF [24], it
splits the current IP address space into endpoint identifier (EID) and routing
locator (RLOC). LISP to address the mobility issue has a host-based scheme
using tunnels in the routers over different domains, with servers to maintaining
the mapping of the locations. Between the IP and TCP layer Host Identity
Protocol (HIP) [56] introduces a new layer with different strategies to support
mobility. Where the host identifier called Host Identity Tag (HIT) is obtained
with a hash cryptographic function of the public-private key pair, while the locator
used for packet routing continuous being the IP address. HIP requires DNS or
Rendezvous Servers to register the HIT and IP address of the nodes and manage
the updates and binding of their new locations.

Finally, a Bundle layer which operate in-between application and transport
layers interchanging bundles as a data information unit of variable length, to
deliver information from a sender to a receiver in the presence of intermittent
and opportunistic connectivity the nodes must to store, carry and forward the
information to the destination [10]. The Bundle Protocol (BP) is defined and
used by Delay Tolerant Network (DTN) architectures to enable communication
of nodes in presence of intermittent connectivity over a wide range of different
networks.

A short summary of the above mobility solutions is shown in the Table 2.6
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Table 2.6: Mobility solutions on different layers of the stack.

Layer Layer name Solution Multihoming Security

l5-l7 Application CoMP Yes DTLS
between Bundle/Convergence DTN Yes Public/Private keypairs

l4 Transport mSCTP Yes TLS, IPSec
between HIP HIP Yes Encapsulating Security Payload (ESP)

l3 Network MobileIP Yes Key-Management for IP (SKIP)
between LISP Yes LISP-SEC (RFC7835)

l2 Data link IEEE 802.11b Yes WEP
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Chapter 3

State of the Art

In this chapter, we present a set of research studies and experimental evaluations
that focus on the general issue of dealing with the mobility of IoT nodes. The
ultimate objective of these proposals is to make the overall system more resilient to
changes in the access point associated with the mobile devices, without requiring
IoT services developers to explicitly consider this issue. Moreover, we focus on
solutions that do not require extra support from the network through protocols
such as MobileIP or LISP.

The main aim was to satisfy the message delivery requirements in open col-
laborative distributed applications, where users and devices are moving using any
mean of transport, while actively interchanging data through their wireless con-
nections to a cloud based infrastructure.

Problems related to mobility are well-known in the area of telecommunications.
In fact this is a very active area where new standards and protocols are being
developed at different layers of the Open Systems Interconnection (OSI) reference
model. Making the IoT capable of handling mobility out-of-the-box would make
it more versatile: giving just one example sensor networks could be deployed in
any scenario and cope with rapid topology changes.

3.1 Protocols Comparison and Evaluation

Different application protocols are used by IoT developers to connect all the things
that surround us to the Internet. In this section we present some of them compar-
ing their main characteristics. Next, we describe a group of works focused on the
information transmission over unstable network links and scenarios with variable
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network topology that enhance the IoT to handle disruptions without data loss;
these solutions generally make us on the Bundle Protocol specifications.

To analyse the correlation or association between the end-to-end delay and
the packet loss according with the quality of service offered by MQTT protocol,
authors in [41] measured these two network performance metrics transmitting
MQTT messages in a real world scenario with wired and wireless links. They ran
experiments of 5 minutes length using: (a) different message sizes with payloads
from 1 to 16 Kbytes; (b) the three different quality of service levels.

They do not specify, in the case of the wired scenario, whether the clients
and broker ran in the same or different computers. In the wireless environment,
the communication goes through 3G network to communicate clients running in
Android devices with a server that runs the messaging broker. A diagram of the
these environments is shown in Figure 3.1. The clients captured network packets
as PCAP files and then they were analysed using Wireshark.

The authors state that: (a) the two metrics have a strong positive relationship
for each QoS level; (b) any message over 4Kb is divided into several packets
causing longer end-to-end delays. Indeed messages with QoS 2 have longer end-
to-end delay comparing with QoS 0 and 1; (c) “the message loss increase with the
increase in message size”. We find these last results very strange, since it seems
that the loss of messages is smaller in a wireless environment than in a wired
environment and also because the MQTT protocol, even with QoS=2, seems to
lose messages.

Figure 3.1: Wired/Wireless Scenario Configuration, image taken from [41].

Authors in [25] focus on the properties of MQTT-SN to offer energy efficient
data transportation under unreliable wireless environment with limited energy/
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bandwidth. MQTT-SN faces a set of challenges for service guarantees when op-
erated for a reliable or time-critical applications. The impact of various network
parameters on the MQTT-SN service assurance requires an end-to-end system
study, which are unexplored yet. In this work the authors analyse in detail the
end-to-end service assurance parameters such as content delivery delay and prob-
ability of content delivery for a MQTT-SN to be used in health care Internet of
Things (IoT).

To model the end-to-end delay, various entities of the MQTT-SN including
handshake messages in MQTT-SN Pub/sub architecture over TCP, over UDP and
then the queuing delay involved in server are considered. They model the MQTT
content and request server as a round-robin queue scheduler and also model a
TOPIC ID based matching station that delivers the content on requested TOPIC
ID. With this model they derive the end-to-end content delivery probability and
content delivery delay estimate as functions of MQTT-SN system parameters such
as content arrival rate, request arrival rate, possession time of content in server,
possession time of request in server, number of content arrivals and number of
requests arrivals. Both these service assurance parameters will give more insight
into the number of content/request arrivals that can be supported for a given
service assurance requirement. In addition these service assurance parameters
will be of help to design the system more effectively.

They carry out a detailed ns2 based simulation to show impacts of various
system parameters on the network performances for various QoS services designed
for MQTT-SN system.

Trying to answer to the question of which protocol is better to use for the
Internet of Things, specifically when applied to medical scenarios and under con-
strained wireless access networks, the authors of [12] perform a quantitative per-
formance measurements of four IoT protocols, namely: CoAP, MQTT, DDS and
an application-layer protocol designed by the authors to exchange JSON strings
in publish-subscribe form that uses UDP as transport protocol called “Custom-
UDP”. CoAP uses UDP, and DDS and MQTT use TCP. The configuration for
these protocols is shown in Figure 3.2.

They measure, with each protocol, the bandwidth consumed, the experienced
latency and the experienced packet loss. The round trip time is used to measure
precise latency values in a same device and Wireshark is used to measure the
bandwidth consumed. The tests consist in transmitting 4 packets of about 400
bytes every second during an interval of 10 minutes. Each test transfers about
1Mb of user data, varying the network packet loss rate from 0% to 25%; and
network system latency from 0 to 400 ms. The average of 3 repetitions is reported
as the final result.

The authors conclude that: (a) UDP-based protocols do not consume addi-
tional bandwidth with increased network packet loss or increased network latency
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since no re-transmission is required, while TCP-based protocols have a huge band-
width consumption, MQTT consumes between 1 and 2 Mbytes and DSS consumes
between 3.5 and 4 Mbytes. It seems strange to us, also the fact that the band-
width consumption decreases when the percentage of loss is over 10% or when
the network latency is over 120ms; (b) The experienced latency of UDP-based
protocols is very close to the system latency, while with TCP-based protocols,
like DDS, outperforms MQTT in terms of latency; (c) The experienced Packet
Loss of UDP-based protocols takes a level close to the system rate. Testing up to
25% of link loss and 480ms of network latency, both TCP-based protocols have
experienced no packet loss; (d) The overhead of TCP-based protocols with control
messages DDS generates at least twice the number of control packets as MQTT
does.

Figure 3.2: Software set-up for each IoT protocol, image taken from [12].

Through a lab testing environment the work in [22] evaluates the performance
of the protocols COAP, MQTT, and OPC-UA. These authors measure the trans-
mission time of several messages with different length between two devices acting
as a data-source and data-sink respectively. Both devices are connected to the
cellular and wired interfaces of the network emulator. The emulator supports dif-
ferent radio technologies such as EDGE, UMTS, and LTE cellular network. The
set-up configuration for MQTT protocol is shown in Figure 3.3, but this configu-
ration is also applied to the other two protocols.
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Figure 3.3: Testbed set-up for MQTT protocol used also in CoAP and OPC-UA
protocols, image taken from [22].

The authors have found that: (a) OPC-UA has the lowest transmission time;
(b) MQTT and OPC UA based on TCP achieve the best performance; (c) A re-
liable data exchange is not suitable for the transmission of large payloads over
cellular networks; (d) In LTE the IP packets are concatenated in the same trans-
port block until the transport block size is reached, they are then sent as TCP
frames.

At lower layers of the OSI reference model another comparison between IoT
protocols is offered in [9] where a distributed solution based on ZigBee and 6LoW-
PAN is compared against a centralized solution based on Software Defined Wireless
Network (SDWN). The authors observe performance metrics such as packet loss,
RTT and overhead. The obtained results show that the best solution for static or
semi-static smart homes and buildings is the SDWN due to the optimal resources’
exploitation combined with reduced overload. However in dynamic environments
SDWN presents limitations due to the large amount of time required to refresh
routes, where ZigBee and 6LoWPAN remain to be the best options.

A study of the reliability mechanism used by MQTT-S and CoAP protocols is
presented in [14]. In this work a demonstration that both protocols could achieve
a better performance by modifying the Retransmission Time Out (RTO) from a
fixed to an adaptive value is given. The authors comment that using a fixed RTO
value of 10-15s, the network conditions are not taken into account and the features
provided by a publish/subscribe model are not fully exploited. Their evaluations
show that, to calculate a correct RTO value, the network conditions must be
considered as a parameter. Thus, with a shorter RTO value for example, these
protocols would avoid the rise of spurious retransmissions and waste of resources,
while with a RTO value too long they would avoid react too late to recover from
packet loss.

Authors in [6] propose the replacement of the transport protocol used by CoAP
from UDP to the Bundle Protocol offered by IBR-DTN. The bindings are made

31



3. State of the Art

via TCP sockets without considering security features. Figure 3.4 shows the addi-
tion of DTN as a transport protocol to a normal CoAP client-server architecture.
This proposal allows to have no end-to-end communications and support to long
disconnections. In the evaluation they compare their proposal against a stan-
dard CoAP implementation, showing a slower behaviour. We consider anyway
that this solution is somehow against the basic idea of CoAP that is oriented to
not-too powerful devices, that in this case would have to implement the DTN
stack.

Figure 3.4: Architecture of CoAP Client and Server Connection through DTN,
image taken from [6].

Performance of data analytics in Internet of Things (IoT) depends on effective
transport services offered by the underlying network. Fog computing enables in-
dependent data-plane computational features at the edge-switches, which serves
as a platform for performing certain critical analytics required at the IoT source.
To this end, in [89], the authors implement a working prototype of Fog comput-
ing node based on Software-Defined Networking (SDN). MQTT is chosen as the
candidate IoT protocol that transports data generated from IoT devices (i.e., the
publishers) to a remote host (called MQTT broker). They implement the MQTT
broker functionalities integrated at the edge-switches, that serves as a platform to
perform simple message-based analytics at the switches, and also deliver messages
in a reliable manner to the end-host for post-delivery analytics.
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Figure 3.5: Network Prototype based on SDN for MQTT-broker virtualization as
a fog node, image taken from: [89].

Between these messaging brokers they place four switches in a line topology,
all the devices even the MQTT clients use wired connections. Using NetEM they
emulated packet loss probability on the link to emulate a remote connection with
the end server, the testbed set-up is depicted in Figure 3.5. These throughput ex-
periments also have been modelled analytically using the Bernoulli loss model as
loss probability. MQTT clients follow a trend roughly close to the one obtained an-
alytically regarding to the throughput results of UDP and TCP. Authors conclude
that using a Fog node to deliver messages has a significantly higher throughput
that an architecture without fog nodes.

Authors in [35] [36] propose a resilient wireless communication system for dis-
seminating information based on DTN technology and MOM (publish/subscribe)
concepts, to provide a fall-back communication platform for message delivery over
the available networks. They used it in a practical example that consisted in a
system for Neighbourhood Watch (NHW) due to the interest of local government
and police forces. The idea was to allow watcher volunteers to report incidents
like crimes, disturbances or emergency situations that happen in their neighbour-
hoods. The system is composed by an Android application used by civilian users
and the server side application to collect and broadcast incident reports and no-
tifications, and show them in a map through a web server. An incident report is
structured as AMQP messages and then tunnelled inside bundles for transmission
using DTN. The distribution of messages is managed by AMQP.
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Figure 3.6: A diagram of the neighborhood watch system, image taken from [35].

A diagram of the system is depicted in Figure 3.6. They analysed the battery
use of the reporting applications on the mobile phones, using the data collected
from tests in standby and transmission operational modes using infrastructure and
ad-hoc WiFi modes. They both sent or received messages of 15Kb from the mobile
phone at a constant speed of 20 messages per hour during one and two hours. They
conclude that, to save energy, the mobile device must use the infrastructure mode,
and only if there is no available infrastructure they should activate the ad hoc
mode; furthermore to improve the communication opportunity of mobile users,
energy-aware techniques with contextual sleep management need to be considered
at the application layer and in conjunction with routing algorithms.

3.2 Architectural Solutions

Due to the nodes’ mobility and connectivity problems over constrained environ-
ments, some standard protocol have been adapted to offer a better support to
information delivery. These solutions are presented as an architecture proposal.

In [64] an architecture based on publish and subscribe with a mobile push
system for content dissemination is proposed. This architecture defines queuing
strategies on the broker to keep messages for both nomadic and mobile users. A
diagram of this architecture is shown in Figure 3.7. However this work lacks from
a real mobile push system as a proof of concept, also as it is indicated in this work,
the architecture supports just subscribers who change their location.
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Figure 3.7: Mobile Push System Architecture, image taken from [64].

In [85] the authors describe an implementation of the bundle protocol for WSN
specifically for Contiki called µDTN, outlining the architectural design decisions
that were taken. The authors use as a convergence layer the MAC Layer 802.15.4,
thus bundles are sent directly to 802.15.4 radio frames without going-through
transport or network layers. As shown in Figure 3.8 the implementation of µDTN
is split up into different modules.

Figure 3.8: Diagram of the µDTN architecture, image taken from [85].

UbiFlow [88], is an IoT system designed for mobility management in different
networks with the optimised selection of access points that collaborate among sev-
eral controllers to provide an adaptive handover of IoT devices. It uses OpenFlow
to apply SDN concepts to guarantee network performance, robust ubiquitous flow
control and dynamic scheduling over the network components. The architecture of
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Table 3.1: Summary of the proposals presented in this chapter.

Reference Evaluated protocols Type Metrics Statistical An. IoT devices Test length Message size Rates Repetitions

[41] MQTT Real Packet loss, Delay √ Android 5 min. 1-16 KB NA NA
[25] MQTT-SN Sim.(NS2) Delivery Prob., Delay √ NA 5 min. various various 100
[12] MQTT, CoAP, +2 Real Bandwidth, Latency, Packet loss NA RPi 10 min. 460 B 4 pckt/s 3
[14] MQTT-S, CoAP Sim.(OMNeT) Delivery, Publication Ratios NA NA 500 s. 74 Bytes 1 msg/s NA
[6] CoAP over UDP/BP Real Round-trip time NA NA NA NA NA NA
[22] MQTT, CoAP over cellular Real Transmission Time NA NA NA 0-10Kb NA 100 each payload
[9] ZigBee, 6LoWPAN, SDN Real Packet Loss, RTT, Overhead NA CC2530 5000 queries 20-30 Bytes 1q each 300 ms NA
[89] MQTT w/SDN Emul.(Mininet) Throughput, Loss probability NA Mikrotik NA NA NA NA

[35],[36] AMQP, BP Real Battery use NA Android 1- and 2 hours 15 KB 20 msg/h NA
[85] DTN Sim.(Cooja) Throughput, RTT NA NA 1000 packets 80 Bytes 0.07Hz 3
[88] SDN Sim.(OMNeT) Throughput, Delay, Jitter NA NA NA NA NA NA

this IoT software system is shown in Figure 3.9. The system performance was eval-
uated on flow scheduling and mobility management by both simulation and virtual
testbed experiments. The mobility management in heterogeneous networks (Wi-
MAX, Wi-Fi and Femtocell) is limited to partitions covered through connected
switches and controllers. The IoT devices used in the testbed have three network
interfaces to connect with the corresponding access points of each network.

Figure 3.9: System Architecture of Ubiflow, image taken from [88].

3.3 Summary

In this chapter we reviewed a series of attemps made by others to produce an
appropiate reaction to packet loss, as well as a group of proposals focussing on
supporting unexpected disconnections, in addition to the performance comparison
among different IoT protocols. Table 3.1 shows the main aspects evaluated these
proposals.
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In summary, we found the work of authors like [41], who used MQTT pro-
tocol to study the correlation between packet loss and packet delay, extremely
useful. Similarly, the work in [14] that improved the reliability mechanism of
MQTT-S1 and CoAP by using an adaptive value for the retransmission timeout
instead of using a fixed value was very helpful to us. We also considered the per-
formance comparisons of IoT protocols like MQTT, CoAP and others presented
in [12], where the authors quantitatively compared four application data protocols
in terms of latency, bandwidth, and packet loss using real devices, as well as the
work in [22] where the authors used a cellular network emulator to compare the
transmission times of different cellular connections among each other with regard
to four application data protocols.

We were inspired by proposals which replaced the CoAP or AMQP transport
protocols with the bundle protocol of DTN technology, i.e., authors including [6]
who modified CoAP using IBR-DTN via TCP sockets instead of using UDP. The
comparison of this proposal against the Californium implementation of CoAP
showed that it allows end-to-end communication without paths among nodes and
that the transmission delays were slightly worse. A similar approach was taken
by [35] and [36] using the AMQP protocol, but these two studies focused mainly
on energy concerns.

However, to date, no studies have compared application data protocols in mo-
bile scenarios where the node is transmitting data in conjunction with a statistical
study of the network parameters affected in all these cases. Moreover, the studies
that used constrained devices did not explicitly considered them. Therefore, we
preferred to focus our attention on protocols with similar functionality, like AMQP
and MQTT. We observed the behaviour of these protocols in lab experiments and
in external environments, making use of a mesh wireless network as a backbone
network. Various issues raised by mobility were taken into consideration and tests
were repeated with different message sizes and inter-message periodicities in order
to model different possible applications. We also presented a model for dimension-
ing the number of required sources and for calculating the required buffers in the
mobile node as a function of the number of sources and the size of the messages.

We included a mechanism for avoiding data loss based on intermediate buffer-
ing adapted to the MQTT protocol that in conjunction with the use of an alter-
native to Network Manager, improves the connection establishment for wireless
mobile clients in certain contexts. A detailed study of the jitter behaviour of a
mobile node transmitting messages with this proposal while is moving through a
real outdoor scenario is also presented.

Finally, we focussed our effort on using real devices in real scenarios with two
of the most commontly used networks around the world: WiFi and 802.15.4. We
used the Cooja simulator emulate simple IoT networks to study and determine
the effects on the probability of message deliverys when both publishers and sub-

1MQTT-S is typically referred to as MQTT-SN (MQTT for Sensor Networks).
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scribers were added to different scenarios. Finally we presented an approach that
combines the MQTT protocol with DTN, which was designed for constrained en-
vironments and guarantees that important information will never be lost.
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Chapter 4

Performance Evaluation of
Message Oriented Middleware
Protocols

The contents of this chapter have been partially published in:

• J. E. Luzuriaga, M. Pérez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni. “Testing
AMQP Protocol on Unstable and Mobile Networks”. In: Internet and Distributed Com-
puting Systems. Ed. by G. Fortino. Vol. 8729. Springer International Publishing, 2014,
pp. 250–260. isbn: 978-3-319-11691-4. doi: 10.1007/978-3-319-11692-1_22.

• J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni. “Im-
pact of mobility on Message Oriented Middleware (MOM) protocols for collaboration in
transportation”. In: Proceedings of the 2015 IEEE 19th International Conference on
Computer Supported Cooperative Work in Design, CSCWD 2015. 2015, pp. 115–120.
isbn: 9781479920020. doi: 10.1109/CSCWD.2015.7230943.

• J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez, and P. Boronat. “Handling
mobility in IoT applications using the MQTT protocol”. In: Internet Technologies and
Applications (ITA), 2015, pp. 245–250. isbn: 9781479980369. doi: 10.1109/ITechA.2015.
7317403.

AMQP and MQTT are standard protocols extensively used for exchanging mes-
sages in distributed applications among a wide range of heterogeneous wireless
communication devices. They provide an abstraction of the different participating
parts and simplifies communication programming details, also it enhance reliabil-
ity features and alleviates the coordination of different entities of an application.
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However, implementations of these protocols have not been well tested in the
context of device mobility or their use over unstable networks. In this chapter,
the goal in our research is to determine if these protocols provide a satisfactory
service information transmission in such environments with different application
loads. We present an evaluation and comparison of MQTT and AMQP protocols
capabilities and capacities through measurements on a real environment. Then
we focus on MQTT protocol due to its popularity and we extend the evaluation
to include the IP network address migration.

AMQP and MQTT are protocols that follows the publish and subscribe mes-
saging pattern established by MOM [57]. With the purpose to evaluate both proto-
cols, we have designed and developed a synthetic load generator called MOMPerf
that works directly over AMQP and MQTT protocol implementations to generate
and publish messages with different load patterns.

The payload of a message generated with MOMPerf as is shown in Figure 4.1
includes the following elements:

• A sequence number which is very useful to detect messages that can be lost,
delivered out-of-order, or duplicated.

• The size of the current message at the application layer specified in Bytes.

• The value of the time interval in which they are sent by the producer/pub-
lisher node.

• The rest of the payload is filled with a single character up to fill the specified
content size based on the specified size.

Seq. Number Payload Size PeriodicityProtocol

Remaining Length

(4 bytes) (4 bytes)(4 bytes)(1 byte)

(n bytes)

Figure 4.1: The content of the payload of a MOMPerf Message

MOMPerf uses the RabbitMQ1 and Paho2 libraries, which are open source
implementations of AMQP and MQTT protocols respectively. The implementa-
tions of both protocols use TCP connections to enhance reliability. An schema of
MOMPerf can be seen in Figure 4.2.

1https://www.rabbitmq.com/.
2http://www.eclipse.org/paho/.
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4.1. Testbed Scenario

Figure 4.2: An schema of the MOMPerf algorithm.

MOMPerf allows to transmit AMQP and MQTT messages at a certain fre-
quency specified beforehand between a producer and as a minimum one consumer,
thus depending of the application requirements the workload will change, in pa-
rameters like the message size and the communication rates. MOMPerf allows us
to observe the behaviour of these protocols over unstable networks, specifically
when the communications are interrupted and the devices made reconnections.
Modifying this scenario, we are interested in the influence on the delivery order,
message jitter values, as well as the number of lost messages.

4.1 Testbed Scenario

The publish/subscribe communication model allows a decoupled communication
among the components of a system.

We consider a scenario composed by a sensor, a messaging-broker, and a con-
sumer. The sensor is the producer/publisher node, it is supposed to collect data
about the surrounding environment, objects or phenomenons in continual manner
and it transmits data through the network using the middleware protocols. The
messaging-broker enqueue messages and match subscriptions with publications.
Finally the message consumer or subscriber node is used to view and analyse the
received information.

In our experiments, we use a mobile message producer/publisher which mi-
grates between different Wi-Fi access points (APs). This node is producing/pub-
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Figure 4.3: A diagram of the scenario.

Figure 4.4: The devices in our scenario.

lishing AMQP/MQTT messages at a fixed rate.

The message-broker and the consumer/subscriber node are executed on the
same computer in order to avoid the introduced latency by the message trip be-
tween the message-broker and the consumer node. The producer/publisher node
is connected to one of two Wi-Fi access points. Both Wi-Fi access points allow
the connection with the message-broker. A diagram of the scenario is depicted in
Figure 4.3 and a picture of the involved devices is shown in Figure 4.4.

The details of the physical devices used in our testbed are: the message broker
which was installed on a server with an AMD 8-core processor and 16 GBytes of
RAM memory and the mobile client which had an Atom N450 processor with 1
GByte of RAM. Both of them were running Ubuntu 12.04 GNU/Linux distribu-
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Figure 4.5: Node mobility emulation.

tion. For the wireless network, we used the OpenWRT GNU/Linux distribution
with Attitude Adjustment version on an Alix PC-Enginees (alix2d2) and a Tplink
(TL-WDR3600) routers.

We used a set of scripts that shut down and activate the routers’ radios, to
emulate the node mobility in an indoor scenario. In this way we get disassocia-
tion/association of the client. The schema of this approach is shown in Figure 4.5.
A more realistic handover would follow a more complex process in which the sig-
nal is not interrupted abruptly but is weakening while the beacons of other APs
are being received with more force. Perhaps this situation could cause different
results in the tests carried out, for this reason in the next chapter we study this
possibility.

4.2 Methodology of the experiments

In our experiments, to generate workloads for the message queuing system with
both MOM protocols we used MOMPerf. To check the access point migration
of the message producer we did two tests, the duration of first one was about 20
which implies not changing the IP, and the duration of the second one was about
60 seconds which forces to change the IP.

During the tests we checked whether there were message losses, if the messages
arrived out of order, the variation in the delay of the received messages (jitter),
and an evaluation of the processing capacity with production of diverse workloads.
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Figure 4.6: Times involved in the experiments.

We cannot determine an exact latency value due that there is not a strict
synchronization among the internal clocks of the producer and consumer of our
distributed system, even using the NTP protocol [55]. With an offset around 3
ms.

In the arrival event of each message, the sequence number and the production
timestamps were recorded in a log file, together with the reception timestamps for
further statistical analysis.

The inter-arrival jitter time is computed using the timestamps through the
following Formula:

Jn = t′n − t′n−1 − T (4.1)

Let us consider two consecutive messages that have been received by the con-
sumer node, to the nth message, t′n is its arrival time. T is the inter-message
production period (tn − tn−1) and it is one of the fixed variables for each exper-
iment. A graphical representation of the involved timing in the experiments can
be seen in Figure 4.6. Note that the formula 4.1 is not concerned by a possible
asynchrony between the producer and the consumer.
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The tests were run on a dedicated LAN without external traffic, each test was
repeated 100 times for each combination of inter-message period and message size.
The data message size were 512, 1024, 3072 and 6144 Bytes, and the inter-message
production periods were 10, 100, 500 and 1000 ms. Each testbed was evaluated
under two configurations, maintaining and changing the IP address. The lenght
of the experiments was 20 seconds maintaining the IP, and 60 seconds changing
the IP.

As a reference bandwidth in these tests we considered the bandwidth needed
to support high definition video streaming which is about 5 Mbps. With the
MOMPerf tool this value can be reached, for instance, by transmitting messages
of 12.5 KBytes every 0.02 seconds. To detect the point at which messages start
being lost, we have made some tests in both cases: with and without producer
network migration; the obtained values are detailed in the following section.

4.3 Experimental Results

In this section, we present and analyse the experimental results obtained from the
evaluation of a mobile producer/publisher.

4.3.1 Behaviour during access point transition

When the communication link is stable and reliable, the jitter values for each
message were close to zero. In the mobility case, when a producer/publisher
migrates of access point (which could an IP network migration) the connection
suffers an interruption, the jitter could have a considerable value, it could be in
the order of tens of seconds. During the handover, the client (producer’s AMQP
or publisher’s MQTT) accumulates the messages in its internal buffer and keeps
them for a limited time, waiting until the connection with the message broker is re-
established. Problems appear when the storage buffer capacity is depleted or even
in the case of link saturation; both could have message losses as a consequence.

In order to understand the transition event, Figure 4.7 shows the typical jitter
behaviour for each message received by the subscriber. The peaks correspond to
the hand-off time until a new connection with the other AP is achieved, thus the
points at the left of the peak belong to the connection with the first AP, and the
points at right of the peak belong to the connection with the second one.

The data depicted at left of Figure 4.7 show the case when there are no change
of IP address. In this case the experiment time was 20 seconds The jitter for
both protocols seemed to behave similarly independently of the message size in
the range of 512 to 6 KBytes and different inter-message periods. a vertical line
close to the message number 20th that reaches 3.2 seconds.

The right side of the Figure 4.7 represents the case when the IP address changed
while the mobile node was producing and sending messages. In this case the
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experiment time was 60 seconds A positive peak can be seen which corresponds to
the hand-off time. The jitter value on transitions was around 35.8± 0.03 seconds.
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Figure 4.7: Jitter’s behaviour on the producer migration between access points,
while it is sending messages maintaining (left) and changing (right) the IP

address.

In Figure 4.7 can be seen the curve profile in which the positive peak corre-
sponds to the hand-off time, and the hump with negative values belong to the
jitter values at the reception of a burst of messages which the producer retained
during the communication’s interruption. As expected, the number of messages
with negative jitter can be approximated by the positive peak divided by the mes-
sage producing period. For instance, in this figure the periodicity was 500 ms then
3000/500 ≈ 6 messages.

4.3.2 Delivery Order

Due that AMQP and MQTT protocols are based on TCP, they ensure that when
a client gets a disconnection and reconnects to the network, if the previous session
with the message broker is maintained, it does not repeat messages, it provides
exactly-once delivery for all transmitted data.

In our analysis we found that after the disconnection and restablishment of a
new connection with a second access point specifically during message bursts. The
delivery with AMQP protocol follows a LIFO (last-input first-output) order, which
results in messages consumed in inverted order. This does not occur with MQTT
protocol where during the burst delivery of retained messages in the transition do
not affect the order. We consider that the LIFO behaviour after a hand-off period
may be due to this specific implementation, because it is not specified as a feature
of the protocol.
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4.3.3 Jitter analysis

In the testbeds, the messages were produced at a constant rate and they reach
the consumer/subscriber with different delays depending on network conditions.
Taking the difference of the arrival timestamps using the Formula 4.1, the jitter
values of each message was typically of only a few milliseconds. The maximum
jitter value occurs as a consequence of a disconnection of the publisher node.
Notice that in our tests the network had no external traffic, and the workloads
used do not saturate the system.

Figure 4.8 presents a summary of the jitter values reached with different inter-
message periods for AMQP and MQTT protocols, when there is not IP network
migration. It can be seen that most of the points are close to zero, this is the case
when the client was connected. The points in the top of each Figure reveal the
value of the jitter when the device is changing from access point. These extreme
values are between 3.1 and 3.3 seconds.
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Figure 4.8: Jitter values on the producer migration among two access points,
using (left) AMQP and (right) MQTT protocol.

To study and analyse the jitter evolution focusing on the instant when the
producer/publisher makes an AP migration. We represented graphically the values
of the jitter in two ways: (a) as function of the message size, (b) as function of
the inter-message publising period.

Using the rounded the mode values (rounded to the nearest hundred) to fit
the most representative value instead of using the value that appears most often
in the data sets. As it is shown in Figures 4.9 and 4.10 Then we used the Cumu-
lative Distribution Function (CDF) on the set of maximum values of the jitter.
Figures 4.11 and 4.12. In these cases the device did not change its IP address.

Using the mode values of the jitter, in Figures 4.9a and 4.10, we observe that
the jitter value is concentrated around 3.3 seconds, with sporadic cases of jitters
under 6 seconds, without significant differences between the two protocols. It can
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Figure 4.9: Evolution of the mode of the maximum jitter values as a function of
message size: (a) without change the IP address, and (b) changing the IP

address and just using MQTT protocol.
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be seen that about half of the cases present jitter values close to 3.3 seconds while
the other half of the cases double this value. Both Figures show the dramatical
impact of mobility on jitter. With the high frequency (10 ms) the jitter is bigger
than twice than with the other rates, specially using messages of 3 and 6 Kbytes.
We consider that the behaviour for messages of 6 KB is due to the fragmentation
of their payload.

In the cases when the device changed the IP address. We observed that the
jitter value is independent both from the message size and from the inter-message
publishing period, being concentrated on values close to 36 seconds, without sig-
nificant variation.
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Figure 4.11: CDF of the maximum of the maximum jitter values as a function of
inter-message period using (left) AMQP and (right) MQTT protocol.
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Figure 4.12: CDF of the maximum of the maximum jitter values as a function of
message size using (left) AMQP and (right) MQTT protocol.

Using the maximum jitter values, in Figure 4.11 it can be seen a similar be-
haviour among the two protocols and overall between all the message sizes con-
centrated on 1.5 seconds. While in Figure 4.12 the probability of get bigger jitter
values was at low periodicity, i.e. 10 ms, specifically with AMQP protocol the
maximum values of maximum jitter were among 3.5 and 1.4 seconds, and with
MQTT protocol between 3.3 and 13 seconds.

When the device change the IP address, we find that there is essentially the
same behaviour with each inter-message periodicity independently of the message’s
size. After a disconnection and a connection reestablishment, the handover time
of a user that moves through an area covered by an access point is less than 40
seconds. This handover time includes factors such as the time to detect another
access point and sets up a link towards the MQTT message broker.

4.3.4 Workload boundary

In order to know the capacity of the messaging system to handle heavy workloads,
we executed the experiments without access point migration. There is, therefore,
no interruption in the wireless link between the producer/publisher and the mes-
saging broker. Note that these saturation boundary values can be dependent on
the platform used, and even on their configuration.

A typical user application sends a few messages per second, with average load
below 5 Mbps, which is well managed both by message protocols and the network.
Performing this exhaustive delimitation of the workloads, in Figure 4.13 we show
an approximation of the capacity of the system in terms of message size and
number of messages produced per second.

The system is saturated, for loads above 20 Mbps, which is near to the band-
width that we have obtained with the iperf tool for the TCP test. If the load
exceeds this limit value a certain proportion of all produced messages will not
arrive to consumers.
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Figure 4.13: Threshold limit of messages losses for different inter-message period
and message size.

Indeed, we note that the payload limit of a message in the MQTT protocol
is greater than for AMQP. We consider that is mainly caused by the difference
between the frame header: AMQP has a fixed size header of 8 Bytes while MQTT
has only a 2 Bytes header.

4.4 Queueing Model Based on Network Handovers

In this section, to extend the results of the empirical evaluation described in the
previous section, we modelled a more general scenario using queueing networks.
Our model is shown in Figure 4.14; the model was implemented3 using SimPy, a
process-based discrete-event simulation framework based on standard Python.

We supposed a unique Consumer and m Mobile Nodes each with n associated
Producers. The Producers generate messages with an inter-delay that we supposed
constant with value λP . Messages gets to the Consumer from the Mobile Nodes
through the Network, and unbounded queue server, with mean service time µNET

exponentially distributed. The Consumer processes the incoming messages with
a mean service time µC that we also supposed exponentially distributed. Queues
are supposed to be unbounded and no message is lost.

In this work we supposed that the Producers and the Consumer were located
geographically close (e.g., the same city), and supposed the Consumer to be a fast
server, therefore µNET = 3msec, and µC = 100µsec.

3The code is available to interested readers upon request.
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Figure 4.14: The network model.

Figure 4.15: Two states model of the mobile node behaviour.

Nodes handover, i.e., changes in the point of attachment, are independent
(Bernoulli) events with probability pHO; this parameter allows us to tune the
number of handover processes that take place in a test. The mobile nodes service
time µN , can either be proportional to the message size s (i.e., equal to s∗8.0/TM ,
where TM is the maximum network throughput, experimentally obtained with the
testbed and set to 20Mbps) or to the handover delay (dHO) which again was
experimentally obtained with the testbed and set to 35.0sec.

The main objective of this model was to evaluate the stability of our proposal
when considering the load imposed by mobility to mobile nodes. The repercussion
of a series of phenomena that would occur in a real network (either 802.11 or
802.15.4) such as the contention to the medium with so many nodes trying to
access is being neglected. In Figure 4.16 we show the result of studying the
evolution of the messages’ end to end delay with a fixed mobility pattern while
increasing the message generation frequency. We considered a set-up of 100 mobile
nodes, each with 3 producers, each producer sending 1000 messages. We varied
λP in the range [15.0, 30.0, 60.0, 90.0, 120.0] seconds. The parameter pHO = 0.01
produced an average of 3000 handovers over a simulation period of time of around
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Figure 4.16: End-to-end messages delay. Dashed lines are relative to packet size
of 1MB, solid lines are relative to packet size of 512B.

4 hours (i.e., about one handover every 5 seconds); a total of 300000 messages was
generated. This figure shows the 95 percentile (yellow lines with stars), and the
median (red lines with triangles), the solid lines are relative to a message size of
1MB, while the dashed lines are relative to a message size of 512B.

As we can see, our approach is quite stable when varying the data sending
frequency and the message size, even with an high handover rate. At the lowest
frequency used, i.e., below 30.0sec is when the system showed an initial sign of
saturation, with end-to-end delays of up to 20 seconds, while in general the upper
limit for the 95 percentile was less that 1sec for message size of 512B and less than
2sec for message size of 1MB.

To more precisely evaluate the behaviour inside a mobile node, we considered
a set-up with a unique mobile node but with a growing number of sources, in the
range [1, 100], each producer sending 1000 messages at a rate λP = 60sec. The
other parameters were kept the same as before, again considering a message size
of either 512B or 1MB.

Figure 4.17 shows the result of the evaluation; the blue bars indicate the mean
value and the red bars the 99 percentile. The results obtained where similar
for the two message sizes considered. As can be seen the mean queue length
is approximately equal to half the number of sources, while the 99-percentile is
basically equal to the double of the number of sources. This is an important
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Figure 4.17: Mobile node queue size. The blue bars indicate the mean value and
the red bars the 99 percentile.

result for dimensioning the number of sources for mobile node and to calculate
the required amount of buffers in the mobile node as a function of the number of
sources and the size of the messages. Basically the relation would be:

buffer size (bytes) = 2 ∗ s ∗ n (4.2)

in order to limit the number of messages lost due to buffer overflow (in the
previous expression n is the associated Producers and s is the message size). If
the managed data is not critical, we could even reduce the amount of resource to
a value:

buffer size (bytes) = s ∗ n/2 (4.3)

that would allow to handle on average half of the produced messages, but
strongly reducing the amount of the required buffers.

4.5 Summary

MOM integrates heterogeneous components, either connected via wires or wire-
lessly, to a communication network as homogeneous elements that can send and
receive messages; it allows communication between distributed applications and
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MOM platforms are available in wide range of protocol implementations such as
AMQP, DDS, MQTT, and XMPP, each designed with specific uses and goals in
mind. Two of the most popular protocols are AMQP and MQTT which the Orga-
nization for the Advancement of Structured Information Standards (OASIS) have
adopted as ISO/IEC standards (ISO/IEC 19464:2014, 20922:2016, respectively).

In this chapter, we presented an evaluation of asynchronous communication
using AMQP and MQTT protocols, focusing on information delivery in contexts
where nodes which are transmiting information move between different networks.

We used a simple model comprising one producer/publisher, one consumer/-
subscriber, and two access points with a moving node undergoing handover pro-
cesses. We measured jitter and data losses variation and found that after the dis-
connection during the message bursts, the delivery of messages with the AMQP
implementation (RabbitMQ) follow a LIFO order, while the delivery is always in
order (FIFO) for those using MQTT implementation (Eclipse Paho).

Because AMQP and MQTT are built on top of TCP, when there are short
disconnections, these protocols guarantee lossless message delivery, without IP
migration. However in the case of IP migration, we observed that messaging
systems based on these protocols may suffer message losses because the TCP
connections are reinitiated and the publisher buffer can overflow.

Concerning the jitter, we observed that both approaches behave similarly:
Without IP migration the mean jitter values were between 1 and 4.5 seconds,
while with IP migration the values were between 35 and 38 seconds. Both proto-
cols can be used to build mobile systems and applications over unstable network
environments. The decision to choose one over the other will be determined ac-
cording to different criteria, such as those presented above along with other aspects
such as security issues or energy efficiency (e.g. AMQP offers more security-related
aspects, while MQTT is more energy efficient). From our tests and other docu-
mentation it seems that the AMQP protocol is best suited to building reliable,
scalable, and advanced clustering messaging infrastructures over a stable WLAN,
while the MQTT protocol seems to be superior for creating support networks with
simple sensors/actuators in constrained environments.

To extend the results of our empirical evaluation we modelled a more general
scenario using queueing networks. The model was implemented using SimPy,
a process-based discrete-event simulation framework based on standard Python.
This model provided us with valuable data for calculating adequate buffer sizes for
mobile nodes as a function of the number of sources and the size of the messages.
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Chapter 5

Improving MQTT data delivery in
mobile scenarios

The contents of this chapter have been partially published in:

• J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni. “Im-
proving MQTT Data Delivery in Mobile Scenarios: Results from a Realistic Testbed”. In:
Mobile Information Systems 2016 (2016). issn: 1875905X. doi: 10.1155/2016/4015625.

MQTT protocol is being widely used in the development of applications and sys-
tems to exchange information between a wide variety of heterogeneous objects,
devices and things thanks to simplicity, usefulness, and benefits offered. MQTT
was principally designed to optimize the information transfer under constrained
and low quality wireless networks but assuming that all the devices connected
to the network do not change their position. Thus MQTT architecture does not
properly handle when devices change their network connection, due to the problem
of broken TCP connections.

This chapter describes an experimental evaluation made in a real environment
with real devices to solve the aforementioned problems. Our solution guarantees
that there is no information loss due to the movement of a node even when variable
length handoffs appears. The classical MQTT publish/subscribe architecture has
been modified by introducing an intermediate buffer that takes care of message
transfers and manages broken connections. The solution is also able to handle
the MQTT sessions even in the case of IP migration. Furthermore, the solution
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Figure 5.1: Diagram of the intermediate buffering proposal based on the
publish-subscribe pattern of MQTT protocol.

includes a tool to improve the device connectivity management avoiding the use
of the standard Linux tool Network Manager.

5.1 Intermediate Buffering proposal

Our proposal maintains the publish/subscribe approach but decouples the pure
data generation process by the data sending process by means of a technique
called intermediate buffering. This decoupling allows for recovery when the com-
munication channel presents disruption periods, even if they are very frequent and
with length of various seconds, that is in situations where TCP fails to recover.

This proposed solution supports disconnected operation and tolerates spon-
taneous communications without data loss by caching messages to be sent and
delivering them as soon as a path to the broker becomes available.

We suppose that we have a message producer that is continuously generating
messages with a given frequency. A MQTT publisher takes the produced messages
and turns them into MQTT messages, to be published with the same given pe-
riodicity to a predefined MQTT broker, who will forward the incoming messages
directly to the subscribers. A subscription is initially created by a client appli-
cation on a predefined topic (simple subscription name). A basic diagram of the
proposal can be seen on Figure 5.1.

When the connection between the publisher node and the message-broker suf-
fers an interruption, the node enters in roam mode. The in-flight published mes-
sages (messages that have not received the acknowledgement from the message-
broker) are stored in the MQTT internal buffer that is constrained with a very
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limited space available. These messages are delivered making a push diffusion [68]
only if the node recovers the connection with the last access point (that means
recover the last IP address), otherwise these messages are lost.

When longer disruption appears, our intermediate buffer takes charge of storing
all the published messages that have not received the acknowledgement. Mean-
while, the MQTT network control mechanism manages the creation of the new
connection, and the correct closing of the aborted session. With the new con-
nection, independently from the IP address that the node obtains, once the con-
nection with the MQTT-broker is re-established, it guarantees the delivery of all
these messages in the same order that were published, followed by the messages
that have been generated.

This proposal has been evaluated using two software tools to manage the net-
work connections. The first is the standard Network Manager version 1.01 included
in most of the Linux distributions and the second is our own tool called signalBased
Manager (sBM) developed to allow faster handovers.

5.1.1 Network Manager

The Network Manager (NM) is an open source software project that enables the
automatic configuration of the network interfaces of a Linux-based device as well
as their network connections via the D-Bus interface. The NM consists of a system
daemon that receives network settings from a pair of setting services by placing
Connection-Objects on the system bus, and a client application know as “nm-
applet” that sends commands to the services to activate these connections. To the
establishment of a connection with a wireless network, NM does an initial scan
of available wireless networks if there is an previously used network on the list
connects the device to it, otherwise makes a selection based on an opportunistic
approach attempting to use the best one.

When a device is moving around, the establishment of a connection with a
wireless network is an issue to NM, because during the displacement most of the
time the device is in a disconnected state. If a device is moving in a network with
several access points configured as an extended service set identifier (ESSID), NM
works fine. The reconnection to a second Access Point belonging to the same
ESSID is made efficiently in some seconds. However if the APs have different
SSIDs NM does not work well. In this case the mobile node attempts to restablish
the connection up to three times with the previous (non-available) access point,
and then it tries to establish a new a connection with a new detected Access Point.
In our tests we have observed that this process takes around 5 minutes. Thus,
the default behaviour of NM is not designed to support a device mobility between
networks with different ESSID.

1https://wiki.gnome.org/Projects/NetworkManager/.
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5.1.2 The signalBased Manager

To improve the establishment of the wireless network connection of mobile users in
highly dynamic scenarios a network manager was developed due that the standard
Network Manager is not suitable for these environments. Since NM decides to stay
on a network even if the signal strength is very poor. Moreover, when it gets to a
total disconnection it keeps trying to reestablish the previous connection, even if
is not available in the current location.

Using a mechanism that chooses in real time the best available radio based
on signal strength measurements. This mechanism is included in the framework
as a network manager tool called “signalBased Manager” (sBM) that support
both hand-overs and hand-offs of a node moving around the coverage of different
wireless networks.

The mechanism is based in three phases: detection, discovery and execution
[83]. It starts the handover process on the client when its connection quality
degrades to a predefined threshold (detection). It decides to handover to a different
AP based on the information of all the available access points in order to choose
the best candidate (discovery); finally, the handover is completed with the client
establishing a connection with the new access point (execution).

5.2 Methodology of the experiments

Indoor tests have been performed to study the behaviour of the MQTT protocol
against an intermittent connectivity. Our proposal has been evaluated too in an
outdoor scenario.

The path followed is an itinerary in the Jaume I University Campus2 which
imitates a common itinerary taken by UJI students to reach the “Espaitec center”
from the bus stop; these walks are hereafter referred as AB and BA paths, they are
represented on Figure 5.2. The guifi.net nodes3 used in the outdoor experiments
were completely dedicated to our generated traffic. In order to obtain a repre-
sentative dataset 32 tests were performed. with a duration of about 5 minutes
each, generating four repetitions for each configuration and with each of the two
network managers.

In general the traffic parameters used to the indoor tests are:

• three message generation rate

1, 2 and 10 mps,

• three fixed messages size

120 Bytes, 512 Bytes, and 1 Kbytes.

2http://ujiapps.uji.es/perfils/internacional/.
3https://guifi.net/en/what_is_guifinet/.
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5.2. Methodology of the experiments

While the traffic parameters used to the outdoor tests are:

• a constant generation rate of messages of 1 mps,

• a fixed publication periodicity of 1 second between each publication,

• two fixed messages size

512 Bytes, and 6 Kbytes.

Our measurements were oriented to show different performance metrics calcu-
lated using the reception time-stamp of each message[50], that is:

• the maximum and average disconnection times,

• the maximum amount of messages stored in the buffer,

• the amount of messages losses (if exist),

• the inter-delivery regularity (jitter analysis).

5.2.1 Experimental Scenario

In the University Jaume I it is deployed a part of the wireless infrastructure of
Guifi.net Community Network. To ensure that the clients (students and staff)
can roam smoothly, multiple nodes have been installed outdoors on the terraces
of the principal buildings for a full coverage throughout a part of the University
Campus. Figure 5.2 depicts the used scenario; where the nodes CS-UJInuvolguifi
from 1 up to 54 were used. The outdoor mobile nodes use IEEE802.11n links at
2.4GHz, while fixed mesh nodes are interconnected as a mesh at 5GHz. A list of
equipment used are in Table 5.1.

These nodes are based on antennas and integrated routers such as Ubiquiti or
tp-link running an open source community distribution known as qMp based on
the OpenWRT Linux distribution [82].

In these scenarios, we have travelled on a bi-directional pedestrian path that
is around 500m long, carrying a laptop trying to keep a constant pace of about
6 kph. The forward and return paths are coincident but as we will see in the
coming sections, the connection establishment order with the access points and
the behaviour related to the message delivery were quite different.

The duration of each test was 5 minutes, that is the time necessary to move
between points A and B. During this period of time our mobile device generates
several MQTT-messages with different payload sizes. These messages were sent
to the broker and then were delivered to the subscribers. Table 6.1 shows the
parameters set-up for MQTT measurements on the proposed system.

4https://guifi.net/en/uji-biblioteca/.
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path followed on tests

AP#4

AP#2

AP#1

AP#3

AP#5

pointB

pointA

Figure 5.2: Graphical representation of the testing scenario in the campus of the
Jaume I University.

Figure 5.3: A photo while running our tests from the point “A”.
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Table 5.1: Summary of Equipment Used.

Device Role Router Protocols O.S.

CS-UJInuvolguifi1 mesh node tp link wdr3600 802.11b/g/n qMp 3.1 Clearance
access point 802.11a/n

CS-UJInuvolguifi2 mesh node nanostation M5 802.11a/n qMp 3.1 Clearance
access point tp link wdr3600 802.11b/g/n

CS-UJInuvolguifi3 mesh node tp link wdr3600 802.11a/n qMp 3.1 Clearance
access point nanostation M2 802.11b/g/n airos (xs2.ar2316)

CS-UJInuvolguifi4 mesh node nanostation M5 802.11a/n qMp 3.1 Clearance
access point nanostation M2 802.11b/g/n airos (xs2.ar2316)

CS-UJInuvolguifi5 mesh node nanostation M5 802.11a/n qMp 3.1 Clearance
access point nanostation M2 802.11b/g/n airos (xs2.ar2316)

Samsung NC10 client 802.11b/g Ubuntu 14.04
Desktop computer server 802.3 Ubuntu 14.04

Table 5.2: Summary of Test Setup parameters

Parameter Value(s)

Generation Rate 1 mps
Publication Rate 1 mps
Net Manager (NM), (sBM)
Message Size 512 Bytes, 6 Kbytes
Trips from A to B, from B to A
Walkway length ∼ 500 m
Velocity ∼ 6 kph

5.3 Results and Evaluation

This section includes the performance evaluation of the proposed framework and
shows results obtained through different experiments on the field followed by a
statistical analysis. The measured results are presented for the MQTT protocol
with and without the proposed pre-buffering technique and with and without the
network manager improvement.

5.3.1 Using the MQTT protocol without pre-buffering

This subsection presents the MQTT performance evaluation in order to obtain
some reference values about the jitter and message loss without moving the pub-
lisher device both in an outdoor environment without disconnections as well as in
an indoor environment in presence of network disconnections.
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Figure 5.4: Static outdoor scenario without disconnections.

Outdoor scenario with static nodes without disconnections

A set of tests were executed without any movement of the mobile devices with
a direct line-of-sight (LOS) link between the access point AP#5 and the mobile
device placed on a fixed point of the central boulevard of the UJI.

Figure 5.4 shows the CDF of the jitter for each of the two message sizes. The
jitter is basically very reduced and similar independently from the size of the
messages.

Table 5.3: Static outdoor scenario without disconnections.

Size (Bytes) Average (ms) St. Dev. Min (ms) Max (ms)

512 0.926 30.454 −250 240
6144 1.416 46.456 −344 301

In table 5.3, it can be seen that the jitter average values with both message
sizes is around 1ms.
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Figure 5.5: The CDF of jitter with a wireless radio off time of 30 sec., message
size of 512 Bytes (left) and 1024 Bytes (right).

Indoor scenario with network disconnections

Inside the laboratory, we built a testbed that allowed us to observe the behaviour
of the variables and most of the factors that may influence our experiments. We
have tested several parameter combinations such as different message sizes (120 B,
512 B, and 1 KB), publishing frequencies (100 ms, 500 ms and 1 s), disconnection
periods (1, 5 and 30 seconds). Disconnection periods simulates device mobility
switching off and on the wireless radio of the routers. In this way we illustrate the
weaknesses of the MQTT protocol.

Table 5.4: Jitters obtained with a wireless radio off of 30 seconds

Size(B) Period (ms) Average (ms) St. Dev. Min (ms) Max (ms)

1024 100 307.17 4,293.83 −100 62,353
1024 500 1,318.85 8,218.52 −465 51,930
1024 1000 2,691.85 11,871.21 −561 56,385

512 100 287.62 4,206.89 −100 63,636
512 500 988.59 7,568.70 −500 56,204
512 1000 1,542.55 9,953.38 −1,000 56,437

120 100 276.80 4,054.28 −100 62,601
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With a wireless radio off time of 30 seconds, in Figure 5.5 it can be seen that
the data curves start over about the 50%, meaning that slightly less than 50%
of the cases have negative values. It can be seen also that the 95% of the cases
have values smaller than 100 ms. This jitter behaviour with these probabilities is
observed with the three message sizes we have used (1Kb, 512 Bytes, and even
the smaller size 120 Bytes). From table 5.4, the lower standard deviation values
are obtained with the higher message publishing frequency (100 ms).

The message loss was evaluated considering that a message sent by a publisher
was not delivered to a subscriber or not even received by the broker. In this
tests the MQTT quality of service is set to “At least once”. With this option the
protocol ensures that a message arrives at the server at least once. Thus, when
a message is published a message copy is stored in the publisher internal buffer
until the reception of the ACK packet. When the acknowledgement is received it
indicates a successful delivery and the message copy is discarded from the buffer.
By default this internal buffer has been defined as a maximum number of 10 in-
flight messages. Once this value is reached the buffer will overflow and all the
outstanding MQTT messages sent to the broker will be lost. The reduced space
available on the buffer allows that only a few messages can be stored. This is
a problem in a high data traffic environments where this value can be reached
easily and quickly. In addition, the content of the buffer is delivered only if the
MQTT session is active and only if the client maintains the same id, a problem
that appears when re-establishing broken TCP/IP connections.

Table 5.5: Number of message losses

Radio turnoff time (sec.) Median Average St. Dev. Min Max

1 125.5 116.35 24.68 60 154
5 125.0 125.82 3.98 121 134
30 521.0 530.40 19.38 511 560

Table 5.5 shows statistical information about the number of lost messages with
different disconnection periods. As it can be seen, even with little disconnection
time (1 sec) there are losses, and the number of messages lost increases clearly
with the disconnection time, reinforcing the necessity of an improvement in the
architecture.

5.3.2 Using the MQTT protocol with buffering

This subsection presents the results of the jitter with the publisher device moving
in the testbed of the University Jaume I campus using our buffering proposal
adapted to the MQTT protocol. First, the results using the default connection
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manager integrated in most of the Linux distributions (i.e., Network Manager) are
shown. Secondly, the results with our own connection manager (i.e., signalBased
Manager), where an improvement in the overall results can be appreciated.

During the test execution, the mobile device was producing and publishing
MQTT messages. We study network disconnections. Due to the disfunctions
of the DHCP service and Access Point association, we observed the following
undesirable situations when the mobile node losses its current connection:

• (a) loss of coverage situations (Neither IP nor AP),

• (b) association to an access point without an IP address (Has AP and not
IP),

• (c) keep an old IP address assigned by the previous access point without
having a successful association with the new access point (Has IP and not
AP).

The time the device spends on each of these states for each test was measured,
and the percentage for to tests (t1 and t2) are presented in Figure 5.6. In this
figure, there is a bar for different message sizes (Bytes) for different sense of the
path (from point A to point B or vice-versa) and if in the test NM or sBM was
used to manage network connection.

The connections’ behaviour are very variable even repeating the same test
due to an different factors that affect link quality such as noise or environmental
factors [54]. However, in general, it can be said that, with NM, the device waste
a lot of time trying to connect to the last used AP, while with sBM the main
problem is related with DHCP requests to get a new IP address.
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512B−t2

6144B−t1

6144B−t2
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6144B−t2

NM
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Has IP and not AP
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Neither IP nor AP
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Figure 5.6: Connection Problems with NM and sBM.
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Figure 5.7: CDF of jitter in logarithmic scale using our buffering proposal,
sending messages of two sizes 512 Bytes and 6 Kbytes on two journeys (left) AB

and (right) BA trip respectively.

Using the standard Network Manager

In these tests the standard Linux Network Manager (NM) service was used. As we
said before, the NM has a problem when the devices are moving around and getting
out of a coverage area, since for example it tries to recover the connection with
the old access point, making up to three repetitions to re-establish the previous
connection. While this could be reasonable for a static user, it leads to bad
performance for a mobile user.

As it can seen from Figure 5.7, in both plots the small messages have a smaller
jitter value. The 80% of probability of the values are around 1 second, that
basically corresponds to the sending rate. Then the biggest values in the graph
are the disconnection times of each test.

Table 5.6 shows the AB journey with the biggest message size which reaches
values of 290 seconds, that means that almost all of the trip the client was discon-
nected from the network. In the BA journey, we observe a chaotic situation in the
network establishment during the walking test independently of the message size
used, i.e., there are cases were the client was disconnected along all the journey,
all the messages were stored in the buffer and transmitted uniquely at the arrival
end point.
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Table 5.6: Jitter values using our buffering proposal with the standard Linux
Network Manager

Journey Size (Bytes) Median (ms) Average (ms) St. Dev. Max (ms)

AB 512 201 1,063.82 6,320.82 102,413
AB 6K 338.5 1,552.02 14,216.05 290,851
BA 512 865 1,511.91 17,252.24 481,502
BA 6K 865 1,401.62 11,609.68 285,475

Using our signalBased Manager

The following part of the test uses our proposal of network manager. It tries to get
the best available connection (the most strong signal) with an access point while
a client is moving through different coverage areas during data transmission.

Table 5.7 summarizes the obtained results. As it can be seen the standard
deviation values are lower than the obtained with the standard Network Manager.
Indeed the maximum disconnection values obtained are between 103 and 256 sec-
onds, that means that in the test the maximum disconnection time oscillates from
34% to 85%. In the worst case, the node was connected at least during the 15%
of the time, the device was not totally isolated as it is the case with the standard
Network Manager.

Table 5.7: Jitter Values using the protocol with the buffer using signalBased Man-
ager

Journey Size (Bytes) Median (ms) Average (ms) St. Dev. Max (ms)

AB 512 386.5 1,027.88 5,061.39 102,730
AB 6K 249 1,016.23 6,592.85 122,835
BA 512 1,154 1,105.68 9,158.91 255,958
BA 6K 576 1,189.65 8,472.11 133,159

The Figure 5.8 shows that the biggest messages have jitter values more regular
that the smallest one, especially in the range from 60 to 80%, actually up to 86%
of the jitter values are close and lower to 1 second.

To a better comparison between two managers, we have joined the results
obtained of the two message sizes and then subtracted the generation periodicity
for each message. By comparing these results in Figure 5.9, we can see that slightly
less than 20 and 40% in AB and BA journeys respectively have jitter values around
to zero. In general, signalBased Manager has more probability to get a small jitter.
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Figure 5.8: CDF of jitter in logarithmic scale using the buffer proposal sending
messages of two sizes 512 Bytes and 6 Kbytes on two journeys (left) AB and

(right) BA trip respectively.

Table 5.8 also provides a comparison of both network managers. The maximum
jitter value obtained in both journeys is lower with sBM.

Table 5.8: Network Manager Comparative based on the jitter values

Journey Manager Median (ms) Average (ms) St. Dev. Max (ms)

AB NM 192 1,158.96 10,233.62 290,751
AB sBM 197 922.89 5,765.98 122,735

BA NM 79 1,356.77 14,700.01 481,402
BA sBM 26.50 1,033.64 8,933.74 255,858

Network Manager Comparison

This subsection presents a network manager comparison based on the length of
the disconnection periods during the execution of each test and the variation of
their Received Signal Strength Indication (RSSI) values in each one.

Table 5.9 presents the network disconnection times of the mobile device, these
values are highly correlated with the maximum jitter values measured. As can
be seen NM disconnection times takes from 32 to 126 seconds, while with sBM
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Figure 5.9: CDF of jitter in logaritmic scale using the buffer technique during
(left) AB trip and (right) BA trip.

this values takes from 35 to 86 seconds, that confirms that in general signalBased
Manager has lower disconnection times. Figure 5.10 depicts these disconnection
times.

Table 5.9: Disconnection times in seconds

Journey Manager Median (s) Average (s) Min (s) Max (s)

AB NM 113.5 97.00 35.00 126.0
AB sBM 60.50 64.00 49.00 86.00

BA NM 49.00 56.25 32.00 95.00
BA sBM 65.50 58.25 35.00 67.00

With respect to RSSI, the received radio signals are weak in general due to
different factors such as distance, obstacles, interference, noise and so forth. A
really good connection has values between -35 and -70 dBm while a connection
is considered bad when it has values lower than -90 dBm. As can be seen in
Table 5.10 the measurement values of the power received radio signal using NM
are between -96 and -52 dBm, while using sBM the values are between -92 and
-48 dBm. The data set of RSSI values are depicted in Figure 5.11 where it can
be seen that in the AB journey sBM has less variability while in the coming back
journey is the opposite. This is due to the predefined configurable threshold levels
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Figure 5.10: Disconnection times.

of sBM to avoid the use of access points with poor signal coverage.

Table 5.10: RSSI Values in decibel-milliwatts (dBm)

Journey Manager Median Average St. Dev. Min Max

AB NM -79 −75.75 10.06 −96 −52
AB sBM -69 −70.36 8.04 −92 −48

BA NM -74 −74.14 6.02 −91 −54
BA sBM -73 −71.94 7.21 −91 −53

The result of this tests confirms the benefits of using our buffer proposal for
the MQTT protocol specially in high unstable networks.

5.4 Summary

The Internet of Things (IoT) is already connecting computing devices, appliances,
humans and other living beings through the Internet. Accumulating data and
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Figure 5.11: RSSI by journey and manager.

knowledge through these things would improve a vast array of items and experi-
ences throughout the world. The IoT consists of many different kinds of events
and signals and requires a standardised mode of communication. MQTT is an IoT
connectivity protocol so lightweight that it can be supported by some of the small-
est measuring and monitoring devices, and can be transmitted over far-reaching,
sometimes intermittent, networks. However, its architecture does not properly
handle mobility when the disconnection periods tend to be large.

This chapter describes an experimental evaluation undertaken in a real envi-
ronment and our solution, which guarantees that there is no information loss with
roaming nodes.

The proposal comprises two parts; the first is an application layer solution that
modifies the classical publish/subscribe scheme by introducing an intermediate
buffer that handles of message transfer. This solution facilitates the development
of IoT applications because developers do not have to explicitly consider access-
point changes in mobile nodes. The second is network manager solution which has
been proposed because the standard Linux Network Manager is not well suited to
unstable networks. Our experimental results indicate that the signalBased Man-
ager performs slightly better compared to the standard Linux Network Manager
because it extends the duration time of connections to access points and thus,
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shows stronger RSSI.
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Chapter 6

A Disruption Tolerant
Architecture

The contents of this chapter have been partially published in:

• J. E. Luzuriaga, M. Zennaro, J. C. Cano, C. Calafate, and P. Manzoni. “A Disruption
Tolerant Architecture based on MQTT for IoT Applications”. In: 2017 IEEE 14th Con-
sumer Communications and Networking Conference (CCNC): CCNC 2017 1st edition
of Globe-IoT 2017: Towards Global Interoperability among IoT Systems. Las Vegas,
Nevada, USA, Jan. 2017.

This chapter presents an architecture that integrates MQTT standard with DTN
techniques in order to handle the problems arising from mobility like disruptions
on the connections and changes on the network topology. The aim is to offer a
point of reference for IoT application development for mobile things and users.

MQTT is a Data transmission Protocol that works at application layer. It was
selected as a part of the architecture for its simplicity and extensive applicability
over devices with limited resources. But it has limitations and certain problems
regarding to the node mobility as it has been mentioned in the previous chapters.

In this sense, to work with constrained devices we have used the MQTT for
Sensor Networks protocol (MQTT-SN), in combination with DTN technology of-
fered by the IBR-DTN protocol. The idea is to keep data packets when networks
experiment disconnections. The proposed protocol integration has been validated
using real devices in scenarios with multiple motes as publishers and subscribers,
where the commands and notifications usually have to travel over multiple hops.
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The experimental results we obtained confirm that MQTT is one of the best
options in terms of resource use and ease of development for IoT applications, and
that, in conjunction with a DTN approach, can be very robust and efficient even
in scenarios with unstable links or partitioned networks.

6.1 Experimental Set-up Evaluation Methodology

In this section we describe the experimental setup and the evaluation methodology
we used to analyze our proposed architecture.

6.1.1 Reference Scenario

Our experimental setup included two Raspberry Pi 2 Model B (RPi) devices and
seven Zolertia Re-Mote Sensor Board (motes) [90]. To simplify the study the
scenario was separated into two parts:

On one side we had the Wireless Sensor Network (WSN) infrastructure where
the motes (MQTT-SN clients) were wirelessly connected to an IEEE 802.15.4
network using IPv6 over Low-Power Wireless PAN Area Network (6LoWPAN).

An intermediate RPi acts as a gateway translating MQTT-SN to MQTT mes-
sages and vice versa [76]. We used the Eclipse Paho MQTT-SN gateway imple-
mentation1 and the Mosquitto broker implementation2 as MQTT message broker
to distribute the messages from the publisher to the subscribers.

On the other side, we had the backbone IP-based network where the RPis,
acting as DTN nodes, where connected using an Ethernet link. The bandwidth was
fixed to 10 Mbps using the Ethtool Linux utility. We used IBR-DTN version 1.0.1
as the DTN implementation. For the bundle transmission we used the dtnsend
and dtnrecv [72] tools.

One of the two RPi devices was connected to one of the seven motes to im-
plemented a border router device [44]. This border router interconnected both
networks and routed the generated data between them.

In Fig.6.1 we can see a graphical representation of the scenario while the real
set-up is depicted in Fig. 6.2.

All the source code collected, studied, developed and adapted to our project is
under open-source license and can be download from the repository3.

6.1.2 Evaluation metodology

The evaluation methodology was based on separately considering the two main
components of our proposed architecture: the WSN infrastructure, and the back-
bone network.

1https://projects.eclipse.org/projects/iot.paho/.
2http://mosquitto.org/.
3http://github.com/jluzuria2001/TS-IT/.
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Figure 6.1: Diagram of the conceptual integrative architecture for data collection
applications.

Figure 6.2: A picture of the testbed used in our experiments.
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Figure 6.3: Sequence Diagram of Ping-Pong application, totally based on the
MQTT-SN protocol.

Regarding the WSN infrastructure, the performance of the connections was
measured by using a simple ping-pong testing application developed specifically
for this purpose. Fig. 6.3 shows the interaction of the involved components as
well as the points on which the various time-stamps were measured. The basic
behaviour of the ping-pong application is the following: first, a message is sent
from the MQTT publisher on the RPi-gateway to the MQTT broker on the RPi-
gateway; then, the MQTT-SN gateway forwards it to the MQTT-SN subscriber
on a mote. When the subscriber on the mote receives the message, it creates a new
message with the received identifier and publishes it to the MQTT-SN message
broker, who then forwards it to the MQTT subscriber at the RPi.

The micro-controller’s computation delay and all the other potential delays
are considered to be part of the overall channel latency. The obtained results
are based on a total of 5000 messages sent at a frequency of 0,1 Hz, and using a
message size equal to 20 bytes.

The performance of the DTN-based backbone network was measured config-
uring the message forwarding on IBR-DTN as follows:
1) maximum lifetime of a bundle of 604800 seconds (i.e., one week),
2) block’s size limit of 1.3Gb, and
3) the non-persistent bundle storage, i.e., all bundles were kept in the RAM mem-
ory. To emulate an intermittent channel we used the Linux Traffic Control tool.
We modified the communications channel between the transmitter and the re-
ceiver varying the percentage of error over the link, specifically 0%, 25%, 50%,
and 75%. To ensure at least two connected cycles and one disconnected cycle, and
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Table 6.1: A summary of the parameter’s details used in the evaluation of each
scenario.

Parameter WSN infrastructure Backbone network
Total msg. 5000/2000 2000

Msg. size (bytes) 20 40
Periodicity (seconds) 10 1

Repetitions 10 10

considering that the test length is around 33 minutes, we fixed the length of each
cycle to 12 minutes.

Each test was repeated 10 times, transmitting 2000 messages with an inter-
bundle frequency of 1 message/second. The bundle size was 40 bytes (20 bytes
of the mote message plus the forwarding timestamps). We emulated the message
forwarding in a full connected network, and then in an intermittently connected
network where throughout the test, the transmitter network interface was turned
off and on with cyclically prefixed time periods

Table 6.1 summarizes the configuration parameters used with each scenario.

6.1.3 Analyzed Metrics

The data of the message transmissions obtained from the log files were filtered by
the ID of each mote. The metrics used in the evaluation of our architecture were:
the round-trip times (RTT), the % of message losses, and the messages jitter.

Round-trip times

The round-trip times are used to evaluate the channel latency. The ping-pong test-
ing application we developed was used specifically to this end. We basically used
two log files: one in the MQTT-client at the RPi, storing the timestamp and the
ID of each published message; the second, storing the same fields (timestamp, and
ID) of each received message. These two logs were merged based on the message
ID, and then we computed the difference between the reception and publication
timestamp for each message. These values form 10 vectors, one for each test,
which are used as the basis of our descriptive and probabilistic statistical analysis.

Message Loss

To calculate the message loss (loss msg) we count all the received messages (rcv msg)
and subtract it to the total number of sent messages (fixed to 2000). The average
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values were stored in a vector for each test, eventually providing the following data
matrix:

[avg vector] = (

n∑
i=1

ai1,

n∑
i=1

ai2, · · ·
n∑

i=1

aim) (6.1)

where: akl are the received messages on a specific test; k is the number of
motes (1≤k≤n=6 ), and l is the number of test (1≤l≤m=10 ). The total number
of messages sent in each test was 2000*n.

Jitter behaviour

The jitter of the received messages is computed using the reception timestamps.
The timestamps’ accuracy was down to milliseconds at the sending and receiving
sites. We considered that relative clock drifts during the experiment were negligi-
ble, and therefore we used the clock values of the final end-point on the RPi. For
every test we take the difference of the arrival values, building a new matrix of
values whose ith row has the following elements:

Jitteri,rcv ts = |(ai+1,rcv ts − ai,rcv ts)| (6.2)

where: a correspond to the received messages on a specific test, rcv ts repre-
sents the reception timestamp, and i is the current message (1≤i≤2000).

6.2 Analysis of the Results

This section presents the results that allow to evaluate the architecture. In the
evaluation, we addressed round-trip latency, % of message losses, and the order
preservation of the messages when delivered after a network disconnection.

6.2.1 Round-Trip Time (RTT)

The first critical metric is the round-trip latency in the WSN infrastructure.
Fig. 6.4 shows the evaluation of the round-trip time (in milliseconds) for a

6LoWPAN payload size of 20 bytes. We can see that the data distribution of the
RTT values does not follow a normal distribution. The density curve within the
hump of the histogram is close to zero, with values between 75 and 90 ms. Based
on quartiles information of the Q-Q plot we can see that only a few values are
greater than 1000 ms. The regression line intercepts values between 0 and 1700
ms. In the Cumulative Distribution Function (CDF) of the distribution plot, 90%
of the values are within a few milliseconds, specifically between 75 and 90 ms,
confirming that the data are not normally distributed. Also, a few unusually high
values of 1.7 seconds appear. The P-P plot presents a behaviour quite similar
to the CDF plot; we can see that the measured values are not aligned along a
regression line.
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Figure 6.4: Empirical and theoretical statistical distributions with the
Round-trip time results of the Ping-pong application.

6.2.2 Varying the number of Publisher and Subscribers

This study was implemented to see the impact of increasing the number of pub-
lishers and subscribers, that is a context where several devices are sending/receiv-
ing packets simultaneously. To avoid the overloading of the motes’ memory the
inter-message delay was fixed to 1 second, sending a total of 2000 messages. The
message size during this test was set to 20 bytes, and each test was repeated 10
times.

We counted a successful transmission process when a published message to the
message broker is forwarded and received by the subscribers on the motes or on
the other RPi, where they are kept in a log files for statistical analysis. In the
first part of the experiment, the publishers are the motes (many-to-one), and in
the second part it is the RPi (one-to-many).
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Figure 6.5: Results of the Loss (left) and Received (right) Messages as a function
of the number of publisher motes.

Message Loss

Fig. 6.5 on the left shows that message loss goes up from 0 to 10% when we add
up to six motes to the scenario, due to the increasing number of collisions in the
network in addition to the constrained resources of the motes. On the right part
of Fig. 6.5 we can see how the successful reception of messages drops progressively
as the number of motes increases. In all these simulations a message-loss higher
than 9% (180 messages) never occurred. The general pattern showed either no
packet-losses at all, or up to 100 lost messages with 6 motes.

Jitter behaviour

On the 6LoWPAN network, the jitter values obtained when increasing the number
of motes are shown in Fig. 6.6. On the left we observed how most of the maximum
jitter values go from 3 to 9 seconds, while on the right part most of the minimum
jitter values range between 55 to 140 ms.

6.2.3 Inter-infrastructure Delay

We now present the results of the data delivery delay in the backbone networks.
From the set of graphs in Fig.6.7 we can see that the range of values goes from
1040 to 1065 ms. Considering that the bundle generation was fixed on 1000 ms,
this means that the needed time to handle a bundle with the devices used on
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Figure 6.6: Obtained Maximum (left) and Minimum (right) Jitter values
respectively when the number of publisher motes is increased.

our test falls within the range from 40 to 65 ms in nearly all the cases. If we
compare the density curve hump with the hump of the histogram we can see that
the overall data is normally distributed. The data in the Q-Q plot (on the right)
also describes a normally distributed process. The values above the line on left
of this graph shows that most of the values are lower than the medium value.
By plotting the cumulative distribution function (CDF), we can see how the data
are normally distributed like in the density plot. Normal P-P plots were used to
examine whether the residuals are normally distributed. The pattern of the values
grouped shows that some values are common on the data distribution.

6.2.4 Inter-Message Receiving Delay

This section shows the inter-message gap in the reception of messages in two
evaluated cases: (a) without disconnections, and (b) with cyclic disconnections
with time intervals of 12 minutes in length. All the scenarios suffer from different
percentage of error on the communication channel.

Fig. 6.8 on the left shows the results achieved under optimal conditions, i.e.,
with 0% of error over the link. We can see that the values are bounded to a few
milliseconds (between 1031 and 1078 ms). With a 25% of channel errors, most of
the messages are delivered with a few milliseconds around the inter publishing rate
with some outliers close to 10 ms. When the error increases, most of the values
are in tens and hundreds of milliseconds with few outliers with very high delays.
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Figure 6.7: Processing required time at the DTN node with an Inter Message
Sending interval of 1 second.

Huge outliers behaviour is common with 75% of error over the link. However most
of the messages are delivered in presence of a minimum connection with an inter
delay of tens of milliseconds.

In the presence of disconnections from the network, we can observe on the
right part of Fig. 6.8 that messages are delivered with a delay between 10 ms to
1 second. When the error on the link surpasses 50% some outliers with big values
appears, while most of the messages are delivered within an inter delay of tens of
milliseconds. Basically, When a minimum connection is established it is enough
to support the exchange of bundles.

We have observed that the average values of the time needed to re-establish
a connection after a period of disconnection, subtracting the bundle generation
time is close to 6 seconds in the best conditions; while with a 75% of error in the
communication channel it requires about 200 seconds.
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Figure 6.8: Variation of the inter message reception delay in a full connected
scenario (left) and with cyclic connections/disconnections of 12 mins (right) at

the DTN node.

6.2.5 Order Delivery Analysis

The IBR-DTN module by default uses a non-persistent bundle storage, which
means that all bundles are kept in RAM memory and so bundles will not be
preserved if a power failure or a service daemon restart takes place.

All the bundles have the same priority, and they are stored and retrieved
based on different parameters like their id, or the destination, among others. In
a full connected network on the nodes’ outbound link the FIFO queuing policy is
applied. When the network has some constraints, limitations and the nodes are
not reachable, the read bundles out of the storage are re-queued. In these cases
the buffer management policy used by IBR-DTN to flush the buffer and send out
the buffered bundles to the end node looks like a random policy.

In Fig. 6.9 we can see, that even in presence of errors on the link up to 25%
data delivery order follows a FIFO fashion with a 100% of order in fully connected
scenario, 65% in a scenario with 12 minutes of disconnections, and 50% in a
scenario with more intermittent connections. When the errors over the channel
increase to 50%, the order goes down to 70% in a full connected scenario, while
with cyclic disconnections the order goes down to 43%. In presence of a high error
% over the channel the delivery order in all the cases is completely broken, being
that none of the bundles arrive in the same sequence in which they were sent.
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Figure 6.9: Percentage of the Delivery order with different scenarios with and
without disconnections in addition to the channel manipulation.

6.3 Summary

We presented a DTN-based architecture for supportting MQTT for the develop-
ment of data-collection IoT applications. Our proposal focused on offering data
transmission in scenarios characterised by link outages, unstable links, split net-
works, or intermittent connectivity.

We presented experimental results obtained from different network-parameters
and network-size configurations to validate the feasibility and effectiveness of our
proposal. We showed that in the WSN infrastructure the round-trip time is less
than 75 ms, with up to 5% and 3% with 6 publishers or subscribers, respectively.
In the backbone network, the time required to handle a bundle is between 40 and
65 ms, while the inter-delivery message delay is a few tens of milliseconds and
slowly increases as the communication-channel grows. We consider these values to
be acceptable for general IoT applications, given that with this new architecture,
end-to-end applications are not affected by possible node’ disconnections periods.

As expected, the most critical parameter was the network scalability, consid-
ering that IoT systems can easily have hundreds of motes. It is important to keep
in mind that a large number of motes degrades network performance, as demon-
strated throughout this manuscript. Therefore, in order for high density networks
to properly function, it is crucial that we design data collection and distribution
solutions to generate loads that the network can handle. We recommend using a
very simple data collection scheme which avoids simultaneous data collection and
sending from large portions of the WSN infrastructure.
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Chapter 7

Conclusions, Publications and
Future Work

The Internet of Things (IoT) is already connecting computing devices, appliances,
humans and other living beings through the Internet; collaborative use of the in-
formation collected could improve many day-to-day situations, for example in ap-
plications such as physiological monitoring, inter-vehicular safety, remote sensing
of environmental conditions, planning, analysis and monitoring of transportation
systems, and many more.

In this thesis we focussed on the IoT’s potential mobility-related communica-
tions problems and provided different solutions for alleviating their impact and
for guaranteeing the delivery of information in mobile scenarios. The advantages
of the solutions we propose is that they improve the system’s resilience to changes
in the point of attachment of the mobile devices in the IoT network without re-
quiring IoT services developers to explicitly consider this issue. Moreover, our
solutions do not require additional support from the network through protocols
like MobileIP or LISP.

The reference context we considered was that of a Smart City where various
mobile devices collaboratively participated by periodically sending information
from their sensors. We assumed these services were located in platforms based
in cloud infrastructures where the information is protected through the use of
virtualisation ensuring their security and privacy.

We focussed producer/consumer paradigm protocols, namely AMQP and par-
ticularly, MQTT. The behaviour of these protocols was observed using in-lab ex-
periments and in external environments, using a mesh wireless network as the
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backbone network. Various issues raised by mobility were taken into account, and
thus, we repeated the tests with different message sizes and inter-message period-
icity, in order to model different possible applications. We also presented a model
for dimensioning the number of sources for mobile nodes and for calculating the
required number of buffers in the mobile node as a function of the number of
sources and the size of the messages.

We included a mechanism for avoiding data loss based on intermediate buffer-
ing adapted to the MQTT protocol that in conjunction with the use of an alterna-
tive to the Network Manager, in certain contexts can improve the establishment of
connections for wireless mobile clients. We also presented a detailed study of the
jitter behaviour of a mobile node transmitting messages with this proposal while
moving through a real outdoor scenario.

We focussed on using real devices in real scenarios with two of the most com-
monly used networks around the world WiFi and 802.15.4. The Cooja emulator
was used to simulate simple IoT networks in order to study how the probability
of message delivery changes when both publishers and subscribers were added to
different scenarios. We used these to construct an approach that combines MQTT
protocol with DTN which is oriented towards constrained environments and which
guarantees that important information will never be lost.

Finally, using queueing networks, we modelled a general scenario to estimate
the number of sources required per mobile node and to calculate its required buffer
capacity as a function of the number of sources and the message size.
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7.2 Future work

In this section we briefly outline possible future work that could be undertaken
using the results presented in this thesis as a starting point. First of all, in order
to exploid our results, our proposals would need to be ported to different motes
and to smartphones in order to demostrate their impact in real world applications
in smart city contexts, i.e., mobile crowdsensing, mobile computing and commu-
nications in opportunistic IoT.

Following on from this, it will be important for future work to try to simplify
the design and deployment of IoT applications and services. This can be achieved
by improving the proposals presented in this thesis by specifying different APIs
as a part of a unique middleware thus, the overall process will be supported and
simplified from data collection to data visualisation and dissemination.

With regard to the sensing activities, and focusing on enabling interaction
between small objects and mobile users, it would be interesting to replace the
MQTT-SN protocol transportation stack with Bluetooth Low Energy features in
order to extend the number of different devices that could be used. Indeed, other
new wireless technologies like LoRa, and SigFox should also be considered because
of their increasing integration into the IoT.

Finally, it would be useful to perform a scalability evaluation with many devices
as part of Pub/Sub systems in order to prove whether this paradigm maintains
its effectiveness even in very dense scenarios.
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6LoWPAN IPv6 over Low-Power Wireless PAN Area Network . . . . . . . . . . . . . . 76

AMQP Advanced Message Queuing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CDF Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

CoAP Constrained Application Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

D2D Device to Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

DDS Data Distribution Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

DTN Delay Tolerant Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

HIP Host Identity Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

IETF Internet Engineering Task Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

ITS Intelligent Transportation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

91



7. Conclusions, Publications and Future Work

IoT Internet of Things. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

ITS Intelligent Transport System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LISP Locator Identifier Separation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LWM2M Lightweight M2M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

M2M Machine to Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

MOM Message-oriented middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

MQTT Message Queue Telemetric Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

NFC Near field communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

RFID Radio-Frecuency IDentification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

RSSI Received Signal Strength Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

S2S Server to Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

SOA Service Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

TCP/IP Transmission Control Protocol/Internet Protocol . . . . . . . . . . . . . . . . . . . .2

UDP User Datagram Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

XMPP Extensible Messaging and Presence Protocol . . . . . . . . . . . . . . . . . . . . . . . . 19

XML Extensible Markup Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

WSN Wireless Sensor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

92



Bibliography

[1] I. F. Akyildiz, J. Xie, and S. Mohanty. “A survey of mobility management
in next-generation all-ip-based wireless.” In: IEEE Wireless Communication
August (2004).

[2] A. Antonic, M. Marjanovic, P. Skocir, and I. P. Zarko. “Comparison of the
CUPUS middleware and MQTT protocol for smart city services.” In: 2015
13th International Conference on Telecommunications (ConTEL) (2015),
pp. 1–8. doi: 10.1109/ConTEL.2015.7231225.

[3] ARM mbed IoT Device Platform. 2016.

[4] M. Atiquzzaman and a.S. Reaz. “Survey and Classification of Transport
Layer Mobility Management Schemes Invited Paper.” In: 2005 IEEE 16th
International Symposium on Personal, Indoor and Mobile Radio Communi-
cations 4 (2005), pp. 2109–2115. doi: 10.1109/PIMRC.2005.1651818.

[5] L. Atzori, A. Iera, and G. Morabito. “The Internet of Things: A survey.”
In: Computer Networks 54.15 (2010), pp. 2787–2805. issn: 13891286. doi:
10.1016/j.comnet.2010.05.010. arXiv: arXiv:1011.1669v3.

[6] M. Auzias, Y. Maheo, and F. Raimbault. “CoAP over BP for a Delay-
Tolerant Internet of Things.” In: Proceedings - 2015 International Confer-
ence on Future Internet of Things and Cloud, FiCloud 2015 and 2015 Inter-
national Conference on Open and Big Data, OBD 2015 (2015), pp. 118–123.
doi: 10.1109/FiCloud.2015.33.

93

http://dx.doi.org/10.1109/ConTEL.2015.7231225
http://dx.doi.org/10.1109/PIMRC.2005.1651818
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1109/FiCloud.2015.33


Bibliography
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