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Abstract—Financial markets typically undergo periods of pros-
perity followed by periods of stagnation, and this undulatbn
makes it challenging to maintain market efficiency. The effient
market hypothesis (EMH) states that there exist difference in
structural complexity of the security prices between regudr
conditions and abnormal situations. Yet, despite a clear ik

complexity-loss hypothesighich states that organisms experi-
encing constraints (iliness, ageing, stress) exhibit tasteic-
tural complexity of their physiological responses thanltiga
organisms. Our analysis falls under this general umbrblg,

is finance-specific and employs nonparametric analyseseof th

between market acceleration ¢f. recession) and stress in systems, determinism, nonlinearity, multiscale entropy, and syoaly

indices of financial stress still have significant scope forutther
development. The overarching aim of this work is therefore ¢
determine those characteristics of financial indices whichare
related to their stress levels, and to establish a robust met
for the extent of ‘stress’ of the financial system. This is acteved
based on systematic intrinsic multiscale analysis which ebles
us to test the so called complexity-loss hypothesis in the mm@xt
of financial stress. Multiscale sample entropy and our propsed
Assessment of Latent Index of Stress (ALIShave successfully
quantified financial stress, and an analogy between transibns
from ‘normal’ (relaxed) to ‘abnormal’ (stressed) financial periods
with the sympatho-vagal balance in humans is established.dar

within an intrinsic multivariate analysis framework.

In technical terms, stock indices exhibit trends — local and
global ‘first order’ behaviour [3] — together with economic
and non-economic cyclical influences (e.g. the four-yeaspr
idential cycle in the US) and effects of our habits, such as
the Sell in May stock trading strategy and the Christmasssale
effect [4]. Trends in financial indices are perhaps their tmos
examined characteristics, with both numerical and graghic
methods used for their detection. Stock market volatitity,
the other hand, reflects the degree of uncertainty in stock

major stock indices of the US economy over the past 25 years jndices. Financial analysts routinely build models basethe

are considered: (i) Dow Jones Industrial Average (DJIA), (i)
NASDAQ Composite, (iii) Standard & Poor's 500 (S&P 500),

and (iv) Russell 2000, together with FTSE 100, CAC 40 and

exchange rates. Our findings are supported by the EMH theory
and reveal high stress for both the periods of Internet bubbé
burst and sub-prime mortgage crisis.

history of financial parameters, a process referred to ahkriie
cal analysis’ [5], [6]. This methodology is well establishget
a proportion of market trade takes place based on speauwatio
[7]. A very popular numerical method is the class of moving-
average (MA) algorithms which yield indicators of general

Index Terms—financial stress, complexity-loss hypothesis, mul- movements of stock prices such as: (i) price moving average

tiscale entroypy, determinism, nonlinearity, intrinsic phase syn-
chrony, ALIS index.

|. INTRODUCTION

for raw data with trend, and (ii) rate of change at different
scales, for detrended data. The price moving averages allow
investors to compare fluctuations in stocks to the trends ove
time, while the rates of change are relatively faithful cators

of the momentum of stocks. For example, a positive value of

NDICES of major stock markets are generally accepted 8 rate of change suggests enough market support to centinu
indicators of the financial health and economic wellbeingriving prices in the direction of the current trend, whits i
[1], [2]. Given their close link with socio-economic and geonegative value indicates lack of market support and tendenc

political factors (here, we refer to those as ‘events’) tierht

for stock values to become stagnant or to reverse.

dynamics of stock indices are also a reliable indicator ef th The efficient market hypothesis (EMH) is a cornerstone of
influence those events have on the health of the financiapdern financial theory and states that current securitepri
system. To put this into context, in the last 25 years tHghe underlying value of the asset) incorporate and reflitct a
US alone have been through a number of events, includifgjevant information that could be gathered, so that stocks
the ‘dot-com boom’ in the 1990s, the 9/11 terrorist attack ialways trade at fair value [8]. This implies that in ‘normal’
2001 and the sub-prime mortgage crisis in 2008. It is theeefcsituations markets cannot be consistently beaten over long
natural to ask whether the general health of the econompy, sééne; in other words, the security prices tend to exhibit a
through the lens of stock indices, can be assessed in a wagdom walk type of behaviour, characterised by poor pre-
analogous to the way we examine health of living organisnictability from their historical values ariigh uncertaintyin

This motivates us to embark upon the huge body of work dhe rate of change of stock prices. However, when specelativ
human stress in order to derive indicators of ‘stress’ of tfRconomic bubbles — ‘abnormal’ situations — occur, the ntarke
financial system and established ‘biomarkers’ of charistier are often driven by buyers who are prone to sentiment or
events in stock indices. To this end, we employ the so-callé@ational exuberance. In such scenarios, the buyers tend t
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overestimate stock values while anticipating the growth of
markets, which in turn bringkess uncertaintyto the rate of
change of future prices. This ‘acceleration-stabilisa@tiype

of behaviour is not dissimilar to the sympatho-vagal bageinc
humans, whereby the sympathetic autonomous nervous system
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(SNS) accelerates body functions while the parasympathetine institution, market or system to another. Five différen
nervous system (PNS) slows them down [9]. measures of systematic risk were proposed in [20], based on
Following on the EMH, stress of the financial system castatistical relations among the market returns of hedge<sun
be interpreted as a deviation from its normal functionindpanks, brokers and insurance companies. Using corresation

and can be caused by a single or multiple factors or evert®ss-autocorrelations, PCA, regime-switching modets] a
[10]. There is no agreement on a more specific definitio@ranger causality tests, it was found that all four sectors
as episodes of financial stress often vastly differ, from ddtave become highly interrelated and less liquid over the pas
com bubble through to sub-prime mortgage crists.risk decade, which indicates an increased level of systemidmisk
(stress) indicator specific to currency markets was prapodbe finance and insurance industries. These measures can als
in [11], and defines financial risk through a reduction imdentify and quantify financial crisis periods.

the number of significant factors — principal components. The absorption ratio [21] was introduced as an indicator
However, the suggestions that a decrease in the degreegoarket fragility and systemic risk, and is defined as the
freedom invariably signifies the loss of complexity duringraction of the total variance of a set of assets explained or
an episode of crisis is not necessarily valid; to this end wWsorbed by a finite set of eigenvectors. A high value for
also need to examine higher-order features related to loRga apsorption ratio corresponds to a high level of systemic
range couplings [12]. The degree of determinism of the $ign&sk and fragility. For example, high values of absorptiatia

in addition, also plays an important role in determining thgf the US stock market during the dot-com bubble and the
degree of complexity [13]. The financial stress index (FSpiobal financial and sub-prime mortgage crises suggestd th
proposed in [14] considers the variations in the intensit§t a the market was extremely fragile and vulnerable to negative
duration of financial stress episodes through high-frequenspocks, which propagate quickly and broadly, in both of the
price variables. Based on an equal-variance weighted @8erayeriods. The absorption ratio can also be used as a warning
financial stress is detected when the value of the FSI exce%‘sinvestors, as it has been shown that on average, stock
one standard deviation above the trend (using the Hodri%ces decreased following one-standard-deviation spike

Prescott (HP) filter); the FSI also indicates whether ana#{#is the absorption ratio, while they increased after one-stethd
?f fl_nanC|thstress is due tohstress in banlfqng, securltles,lig)eviation drops in the absorption ratio.
oreign exchange sector_s: The FSIin [15] ocuses on mar et'I'he ‘10-by-10-by-10" approach for assessing systemic fi-
responses in the securities, exchange and banking sectors. . . .
. naricial risk related to stress scenarios was proposed in [22
It evaluates the monthly changes in the degree of streoss e R
o a%ed on three factors: financial institutions, a number of
transmission and the stress co-movement between advance . .
) . . ; . counterparties and stress tests. The total of gains andsoss
and emerging economies [16], [17]. Financial stress is the? L i
) ) ._..0f each stress test for each institution (also counterpasty
deemed present if the index exceeds 1.5 standard deVIatKéQPculated and then reported periodicall
above its mean [18]; the FSI also provides estimation of the ] P ] .p ) y- )
In addition to specific indices which capture a particulaf® this end, in an analogy to human stress (sympatho-vagal
aspect of financial stress, current financial stress incitss imbalance) the signatures of which are derived from the low-
include thecompositeones such as the Chicago Fed Nationdiequency (LF) and high-frequency (HF) bands within heart
Activity Index (CFNA) and the Kansas City Financial Stres&te variability (HRV), we propose the Assessment of Latent
variables. Our approach falls between these two categerielf) detrended financial data. Our rationale is that low-feety
it is composite in the sense that it simultaneously analysgdanges (LF band), which correspond to time spans of over 1
severalindividual market indices, while being specific enouglyar, are driven by global factors (monetary policies), kehe
to examine thebalance/imbalance aspedf markets. In an the more rapid changes (HF band), over spans of 5 days to 3
search, we consider the ‘biomarkers’ of financial stress tBternet bubble burst.
be accelerations followed by recessions in stock indicke T The ALIS index therefore determines ‘crisis versus no-
market expansions are therefore interpreted similarlyh® tcrisis’ episodes of the financial stress evolution throug t
effects of the SNS activity in humans, and are characterisedamination of long- and short-term changes in specifickstoc
by investors’ over-excitement, over-confidence, and Iséiari indices, whereas the existing FSls in [14], [15], [19] colesi
approaches. Market recessions are analogous to the affectseveral sub-components, such as stock market returns and
the PNS, whereby the slow-down is accompanied by a lacktohe-varying stock market return volatility, which may be
confidence and a decrease in market efficiency. responsible for the onset and development of financial stres
During a financial crisis, the term ‘systemic risk’ referdVhile the ALIS index is not designed for such specific ana-
to a series of correlated defaults among financial instihgj lyses using financial market variables as potential cofemnd
occurring over a short time span and triggering a withdrawkdr financial stress, it is one of the first methods which eaten
of liquidity and widespread loss of confidence in the finahcidbeyond the second order analysis in [14], [15], [19] to dietec
system as a whole. At the heart of the concept is the notiontbe patterns of financial crises in specific financial indices

‘contagion’, a particularly strong propagation of failargom using a bio-inspired signal processing approach.
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Il. SUMMARY OF MOTIVATION AND CONTRIBUTION The aim of study is therefore to simultaneously charac-
_ terise, in a full multivariate way, the financial stress tigh

Inspired by the catastrophe theory [23] and the EMH theoie complexity-loss hypothesis (systems under stressoiéxhi
we propose the ALIS index as an indicator of financial stregfeater regularity and less freedom.) [29]—[3t{d systemic
during episodes of financial crises in different individedck gk (the markets are contagious and behave in the same way
indices. Following on the complexity-loss theory, finahsis-  qyring financial crises)This is achieved by examining in stock
tems are shown to exhibit lower levels of structural comiyex tyends intrinsic and inter-channel dependencies togatiiter
during financial crises, compared to normal periods. We algfkir nonlinear and stochastic properties. The detrentiexk s
introduce a moving-average multivariate sample entropf{M jndices (the rate of change) of the market indices over the la
MSE) algorithm to precisely quantify different degreeswéls o5 years (between 1st January 1991 and 31st August 2015)
complexity. The recurrence quantification analysis (RQAJ a were analysed using the following nonparametric methays: (
delay vector variance (DVV) are then employed so as {fyitivariate multiscale sample entropy (MMSE), (i) mogin
establish the ground truth of the deterministic versustetstic average multivariate sample entropy (MA-MSE) (iii) recur-
and linear versus nonlinear signal modality for stock iedic yence quantification analysis (RQA), (iv) delay vector aade
Finally, the intrinsic phase synchrony (IPS) is employed ff{DVV), (v) Assessment of Latent Index of Stress (ALIS),
the quantification of inter-dependencies during finanaiakes, gng (vi) intrinsic phase synchrony (IPS). Methods (ii),, (v)
as financial systems often exhibit high levels of systensk,ri g (vi) are novel and are derived specifically for financial
that is, they are contagious and, to an extent, dependentfia. The analysis is verified over several case studieshwhic

one another. support complexity-loss theory for financial markets, ausib
It is almost self-evident that financial markets exhibitthigframework to understand financial stress.

structural complexity which in turn can be quantified thrbug
entropy, for example, using the multivariate multiscalmpke
entropy (MMSE) [12], [24] algorithm. This approach exansne ) i ) ) ) ]
long-term correlations of both the trend and the detrendegWVe shall first briefly describe the algorithms used in this
data. For enhanced resolution, we introduce a novel MA-MSEHudy.

algorithm, described in Section Il1-B. Also, prior to molied

financial indices, it is a prerequisite to establish the gtbu A, Moving-average (MA) Algorithm for the Multivariate Case
truth for the linear versus nonlinear and deterministicsusr
stochastic nature of the data, referred tosggmal modality
analysis To this end, we employ nonparametric analyses usi
the methods of recurrence plots [25] and DVV [26], whic
examine the nature of the underlying generating mechanis
[27], a subject of Section I1I-C and Section 1lI-D.

IIl. ALGORITHM AND BACKGROUND

This standard approach considers a multivariate signal
Torgkis B = 1,2,...,p, © = 1,...,N, with p being the
mber of data channels and the total number of sample
oints. The moving-average filter removes the trend, from
g originalz,,4 1,;, Using the following functional form

We also examine the degree of synchrony between financial 19t
indices and establish the extent to which IPS [28] can be  Sk; = - > Torghis 1<j<N—74+1, (1)
used to quantify synchronous behavieufinancial contagion i=j
leading to systemic risk among multiple stock indices relatedwheree is a pre-defined scale factor (data window size). The
to the same sector, as elaborated in Section IlI-E. detrended data ;, is then obtained as

In the analysis, we consider four major stock indices which . E )
indicate the state of economy of the US [1]: (i) Dow Jones Zhj = Torg ki~ Skjr 1=1,2,...,N—1 )

Industrial Average (DJIA), (i) NASDAQ Composite, (i)  opserve that long window sizes will remove short trends.
Standard & Poor’s 500 (S&P 500), and (iv) Russell 2000. The

DJIA comprises 30 of the largest companies in the US across a o ]

range of industries except for transport and utilities; ag B- Multivariate  Multiscale Sample Entropy (MMSE) &
is an indicator of the performance of stocks in technologdy/oving-Average Multivariate Sample Entropy (MA-MSE)

and of the growth in companies; S&P 500 consists of 500 The sample entropy (SampEn) method provides empirical
large companies from a vast number of industries, each daviestimates of entropy [32] based on the probability of siritifa
market capitalisation of more than $5 billion; and Russ@D@ between the delay vectors (patterns) in data. The SampEn is
comprises a small-cap segment of the US equity malkket. a single-scale measure, while the interpretation of coxityle
also consider four financial markets outside the US in order éstimated via entropy requires multiple scales. To this, end
assess the performance of the ALIS: (i) Financial TimeslStothe multiscale sample entropy (MSE) algorithm [33] con-
Exchange 100 (FTSE 100), (ii) Cotation Assistée en Contirstructs pre-determined scales using the coarse grainougps

40 (CAC 40), (iii and iv) foreign exchange (Forex) markets fo(CGP). Such scales do not match intrinsic properties in the
the EUR/GBP and GBP/JPY. The FTSE 100 is a share inddata, and in addition the number of data points for a given
of the 100 companies listed on the London Stock Exchangeale, e, N. = g decreases linearly in the scale factor.
the CAC 40 represents the 40 most significant values amadrgr better resolution, the modified multiscale entropy (Mod
the highest 100 market capitalisation of the Euronext PaMSE) [34] algorithm replaces GCP by a moving-average (MA)
(Paris stock exchange). scale definition process. Both the MSE and the Mod-MSE,
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however, are univariate algorithms, not capable of acecount 4) Repeat Steps 1 to 3 for thew(+ 1)-dimensional com-
ing for cross-channel dependencies. To cater for mulatari posite delay vector.

cases, the multivariate MSE (MMSE) [12], [24], reveals both 5) Calculate the MMSE or the MA-MSE using

the intrinsic- and cross-complexities through a multistei Bmtl,
embedding process. We here introduce its variate, termed SampEn(m,T,r) = —In| By
MA-MSE, to quantify multivariate complexity oboth the !
trend and the detrended data, a procedure referred to as the

moving-average multivariate sample entropy (MA-MSE),-ouC. Recurrence Quantification Analysis (RQA)

lined in Algorithm 1. By virtue of MA-MSE, pre-defined and g recyrrence plot (RP) method [25], outlined in Algorithm
physically meaningful scales are generated to match periogl a5 jntroduced to visualise the dynamics of phase space
of interest (finance-specific scales) in financial data, sash trajectories. By using the Takens embedding theorem [88], f
short-term trading (1-5 days), and short- (less than a montY given ynivariate time series(n), the phase space can be

medium- (1-3 months) and long-term (over a year) trends [§Lconstructed by embedding the time series as follows:
Within either the MMSE or the MA-MSE, first the embed-

ding dimensionn and time lagr of each variate are calculated

] ()

to construct a composite multivariate delay vector, givgn b Kim,r (1) = [0, Tigrs s Tip (m—1)7] ©6)
i=1,...,N—(m—1)r,
X (1) = (@16, T1igrs o Tl (my—1)m > where N .is the_total numbe_,-r of po!nts;, the delay beth_een
P20y T4 ras - T2 i (g 1)ran - (3) consecutive points of the time series, andthe embedding
' ’ ’ dimension. A common approach to determining the timerlag
Tpis Tpirys - > Tpyick(my ~ 17, is based on the mutual information algorithm [36], while the
where M = [mi,ma,...,m,] € RP is the embedding selection of the minimum embedding dimensiaris based on
dimension vectory = [y, 7, ...,7,] denotes the time lag the false nearest neighbours method [37]. A joint calcolati
vector,p is the number of variates, and,,, (i) € R™. of the optimalr andm has been proposed in [38].

The CGP within the MMSE creates scale factors by av- Quantifying the number and duration of the recurrences
eraging the adjacent sample points within non-overlappidows us to study the degree of determinism [39], whereas
windows of increasing length (scale factor). The resulting the length of a diagonal line in RP reflects the number of
data, denoted byj ;, represent a coarse-grained scaland consecutive states in which the two trajectory segmentibixh

is obtained as a similar evolution.
e 1 & . _ N Algorithm 2: Recurrence quantification analysis (RQA
Yk = = Z T, 1<j<— (4 =9 — _q ysis (RQA)
i=(—1)e+1 < Input: Discrete time series(n).

The proposed MA-MSE replaces the CGP by MA-based 1) Given Ihethop(';m:al em?eddlgg parametgns, aBnd ™
scale generation, whereby both the tresgl,, and the de- 2) ?Zeor;r?pr)%tee thz reeci{rt\e/ﬁgeopr)slo(ts nf;,tri(s \I/\r/]hic%. s(uzﬁmarises
trended datasy ;, are combined agy ; = I35, Z’iaj] and are all pairwise Euclidean distances bet\;veen DVs, as
used as pre-defined scales (input) for the algorithm. '

Before com_putlng_the MMSE and the MA-MSE, atole_rar_1ce RP;; = @(E — X () - X(j)||), i,j=1,...,Ns, (7)
parameter,r, is defined and is used to search for similar
patterns (delay vectors) by comparing the scalar distance WwhereN; is the number of considered statesXn ¢ a
between all pairs of delay vectors in Eq. (3), but without threshold distance (6% of the mean Euclidean distance

self-comparison. If the difference in the distance of a péir of the DVs),|| - || the Euclidean distance, argl(-) the

delay vectors is less than the event of a similar pattern has Heaviside function.

occurred. 3) The percentage of recurrence points which form diag-
onal lines measures the degree of predictability, and is

Algorithm 1: Multivariate multiscale sample entropy (MMSE) computed as:

& Moving-average multivariate sample entropy (MA-MSE) ZN’ - PU)

For each scaley; ; (MMSE), or wf, ; (MA-MSE): DET = ﬁv (8)

1) Construct a composite delay vector based on the scale j=17 J
Yi.; (MMSE) or wg ; (MA-MSE). where P(j) is the number of diagonal lines of length

2) Search for similar patterns in every element of the  j, and jui, the minimum number of points to be
composite delay vector. If the difference in the pair-wise =~ considered as a diagonal line (in this woypk,;, = 2).

distance is less than or equal to the defined tolerance (ime series:(n) is considered deterministic if its trajec-

[ X (@) = X ()] < 7, j # i, the event of similarity 1 i the phase space is smooth and can be modelled as

P is counted. 1 a continuous function. This results in an RP matrix where
3) Calculate the probabilit3™ (r) = — P, whereN is  almost every state is recurrent and forms long diagonasJine

the total number of searches in each sub-delay vectowhere the DET value is close to unity. On the other hand, if
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a time series is stochastic, the DET values are close to zemthat of the average of the surrogates. If the surrogatebiex
The intermediate case corresponds to a signal which coesprisimilar behaviour to the original signal, the DVV graph will

both deterministic and stochastic components. lie on the bisector line and the original signal is considere
to be linear; any deviation from the bisector line indicates
D. Delay Vector Variance (DVV) nonlinear signal. Moreover, the minimum target variance fo

. . the original signal is a measure of the amount of uncertainty
The delay vector variance (DVV) method [26] is a phasﬁresent in the time series.

space technique which examines the deterministic versus
stochastic nature of a time series, and when combined with
the method of surrogate data [26], it also provides infofomat E. Intrinsic Phase Synchrony (IPS)
about the linear versus nonlinear behaviour. Most statisti The degree of phase synchronisation between data channels
cal signal nonlinearity analyses, including the surrogt#® can be measured through phase synchrony, which quantifies
method, are based on the Monte-Carlo approach [40], whereiply the phase relationship between two signals without ac-
an ensemble of surrogate data is constructed to represghlinting for amplitude information, and is defined in terms o
linearised versions of the original data. A statistical mea the deviation from perfect synchrony via the phase synchro-
(test statistics) is then computed for both the originaletimnisation index (PSI).
series and the surrogates; if these are significantly @iffer  The intrinsic phase synchrony (IPS) was originally propbse
the data at hand are deemed not to be generated by a lingahe so calledntrinsic multiscale analysigamework in [28]
process. and generalises standard phase synchrony by equippinthit wi
The standard definition of a linear signal is that it ishe ability to operate at the intrinsic scale level. It enyslo
generated by a Gaussian linear stochastic process. Basegn@ivariate empirical mode decomposition (MEMD) [43] to
this ‘null hypothesis’, constrained surrogates are comnorgecompose a given multivariate signal into its narrowband i
generated by the iterative amplitude adjusted Fouriestcam trinsic oscillations (IMFs), which makes it possible to qtify
(IAAFT) [41], and its refined version, the maximal overlaphe temporal locking of the phase information in IMFs using
discrete wavelet transform (MODWT), where the originahe standard phase synchronisation index (PSl), as odtiine
IAAFT-procedure is applied to each set of wavelet coeffitiena|gorithm 4.
(WIAAFT). The WIAAFT retains not only the signal distri-  Financial time series contain different degrees of volatil
bution and amplitude spectrum of the original time series biy, or in other words power imbalances among the signal
also the local mean and the variance of the Original tim@serbhanne|s; therefore in the intrinsic multiscale ana|ya§5wge

[42]. The DVV method is summarised in Algorithm 3. the noise-assisted adaptive-projection intrinsicatyrsformed
. - MEMD (NA-APIT-MEMD) which accounts for the different
Algorithm 3: Delay vector variance (DVV) dynamics in multivariate data (see [44] for more detail). By

virtue of NA-APIT-MEMD, these intrinsic scales physically
glgpresent short-term trading, short-, medium-, and |la@mgt
trends. Standard phase synchrony can then be employed to
characterise scale-wise dependencies in stock indices.

1) Given the optimal embedding parametersandr, gen-
erate the delay vectors (DVs) based on Equation (6).
ery DV, X (i), has a corresponding targef,; (,,,—1)r+1-

2) The mean,uy, and the standard deviatiow,;, are
computed over all pairwise Euclidean distances betweeT

DVs, [|X (i) — X (j)[|(i # j). Algorithm 4: Intrinsic phase synchrony (IPS)
3) The setsQ(rqy) are generated such thaty(ry) = Input: Discrete time series;(n), za2(n).
{z(@)[Ix(k) —x(@)[| < ra}, i.e., sets which consistof all 1) Optain IMFs via the NA-APITMEMD¢; ; andc, ;, i =
DVs that lie closer tax(k) than a certain distance;, 1,..., M.
taken from the intervalnaz {0, pa — naoa}t], 9. Niv  2) Calculate the instantaneous phases for the IMFs and the
uniformly spaced distances, wherg, is a parameter phase difference;(n).
which controls the span over which the DVV analysis 3) phase synchrony is then defined in terms of the deviation
is performed. from perfect synchrony via the phase synchronisation
4) For every sef),(rq), the variance of the corresponding index (PSI) [45], given by
targets,o?(rq), is computed. The average over all sets 5 g
wi(rq), normalized by the variance of the time series, p(n) = ”;L (10)
ok, yields the target variance;?(ry): e
e LSy a3 (ra) © wheres = — M b Inp,, is the Shanné)/n entromey of
- o2 ) the distribution of phase differences(n — =5 : n+ %)
where N denotes the total number of sebs (r4). within a window of lengthiV’, M is the number of bins
5) Repeat Steps 1 to 4 for th¥, surrogates. within the distribution of phase differences, apg is

the probability ofp;(n — % : n + %) within the mth

Due to the standardisation of the intervals nf, the bin. The maximum entrop,.... is given by

determinism/nonlinearity analysis by DVV can be illusteht
in a scatter diagram where the horizontal-axis corresptmds Smaz = 0.626 + 0.4In(W — 1). (11)
measured variances of the original signal, and the vertixes
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MA-MSE - -
- complexity of trends in
trends J compound stock indices
finance multivariate "~ MA with Multivariate
data version different ¢ detrended SE
data —| - complexity of detrended

compound stock indices

4>| Intrinsic phase synchrony (IPS) |—> depenéjeT(c?ez_between
stock indices

ivari detrended data - L o
ugl(;/rasli’;ante | MA; e=5days A | RQA [ determinism in individual indices
L DVV |—m] uncertainty & linearity
in individual indices
detrended data
—-( MA; e=1year | ALIS [ stress level in individual indices

Fig. 1. Analytical framework. Framework of the data analysis using MA-MSE, RQA, DVV, ALkKhd IPS.

F. Assessment of Latent Index of Stress (ALIS)

We shall now introduce the Assessment of Latent Index of IV. ANALYSIS AND RESULTS

Stress (ALIS) to quantify ‘stress level of a financial orgami We applied our methodology to four stock market indices
by considering the detrended data,;, as the input, followed which represent the US economy over the last 25 years,
by aggregating the normalised financial time series of the Idetween 1st January 1991 and 31st August 2015. Five consec-
(0-0.0042 Hz, LF) and high (0.0167-0.2 Hz, HF) frequencytive periods of different natures were identified, basedwn
bands. The LF band was chosen so as to correspondirt@rpretation of key geopolitical and socio-economicrese
long-term trends (over a year), while the HF band is relatevhich affected the US and world economies [1], as follows:
to short-term trading (5 days), short-term trends (less1tha « Period 1: 1-JAN-1991 to 31-DEC-1999. Economic
a month) and medium-term trends (3 monthShe to the boom, followed the ‘dot-com’ boom from 1997 to De-
sampling frequencyy,, of 1 Hz (the close stock value for cember 1999.

each day), and’ = }Q— where f is the frequency andVy o Period 2: 1-JAN-2000 to 31-DEC-2003. Uncertainty,
the number of data points, we have empirically found that the high volatility, and Internet bubble burst; the economy
periods of one year (240 sample points), 3 months (60 sample crisis further deteriorated due to the 9/11 terrorist &ttac
points), and 5 days (5 sample points) correspond respictive  and its aftermaths.

to frequencies of 0.0042 Hzf (= 4= = zi; = 0.0042Hz),  + Period 3: 1-JAN-2004 to 31-DEC-2007. Recovery due
0.0167 Hz ( = ]fvo = & = 0.0167Hz) and 0.2 Hz to huge investment in undervalued stocks.

(f — % — % — 02HZ) in detrended ﬁnancia' t|me Series_ ° Pel‘iod 4: 1'JAN'2008 to 31'DEC'2011 Sub-prime mort-
These frequencies were used as cut-off frequencies for the gage and debt crises.

LF and HF bands. A threshold which determines whether thee Period 5: 1-JAN-2012 to 31-AUG-2015. Weak growth

market is judged ‘stressed’ or ‘normal’ is derived based on and recovery owing to the uncertainty in fiscal policy
the median, as summarised in Algorithm 5. (fiscal cliff’), increases in tax, and a slowdown in the

housing sector.

Algorithm 5: Assessment of Latent Index of Stress (ALIS)

Input: Generate the detrended data,;, using the MA Analytical Framework o
algorithm with a pre-defined scale factor (window size) of Fig. 1 shows the framework of the data analysis using
the length 1 year. the algorithms presented in Section Ill. In the MA-MSE

1) Construct the two time series corresponding to the L@alyss, moving-average (MA). filters with different windo
and HF frequency bandd,#(d) and HF(d), where sizes, e, were first employed in ord_er poth to.extract the
symbold denotes a month. trends in the four stocks (as a multlvgrla.te variable) and to

2) Normalise the LF and HF time series by subtractin roduce the detrended data. The multivariate complexaﬁ_es
the mean and dividing by standard deviation in order (%O_th the tr_end_s and the_ detr_ended o_Iata were then estimated
alleviate the problem of scaling. using multivariate SE given in Algorithm 1. The detrended

3) Remove the offset in both theF(d) and HF(d). data of univariate variables of the four stocks were then

e ted using an MA filter with the window size, of 5
4) The ALIS is given byALIS(d) = LF(d) + HF(d). ~ 9°"¢@ ndow .
5) Use the median in thd L1.S(d) as a threshold for stressoIays for the RQA and DVV analyses, given in Algorithms

: 2 and 3, so as to quantify the determinism and linearity. An
in the market. . : ) .
MA filter with the window size,s, of 1 year was next used
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Fig. 2. Stock market indices (DJIA, NASDAQ, Russell 2000 and S&P 500and their detrended versions.Upper panels Original data and their trends
for a 5-day scaleLower panels Detrended data.

to extract univariate detrended data of the four stocks f@. Multivariate Multiscale Sample Entropy (MMSE) &
the ALIS index. This algorithm, given in Algorithm 4, wasMoving-Average Multivariate Sample Entropy (MA-MSE)
employed in order to determine the stress level for eactkstoc
index. Finally, dependencies between the stock indiceg w
estimated using the IPS outlined in Algorithm 5.

Financial data were considered as an output of a low noise
Gé@/stem. This is natural as they represent actual valueseof th
stock indices, and therefore = 2 was used. A unit time lag

7 =1 was chosen as there exist short-term correlations in the
sliding windows! Four-year sliding windows with 3 years and
11 months overlap (1 month increment) were used.

The long- and short-term correlations in data were found

For the MA-MSE analysis, six scale factors of 5 days (shoria the MA filter with different pre-defined scale factoes,
term trading), 10 day, 1 month (short-term trends), 2 mgnth4/e considered six pre-defined scale factors which match the
3 months (medium-term trends) and 1 year (long-term trend¥jriods of interest in financial data (short-term tradirtgrs,
were employed in the MA algorithm, in order to obtain trendgedium-, and long-term trends), for which the scale factors
within the original daily-adjusted closing prices of theufo Were respectively 5 days (5 sample points), 10 days (10 sampl
financial indices and the detrended data. For the RQA and
DVV analyses, a scale factor of 5 days was used in the MAlThe appropriate selection of m amdrelies on the underlying dynamics of
algorithm whil’e for the ALIS index. a scale factor of 1 eaa given multivariate time series. Pincus suggested thavahees m = 2 or 3

g ' - ’ Y/ [46] are sufficient for a low-dimensional system under loviseo Kaffashiet
was used in the MA algorithm. The trends and the detrended47] recommended that = 1 is sufficient for the estimation of complexity
data of the DJIA, NASDAQ, Russell, and S&P 500 wer@&f a system which has a relatively short-term correlatiamd ¢he tolerance

. d . le f f5d d th Its & is typically set between 10% — 20% of the standard deviat®Bb)(for
estlmat_e L_JSIng a scale factor o ays, and the results gfigsiness to noise. We have therefore selected the midtlle,v15% of the
shown in Fig. 2(a)-(d).

B. Moving-average (MA) Algorithm

SD, for the MMSE and MA-MSE algorithms.
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points), 1 month (20 sample points), 2 months (40 samp&ess in the financial markets was observed using the MA-
points), 3 months (60 sample points), and 1 year (240 sampM&E applied to the detrended data.
points).

Fig. 3 shows the multivariate complexity of the trend®- Recurrence Quantification Analysis (RQA)
(price moving average) estimated using the MA-MSE with the Fig. 5 shows the degree of determinism of the detrended
six pre-defined scale factors. Observe that in each economita of individual stock indices, carried out using the RQA o
period the multivariate complexities in all the scales bxed detrended data, using a 4-year sliding windows with 3 years
similar sample entropy values. The MA-MSE suggested suénd 11 months overlap (1 month increment), applied in order
stantially higher multivariate complexity during the dwim to capture economic changes over a small number of economic
bubble and the Internet bubble burst, the periods of unicgyta cycles. From 1994 to 1996 (period of economic stability} th
and high volatility. During the sub-prime mortgage crigfs&¢ RQA indicated very low determinism — high uncertainty —
MA-MSE revealed higher entropy values than the ‘normafor all the indices. This conforms with the efficient market
periods — the economic-boom, economic-recovery, and wedlypothesis (EMH), which states that during ‘normal’ sitaas
growth periods. Note that high multivariate complexiti€é$he  stock prices behave in a random (uncertain) way.
trends estimated using the MA-MSE revealed the presenceéburing the ‘dot-com bubble’ between 1997 and 2000,
of the crises, as financial trends show the tendencies of éeeptional levels of growth in technological companieseve
markets to change in a particular way over time [3]. reflected in an increase in the levels of determinism of

The multivariate complexities of the original data of thehe NASDAQ (stock market for technological companies),
four financial indices and the trends were estimated respeésgether with the Russell 2000. Both the growth in the stock
tively using the MMSE and the MA-MSE, and are shown iindices and the degrees of determinism of both the NASDAQ
Fig. A.1 and Fig. A.2. Observe that the multivariate comjiijex and the Russell 2000 peaked simultaneously in 2000. This
quantified using the MA-MSE had no aliasing at large scaleslso conforms with the EMH hypothesis, whereby speculative
a major improvement of the MA-MSE in scale generation. economic bubbles are reflected in overestimation in stock
prices — high determinism — particularly in the DJIA and the
S&P.

The degrees of determinism in all the four indices dropped

o©
3

B ) ' "‘\’ again in 2000, for the duration of the Internet bubble burst,

until 2004. Observe that during this crisis the DJIA and the

o
)

m

n

=

)

<<

2 05f —8— 1901-1997 ic b ] . o
g > (conomic boom) S&P500 were very uncertain (low determinism). The NAS-
S 2 + 1997-2000 (dot-com bubble)

[e) . . g

%g 0.4f 2000-2004 (Internet bubble burst) 1 !Z)AQ and.the Rugsell 2000 also showed significant decrease

5o =¥ 2004-2008 (economic recovery) in determinism, with a short boost of NASDAQ by the Internet

g % 0.3 =®=2008-2011 (sub—prime mortgage crisis) 7 bubble burst in 2003.

29 02l = © = 2011-August 2015 (weak growth) e During the economic recovery period from 2004 to 2008,
2 LaICILIEIE IR IR IEIEAE D Tl o the degrees of determinism of all the four indices were ver
g .. . . .
£ 0.17 o % 2 " " 1 low (lower than 0.1) — low determinism in ‘normal’ situati&n
g

PN M The investors began to buy undervalued stocks which in turn

% days 10days 1month 2months 3months Lyear drove sub-prime mortgage crisis in the mid-2008, as inditat
Scale factor by an increase in determinism for the DJIA and the S&P 500
Fig. 3. Structural complexity of trends in compound stock indices. — high determinism during speculative economic bubbleg. Th
The moving-average multivariate sample entropy (MA-MSBJues which  NASDAQ and Russell 2000 were less affected, as housing
represent the structural complexity for the trends of the financial indices . N .
in different economic periods. The trends were generatédgutie MA investment bear no relevance for these indices. Finalynfr
algorithm with six pre-defined scale factors (5 days, 10 ddysnonth, 2 2011 to date the markets weakly recovered, and the degrees
months, 3 months and 1 year). of determinism were as low as those in the healthy periods
(2004-2008) — low determinism in normal situations.

Fig. 4 validates our complexity-loss theory by examining Observe that both markets for ‘large’ business companies
the multivariate complexity of the detrended data (rate @HJIA and S&P 500) exhibited pronounced synchrony within
change) estimated using the MA-MSE with the six pre-definghe considered 25 years, and the degrees of determinisne of th
scales. It suggests high complexity between 2000 and 20@4yr financial indices were inversely related to the mutiate

the period of uncertainty and high volatility. Observe inttbo complexity of the detrended data quantified by the MA-MSE
the figures a high variation in complexity among differentsee Fig. 4).

scales from 2004 to 2008 (the economic recovery period)

— highly pronounced in the 5-day pre-defined scale, which )

indicates enhanced short-term dependencies in data. AlSo,D€lay Vector Variance (DVV)

during the ‘dot-com bubble’ between 1997 and 2000, long- The DVV method examined linearity and uncertainty in
term correlations — more regularity — were observed. Theiee detrended data. Fig. 6 analyses the four detrendedemdic
findings are supported by the RQA analysis in the Sectitrased on 99 surrogates generated by the WIAAFT, where the
IV-D. Note that while the occurrences of the crises werehosen parameters were: the maximum span= 3, subset
detected using the MA-MSE applied to the financial trendsize Ng,;, = 200 points, and 20 uniformly spaced distances in
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Fig. 4. Structural complexity of detrended compound stock indices The moving-average multivariate sample entropy (MA-MS&ues which represent
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Fig. 5. Determinism in individual stock indices estimated using R@\.. The degree of determinism for the 5-day moving-averageeddad financial

data of the DJIA (solid thick line), the NASDAQ (broken thimé), the Russel 2000 (solid thin line), and the S&P 500 (brokhick line). The degrees
were estimated using the RQA. Four-year sliding window#\8ityears and 11 months overlap (1 month increment) were geglim the analysis using the
embedding parameters obtained via mutual informatignafid Cao’s methodng).

the horizontal axes. A variance measurement was consideasdexemplified by a relative linearity and low predictabilit
valid if the set of points was within a certain distaneg,and (lower distance of DVV plots from the vertical axis) except
contained at least 30 delay vectors (DVs). Based on Fig. fér the NASDAQ which still suffered from the consequences
five sub-periods of two-year length, with both low and higlef technological boom in the late 1990s. The sub-prime
degrees of determinism, were chosen for the analysis and thertgage crisis between 2008 and 2010 and global recession
local predictability of the original signals and the surmtgs were reflected in the deterministic and nonlinear behavadur
was assessed in order to detect the presence of nonlinearifipancial data (Fig. 5d)), as indicated by a large deviation
from the bisector line. Finally, recent weak growth in the
Fig. 6 (a) shows that between 1993 and 1995 (period @conomy was reflected in random and linear behaviour of the

economic stability) the four indices exhibited strictlyndlom indices (Fig. 5(e)), similar to the first and third sub-periods.
and linear behaviour. In Fig. @), each of the four indices

shows clear deviations from the bisector lines in the period The DVV analysis therefore complements the RQA analysis
1998-2000, indicating the presence of nonlinear dynamiaad suggests that during financially stable periods, stock
during the dot-com bubble. Between 2005 and 2007 (Figarket indices exhibit random and linear behaviour, whilg a

6 (c)), the economy recovered (low determinism in Fig. 5abnormal events (bubbles or crises) cause a more predictabl
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Fig. 6. Nonlinearity in individual stock indices. The DVV analysis with 99 WIAAFT surrogates was performed ba four stock market indices using
the embedding parameters obtained via the mutual infoomatigorithm ) and Cao’s methodnf). First row: the DJIA. Second row: the NASDAQ. Third
row: the S&P 500. Fourth row: Russell 2000. The columns spoad to the subperiods: (a) 1993-1995, (b) 1998-2000, (8%-2007, (d) 2008-2010, and
(e) 2013-2015.

(less stochastic) and nonlinear behaviour. channels (no synchrony). The PSI values between the firancia
time series within these confidence intervals were adjudged

F. Intrinsic Phase Synchrony (IPS) spurious.

Multivariate data exhibit inter-channel dependencies, ian . F_'g' / shows the P.SI yalues t_)etween all pairs C.)f stock

order to assess synchronous behaviour among stock indi ces at different IMF indices, estimated from 50 rea_lmaa_s

in different economic periods in a full multivariate way, we> NA-APIT-MEMD. Observe that PSI values at IMF indices

analysed the synchrony between stock indices using | gnd 7 wh|c_h represeqt the p_enods of 1 and 2 years (long-
fgrm trends), in all the five periods were always higher than

The four financial time series were combined into a singO 8. indicati h I th K indi hibited .
quadrivariate signal, for which the intrinsic, data-adapt - " Icating that all the stock Indices exhibited proemn

scales were determined using the NA-APIT-MEMD with 1§ynchrony in their long-term trends.

adjacent noise channels, to cater for power imbalances@monin all the five periods, the DJIA and the S&P 500 were
the four data channels (see [44] for more detail). The PSitso highly synchronised in: (i) short-term trading (peso
between pairs of the data channels at every IMF index wes& 1-5 days, represented by IMFs 1-2); (ii) short-term tiend
then calculated from 50 realisations of NA-APIT-MEMD, andperiods of less than a month, represented by IMFs 3-4); and
the confidence intervals at each IMF index were calculatéid) medium-term trends (periods of 1-3 months, represdnt
by benchmarking against the PSIs between pairs of noisg IMF 5). This finding is also supported by Fig.(2) and
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Fig. 7. Intrinsic synchrony between individual stock indices.The graphs show phase synchrony (PSI) between stock ind@ess different time scales
(IMF index) for the five periods considered (black line), ahd upper- and lower-bounds of confidence intervals (regs)inThe IMFs [1, 2], [3, 4], 5, 6, 7
correspond respectively to the time scales of 1-5 days, lttmdr3 months, 1 year, and 2 yeafa) DJIA against NASDAQ(b) DJIA against Russell 2000.
(c) DJIA against S&P 500(d) NASDAQ against Russell 200@e) NASDAQ against S&P 500(f) Russell 2000 against S&P 500. The PSI values outside
the confidence intervals were statistically relevant estii® of synchronisation. The PSI values at IMF index 7 of tftlke fieriod could not be estimated as
they were monotonic functions.

(d), and the RQA analysis. 2011, the fourth period) all the PSI values (except for the

Notice from Fig. 7 that all the PSI values at IMFs 1-DJIA - S&P 500) were on average higher than those of the
(short-term trading) during the dot-com bubble (1997-2000ecovery and weak growth periods (the third and fifth periods
the first period) and the Internet bubble burst (2000-2004004-2007 and 2012-2015). This also indicates the presence
the second period) (except for the DJIA - S&P 500) weref systemic risk, where the markets are contagious and leehav
relatively low (lower than 0.6). These periods are exenglifi in the same way during the financial crisis.
by: (i) relatively low short-term dependencies (see Fig.(#)
high variations in the degree of determinism (see Fig. 5 a®l Assessment of Latent Index of Stress (ALIS)

Fig. 6 (b)), and (iii) relatively high levels of stress of the four |}, wellbeing of the ‘economic organism’ was next ex-

fir_lancial indices as indicated by ALIS in the next sectiore(sedmmed through the complexity-loss hypothesis, wherely th
Fig. 8 (a) and(d)). low complexity (high ‘stress’ level) is indicated by high
However, during the third period (2004-2007), with loWalues of the proposed ALIS index applied to the detrended
variations in the determinism and low levels of stress (s Sdata. Four-year sliding windows with 3 years and 11 months
tion IV-G), all of the stock pairs exhibited higher synchyan Over|ap (1 month increment) were used. Fig(a§-(d) show
short-term trading (IMFs 1-2) (all the PSI values were highghe stress levels for the DJIA, NASDAQ, Russell 200 and
than 0.6). This indicates pronounced short-term depene®ncsgpP 500. Observe that the stress levels of the DJIA and
which were also detected using the MA-MSE analysis (s@ge S&P 500 (markets for big companies) were above the
Fig. 4). thresholds during the two crises: the Internet bubble bamst
Observe that during the sub-prime mortgage crisis (200e sub-prime mortgage crisis, where the NASDAQ (market
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(d) Evolution of ALIS for S&P 500.

the Internet bubble burst and less strongly for the housiigisc

for IT companies) exhibited substantially higher level wéss

Financial stress evolution through the proposed ALIS index
Observe the perfect match in ALIS for the DJIA, Russell 2000 S&P
500 for both the Internet burst and sub-prime mortgage abalities. The
NASDAQ comprises only IT companies and thus reacted momngly to

12

‘large’ business companies (DJIA and S&P 500) exhibited
pronounced synchrony within the 25 years considered. This
finding is also supported by the RQA analysis (in Fig. 5) and
the IPS analysis (in Fig. 7).

V. CONCLUSIONS

We have examined the financial market from the point of
view of complexity science and have analysed the consgaint
it exhibits in its responses to major socio-economic and geo
political events. This has been achieved for four majorlstoc
markets over a period of 25 years. The multiscale sam-
ple entropy based multivariate MA-MSE algorithm has been
shown to provide both a composite estimate of complexity for
financial indices and an estimate of systemic risk. In adljti
the univariate RQA and DVV approaches have shown that
irregularities in the market, such as the Internet bubblstbu
the 9/11 crisis or sub-prime mortgage crisis, are reflectezhi
increase in the determinism in stock indices (via RQA), the
corresponding reduction in complexity (via MA-MSE), and
increase in nonlinearity (via DVV).

The novel intrinsic phase synchrony [28] has been employed
to quantify scale-wise couplings in financial indices, amd h
indicated pronounced and physically meaningful syncteani
tion in the DJIA and the S&P 500, across the scales. Higher
degrees of synchrony have also been found in short-term
dependencies during the periods with low market stress and
low variations in the determinism. Converselye short-term
synchrony decreased with high stress and high variations in
the determinism in the marketSystemic risk has further been
identified by increased levels of average synchrony between
the markets

Finally, we have introduced a new metric, referred to as
the Assessment of Latent Index of Stress (ALIS), which
measures the degree of financial stress based on the physical
meaningful scales which reflect common trading principles.
The ALIS has strongly indicated financial stress during the
Internet and mortgage bubble crises.

This work has conclusively demonstrated the utility of
posterior complexity science approaches in the assesshent
financial stress. Our future studies will focus on incorpora
ing these approaches within machine learning algorithms in
predictive scenarios.
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APPENDIX

during the dot-com bubble and the Internet bubble burst. o )

Although the sub-prime mortgage crisis primarily affecte@- Multivariate Multiscale Sample Entropy (MMSE) &
the housing sector and non-IT companies, it also impactdpving-Average Multivariate Sample Entropy (MA-MSE)

on IT companies, as indicated by an excess stress level oAs an economic cycle typically lasts for approximately a
the NASDAQ in 2011. The Russell 2000 also exhibited higjear, and in order to capture economic changes over a small
stress level during the sub-prime mortgage crisis and ttente number of economic cycles, 4-year sliding windows with
weak growth period. However, as it comprises a small-c&years and 11 months overlap (1 month increment) were
segment of the US equity market, it was less affected lapplied. Fig. A.1 illustrates the multivariate complexitythe

the Internet bubble burst. Observe that both the markets fmiginal four financial indices estimated using the MMSEeTh
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maximum duration of coarse graining scales was set to 1 yeaisis for the DJIA, Russel 2000 and S&P 500 (for the
for which the six pre-defined scale factors can be selectédASDAQ, it is the second highest peaks), which matches
However, only the entropies of five scales (5 days, 10 dayke results obtained by the ALIS index. Comparing with the
1 month, 2 months and 3 months) could be computed, as RR®A, however, only the DJIA and S&P 500 exhibited similar
entropy estimated using the 1-year scale diverged. Natiee peaks during the crisis. The second highest percentagesof th
effect of aliasing caused by poor resolution of CGP in the 24X can be observed during the Internet bubble burst, while
and 3-month scales, which implies that MMSE may not bibe ALIS and RQA indicate the most prominent peak of the
suitable for large scales in financial data. crisis only in NASDAQ, and less significant one in Russel

Fig. A.2 shows the multivariate complexity of the trend2000. Considering the trend cycles of the MA-MSE result,
(price moving average) estimated using MA-MSE with théhe highest peak is located in the internet bubble burst and
six pre-defined scale factors. Observe that the multivariahe second highest one is in the sub-prime mortgage crisis.
complexities in all the scales exhibited similar sampleamyt This means that the rank orders of the peaks resulting from
values and no aliasing, except for the 1-year scale whitie MA-MSE are swapped, compared to the VIX results. This
showed a lower entropy, but similar variation as the othepnsequently implies that the MA-MSE could be affected by
scales. The MA-MSE suggested high multivariate complexitynly one market (NASDAQ).
during 2000 and 2004, the period of uncertainty and high Our proposed algorithms exhibit slightly different levels
volatility. of magnitudes during the two important crises, because they

use the detrended data with pre-defined scales. As such data

B. Application of the ALIS to non-US Financial Markets ~ areé less sensitive to immediate changes in the events of the
markets, our proposed algorithms provide more information
of particular trend-cycles for the individual stock indscévia

A, DVV and ALIS) and a correlated trend-cycle for the
ompound stock indices (via MA-MSE).

The ALIS index was also applied to following financial
markets outside the US: (i) Financial Times Stock Exchan
100 (FTSE 100), (ii) Cotation Assistee en Continu 40 (CA
40), (ii and iv) foreign exchange (Forex) markets for the
EUR/GBP and GBP/JPY. The data for the Euro was taken REFERENCES
from 1-JAN-1999 to 31-Aug-2015, as the electronic VerSiO[ﬁ‘] W. Er and D. P. MandicPynamical complexity analysis of multivariate
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