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Abstract—Financial markets typically undergo periods of pros-
perity followed by periods of stagnation, and this undulation
makes it challenging to maintain market efficiency. The efficient
market hypothesis (EMH) states that there exist differences in
structural complexity of the security prices between regular
conditions and abnormal situations. Yet, despite a clear link
between market acceleration (cf. recession) and stress in systems,
indices of financial stress still have significant scope for further
development. The overarching aim of this work is therefore to
determine those characteristics of financial indices whichare
related to their stress levels, and to establish a robust metric
for the extent of ‘stress’ of the financial system. This is achieved
based on systematic intrinsic multiscale analysis which enables
us to test the so called complexity-loss hypothesis in the context
of financial stress. Multiscale sample entropy and our proposed
Assessment of Latent Index of Stress (ALIS)have successfully
quantified financial stress, and an analogy between transitions
from ‘normal’ (relaxed) to ‘abnormal’ (stressed) financial periods
with the sympatho-vagal balance in humans is established. Four
major stock indices of the US economy over the past 25 years
are considered: (i) Dow Jones Industrial Average (DJIA), (ii)
NASDAQ Composite, (iii) Standard & Poor’s 500 (S&P 500),
and (iv) Russell 2000, together with FTSE 100, CAC 40 and
exchange rates. Our findings are supported by the EMH theory
and reveal high stress for both the periods of Internet bubble
burst and sub-prime mortgage crisis.

Index Terms—financial stress, complexity-loss hypothesis, mul-
tiscale entroypy, determinism, nonlinearity, intrinsic phase syn-
chrony, ALIS index.

I. I NTRODUCTION

I NDICES of major stock markets are generally accepted as
indicators of the financial health and economic wellbeing

[1], [2]. Given their close link with socio-economic and geo-
political factors (here, we refer to those as ‘events’) the latent
dynamics of stock indices are also a reliable indicator of the
influence those events have on the health of the financial
system. To put this into context, in the last 25 years the
US alone have been through a number of events, including
the ‘dot-com boom’ in the 1990s, the 9/11 terrorist attack in
2001 and the sub-prime mortgage crisis in 2008. It is therefore
natural to ask whether the general health of the economy, seen
through the lens of stock indices, can be assessed in a way
analogous to the way we examine health of living organisms.
This motivates us to embark upon the huge body of work on
human stress in order to derive indicators of ‘stress’ of the
financial system and established ‘biomarkers’ of characteristic
events in stock indices. To this end, we employ the so-called
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complexity-loss hypothesiswhich states that organisms experi-
encing constraints (illness, ageing, stress) exhibit lower struc-
tural complexity of their physiological responses than healthy
organisms. Our analysis falls under this general umbrella,but
is finance-specific and employs nonparametric analyses of the
determinism, nonlinearity, multiscale entropy, and synchrony
within an intrinsic multivariate analysis framework.

In technical terms, stock indices exhibit trends – local and
global ‘first order’ behaviour [3] – together with economic
and non-economic cyclical influences (e.g. the four-year pres-
idential cycle in the US) and effects of our habits, such as
the Sell in May stock trading strategy and the Christmas sales
effect [4]. Trends in financial indices are perhaps their most
examined characteristics, with both numerical and graphical
methods used for their detection. Stock market volatility,on
the other hand, reflects the degree of uncertainty in stock
indices. Financial analysts routinely build models based on the
history of financial parameters, a process referred to as ‘techni-
cal analysis’ [5], [6]. This methodology is well established, yet
a proportion of market trade takes place based on speculations
[7]. A very popular numerical method is the class of moving-
average (MA) algorithms which yield indicators of general
movements of stock prices such as: (i) price moving average
for raw data with trend, and (ii) rate of change at different
scales, for detrended data. The price moving averages allow
investors to compare fluctuations in stocks to the trends over
time, while the rates of change are relatively faithful indicators
of the momentum of stocks. For example, a positive value of
the rate of change suggests enough market support to continue
driving prices in the direction of the current trend, while its
negative value indicates lack of market support and tendency
for stock values to become stagnant or to reverse.

The efficient market hypothesis (EMH) is a cornerstone of
modern financial theory and states that current security prices
(the underlying value of the asset) incorporate and reflect all
relevant information that could be gathered, so that stocks
always trade at fair value [8]. This implies that in ‘normal’
situations markets cannot be consistently beaten over long
time; in other words, the security prices tend to exhibit a
random walk type of behaviour, characterised by poor pre-
dictability from their historical values andhigh uncertaintyin
the rate of change of stock prices. However, when speculative
economic bubbles – ‘abnormal’ situations – occur, the markets
are often driven by buyers who are prone to sentiment or
irrational exuberance. In such scenarios, the buyers tend to
overestimate stock values while anticipating the growth of
markets, which in turn bringsless uncertaintyto the rate of
change of future prices. This ‘acceleration-stabilisation’ type
of behaviour is not dissimilar to the sympatho-vagal balance in
humans, whereby the sympathetic autonomous nervous system
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(SNS) accelerates body functions while the parasympathetic
nervous system (PNS) slows them down [9].

Following on the EMH, stress of the financial system can
be interpreted as a deviation from its normal functioning,
and can be caused by a single or multiple factors or events
[10]. There is no agreement on a more specific definition,
as episodes of financial stress often vastly differ, from dot-
com bubble through to sub-prime mortgage crisis.A risk
(stress) indicator specific to currency markets was proposed
in [11], and defines financial risk through a reduction in
the number of significant factors – principal components.
However, the suggestions that a decrease in the degrees of
freedom invariably signifies the loss of complexity during
an episode of crisis is not necessarily valid; to this end we
also need to examine higher-order features related to long-
range couplings [12]. The degree of determinism of the signal,
in addition, also plays an important role in determining the
degree of complexity [13]. The financial stress index (FSI)
proposed in [14] considers the variations in the intensity and
duration of financial stress episodes through high-frequency
price variables. Based on an equal-variance weighted average,
financial stress is detected when the value of the FSI exceeds
one standard deviation above the trend (using the Hodrick-
Prescott (HP) filter); the FSI also indicates whether an episode
of financial stress is due to stress in banking, securities, or
foreign exchange sectors. The FSI in [15] focuses on market
responses in the securities, exchange and banking sectors.
It evaluates the monthly changes in the degree of stress
transmission and the stress co-movement between advanced
and emerging economies [16], [17]. Financial stress is then
deemed present if the index exceeds 1.5 standard deviations
above its mean [18]; the FSI also provides estimation of the
type of crisis, for example, the EMPI component was able to
capture 80 percent of the currency crisis found in the literature.

In addition to specific indices which capture a particular
aspect of financial stress, current financial stress indicesalso
include thecompositeones such as the Chicago Fed National
Activity Index (CFNA) and the Kansas City Financial Stress
Index (KCFSF) [19], which are calculated over a range of
variables. Our approach falls between these two categories–
it is composite in the sense that it simultaneously analyses
severalindividual market indices, while being specific enough
to examine thebalance/imbalance aspectof markets. In an
analogy to the sympatho-vagal balance in human stress re-
search, we consider the ‘biomarkers’ of financial stress to
be accelerations followed by recessions in stock indices. The
market expansions are therefore interpreted similarly to the
effects of the SNS activity in humans, and are characterised
by investors’ over-excitement, over-confidence, and heuristic
approaches. Market recessions are analogous to the effectsof
the PNS, whereby the slow-down is accompanied by a lack of
confidence and a decrease in market efficiency.

During a financial crisis, the term ‘systemic risk’ refers
to a series of correlated defaults among financial institutions,
occurring over a short time span and triggering a withdrawal
of liquidity and widespread loss of confidence in the financial
system as a whole. At the heart of the concept is the notion of
‘contagion’, a particularly strong propagation of failures from

one institution, market or system to another. Five different
measures of systematic risk were proposed in [20], based on
statistical relations among the market returns of hedge funds,
banks, brokers and insurance companies. Using correlations,
cross-autocorrelations, PCA, regime-switching models, and
Granger causality tests, it was found that all four sectors
have become highly interrelated and less liquid over the past
decade, which indicates an increased level of systemic riskin
the finance and insurance industries. These measures can also
identify and quantify financial crisis periods.

The absorption ratio [21] was introduced as an indicator
of market fragility and systemic risk, and is defined as the
fraction of the total variance of a set of assets explained or
absorbed by a finite set of eigenvectors. A high value for
the absorption ratio corresponds to a high level of systemic
risk and fragility. For example, high values of absorption ratio
of the US stock market during the dot-com bubble and the
global financial and sub-prime mortgage crises suggested that
the market was extremely fragile and vulnerable to negative
shocks, which propagate quickly and broadly, in both of the
periods. The absorption ratio can also be used as a warning
for investors, as it has been shown that on average, stock
prices decreased following one-standard-deviation spikes in
the absorption ratio, while they increased after one-standard-
deviation drops in the absorption ratio.

The ‘10-by-10-by-10’ approach for assessing systemic fi-
nancial risk related to stress scenarios was proposed in [22],
based on three factors: financial institutions, a number of
counterparties and stress tests. The total of gains and losses
of each stress test for each institution (also counterparty) is
calculated and then reported periodically.

Therefore, there is a void in the literature when it comes
to the quantification of both financial stress and systemic risk.
To this end, in an analogy to human stress (sympatho-vagal
imbalance) the signatures of which are derived from the low-
frequency (LF) and high-frequency (HF) bands within heart
rate variability (HRV), we propose the Assessment of Latent
Index of Stress (ALIS) which examines the LF and HF bands
in detrended financial data. Our rationale is that low-frequency
changes (LF band), which correspond to time spans of over 1
year, are driven by global factors (monetary policies), whereas
the more rapid changes (HF band), over spans of 5 days to 3
months, signify abrupt events, such as the 9/11 crisis and the
Internet bubble burst.

The ALIS index therefore determines ‘crisis versus no-
crisis’ episodes of the financial stress evolution through the
examination of long- and short-term changes in specific stock
indices, whereas the existing FSIs in [14], [15], [19] consider
several sub-components, such as stock market returns and
time-varying stock market return volatility, which may be
responsible for the onset and development of financial stress.
While the ALIS index is not designed for such specific ana-
lyses using financial market variables as potential cofounders
for financial stress, it is one of the first methods which extends
beyond the second order analysis in [14], [15], [19] to detect
the patterns of financial crises in specific financial indices
using a bio-inspired signal processing approach.



JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO.Y, MONTH 201X 3

II. SUMMARY OF MOTIVATION AND CONTRIBUTION

Inspired by the catastrophe theory [23] and the EMH theory,
we propose the ALIS index as an indicator of financial stress
during episodes of financial crises in different individualstock
indices. Following on the complexity-loss theory, financial sys-
tems are shown to exhibit lower levels of structural complexity
during financial crises, compared to normal periods. We also
introduce a moving-average multivariate sample entropy (MA-
MSE) algorithm to precisely quantify different degrees of such
complexity. The recurrence quantification analysis (RQA) and
delay vector variance (DVV) are then employed so as to
establish the ground truth of the deterministic versus stochastic
and linear versus nonlinear signal modality for stock indices.
Finally, the intrinsic phase synchrony (IPS) is employed for
the quantification of inter-dependencies during financial crises,
as financial systems often exhibit high levels of systemic risk,
that is, they are contagious and, to an extent, dependent on
one another.

It is almost self-evident that financial markets exhibit high
structural complexity which in turn can be quantified through
entropy, for example, using the multivariate multiscale sample
entropy (MMSE) [12], [24] algorithm. This approach examines
long-term correlations of both the trend and the detrended
data. For enhanced resolution, we introduce a novel MA-MSE
algorithm, described in Section III-B. Also, prior to modelling
financial indices, it is a prerequisite to establish the ground
truth for the linear versus nonlinear and deterministic versus
stochastic nature of the data, referred to assignal modality
analysis. To this end, we employ nonparametric analyses using
the methods of recurrence plots [25] and DVV [26], which
examine the nature of the underlying generating mechanisms
[27], a subject of Section III-C and Section III-D.

We also examine the degree of synchrony between financial
indices and establish the extent to which IPS [28] can be
used to quantify synchronous behaviour– financial contagion
leading to systemic risk –among multiple stock indices related
to the same sector, as elaborated in Section III-E.

In the analysis, we consider four major stock indices which
indicate the state of economy of the US [1]: (i) Dow Jones
Industrial Average (DJIA), (ii) NASDAQ Composite, (iii)
Standard & Poor’s 500 (S&P 500), and (iv) Russell 2000. The
DJIA comprises 30 of the largest companies in the US across a
range of industries except for transport and utilities; NASDAQ
is an indicator of the performance of stocks in technology
and of the growth in companies; S&P 500 consists of 500
large companies from a vast number of industries, each having
market capitalisation of more than $5 billion; and Russell 2000
comprises a small-cap segment of the US equity market.We
also consider four financial markets outside the US in order to
assess the performance of the ALIS: (i) Financial Times Stock
Exchange 100 (FTSE 100), (ii) Cotation Assistée en Continu
40 (CAC 40), (iii and iv) foreign exchange (Forex) markets for
the EUR/GBP and GBP/JPY. The FTSE 100 is a share index
of the 100 companies listed on the London Stock Exchange,
the CAC 40 represents the 40 most significant values among
the highest 100 market capitalisation of the Euronext Paris
(Paris stock exchange).

The aim of study is therefore to simultaneously charac-
terise, in a full multivariate way, the financial stress through
the complexity-loss hypothesis (systems under stress exhibit
greater regularity and less freedom.) [29]–[31]and systemic
risk (the markets are contagious and behave in the same way
during financial crises). This is achieved by examining in stock
trends intrinsic and inter-channel dependencies togetherwith
their nonlinear and stochastic properties. The detrended stock
indices (the rate of change) of the market indices over the last
25 years (between 1st January 1991 and 31st August 2015)
were analysed using the following nonparametric methods: (i)
multivariate multiscale sample entropy (MMSE), (ii) moving-
average multivariate sample entropy (MA-MSE) (iii) recur-
rence quantification analysis (RQA), (iv) delay vector variance
(DVV), (v) Assessment of Latent Index of Stress (ALIS),
and (vi) intrinsic phase synchrony (IPS). Methods (ii), (v),
and (vi) are novel and are derived specifically for financial
data. The analysis is verified over several case studies which
support complexity-loss theory for financial markets, a robust
framework to understand financial stress.

III. A LGORITHM AND BACKGROUND

We shall first briefly describe the algorithms used in this
study.

A. Moving-average (MA) Algorithm for the Multivariate Case

This standard approach considers a multivariate signal
xorg,k,i, k = 1, 2, . . . , p, i = 1, . . . , N , with p being the
number of data channels andN the total number of sample
points. The moving-average filter removes the trend,sk,j , from
the originalxorg,k,i, using the following functional form

sεk,j =
1

ε

j+τ−1
∑

i=j

xorg,k,i, 1 ≤ j ≤ N − τ + 1, (1)

whereε is a pre-defined scale factor (data window size). The
detrended data,zk,j , is then obtained as

zεk,j = xorg,k,i − sεk,j , i = 1, 2, . . . , N − 1 (2)

Observe that long window sizes will remove short trends.

B. Multivariate Multiscale Sample Entropy (MMSE) &
Moving-Average Multivariate Sample Entropy (MA-MSE)

The sample entropy (SampEn) method provides empirical
estimates of entropy [32] based on the probability of similarity
between the delay vectors (patterns) in data. The SampEn is
a single-scale measure, while the interpretation of complexity
estimated via entropy requires multiple scales. To this end,
the multiscale sample entropy (MSE) algorithm [33] con-
structs pre-determined scales using the coarse graining process
(CGP). Such scales do not match intrinsic properties in the
data, and in addition the number of data points for a given
scale, ε, Nε = N

ε
, decreases linearly in the scale factor.

For better resolution, the modified multiscale entropy (Mod-
MSE) [34] algorithm replaces GCP by a moving-average (MA)
scale definition process. Both the MSE and the Mod-MSE,
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however, are univariate algorithms, not capable of account-
ing for cross-channel dependencies. To cater for multivariate
cases, the multivariate MSE (MMSE) [12], [24], reveals both
the intrinsic- and cross-complexities through a multivariate
embedding process. We here introduce its variate, termed
MA-MSE, to quantify multivariate complexity ofboth the
trend and the detrended data, a procedure referred to as the
moving-average multivariate sample entropy (MA-MSE), out-
lined in Algorithm 1. By virtue of MA-MSE, pre-defined and
physically meaningful scales are generated to match periods
of interest (finance-specific scales) in financial data, suchas
short-term trading (1-5 days), and short- (less than a month),
medium- (1-3 months) and long-term (over a year) trends [6].

Within either the MMSE or the MA-MSE, first the embed-
ding dimensionm and time lagτ of each variate are calculated
to construct a composite multivariate delay vector, given by

Xm(i) = [x1,i, x1,i+τ1 , . . . , x1,i+(m1−1)τ1 ,

x2,i, x2,i+τ2 , . . . , x2,i+(m2−1)τ2 , . . . ,

xp,i, xp,i+τp , . . . , xp,i+(mp−1)τp ],

(3)

where M = [m1,m2, . . . ,mp] ∈ R
p is the embedding

dimension vector,τ = [τ1, τ2, . . . , τp] denotes the time lag
vector,p is the number of variates, andXm(i) ∈ R

m.
The CGP within the MMSE creates scale factors by av-

eraging the adjacent sample points within non-overlapping
windows of increasing lengthε (scale factor). The resulting
data, denoted byyεk,j , represent a coarse-grained scaleε and
is obtained as

yεk,j =
1

ε

jε
∑

i=(j−1)ε+1

xk,i, 1 ≤ j ≤
N

ε
(4)

The proposed MA-MSE replaces the CGP by MA-based
scale generation, whereby both the trend,sεk,j , and the de-
trended data,zεk,j , are combined aswε

k,j = [sεk,j , z
ε
k,j ] and are

used as pre-defined scales (input) for the algorithm.
Before computing the MMSE and the MA-MSE, a tolerance

parameter,r, is defined and is used to search for similar
patterns (delay vectors) by comparing the scalar distance
between all pairs of delay vectors in Eq. (3), but without
self-comparison. If the difference in the distance of a pairof
delay vectors is less thanr, the event of a similar pattern has
occurred.

Algorithm 1: Multivariate multiscale sample entropy (MMSE)
& Moving-average multivariate sample entropy (MA-MSE)

For each scale:yεk,j (MMSE), or wε
k,j (MA-MSE):

1) Construct a composite delay vector based on the scale
yεk,j (MMSE) or wε

k,j (MA-MSE).
2) Search for similar patterns in every element of the

composite delay vector. If the difference in the pair-wise
distance is less than or equal to the defined tolerance
||Xm(i) −Xm(j)|| ≤ r, j 6= i, the event of similarity
Pm is counted.

3) Calculate the probabilityBm(r) =
1

N
Pm, whereN is

the total number of searches in each sub-delay vector.

4) Repeat Steps 1 to 3 for the (m + 1)-dimensional com-
posite delay vector.

5) Calculate the MMSE or the MA-MSE using

SampEn(m, τ, r) = −ln[
Bm+1r

Bmr
] (5)

C. Recurrence Quantification Analysis (RQA)

The recurrence plot (RP) method [25], outlined in Algorithm
2, was introduced to visualise the dynamics of phase space
trajectories. By using the Takens embedding theorem [35], for
a given univariate time seriesx(n), the phase space can be
reconstructed by embedding the time series as follows:

Xm,τ (i) = [xi, xi+τ , . . . , xi+(m−1)τ ]

i = 1, . . . , N − (m− 1)τ,
(6)

whereN is the total number of points,τ the delay between
consecutive points of the time series, andm the embedding
dimension. A common approach to determining the time lagτ

is based on the mutual information algorithm [36], while the
selection of the minimum embedding dimensionm is based on
the false nearest neighbours method [37]. A joint calculation
of the optimalτ andm has been proposed in [38].

Quantifying the number and duration of the recurrences
allows us to study the degree of determinism [39], whereas
the length of a diagonal line in RP reflects the number of
consecutive states in which the two trajectory segments exhibit
a similar evolution.

Algorithm 2: Recurrence quantification analysis (RQA)

Input: Discrete time seriesx(n).
1) Given the optimal embedding parameters,m and τ ,

generate the delay vectors (DVs), as in Eq. (6).
2) Compute the recurrence plots matrix, which summarises

all pairwise Euclidean distances between DVs, as

RPi,j = Θ
(

ε− ||X(i)−X(j)||
)

, i, j = 1, . . . , Ns, (7)

whereNs is the number of considered states inX , ε a
threshold distance (60% of the mean Euclidean distance
of the DVs), || · || the Euclidean distance, andΘ(·) the
Heaviside function.

3) The percentage of recurrence points which form diag-
onal lines measures the degree of predictability, and is
computed as:

DET =

∑Ns

j=jmin
j · P (j)

∑Ns

j=1 j · P (j)
, (8)

whereP (j) is the number of diagonal lines of length
j, and jmin the minimum number of points to be
considered as a diagonal line (in this work,jmin = 2).

A time seriesx(n) is considered deterministic if its trajec-
tory in the phase space is smooth and can be modelled as
a continuous function. This results in an RP matrix where
almost every state is recurrent and forms long diagonal lines,
where the DET value is close to unity. On the other hand, if
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a time series is stochastic, the DET values are close to zero.
The intermediate case corresponds to a signal which comprises
both deterministic and stochastic components.

D. Delay Vector Variance (DVV)

The delay vector variance (DVV) method [26] is a phase
space technique which examines the deterministic versus
stochastic nature of a time series, and when combined with
the method of surrogate data [26], it also provides information
about the linear versus nonlinear behaviour. Most statisti-
cal signal nonlinearity analyses, including the surrogatedata
method, are based on the Monte-Carlo approach [40], whereby
an ensemble of surrogate data is constructed to represent
linearised versions of the original data. A statistical measure
(test statistics) is then computed for both the original time
series and the surrogates; if these are significantly different,
the data at hand are deemed not to be generated by a linear
process.

The standard definition of a linear signal is that it is
generated by a Gaussian linear stochastic process. Based on
this ‘null hypothesis’, constrained surrogates are commonly
generated by the iterative amplitude adjusted Fourier transform
(iAAFT) [41], and its refined version, the maximal overlap
discrete wavelet transform (MODWT), where the original
iAAFT-procedure is applied to each set of wavelet coefficients
(WiAAFT). The WiAAFT retains not only the signal distri-
bution and amplitude spectrum of the original time series but
also the local mean and the variance of the original time series
[42]. The DVV method is summarised in Algorithm 3.

Algorithm 3: Delay vector variance (DVV)

1) Given the optimal embedding parameters,m andτ , gen-
erate the delay vectors (DVs) based on Equation (6). Ev-
eryDV , X(i), has a corresponding target,xi+(m−1)τ+1.

2) The mean,µd, and the standard deviation,σd, are
computed over all pairwise Euclidean distances between
DVs, ||X(i)−X(j)||(i 6= j).

3) The setsΩk(rd) are generated such thatωk(rd) =
{x(i)||x(k)− x(i)|| ≤ rd}, i.e., sets which consist of all
DVs that lie closer tox(k) than a certain distancerd,
taken from the interval[max {0, µd − ndσd}], e.g.,Ntv

uniformly spaced distances, wherend is a parameter
which controls the span over which the DVV analysis
is performed.

4) For every setΩk(rd), the variance of the corresponding
targets,σ2

k(rd), is computed. The average over all sets
ωk(rd), normalized by the variance of the time series,
σk, yields the target variance,σ∗2(rd):

σ∗2 =
1
N

∑N

k=1 σ
2
k(rd)

σ2
x

, (9)

whereN denotes the total number of setsΩk(rd).
5) Repeat Steps 1 to 4 for theNs surrogates.

Due to the standardisation of the intervals ofrd, the
determinism/nonlinearity analysis by DVV can be illustrated
in a scatter diagram where the horizontal-axis correspondsto
measured variances of the original signal, and the vertical-axis

to that of the average of the surrogates. If the surrogates exhibit
similar behaviour to the original signal, the DVV graph will
lie on the bisector line and the original signal is considered
to be linear; any deviation from the bisector line indicatesa
nonlinear signal. Moreover, the minimum target variance for
the original signal is a measure of the amount of uncertainty
present in the time series.

E. Intrinsic Phase Synchrony (IPS)

The degree of phase synchronisation between data channels
can be measured through phase synchrony, which quantifies
only the phase relationship between two signals without ac-
counting for amplitude information, and is defined in terms of
the deviation from perfect synchrony via the phase synchro-
nisation index (PSI).

The intrinsic phase synchrony (IPS) was originally proposed
in the so calledintrinsic multiscale analysisframework in [28]
and generalises standard phase synchrony by equipping it with
the ability to operate at the intrinsic scale level. It employs
multivariate empirical mode decomposition (MEMD) [43] to
decompose a given multivariate signal into its narrowband in-
trinsic oscillations (IMFs), which makes it possible to quantify
the temporal locking of the phase information in IMFs using
the standard phase synchronisation index (PSI), as outlined in
Algorithm 4.

Financial time series contain different degrees of volatil-
ity, or in other words power imbalances among the signal
channels; therefore in the intrinsic multiscale analysis we use
the noise-assisted adaptive-projection intrinsically-transformed
MEMD (NA-APIT-MEMD) which accounts for the different
dynamics in multivariate data (see [44] for more detail). By
virtue of NA-APIT-MEMD, these intrinsic scales physically
represent short-term trading, short-, medium-, and long-term
trends. Standard phase synchrony can then be employed to
characterise scale-wise dependencies in stock indices.

Algorithm 4: Intrinsic phase synchrony (IPS)

Input: Discrete time seriesx1(n), x2(n).

1) Obtain IMFs via the NA-APITMEMD,c1,i andc2,i, i =
1, . . . ,M .

2) Calculate the instantaneous phases for the IMFs and the
phase differenceφi(n).

3) Phase synchrony is then defined in terms of the deviation
from perfect synchrony via the phase synchronisation
index (PSI) [45], given by

ρ(n) =
Smax − S

Smax

, (10)

whereS = −
∑M

m=1 pm ln pm is the Shannon entropy of
the distribution of phase differencesφi(n−

W
2 : n+ W

2 )
within a window of lengthW , M is the number of bins
within the distribution of phase differences, andpm is
the probability ofφi(n − W

2 : n + W
2 ) within the mth

bin. The maximum entropySmax is given by

Smax = 0.626 + 0.4 ln(W − 1). (11)
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Fig. 1. Analytical framework. Framework of the data analysis using MA-MSE, RQA, DVV, ALIS,and IPS.

F. Assessment of Latent Index of Stress (ALIS)

We shall now introduce the Assessment of Latent Index of
Stress (ALIS) to quantify ‘stress level of a financial organism’
by considering the detrended data,zk,j , as the input, followed
by aggregating the normalised financial time series of the low
(0-0.0042 Hz, LF) and high (0.0167-0.2 Hz, HF) frequency
bands. The LF band was chosen so as to correspond to
long-term trends (over a year), while the HF band is related
to short-term trading (5 days), short-term trends (less than
a month) and medium-term trends (3 months).Due to the
sampling frequency,fs, of 1 Hz (the close stock value for
each day), andf = fs

N0

, wheref is the frequency andN0

the number of data points, we have empirically found that the
periods of one year (240 sample points), 3 months (60 sample
points), and 5 days (5 sample points) correspond respectively
to frequencies of 0.0042 Hz (f = fs

N0

= 1
240 = 0.0042Hz),

0.0167 Hz (f = fs
N0

= 1
60 = 0.0167Hz) and 0.2 Hz

(f = fs
N0

= 1
5 = 0.2Hz) in detrended financial time series.

These frequencies were used as cut-off frequencies for the
LF and HF bands. A threshold which determines whether the
market is judged ‘stressed’ or ‘normal’ is derived based on
the median, as summarised in Algorithm 5.

Algorithm 5: Assessment of Latent Index of Stress (ALIS)

Input: Generate the detrended data,zk,j , using the MA
algorithm with a pre-defined scale factor (window size) of
the length 1 year.

1) Construct the two time series corresponding to the LF
and HF frequency bands,LF (d) and HF (d), where
symbold denotes a month.

2) Normalise the LF and HF time series by subtracting
the mean and dividing by standard deviation in order to
alleviate the problem of scaling.

3) Remove the offset in both theLF (d) andHF (d).
4) The ALIS is given byALIS(d) = LF (d) +HF (d).
5) Use the median in theALIS(d) as a threshold for stress

in the market.

IV. A NALYSIS AND RESULTS

We applied our methodology to four stock market indices
which represent the US economy over the last 25 years,
between 1st January 1991 and 31st August 2015. Five consec-
utive periods of different natures were identified, based onour
interpretation of key geopolitical and socio-economic events
which affected the US and world economies [1], as follows:

• Period 1: 1-JAN-1991 to 31-DEC-1999. Economic
boom, followed the ‘dot-com’ boom from 1997 to De-
cember 1999.

• Period 2: 1-JAN-2000 to 31-DEC-2003. Uncertainty,
high volatility, and Internet bubble burst; the economy
crisis further deteriorated due to the 9/11 terrorist attack
and its aftermaths.

• Period 3: 1-JAN-2004 to 31-DEC-2007. Recovery due
to huge investment in undervalued stocks.

• Period 4: 1-JAN-2008 to 31-DEC-2011. Sub-prime mort-
gage and debt crises.

• Period 5: 1-JAN-2012 to 31-AUG-2015. Weak growth
and recovery owing to the uncertainty in fiscal policy
(‘fiscal cliff’), increases in tax, and a slowdown in the
housing sector.

A. Analytical Framework

Fig. 1 shows the framework of the data analysis using
the algorithms presented in Section III. In the MA-MSE
analysis, moving-average (MA) filters with different window
sizes, ε, were first employed in order both to extract the
trends in the four stocks (as a multivariate variable) and to
produce the detrended data. The multivariate complexitiesof
both the trends and the detrended data were then estimated
using multivariate SE given in Algorithm 1. The detrended
data of univariate variables of the four stocks were then
generated using an MA filter with the window size,ε, of 5
days for the RQA and DVV analyses, given in Algorithms
2 and 3, so as to quantify the determinism and linearity. An
MA filter with the window size,ε, of 1 year was next used
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Fig. 2. Stock market indices (DJIA, NASDAQ, Russell 2000 and S&P 500) and their detrended versions.Upper panels: Original data and their trends
for a 5-day scale.Lower panels: Detrended data.

to extract univariate detrended data of the four stocks for
the ALIS index. This algorithm, given in Algorithm 4, was
employed in order to determine the stress level for each stock
index. Finally, dependencies between the stock indices were
estimated using the IPS outlined in Algorithm 5.

B. Moving-average (MA) Algorithm

For the MA-MSE analysis, six scale factors of 5 days (short-
term trading), 10 day, 1 month (short-term trends), 2 months,
3 months (medium-term trends) and 1 year (long-term trends)
were employed in the MA algorithm, in order to obtain trends
within the original daily-adjusted closing prices of the four
financial indices and the detrended data. For the RQA and
DVV analyses, a scale factor of 5 days was used in the MA
algorithm, while for the ALIS index, a scale factor of 1 year
was used in the MA algorithm. The trends and the detrended
data of the DJIA, NASDAQ, Russell, and S&P 500 were
estimated using a scale factor of 5 days, and the results are
shown in Fig. 2(a)-(d).

C. Multivariate Multiscale Sample Entropy (MMSE) &
Moving-Average Multivariate Sample Entropy (MA-MSE)

Financial data were considered as an output of a low noise
system. This is natural as they represent actual values of the
stock indices, and thereforem = 2 was used. A unit time lag
τ = 1 was chosen as there exist short-term correlations in the
sliding windows.1 Four-year sliding windows with 3 years and
11 months overlap (1 month increment) were used.

The long- and short-term correlations in data were found
via the MA filter with different pre-defined scale factors,ε.
We considered six pre-defined scale factors which match the
periods of interest in financial data (short-term trading, short-,
medium-, and long-term trends), for which the scale factors
were respectively 5 days (5 sample points), 10 days (10 sample

1The appropriate selection of m andτ relies on the underlying dynamics of
a given multivariate time series. Pincus suggested that thevalues m = 2 or 3
[46] are sufficient for a low-dimensional system under low noise. Kaffashiet
al. [47] recommended thatτ = 1 is sufficient for the estimation of complexity
of a system which has a relatively short-term correlation, and the tolerance
r is typically set between 10% – 20% of the standard deviation (SD) for
robustness to noise. We have therefore selected the middle value, 15% of the
SD, for the MMSE and MA-MSE algorithms.
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points), 1 month (20 sample points), 2 months (40 sample
points), 3 months (60 sample points), and 1 year (240 sample
points).

Fig. 3 shows the multivariate complexity of the trends
(price moving average) estimated using the MA-MSE with the
six pre-defined scale factors. Observe that in each economic
period the multivariate complexities in all the scales exhibited
similar sample entropy values. The MA-MSE suggested sub-
stantially higher multivariate complexity during the dot-com
bubble and the Internet bubble burst, the periods of uncertainty
and high volatility. During the sub-prime mortgage crisis,the
MA-MSE revealed higher entropy values than the ‘normal’
periods – the economic-boom, economic-recovery, and weak-
growth periods. Note that high multivariate complexities of the
trends estimated using the MA-MSE revealed the presence
of the crises, as financial trends show the tendencies of the
markets to change in a particular way over time [3].

The multivariate complexities of the original data of the
four financial indices and the trends were estimated respec-
tively using the MMSE and the MA-MSE, and are shown in
Fig. A.1 and Fig. A.2. Observe that the multivariate complexity
quantified using the MA-MSE had no aliasing at large scales,
a major improvement of the MA-MSE in scale generation.
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Fig. 3. Structural complexity of trends in compound stock indices.
The moving-average multivariate sample entropy (MA-MSE) values which
represent the structural complexity for the trends of the four financial indices
in different economic periods. The trends were generated using the MA
algorithm with six pre-defined scale factors (5 days, 10 days, 1 month, 2
months, 3 months and 1 year).

Fig. 4 validates our complexity-loss theory by examining
the multivariate complexity of the detrended data (rate of
change) estimated using the MA-MSE with the six pre-defined
scales. It suggests high complexity between 2000 and 2004,
the period of uncertainty and high volatility. Observe in both
the figures a high variation in complexity among different
scales from 2004 to 2008 (the economic recovery period)
– highly pronounced in the 5-day pre-defined scale, which
indicates enhanced short-term dependencies in data. Also,
during the ‘dot-com bubble’ between 1997 and 2000, long-
term correlations – more regularity – were observed. These
findings are supported by the RQA analysis in the Section
IV-D. Note that while the occurrences of the crises were
detected using the MA-MSE applied to the financial trends,

stress in the financial markets was observed using the MA-
MSE applied to the detrended data.

D. Recurrence Quantification Analysis (RQA)

Fig. 5 shows the degree of determinism of the detrended
data of individual stock indices, carried out using the RQA on
detrended data, using a 4-year sliding windows with 3 years
and 11 months overlap (1 month increment), applied in order
to capture economic changes over a small number of economic
cycles. From 1994 to 1996 (period of economic stability), the
RQA indicated very low determinism – high uncertainty –
for all the indices. This conforms with the efficient market
hypothesis (EMH), which states that during ‘normal’ situations
stock prices behave in a random (uncertain) way.

During the ‘dot-com bubble’ between 1997 and 2000,
exceptional levels of growth in technological companies were
reflected in an increase in the levels of determinism of
the NASDAQ (stock market for technological companies),
together with the Russell 2000. Both the growth in the stock
indices and the degrees of determinism of both the NASDAQ
and the Russell 2000 peaked simultaneously in 2000. This
also conforms with the EMH hypothesis, whereby speculative
economic bubbles are reflected in overestimation in stock
prices – high determinism – particularly in the DJIA and the
S&P.

The degrees of determinism in all the four indices dropped
again in 2000, for the duration of the Internet bubble burst,
until 2004. Observe that during this crisis the DJIA and the
S&P500 were very uncertain (low determinism). The NAS-
DAQ and the Russell 2000 also showed significant decrease
in determinism, with a short boost of NASDAQ by the Internet
bubble burst in 2003.

During the economic recovery period from 2004 to 2008,
the degrees of determinism of all the four indices were very
low (lower than 0.1) – low determinism in ‘normal’ situations.
The investors began to buy undervalued stocks which in turn
drove sub-prime mortgage crisis in the mid-2008, as indicated
by an increase in determinism for the DJIA and the S&P 500
– high determinism during speculative economic bubbles. The
NASDAQ and Russell 2000 were less affected, as housing
investment bear no relevance for these indices. Finally, from
2011 to date the markets weakly recovered, and the degrees
of determinism were as low as those in the healthy periods
(2004-2008) – low determinism in normal situations.

Observe that both markets for ‘large’ business companies
(DJIA and S&P 500) exhibited pronounced synchrony within
the considered 25 years, and the degrees of determinism of the
four financial indices were inversely related to the multivariate
complexity of the detrended data quantified by the MA-MSE
(see Fig. 4).

E. Delay Vector Variance (DVV)

The DVV method examined linearity and uncertainty in
the detrended data. Fig. 6 analyses the four detrended indices
based on 99 surrogates generated by the WiAAFT, where the
chosen parameters were: the maximum spannd = 3, subset
sizeNsub = 200 points, and 20 uniformly spaced distances in
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the horizontal axes. A variance measurement was considered
valid if the set of points was within a certain distance,rd, and
contained at least 30 delay vectors (DVs). Based on Fig. 6,
five sub-periods of two-year length, with both low and high
degrees of determinism, were chosen for the analysis and the
local predictability of the original signals and the surrogates
was assessed in order to detect the presence of nonlinearity.

Fig. 6 (a) shows that between 1993 and 1995 (period of
economic stability) the four indices exhibited strictly random
and linear behaviour. In Fig. 6(b), each of the four indices
shows clear deviations from the bisector lines in the period
1998-2000, indicating the presence of nonlinear dynamics
during the dot-com bubble. Between 2005 and 2007 (Fig.
6 (c)), the economy recovered (low determinism in Fig. 5),

as exemplified by a relative linearity and low predictability
(lower distance of DVV plots from the vertical axis) except
for the NASDAQ which still suffered from the consequences
of technological boom in the late 1990s. The sub-prime
mortgage crisis between 2008 and 2010 and global recession
were reflected in the deterministic and nonlinear behaviourof
financial data (Fig. 5(d)), as indicated by a large deviation
from the bisector line. Finally, recent weak growth in the
economy was reflected in random and linear behaviour of the
indices (Fig. 5(e)), similar to the first and third sub-periods.

The DVV analysis therefore complements the RQA analysis
and suggests that during financially stable periods, stock
market indices exhibit random and linear behaviour, while any
abnormal events (bubbles or crises) cause a more predictable
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(less stochastic) and nonlinear behaviour.

F. Intrinsic Phase Synchrony (IPS)

Multivariate data exhibit inter-channel dependencies, and in
order to assess synchronous behaviour among stock indices
in different economic periods in a full multivariate way, we
analysed the synchrony between stock indices using IPS.
The four financial time series were combined into a single
quadrivariate signal, for which the intrinsic, data-adaptive,
scales were determined using the NA-APIT-MEMD with 10
adjacent noise channels, to cater for power imbalances among
the four data channels (see [44] for more detail). The PSIs
between pairs of the data channels at every IMF index were
then calculated from 50 realisations of NA-APIT-MEMD, and
the confidence intervals at each IMF index were calculated
by benchmarking against the PSIs between pairs of noise

channels (no synchrony). The PSI values between the financial
time series within these confidence intervals were adjudged
spurious.

Fig. 7 shows the PSI values between all pairs of stock
indices at different IMF indices, estimated from 50 realisations
of NA-APIT-MEMD. Observe that PSI values at IMF indices
6 and 7, which represent the periods of 1 and 2 years (long-
term trends), in all the five periods were always higher than
0.8, indicating that all the stock indices exhibited prominent
synchrony in their long-term trends.

In all the five periods, the DJIA and the S&P 500 were
also highly synchronised in: (i) short-term trading (periods
of 1-5 days, represented by IMFs 1-2); (ii) short-term trends
(periods of less than a month, represented by IMFs 3-4); and
(iii) medium-term trends (periods of 1-3 months, represented
by IMF 5). This finding is also supported by Fig. 2(a) and
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Fig. 7. Intrinsic synchrony between individual stock indices.The graphs show phase synchrony (PSI) between stock indicesacross different time scales
(IMF index) for the five periods considered (black line), andthe upper- and lower-bounds of confidence intervals (red lines). The IMFs [1, 2], [3, 4], 5, 6, 7
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(d), and the RQA analysis.

Notice from Fig. 7 that all the PSI values at IMFs 1-2
(short-term trading) during the dot-com bubble (1997-2000,
the first period) and the Internet bubble burst (2000-2004,
the second period) (except for the DJIA - S&P 500) were
relatively low (lower than 0.6). These periods are exemplified
by: (i) relatively low short-term dependencies (see Fig. 4), (ii)
high variations in the degree of determinism (see Fig. 5 and
Fig. 6 (b)), and (iii) relatively high levels of stress of the four
financial indices as indicated by ALIS in the next section (see
Fig. 8 (a) and (d)).

However, during the third period (2004-2007), with low
variations in the determinism and low levels of stress (see Sec-
tion IV-G), all of the stock pairs exhibited higher synchrony in
short-term trading (IMFs 1-2) (all the PSI values were higher
than 0.6). This indicates pronounced short-term dependencies,
which were also detected using the MA-MSE analysis (see
Fig. 4).

Observe that during the sub-prime mortgage crisis (2008-

2011, the fourth period) all the PSI values (except for the
DJIA - S&P 500) were on average higher than those of the
recovery and weak growth periods (the third and fifth periods,
2004-2007 and 2012-2015). This also indicates the presence
of systemic risk, where the markets are contagious and behave
in the same way during the financial crisis.

G. Assessment of Latent Index of Stress (ALIS)

The wellbeing of the ‘economic organism’ was next ex-
amined through the complexity-loss hypothesis, whereby the
low complexity (high ‘stress’ level) is indicated by high
values of the proposed ALIS index applied to the detrended
data. Four-year sliding windows with 3 years and 11 months
overlap (1 month increment) were used. Fig. 8(a)-(d) show
the stress levels for the DJIA, NASDAQ, Russell 200 and
S&P 500. Observe that the stress levels of the DJIA and
the S&P 500 (markets for big companies) were above the
thresholds during the two crises: the Internet bubble burstand
the sub-prime mortgage crisis, where the NASDAQ (market
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(c) Evolution of ALIS for Russell 2000.
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(d) Evolution of ALIS for S&P 500.

Fig. 8. Financial stress evolution through the proposed ALIS index.
Observe the perfect match in ALIS for the DJIA, Russell 2000 and S&P
500 for both the Internet burst and sub-prime mortgage abnormalities. The
NASDAQ comprises only IT companies and thus reacted more strongly to
the Internet bubble burst and less strongly for the housing crisis.

for IT companies) exhibited substantially higher level of stress
during the dot-com bubble and the Internet bubble burst.
Although the sub-prime mortgage crisis primarily affected
the housing sector and non-IT companies, it also impacted
on IT companies, as indicated by an excess stress level of
the NASDAQ in 2011. The Russell 2000 also exhibited high
stress level during the sub-prime mortgage crisis and the recent
weak growth period. However, as it comprises a small-cap
segment of the US equity market, it was less affected by
the Internet bubble burst. Observe that both the markets for

‘large’ business companies (DJIA and S&P 500) exhibited
pronounced synchrony within the 25 years considered. This
finding is also supported by the RQA analysis (in Fig. 5) and
the IPS analysis (in Fig. 7).

V. CONCLUSIONS

We have examined the financial market from the point of
view of complexity science and have analysed the constraints
it exhibits in its responses to major socio-economic and geo-
political events. This has been achieved for four major stock
markets over a period of 25 years. The multiscale sam-
ple entropy based multivariate MA-MSE algorithm has been
shown to provide both a composite estimate of complexity for
financial indices and an estimate of systemic risk. In addition,
the univariate RQA and DVV approaches have shown that
irregularities in the market, such as the Internet bubble burst,
the 9/11 crisis or sub-prime mortgage crisis, are reflected in an
increase in the determinism in stock indices (via RQA), the
corresponding reduction in complexity (via MA-MSE), and
increase in nonlinearity (via DVV).

The novel intrinsic phase synchrony [28] has been employed
to quantify scale-wise couplings in financial indices, and has
indicated pronounced and physically meaningful synchronisa-
tion in the DJIA and the S&P 500, across the scales. Higher
degrees of synchrony have also been found in short-term
dependencies during the periods with low market stress and
low variations in the determinism. Conversely,the short-term
synchrony decreased with high stress and high variations in
the determinism in the markets.Systemic risk has further been
identified by increased levels of average synchrony between
the markets.

Finally, we have introduced a new metric, referred to as
the Assessment of Latent Index of Stress (ALIS), which
measures the degree of financial stress based on the physically
meaningful scales which reflect common trading principles.
The ALIS has strongly indicated financial stress during the
Internet and mortgage bubble crises.

This work has conclusively demonstrated the utility of
posterior complexity science approaches in the assessmentof
financial stress. Our future studies will focus on incorporat-
ing these approaches within machine learning algorithms in
predictive scenarios.
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APPENDIX

A. Multivariate Multiscale Sample Entropy (MMSE) &
Moving-Average Multivariate Sample Entropy (MA-MSE)

As an economic cycle typically lasts for approximately a
year, and in order to capture economic changes over a small
number of economic cycles, 4-year sliding windows with
3 years and 11 months overlap (1 month increment) were
applied. Fig. A.1 illustrates the multivariate complexityof the
original four financial indices estimated using the MMSE. The
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maximum duration of coarse graining scales was set to 1 year
for which the six pre-defined scale factors can be selected.
However, only the entropies of five scales (5 days, 10 days,
1 month, 2 months and 3 months) could be computed, as the
entropy estimated using the 1-year scale diverged. Notice the
effect of aliasing caused by poor resolution of CGP in the 2-
and 3-month scales, which implies that MMSE may not be
suitable for large scales in financial data.

Fig. A.2 shows the multivariate complexity of the trends
(price moving average) estimated using MA-MSE with the
six pre-defined scale factors. Observe that the multivariate
complexities in all the scales exhibited similar sample entropy
values and no aliasing, except for the 1-year scale which
showed a lower entropy, but similar variation as the other
scales. The MA-MSE suggested high multivariate complexity
during 2000 and 2004, the period of uncertainty and high
volatility.

B. Application of the ALIS to non-US Financial Markets

The ALIS index was also applied to following financial
markets outside the US: (i) Financial Times Stock Exchange
100 (FTSE 100), (ii) Cotation Assistée en Continu 40 (CAC
40), (iii and iv) foreign exchange (Forex) markets for the
EUR/GBP and GBP/JPY. The data for the Euro was taken
from 1-JAN-1999 to 31-Aug-2015, as the electronic version
of the Euro has existed since 1-JAN-1999 although the Euro
was officially issued in 2002.

Fig. A.3 (a)-(d) show the ALIS stress levels for the FTSE
100, CAC 400, and EUR/GBP and GBP/JPY Forex markets.
Observe that the stress levels for the FTSE 100 and CAC
40 (markets for big companies in the UK and France) were
above the threshold during the two crises. As expected, the
EUR/GBP Forex market was not affected by the Internet
bubble burst, but was severely impacted by the sub-prime
mortgage crisis, while the GBP/JPY Forex market exhibited
high stress level during both of the crises.

C. Volatility Index (VIX)

Volatility index (VIX) is a financial measure for predicting
fear or stress in stock markets in the future. The classic
VIX, so called historical VIX, is represented by the standard
deviation of the returns (the logarithm of the ratio between
the current and previous prices) over a specific period of time,
and is typically expressed in percentages. A large percentage
means the majority of investors realise a significant risk in
the movement of the market, in other words, it implies high
stress in the system. The VIX was first estimated with the S&P
100 to observe projected fear of investors over the upcoming
30 days. The modern method for calculating the VIX with
capability to monitor volatility in real time was proposed and
performed by Chicago Board Options Exchange (CBOE) [48].
The CBOE also provides different names of the volatility index
for individual stock index, such as VIX (S&P 500), VXN
(NASDAQ), VXD (Dow jones) and RVX (Russel 2000).

Fig. A.4 (a)-(d) illustrate the VIX of the individual stock
indices monthly and annually. Observe that the highest per-
centage point of the VIX occurs in the sub-prime mortgage

crisis for the DJIA, Russel 2000 and S&P 500 (for the
NASDAQ, it is the second highest peaks), which matches
the results obtained by the ALIS index. Comparing with the
RQA, however, only the DJIA and S&P 500 exhibited similar
peaks during the crisis. The second highest percentage of the
VIX can be observed during the Internet bubble burst, while
the ALIS and RQA indicate the most prominent peak of the
crisis only in NASDAQ, and less significant one in Russel
2000. Considering the trend cycles of the MA-MSE result,
the highest peak is located in the internet bubble burst and
the second highest one is in the sub-prime mortgage crisis.
This means that the rank orders of the peaks resulting from
the MA-MSE are swapped, compared to the VIX results. This
consequently implies that the MA-MSE could be affected by
only one market (NASDAQ).

Our proposed algorithms exhibit slightly different levels
of magnitudes during the two important crises, because they
use the detrended data with pre-defined scales. As such data
are less sensitive to immediate changes in the events of the
markets, our proposed algorithms provide more information
of particular trend-cycles for the individual stock indices (via
RQA, DVV and ALIS) and a correlated trend-cycle for the
compound stock indices (via MA-MSE).
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Fig. A.1. Structural complexity of trends in compound stock indices
estimated using multivariate multiscale sample entropy (MMSE). The
values were estimated using 4-year sliding windows with 3 years and 11
months overlap (1 month increment). The scale factors were 5days, 10 days,
1 month, 2 months. In the 1-year scale, the entropy values diverged, and is
excluded from the graph.
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Fig. A.2. Structural complexity of trends in compound stock indices
estimated using moving-average multivariate sample entropy (MA-MSE).
The values were estimated using 4-year sliding windows with3 years and 11
months overlap (1 month increment). The trends were generated using the
MA algorithm with six pre-defined scale factors (5 days, 10 days, 1 month,
2 months, 3 months and 1 year).
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(c) EUR/GBP. (d) GBP/JPY.
Fig. A.3. Financial stress evolution of non-US financial markets through
the ALIS index. Observe the perfect match in ALIS for the FTSE 100, CAC
40 and GBP/JPY exchange rate for both the Internet burst and sub-prime
mortgage abnormalities. The ALIS for the EUR/GBP exchange rate indicates
that it was severely impacted by the sub-prime mortage crisis, but not by the
Internet burst.
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Fig. A.4. Volatility index (VIX) of the compound stock indices. The typical
monthly and annually periods are selected as the periods forcalculating the
VIX, for a fair comparison with the RQA and ALIS.

PLACE
PHOTO
HERE

A. Hemakom

PLACE
PHOTO
HERE

T. Chanwimalueang

PLACE
PHOTO
HERE

A. C. Garcı́a

PLACE
PHOTO
HERE

L. Aufegger

PLACE
PHOTO
HERE

A. G. Constantinides

PLACE
PHOTO
HERE

D. P. Mandic


