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Abstract 
 

This article presents a technique for modelling the dynamic response of rotating 
flexible solids with internal modal damping. The method is applicable to solids with 
geometry of revolution that rotate around their main axes at constant spinning velocity. 
The model makes use of an Eulerian modal coordinate system which adopts the 
vibration modes in a non-rotating frame as basis functions. Due to the coordinate 
system, the technique is particularly suitable for studying the dynamic interaction 
between rotating solids and non-rotating structures and permits to obtain Frequency 
Response Functions. The approach has been adopted to study the dynamics of a simply-
supported cylinder in order to obtain the receptance function and the modal properties 
of the rotating solid.  

 

 
 

1 Introduction 

The dynamics of damped shafts was investigated in early works at the first 
decades of the twentieth century [1,2]. The unstabilising consequence of the internal 
damping is a well-known phenomenon that produces a critical angular velocity above 
which the rotor becomes unstable (see monographs in [3,4]). The literature shows many 
articles that analyse internal damping in Jeffcott rotors and rotating beams but few 
reported attempts have been found regarding the dynamic models for generic 
geometries. 

The model of elastic rotating solids with generic geometry has to define different 
shaft section properties (e.g. axles with non-constant cross-sections) and sometimes it 
needs to be based on a three dimensional domain (e.g. railway wheelsets; Jeffcott rotors 
and rotating beams are based on a zero and one dimensional domain respectively). The 
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Finite Element (FE) Method is possibly the numerical approach that can be more easily 
adapted to a generic geometry. FE has been adopted through beam elements [5-10], and 
3D solid elements [11-13]. The main inconveniences of this technique are found when 
the solid interacts with a non-rotating structure. The force that the non-rotating system 
exerts on the rotating one is applied at fixed spatial points, and consequently there is a 
relative motion between the load and the rotating solid (moving load problem). This fact 
requires the computation of the contribution of the external force to the generalised 
force term in each integration step during the simulation. Furthermore the Frequency 
Response Function (FRF) that correlates the steady response to harmonic excitation 
produced by a non-mobile force cannot be obtained directly. In addition, a constant and 
non-mobile force applied on an external surface of a rotating mesh produces a 
parametric excitation because the force has different effect if it is applied in a node or in 
the middle of a FE solid. The Jeffcott rotor model and the rotating beam model solve 
this difficulty because they are based on a zero-dimensional and one-dimensional 
domain respectively. Moreover, the displacements and velocities of these models are 
obtained in rotating or non-rotating coordinates indistinctly. 

The work presented in [14] proposed a method that solved the above mentioned 
problems. The method is adequate for undamped solids with geometry of revolution, 
and it is based on Eulerian modal coordinates. Eulerian coordinates are frequently used 
in Fluid Mechanics, and they relate spatial points through a fixed coordinate frame. The 
technique exploits the properties of the solids of revolution whose vibration modes do 
not depend on the rotation of the system. Consequently the vibration modes of the solid 
in a fixed coordinate frame are used as basis function in order to define a generic 
displacement of the flexible solid.  

The present work develops a methodology based on Ref. [14] for modelling the 
dynamic behaviour of rotating solids of revolution with internal modal damping. 
Results of the proposed model are presented for a simply supported rotating cylinder. 
This simple geometry provides a reference solution which permits to compare the 
analytical formulation by means of the rotating Rayleigh beam theory with the results 
from the proposed method. The formulation associated with damped rotating beams 
which are needed in this article was developed in [3] and can be found in the Appendix. 

Section 2 presents the development of the equation of motion associated with the 
proposed model. A modal approach is carried out and consequently the modal 
properties of the non-rotating solid need to be obtained. Section 3 builds the matrices of 
the equation of motion from the analytical modes of the simply supported Rayleigh 
beam. At this point, the differences of the new formulation in comparison with the well-
established methods (like spinning beam theories) can be found.  

The proposed methodology can only be formulated analytically in simple cases, 
e.g. beam models. In Section 4, a numerical methodology is given to analyse more 
complex structures such as railway wheelsets, non-vented disc brakes or other solids 
with generic geometry of revolution. Given that theoretical modal analysis of general 
structures is usually made with the finite element method, this technique is adapted in 
this paper to obtain the matrices associated with the equation of motion. 

The results are present in Section 5 of this article, where FRF of the rotating 
cylinder and the stability analysis is carried out. The conclusions of this paper are 
discussed in Section 6. 
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2 Proposed model 

The development of the proposed model is based on a previous work from 
Brown and Shabana [15]. This work makes use of the floating frame of reference, which 
is a coordinate system described in detail in Ref. [16]. The proposed method develops 
an Eulerian modal coordinate system, and the present Section shows its properties and a 
procedure to derive this coordinate system from the floating frame of reference. This 
mathematical development leads the equation of motion from the model presented in 
[15] through a change of variables. 

2.1 Coordinate reference set and its properties 

2.1.1 Floating frame of reference 
 
The coordinate system proposed by Shabana [16] obtains the global position of a 

flexible solid as a sum of two different displacement types. The former can be 
considered as a rigid body displacement, while the latter corresponds to the 
displacements due to the deformation of the solid. In order to develop the model of a 
solid of revolution, the method considers two reference frame systems (see Fig. 1): a 
fixed frame XYZ, where the Z-axis is the rotation axis; and a mobile frame X’Y’Z’ 
which rotates at the constant angular velocity of the solid Ω  and it is fixed with the 
undeformed solid; XYZ and X’Y’Z’ coincide at instant 0=t . A vector referred to the 
fixed and the mobile frames is denoted by a  and a′  respectively. The position vector r  
of a material particle of the solid in relation to the origin of the fixed frame can be 
expressed as follows 

( ))()( tpuΦuAr ′+′= , (1) 

where u′  is the position vector of the particle in the undeformed configuration, the 
product )()( tpuΦ ′  corresponds to the displacement of the particle due to the elastic 
deformation of the solid in the rotating frame, )(uΦ ′  contains the mass-normalised 
mode shapes of the non-rotating solid, )(tp  is the vector of modal coordinates and A  is 
the rotation matrix, defined by 
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tΩθ =  being the angle of rotation.  
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Fig. 1. Coordinate frame systems. 

 

2.1.2 Eulerian modal coordinates 
 
It must be highlighted that the mode shape matrix Φ  is computed for the non-

rotating solid. In general geometries, they can only be used to define the displacements 
due to the deformation if the modes are computed in a frame associated with the solid, 
that is, )(uΦ ′ . The properties of the solids of revolution allow to obtain any deformed 
geometry of the solid through the mode shapes in non-rotating coordinates as follows. 
Let v  be the position vector of a spatial point in relation to the origin of the fixed frame. 
The vector v  is defined in the undeformed domain or the volume occupied by the 
undeformed solid. The position vector of a particle of the solid that occupies the spatial 
position v  in the undeformed configuration at the instant t  verifies 

uAv ′= . (3) 

The position of the particle after deformation is 

)()( tqvΦvr += , (4) 

if the particle occupies the spatial position v  in the undeformed configuration, where 
)(tq  is defined the Eulerian-modal coordinate vector. 

From Eqs. (1) and (4), it follows 

)()()()( tt puΦAqvΦ ′= . (5) 

Eq. (5) is multiplied by T)(vΦρ , where ρ  is the density, and an integration is 
then carried out over the volume of the solid. Due to the orthogonality of the modes, the 
integral yields 

)(d)()()( TT tt
Volume

pvAΦAvΦq 







= ∫∫∫ νρ . (6) 
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Equation [6] provides the coordinate transformation, which can be written as 
follows 

)()()( ttt pBq = . (7) 

 

2.1.3 Two basic properties of the integrals on the solid of revolution 
 

Taking into account that the jacobian is equal to 1, any scalar field µ  integrable 
on the domain of the solid of revolution has the following property 

∫∫∫∫∫∫ ′=
VolumeVolume

υµνµ d)(d)( uv . (8) 

Let us consider the matrix M~  which is defined as follows 

∫∫∫ ′′=
Volume

υρ d)()(~ T uΦMuΦM , (9) 

where M  is a constant 3×3 matrix. If matrix M  verifies that 

AMAM T= , (10) 

the transformation matrix )(tB  has no influence if it is applied to the matrix M~ , that is 

MBMB ~)(~)( T =tt . (11) 

The proof is the following 
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 (12) 

 

2.1.4 Orthogonality of the transformation matrix )(tB  
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The transformation matrix )(tB  can be proved to be orthogonal. If Eq. (7) is 
substituted into Eq. (5), one obtains 

)()()( T vAΦABvΦ =t . (13) 

Each side of the last equation is multiplied by itself (transposed) and the density, 
giving 

)()()()()()( TTTTTT vAΦAAvAΦBvΦvΦB ρρ =tt . (14) 

Eq. (14) is now integrated over the solid volume 

∫∫∫∫∫∫ =








VolumeVolume

tt νρνρ d)()()(d)()()( TTTTT vAΦvAΦBvΦvΦB . (15) 

Considering now Eq. (15), the property obtained in Eq. (8), and the mode shapes 
orthogonality, the relation IBB =)()( T tt  is found and consequently )(tB  is an 
orthogonal matrix. 

 

2.1.5 Structure of the transformation matrix )(tB  

 
Let us consider different n-th and m-th modes and the corresponding mode 

shapes ><nΦ  and ><mΦ . Eq. (13) can be written for the n-th mode as follows 

><>< = nn )()( T vAΦABvΦ . (16) 

Now, Eq. (16) is pre-multiplied by ><mΦρ  (transposed), and then integrated on 
the solid volume, giving 

( )∫∫∫ ><><=
Volume

nm
mn dB νρ )( TT vAΦAΦ . (17) 

If the modes ><nΦ  and ><mΦ  are orthogonal, due to the geometry of revolution 
><n)( T vAΦA  and ><mΦ  are also orthogonal, and consequently 0=mnB . 

The rows and columns of matrix )(tB  associated with modes with multiplicity 1 
have null entries except the diagonal entry, which is equal to 1. Due to the orthogonality 
property of )(tB , the diagonal blocks associated with modes with multiplicity 2 contain 
rotation matrices, that is 
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2.1.6 Additional remark 
 

Let M~  be a diagonal matrix of dimension NN × , where N  is the number of 
degrees of freedom of the solid model. The following relationship 

MBMB ~)(~)( T =tt  (19) 

is verified if the pair of entries associated with each mode with multiplicity 2 are equal. 
The proof is found through the structure of the matrix )(tB  showed in the previous 
section. 

If M~  is a column matrix of dimension 1×N , the following relation is fulfilled 

MMB ~~)( T =t  (20) 

only if the non-zero entries in M~  are associated with modes of 1 multiplicity. 
 

2.2 Development of the equation of motion  

2.2.1 Damped equation of motion through Lagrangian coordinates 
 
The method presented in [15] develops the following equation of motion for 

rotating solids 

( ) LQpEKpJp p
~~~~2 22 ΩΩΩ +=−++  . (21) 

The components of Eq. (21) are detailed next. Matrix K~  is the modal stiffness matrix, 
whose diagonal contains the square of the undamped natural frequencies of the solid. 
Matrix J~  is associated with the gyroscopic effect, and it is computed as follows 

∫∫∫=
Volume

υρ d~ T ΦJΦJ , (22) 

where 
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θθ AAAAJ TT == , (23) 

θA  being the derivative of the matrix A  with respect to θ , that is 
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The development of the Eq. (23) shows that 


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 −
=

000
001
010

J . (25) 

Some vibration modes produce deformed shapes which may permit centrifugal 
forces to produce work. This effect is considered through the matrix E~  which is 
calculated as  

∫∫∫=
Volume

υρ d~ T ΦEΦE , (26) 

where 

θθθθ AAAAE TT −=−= , (27) 

θθA  being the second derivative of the matrix A  with respect to θ , that is 


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=
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0sincos
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It can be easily obtained that 






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

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


=

000
010
001

E . (29) 

The centrifugal forces that do not depend on the solid deformation are 
implemented by means of L~ . These forces are associated with modes of multiplicity 1, 
and only the entries of L~  associated with these modes are non-zero. The column matrix 
L~  is obtained as follows 

υρ d~ T∫∫∫ ′=
Volume

uEΦL . (30) 
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If the external forces are applied in fixed material points, the generalised force 
term is computed by 

∫∫∫ ′′=
Volume

v ttt υd),()()()( TT
p ufAuΦQ , (31) 

where ),( tv uf ′  are the external volume forces. However, if the external forces ),( tv vg  
are applied in fixed spatial points, the generalised force term can be calculated from the 
following expression 

∫∫∫=
Volume

v tttt νd),()())(()( TTT
p vgAvAΦQ . (32) 

Internal modal damping can be implemented in Eq. (21) as detailed next. Let D~  
be the diagonal modal damping matrix, where the modes of double multiplicity contains 
two equal terms. The generalised force due to damping is computed by means of 

pDQ 
~)(d −=t . (33) 

Introducing Eq. (33) into Eq. (21), the equation of motion of the internally damped solid 
is 

( ) ( ) LQpEKpJDp p
~~~~2~ 22 ΩΩΩ +=−+++  . (34) 

 

2.2.2 Damped equation of motion through Eulerian coordinates 
 
The coordinate change expressed by Eq. (7) is introduced in Eq. (34), and then 

the resulting equation is multiplied by ( )tB , giving 

( )
( ) .~~2~~~

2~2~

2TTTT2T

TTT

LBQBqBJBBDBBBBEBBKB

qBBBJBBDBq

p ΩΩΩ

Ω

+=+++−+

++++



 (35) 

Due to the properties stated in Sections 2.1.3 and 2.1.6, the following equations 
are found 

JBJB ~~ T = , (36) 

EBEB ~~ T = , (37) 

KBKB ~~ T = , (38) 

DBDB ~~ T = , (39) 

LLB ~~ = . (40) 
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The calculation of the terms T~ BDB   and T~BJB   is reduced to the evaluation of TBB  , 
because BDBBDBDB ~~~ T ==  and BJBBJBJB ~~~ T == . From Eq. (13), 

AvΦuΦB TT )()( =′ . (41) 

Eq. (41) is derivated with respect to time, 

AvΦAvΦuΦB  TTT )()()( +=′ . (42) 

In Eq. (42) the function )(uΦ ′  is constant because it is associated with a 
material point. On the other hand, )(vΦ  has to be computed as the convective term of 
the material derivative, that is 
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Eq. (42) is now post-multiplied by T)( BuΦ ′ , yielding 

TTT
3

1

T
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Recalling the result in Eq. (13), Eq. (44) becomes 
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(45) 

Now Eq. (45) is multiplied by the density ρ  and it is integrated on the volume of the 
solid. Applying the orthogonality property, yields 

JvΦvJvΦBB ~d)()()(3

1

T
T ΩνρΩ +








∂

∂
= ∫∫∫ ∑

=Volume i
i

iv
 . (46) 

Considering now the first property in Section 2.1.3, the integral in the Eq. (46) 
does not depend on time. Lets define the following variable, that is 

∫∫∫ ∑ ′
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




′

∂
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=
=Volume i

i
iu
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T

uΦuJuΦG , (47) 

and 
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( )JGBB ~~T += Ω . (48) 

The calculation of TBB  is performed as follows. The product TBB  is constant and 
consequently 

TTT

d
d0 BBBBBB  +==
t

. (49) 

From Eq. (48) and (49), it is deduced 

( )( )T2TTTT ~~~~ JGJGBBBBBBBB ++−=−=−= Ω . (50) 

Further analysis shows that G~  is antisymmetric, and Eq. (50) can be written as  

( )( )JGJGBBBBBBBB ~~~~2TTTT ++=−=−= Ω . (51) 

The generalised force of the Eq. (35) is, from Eq. (32) 

∫∫∫==
Volume

v ttttt νd),()())(()()( TTT
pq vgAvAΦBQBQ . (52) 

By substituting Eq. (13) in Eq. (52), it is found 

∫∫∫∫∫∫ ==
Volume

v

Volume

v ttt νν d),()(d),()()( TTT
q vgvΦvgvΦBBQ . (53) 

In standard cases, the vector associated with external volume forces can be written as  

)()(),( tt vv γvFvg = , (54) 

and the generalised force expression is 

)(~)(d)()()( T
q ttt

Volume

v γγν FvFvΦQ == ∫∫∫ . (55) 

Now Eqs. (36)-(40), (48), (51) and (55) are substituted into Eq. (35), yielding 

( ) ( )( ) LFqJGDCKqGDq ~)(~~~~~~~2~ 22 ΩtΩΩ +=+−++−+ γΩ , (56) 

where 

EJJGJJGGGC ~~~~~~~~~~
−−−+= . (57) 

It must be drawn attention to the fact that the matrices D~ , G~ , J~ , K~ , E~ ,C~ , F~  and 
L~  are constant matrices and they are computed at the beginning of the simulation. An 
advantage of this Eulerian approach is that, if external forces do not rotate with the 
solid, the generalised force vector in Eulerian coordinates )(q tQ  is calculated by 
integrating the volume of the solid independently of time. Therefore, it may be also 
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calculated at the beginning of the simulation, unlike in the Lagrangian approach where 
the generalised force term )(p tQ  must be evaluated at each time instant by using a 
costly integration over the volume. Moreover, the equation of motion (56) is linear and 
it can be adopted for obtaining the FRFs associated with forces or displacements that 
are applied or measured at fixed spatial points.  

Finally, it is worth noting that Eq. (56) is expressed in a non-rotating reference 
frame whereas the Lagrangian methods such as Finite Element Method or Eq. (34) are 
based in a floating frame. 

 

3 Application of the method to a simply supported beam 

The parameters of the beam that are considered in the model are the radius R , 
length L , Young's modulus E , cross-sectional area A  and second moment of area I . 
In order to find a parallelism between the proposed method and beam theories, in the 
following the variables of the rotating Rayleigh beam formulation which are presented 
in the Appendix are adopted. 

If N bending modes of the Rayleigh beam are consider, the matrix of mode 
shapes Φ  becomes 
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

Φ , (58) 

where jφ  is computed from Eq. (A.1). Taking into account the modal gyroscopic term 

jg  defined in (A.8) and the modal functions detailed in Eq. (58), the matrices that 
define the equation of motion for rotating solids, Eq. (56), become 
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−
−

−
−
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g
g

1000
0100

0010
0001

~ 1

1











E , (61) 

0L =~ , (62) 

and 























−
−

−
−

=

N

N

g
g

g
g

000
000

000
000

~ 1

1











C . (63) 

The matrices of Eqs. (59)-(63) uncouple the influence between the modes in Eq. 
(56). Therefore, Eq. (56) can be written for each pair of modal coordinates associated 
with the j-th mode jq , that is 

( ) ( )( ) jj
jjj

j
jj

j cΩgΩcgΩ QqGIqIGq =+−+++ 22 22ω , (64) 

where all the terms are defined in the Appendix. Eq. (64) is identical to Eq. (A.6) with 
the exception of the term jgΩ 2−  that accounts for the effect of the centrifugal forces 
when the section is deformed. The one-dimensional Rayleigh beam model does not 
consider this effect and therefore, some differences are expected in the results. Further 
discussion will be provided in Section 5. 

The eigenvalues of the Eq. (64) are  

( )
( )

.

,

,12

,12

*
2,4,

*
1,3,

22222
2,

22222
1,

jj

jj

jjjjjjjjj

jjjjjjjjj

gciΩΩgΩgcΩgic

gciΩΩgΩgcΩgic

λλ

λλ

ωλ

ωλ

=

=

−−−+−−+−=

−−−+−++−=

 (65) 

Instable behaviour happens when the first eigenvalue in Eq. (65) has positive real part. 
It is then concluded that the critical speed is 

k

k
cr g

Ω
−

=
1
ω , (66) 

such critical velocity being lower than that predicted by the one-dimensional beam 
model (A.11). 
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4 Computational method  

In general, an analytical expression of the mode shapes cannot be obtained and 
consequently, numerical methods like FE are used to compute the modal properties. The 
present section presents a method for obtaining the matrices of the equation of motion 
in Eq. (56) from the FE modal solution.  

 FE modal analysis provides the modal solution in the nodes of the solid mesh. 
The modal matrix FEΦ  is obtained with the FE model, whose columns contain the 
values given by ( )uΦ  on each node.  

The modal function in the domain of an e-th element can be interpolated as  

( ) ( ) FEe ΦuNuΦ = , (67) 

where the matrix ( )uNe  contains the shape functions (or basis) of the e-th element. 

Bearing in mind the nodal interpolation defined in (67), the matrices of the 
equation of motion in Eulerian coordinates, Eq. (56), are shown below 

FE

n

e V
eeFE

n

e VVolume

e

e

e

e

vvv ΦNJNΦΦJΦΦJΦJ 









=== ∑∫∫∫∑∫∫∫∫∫∫

== 1

TT

1

TT ddd~ ρρρ ,     (68) 

FE

n

e V
eeFE

e

e

v ΦNENΦE 









= ∑∫∫∫

=1

TT d~ ρ , (69) 











= ∑∫∫∫

=

e

e

n

e V
eFE v

1

TT d~ uENΦL ρ , (70) 

( ) ( ) FE

n

e V
e

i
i

i

e
FE

e

e

v
u

ΦNuJuNΦG 


















∂
∂

= ∑∫∫∫ ∑
= =1

3

1

T
T d~ ρ , (71) 

where en  is the number of elements in the FE mesh, and eV  is the volume of the e-th 
element. 

 

5 Results 

This section analyses the stability, modal properties and FRF of the simply 
suported rotating flexible cylinder with internal damping. The aim of the present section 
is to compare the results from three different approaches: first, the Rayleigh rotating 
beam model (in the following, the beam model) whose formulas can be found in the 
Appendix of the present paper, the proposed method in which the modes are computed 
analytically (analytical solid model), and the proposed method where the computations 
are performed numerically (numerical solid model). 
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The present study considers the first bending mode, being the forward mode the 
unstable mode (further details can be found in [3] and will be also shown later). The 
properties of the simply supported cylinder are defined in Table 1. The first three 
natural frequencies associated with bending modes are given in Table 2. The cylinder 
mesh considered in the numerical solid model is depicted in Fig. 2. The FE model 
implements tridimensional lineal elements. 

Table 1. Cylinder properties. 

Length m5.1=L  

Radius m05.0=R  

Density 3m / kg7800=ρ  

Young’s modulus 211 m / N101.2 ×=E  

Internal damping ratio 03.0=ξ  
Poisson’s ratio 3.0=ν  

 

Table 2. Natural frequencies of the cylinder [Hz]. 

Mode number Mode type FE Rayleigh beam model 
1 1st bending mode 90.14 90.44 
2 2nd bending mode 355.21 360.27 
3 3rd bending mode 780.51 805.17 

 
 
 

 

 

Fig. 2. FE mesh of the cylinder. 

 
Fig. 3 plots the eigenvalues in the Argand diagram for the three formulations 

previously indicated. These have been calculated with a spin speed sweep, reaching 
almost twice the critical speed. The differences between the models are analysed in the 
following figures. Fig. 4a shows the real part of the eigenvalues. All the models 
describe virtually the same evolution of the real part of the eigenvalues. In addition, it is 
clearly shown that the real part of the backward eigenvalue is always negative and 
therefore stable, while the real part of the eigenvalue associated with the forward mode 
is positive beyond critical speed and hence becomes unstable. For the forward mode, 
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Fig. 4b presents the real part of the associated eigenvalue against the ratio angular 
velocity/forward natural frequency. The instability of the forward mode takes place if 
the angular velocity is higher than the forward mode frequency, in the absence of 
external damping as in the case under analysis.  

The critical speed is now shown in Fig. 5 for several internal damping ratios ξ . 
The critical velocity does not depend on the internal damping rate in the absence of 
external damping. These results are in accordance with the conclusions of rotating shaft 
literature [3].  

The discrepancies between the models are associated with the imaginary part of 
the eigenvalues as can be seen in Fig. 6. The evolution of the natural frequency with the 
angular velocity (Campbell diagram) for the three formulations is shown. The analytical 
and numerical solid models predict virtually the same evolution, but differ in 
comparison with the beam model. As can be seen, this discrepancy increases with spin 
speed. Although the difference between models is less than 0.5%, the proposed solid 
model describes a very different evolution and trend compared with the beam model. 
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Fig. 3. Real and imaginary part of the eigenvalues: , , forward and backward modes, 
beam model; , , forward and backward modes, analytical solid model; , , 
forward and backward modes, numerical solid model. 
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Fig. 4. Real part of the eigenvalues: , , forward and backward modes, beam model; 
, , forward and backward modes, analytical solid model; , , forward and 

backward modes, numerical solid model. 
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Fig. 5. Critical speed for different internal damping ratios: , beam model; , analytical 
solid model; , numerical solid model. 
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Fig. 6. Campbell diagram: , , forward and backward modes, beam model; , 
, forward and backward modes, analytical solid model; , , forward and backward 
modes, the numerical solid model. 

 
In the introduction section of this article, it was stated that one advantage of the 

proposed solid model is to allow the calculation of FRF associated with forces or 
displacements that are applied or measured at fixed spatial points. The FRF for the 
simply supported cylinder is shown in Fig. 11 for different internal damping ratios; the 
force is applied transversely in the central node of the cylinder, and the displacement is 
measured at the same point and same direction. It can be seen that the backward 
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bending mode is highly damped and disappears for 01.0=ξ . In this way, the steady 
response is only influenced by the forward bending mode. The same case is calculated 
through the three formulations for 03.0=ξ  and the associated FRFs are shown in Fig. 
8. As observed previously, the analytical and numerical solid models predict the same 
behaviour with undistinguishable curves, but they differ from the beam model. It is 
worth noting that the backward mode has disappeared, remaining only the forward 
bending mode. 
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Fig. 7. Direct FRF (receptance) calculated, numerical solid model at rpm5000=Ω  for different 
internal damping ratios: , 0=ξ ; , 001.0=ξ ; , 01.0=ξ ; , 03.0=ξ . 
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Fig. 8. Direct FRF (receptance) for rpm5000=Ω  and 03.0=ξ : , beam model; , 
analytical solid model; , numerical solid model. 
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It is important to emphasise the effect done by the centrifugal forces associated 
with the deformation, being the fundamental difference between the proposed solid 
model and the one-dimensional beam model. This effect is represented by the term 

jgΩ 2  for the analytical solid model in Eq. (64) or its equivalent C~2Ω  in the solid 
model from Eq. (56), and it does not appear in the beam model. The proposed model by 
means of analytical data produces the same equation of motion in Eq. (64) than the 
rotating beam model in Eq. (A.6) if the term jgΩ 2  is neglected in the former model. 
Therefore, the following calculations show the results from the rotating Rayleigh beam 
model and the proposed numerical solid model where the term C~2Ω  is omitted.  

In the previous section, the solid model showed not only the discrepancies in the 
imaginary part but also a quite different tendency in comparison with the beam model. 
Once neglected the effect done by the centrifugal forces associated with the solid 
deformation, both models describe a very similar evolution of the natural frequency, as 
shown in Fig. 9. 
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Fig. 9. Campbell diagram: , , forward and backward modes, beam model; , 
, forward and backward modes, numerical solid model.  

 
Finally, Fig. 10 shows the FRF when the influence of the centrifugal forces is 

neglected. As can be seen the predictions associated with both models are almost 
undistinguishable, with overlapped FRF curves in the frequency range considered.  
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Fig. 10. Direct FRF (receptance) for rpm5000=Ω  and 03.0=ξ . , beam model; , 
numerical solid model. 

6 Conclusions 

A complete methodology to model the dynamics of damped elastic solids of 
revolution rotating about their axis of revolution has been developed in this article. This 
model is designed for those cases in which the interest lies in spatial points of the solid 
rather than material points. Therefore, it is especially suitable for complex systems 
consisting of rotating and non-rotating solids that are in mutual interaction. 

The method is based on a modal approach where the modal properties of the 
non-rotating solid form the modal basis of the system. The final formulation consists of 
a set of linear ordinary differential equations where the coefficients are time 
independent. Therefore the matrices are calculated only once at the beginning of the 
simulation, leading to a considerable reduction of the computational cost. 

The proposed method can be applied to the study of the stability, to obtain the 
equivalent modal properties of the rotating solid and also to compute the FRFs of the 
solid. Two versions of the method have been presented: analytical consideration of the 
modal properties of the solid (as a Rayleigh beam), and numerical implementation from 
FE data. In addition, these two approaches are compared with a one-dimensional 
Rayleigh beam model. It has been shown that the analytical and numerical solid models 
predict virtually the same dynamic behaviour of the case under study. However, the 
proposed solid model shows discrepancies with the Rayleigh beam model. These 
discrepancies are due to the effect of the centrifugal forces associated with the deformed 
shape of the solid, which is only considered in the proposed solid model, represented by 
the terms jgΩ 2−  and C~2Ω  in Eqs. (64) and (56) respectively. 

Finally, in order to describe the dynamic behaviour of a beam by means of the 
proposed solid model, the terms jgΩ 2−  or C~2Ω  have been eliminated. In this case, 
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the calculations show that the proposed solid model behaves like the Rayleigh beam 
model (see Figs. 13-19).  
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Appendix 
 
In this appendix, the formulation associated with the one-dimensional simply 

supported Rayleigh beam model, including rotation and internal modal viscous damping 
is summarised. Further details can be found in Ref. [3].  

In accordance with the frame of reference in Fig. 1, the j-th mass normalised 
bending mode calculated in the neutral axis of Rayleigh beam is 

( ) 





=

L
zj

m
z

j
j

πφ sin1 , (A.1) 

and the j-th natural frequency is 

j

j
j m

k
=ω , (A.2) 

where the constants jk  and jm  have the following expressions 

( )
3

4

2 L
jIEk j
π

= , (A.3) 

( )
L
jILAmj 22

2πρρ
+= . (A.4) 

The transverse displacements are computed from the fixed frame through the 
following modal approach 
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where jq  is the two-dimensional vector with modal coordinates associated with the j-th 
orthogonal bending mode shape. The equation of motion for the damped simply 
supported rotating Rayleigh beam in modal coordinates is 

( ) ( ) jj
jj

j
jj

j cΩcgΩ QqGIqIGq =++++ 22 2ω , (A.6) 

jQ  being the generalised external force, I  is the identity matrix 22× , Ω  is the beam 
spin speed and jω  is the natural frequency of the j-th bending mode of the simply 
supported non-rotating Rayleigh beam [17-19]. The term jc  is computed from the 
internal modal damping ratio of the j-th bending mode jξ as 

jjjc ξω= . (A.7) 

The modal gyroscopic term jg  is obtained from the following expression 

( )
( )22

2

πζ
π

j
jg j +

= , (A.8) 

where jg  is, by definition, bounded between 0 and 1, and ζ  is the slenderness of the 
beam. The matrix G  is anti-symmetric and couples both orthogonal bending modes. It 
can be expressed as 









−

=
01
10

G . (A.9) 

The eigenvalues of the Eq. (A.6) are 

( )
( )

*
2,4,

*
1,3,

2222
2,

2222
1,

12

12

kk

kk

jjjjjjjj

jjjjjjjj

gcΩiΩgcΩgic

gcΩiΩgcΩgic

λλ

λλ

ωλ

ωλ

=

=

−−−−−+−=

−−−−++−=

, (A.10) 

where the notation *z  represents the complex conjugate of z , 1,kλ  and 3,kλ  are the 
eigenvalues for the forward mode, and 2,kλ  and 4,kλ are associated with the backward 
mode. The forward modes reveal a critical speed beyond which the real part of their 
eigenvalues is positive. The modes become then unstable (a conclusion also made in 
[20,21]) beyond the critical angular velocity given by 

1

1

21 g
Ωcr −

=
ω . (A.11) 
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