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Resumen 

 

La integración de funcionalidades ópticas con alto rendimiento llevará a un gran 

desarrollo en el campo de la nanofotónica para un amplio abanico de aplicaciones. 

Actualmente, la fotónica de silicio es la tecnología líder para la implementación de 

dispositivos fotónicos integrados a bajo coste. El gran potencial de esta tecnología reside 

en su compatibilidad con las maduras técnicas de fabricación de circuitos integrados de 

silicio basadas en los procesos “complementary metal-oxide semiconductor” (CMOS) 

ampliamente utilizados en la industria microelectrónica y la disponibilidad de disponer 

de obleas de silicio sobre aislante de alta calidad, una plataforma ideal para crear circuitos 

de guía de ondas planas que ofrecen un fuerte confinamiento óptico debido al alto 

contraste índices entre el silicio (n=3,45) y el dióxido de silicio (n=1,45). Para poder 

mejorar el rendimiento de dispositivos fotónicos en silicio, la integración de materiales 

con propiedades excepcionales y compatibles con los procesos de fabricación CMOS 

surge como una excelente oportunidad para superar las actuales limitaciones de la 

tecnología de silicio al mismo tiempo que ofrece oportunidades novedosas y sin 

precedentes en la plataforma de silicio. En este sentido, el material titanato de bario 

(BaTiO3) se postula como uno de los candidatos más prometedores. El trabajo 

desarrollado en esta tesis está esencialmente enfocado en el diseño, fabricación y 

caracterización de un modulador electro-óptico basado en una estructura híbrida de 

BaTiO3 en silicio para la implementación de funcionalidades electro-ópticas de alto 

rendimiento más allá del estado del arte de las que no se puede disponer actualmente en 

la tecnología de fotónica de silicio. 
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Resum 

 

La integració de funcionalitats òptiques amb alt rendiment portarà a un gran 

desenvolupament en el camp de la nanofotònica per a un ampli ventall d'aplicacions. 

Actualment, la fotònica de silici és la tecnologia capdavantera per a la implementació de 

dispositius fotònics integrats a baix cost. El gran potencial d'aquesta tecnologia resideix 

en la seva compatibilitat amb les madures tècniques de fabricació de circuits integrats de 

silici basades en els processos “complementary metal-oxide semiconductor” (CMOS) 

amplament utilitzats en la indústria microelectrònica i la disponibilitat de disposar 

d'hòsties de silici sobre aïllant d'alta qualitat, una plataforma ideal per crear circuits de 

guia d'ones planes que ofereixen un fort confinament òptic a causa de l'alt contrast  

d’índexs entre el silici (n=3,45) i el diòxid de silici (n=1,45). Per poder millorar el 

rendiment de dispositius fotònics en silici, la integració de materials amb propietats 

excepcionals i compatibles amb els processos de fabricació CMOS sorgeix com una 

excel·lent oportunitat per superar les actuals limitacions de la tecnologia de silici al 

mateix temps que ofereix oportunitats noves i sense precedents en la plataforma de silici. 

En aquest sentit, el material titanat de bari (BaTiO3) es postula com un dels candidats més 

prometedors. El treball desenvolupat en aquesta tesi està essencialment enfocat en el 

disseny, fabricació i caracterització d'un modulador electro-òptic basat en una estructura 

híbrida de BaTiO3 en silici per a la implementació de funcionalitats electro-òptiques d'alt 

rendiment més enllà de l'estat de l'art de les quals no es pot disposar actualment a la 

tecnologia de fotònica de silici. 
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Abstract 

 

Integration of complex optical functionalities with high performance will lead to a huge 

development in the field of nanophotonics for a broad range of applications. Silicon 

photonics is currently the leading technology for the implementation of low-cost photonic 

integrated devices. The great potential of this technology relies on its compatibility with 

the mature silicon integrated circuits manufacturing based on complementary metal-oxide 

semiconductor (CMOS) processes widely used in microelectronic industry and the 

availability of high quality silicon-on-insulator wafers, an ideal platform for creating 

planar waveguide circuits that offers strong optical confinement due to the high index 

contrast between silicon (n=3.45) and silicon dioxide (n=1.45). In order to keep 

improving the performance of photonic devices on silicon, the integration of CMOS 

compatible materials with unique properties shows up as an excellent opportunity to 

overcome the current limitations in silicon while offering unprecedented and novel 

capabilities to the silicon platform. In this way, barium titanate (BaTiO3) stands out as 

one of the most disruptive candidates. The work developed in this thesis is essentially 

focused on the design, fabrication and characterization of an electro-optic modulator 

based on a hybrid BaTiO3 on silicon structure for the implementation of high performance 

electro-optic functionalities with beyond state-of-the art performance that currently 

cannot be afforded in silicon photonics technology. 
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Chapter 1 

 

Introduction 

 

1.1.   Silicon photonics 

Photonics involves the use of optics, fibre-optics, lasers and electro-optical (EO) devices 

in numerous and diverse fields of technology for generating, amplifying, transmitting, 

modulating and detecting light. Its increasing importance in modern technology has 

indeed been determined by the invention of the laser, the introduction of semiconductor 

optical devices and the fabrication of low-loss optical fibres. It thus builds heavily on 

optical technology but reflects the growing tie between optics and electronics forged by 

the increasing role that semiconductors materials and devices play in optical systems. It 

supplements electronics in the form of optoelectronics and exhibits a strong market 

growth, which is expected to continue for the upcoming future.  

 The enormous importance of photonics is emphasized by the significant number of 

Nobel Prizes awarded in recent years: 

• 2009: Nobel Prize in Physics to Charles Kuen Kao “for ground-breaking 

achievements concerning the transmission of light in fibres for optical 

communication” and to Willard S. Boyle and George E. Smith “for the invention 

of an imaging semiconductor circuit – the CCD sensor” 

• 2010: Nobel Prize in Physics to Andre Geim and Konstantin Novoselov “for 

ground-breaking experiments regarding the two-dimensional material graphene” 

(with interesting implications in photonics) 

• 2012: Nobel Prize in Physics to Serge Haroche and David J. Wineland “for 

ground-breaking experimental methods that enable measuring and manipulation 

of individual quantum systems”
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• 2014: Nobel Prize in Chemistry awarded to Eric Betzig, Stefan W. Hell and 

William E. Moerner “for the development of super-resolved fluorescence 

microscopy” 

• 2014: Nobel Prize in Physics awarded to Isamu Akasaki, Hiroshi Amano and 

Shuji Nakamura “for the invention of efficient blue light-emitting diodes which 

has enabled bright and energy-saving white light sources”  

 Photonics has also achieved a deep penetration in areas like Information and 

Communication Technologies (ICTs), health care and life sciences, sensing, defence and 

space technology. Especially the ICTs is witnessing a development speed without equal 

in the history of humankind. Internet traffic grows at a high level every year and therefore 

traffic demands [1]. Hence, there is need to search for different ways to carry data in a 

more efficient way. Using light beams to replace cables in all long distance 

communication has dominate during last years.  

 

Figure 1.1: Trend from optical fibre communications to optical interconnect computing. 

 However, nowadays the general trend goes from optical fibre communications (long 

distances) to optical interconnect computing (very short distances), an evolution shown 

in Figure 1.1; and silicon photonics seems to be the most effective technology for such 

purpose. In this way, nanophotonic Integrated Circuits (ICs) have the potential to replicate 

the microelectronic revolution of the past decades. While there are several existing 

technologies to design and build networks and systems, the introduction of a viable 

photonic IC technology capable of creating a broad range of optical functions out of a 

single fabrication process is the fundamental breakthrough required to reduce costs 

dramatically. 

 Silicon photonics is currently the leading technology for enabling automated and low-

cost volume manufacturing of highly integrated and complex photonic circuits. The main 

arguments in favour of this technology is its compatibility with CMOS (Complementary 

Metal Oxide Semiconductor) fabrication already used in microelectronic industry and the 

availability of high quality Silicon-On-Insulator (SOI) wafers, an ideal platform for 

creating planar waveguide circuits [2]. The development of individual components has 

been the subject of intense research during the last decade. More recently, significant 

efforts have also been devoted towards photonic integration of a high number of 

components. In this way, several breakthrough results have been achieved in last years.  
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 In 2010, Intel demonstrated a 50Gb/s photonic link based on silicon based integrated 

transmitter and receiver chips [3]. One year later, Luxtera announced a 100-Gb/s silicon 

photonic transceiver based on four fully integrated 28Gb/s transmit and receive modules 

powered from a single laser [4]. In Japan, a 12.5 Gb/s photonic transceiver integrating an 

arrayed laser diode, an optical splitter, silicon modulators and germanium photodetectors 

on a single silicon substrate was demonstrated [5, 6] .  

 In Europe, several complex silicon photonics devices have been demonstrated. It must 

be highlighted a silicon modulator monolithically integrated with a SiGe CMOS RF 

driver. Furthermore, a single channel 10Gb/s photonic transmitter integrating a hybrid 

III-V/silicon laser with a silicon modulator was achieved. Then, a 5Gb/s DQPSK receiver 

and transmitter integrating germanium photodetectors and silicon modulators with 

passive circuitry has also been demonstrated [7]. 

 All these breakthrough results have highlighted the potential of silicon CMOS 

photonics for a wide range of applications but especially those requiring high-volume 

manufacturing such as telecom, datacom or sensing. 

 However, despite the huge potential of silicon photonics, several challenges need still 

to be addressed for enabling the full development of commercial products. One of the 

main challenges is still related to improve the key active photonic components. Silicon 

itself imposes barriers to the ultimate active performance that can be achieved and 

therefore the integration of new materials on silicon is emerging as an active field in 

silicon photonics to overcome its limitations with the potential to generate technology 

breakthroughs leading to novel markets and applications. Clear examples of that are: 

• III-V compounds have been widely investigated for solving the lack of an on-chip 

light source in silicon due to their well-proven lasing properties. Hybrid III-

V/silicon lasers have been demonstrated using both bonding and epitaxial growth 

to transfer the III-V materials to the silicon wafer [8, 9]. However, there are still 

remaining challenges facing with the difficulties associated by the incompatibility 

of III-V materials with the standard CMOS process.  
 

• Silicon is transparent at wavelengths longer than 1,11µm and therefore cannot be 

employed as a photodetector at 1,5µm. Germanium is currently accepted as the 

best approach for enabling photodetection in silicon at 1550 nm optical 

wavelengths due to its excellent properties for light absorption in the near infrared 

and CMOS compatibility. High performance has been achieved thanks to the 

efforts devoted on improving the epitaxial growth technique for overcoming the 

difficulties inherent to the lattice mismatch between these two materials [10]. 

Hence, a very high bandwidth of 120 GHz with a responsivity of 0.8 A/W and 

zero-bias operation (minimizing power consumption) was demonstrated [11]. 
 

• Another known drawback in silicon is the lack of Pockels effect due to its 

centrosymmetric nature. Among other options, that later will be analysed, 

transition metal oxides (TMO) stand out as promising solutions to achieve EO 
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modulation in silicon. TMO materials comprise a very diverse and fascinating 

class of compounds with properties that can be tailored for a wide variety of 

applications. More concretely, they have unique EO properties that will offer 

unprecedented and novel capabilities to the silicon platform (Figure 1.2). Many 

transition metal oxides have been prepared in bulk form or in thin films in the past 

several decades. However, obtaining single crystalline and high quality photonic 

waveguides has been a long-standing issue. The difficulty is largely related to the 

complex composition of TMOs, and most synthetic techniques developed in the 

past for nanophotonic waveguides cannot be simply applied. In fact, the benefit 

of using such materials is directly related to the structural quality of the crystal, 

so that a high quality fabrication process is a must for producing single crystal 

thin films. Recent significant progress in deposition tools and methods has 

enabled the growth of single crystal oxide layers onto low-cost large-size silicon 

substrates [12]. These recent developments in the epitaxy of transition metal 

oxides have substantially lowered the barrier to integrate high quality photonic 

waveguiding structures on silicon. 

 

Figure 1.2: The combination of the TMOs with the Silicon platform mix the characteristics of 

both technologies allowing for new applications in a wide range of fields.  

 The last point is in which this thesis is focused. More concretely, among TMO 

materials, barium titanate (BaTiO3 or BTO) stands out as one of the most disruptive 

candidates. The integration of BaTiO3 in silicon is one of the most promising options for 

the implementation of EO functionalities, especially EO modulation, with beyond state-

of-the art performance which cannot be afforded currently in silicon photonics technology 

itself. 

 This thesis has been developed in the framework of the European project SITOGA 

(Silicon CMOS compatible transition metal oxide technology for boosting highly 

integrated photonic devices with disruptive performance), included in the seventh 

framework programme (FP7-ICT-2013-11-619456). SITOGA project addresses for the  

integration of TMO materials in the silicon photonics platform for offering breakthrough 

EO functionalities due to their unique properties not present in pure silicon. Such 

integration combined with the development of beyond state-of-the art photonic devices 



1.2. Electro-optic modulation in silicon 
 

5 

 

paves the way towards a wide range of photonic applications. The SITOGA consortium 

has been formed by the following partners: Centre National de la Recherche Scientifique 

(CNRS, France), Katholieke Universiteit Leuven (KU Leuven, Belgium), Innovations for 

High Performance microelectronics (IHP GMBH, Germany), IBM Research GMBH 

(IBM, Switzerland), DAS Photonics (DAS, Spain) and Universitat Politècnica de 

Valencia (UPV, Spain), being the later the project coordinator. 

The main objectives of the SITOGA project are listed below: 

• Develop the technology (deposition pathways and processing) of two innovative 

TMO materials, BaTiO3 and VO2, with unique properties for boosting photonic 

integration in silicon CMOS. 

• Demonstrate beyond state-of-the art EO modulation and switching photonic 

components. 

• Integrate the developed material technology on the silicon CMOS platform for 

large-scale manufacturing of highly integrated and complex photonic devices. 

• Validate the enhanced capabilities provided to the silicon platform by means of 

two functional demonstrators and define the roadmap for the exploitation of the 

developed technology. 

 

1.2.   Electro-optic modulation in silicon  

Optical modulators are key building-blocks in communication systems because they link 

optical and electrical domains [13]. The work developed in this thesis is essentially 

focused on the design, fabrication and characterization of compact and efficient 

modulators based on BaTiO3 integrated in silicon. In this section we summarize its main 

characteristics and the different existing mechanisms to develop EO modulators in 

silicon.  

 

1.2.1. Optical modulators 

An optical modulator is a device which can be used for modulating (i.e. changing the 

properties of) an optical beam. In the context of telecommunications, modulation is the 

process of transporting a message signal inside another signal that can be physically 

transmitted. There are many different kinds of modulators, which can be classified 

regarding to the physical property of light which is manipulated. In this way, we can find 

phase modulators, intensity modulators, polarization modulators or spatial light 

modulators. Another way of classifying modulators is depending on the physical effect. 

Thus, we can find acousto-optic modulators, electro-optic modulators or electro-

absorption modulators. Likewise, another main way of classifying modulators is by the 

signal type of the modulating signal. If the optical carrier is modulated by means of a 

continuous electrical signal we have analog optical modulation. In contrast, if the optical 
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carrier is modulated by a discontinuous signal that carries information in binary form (i.e. 

‘0’s and ‘1’s), we have digital optical modulation. In Figure 1.3 it can be seen illustrated 

the example of analog and digital modulation. 

 

Figure 1.3: (a) Analog and (b) digital modulation [14]. 

 

1.2.2. Different mechanisms for electro-optic modulation in silicon 

As aforementioned, an optical modulator is a device that is used to modulate a light beam 

that propagates either in free space or in an optical waveguide. Besides the classification 

mentioned in previous subsection referring to the different parameters of the beam which 

that can be altered, modulators can be also classified into two operational categories: 

electro-optical and electro-absorption.  

 The application of an electric field to a material can result in a change in the real and 

imaginary part of refractive indices. A change in real part of refractive index, Δn, due to 

the applied electric field is known as EO effect, and a change in the imaginary part of 

refractive index, Δα, due to the applied electric field is known as electro-absorption effect. 

The dependence of the refractive index on the applied electric field usually takes one of 

these forms: 

• The refractive index change is proportional to the applied electric field, in which 

the effect is known as the linear EO effect or Pockels effect. 

• The refractive index change is proportional to the square of the applied electric 

field, in which the effect is known as the quadratic EO effect or the Kerr effect. 

 In this thesis, we will focus on EO modulators and more specifically, in the linear EO 

Pockels effect as the most effective mechanism to achieve high modulation efficiency at 

very high speed modulation.  However, this kind of EO modulation is not a trivial solution 

in silicon photonics platform. As mentioned in the previous section, despite the huge 

potential of silicon photonics, there are fundamental constraints arising from material 

properties itself, which limit the complete development of commercial devices. One of 

them is the lack of linear EO coefficient due to the centrosymmetric crystallographic 

nature of silicon. Hence, Pockels effect is not directly possible to implement in pure 
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silicon at the communications wavelengths of 1.3μm and 1.55μm [15, 16]. Therefore 

alternative modulation means have to be found for silicon.  

 One option is to use thermal modulation, as silicon exhibits a large thermo-optic 

coefficient, although this is too slow for the high frequencies required in modern 

communications applications [17]. To date, the most common modulation mechanism 

used in silicon devices is the plasma dispersion effect. This physical effect consists in 

varying the free carrier concentration of a semiconductor, which in consequence changes 

both the real and imaginary parts of its refractive index [18]. Soref and Bennett studied 

results in the scientific literature to evaluate the change in refractive index, Δn, due to 

experimentally produced absorption curves for a wide range of electron and hole 

densities, over a broad range of wavelengths. They also quantified the changes for both 

changes in refractive index besides in absorption, and finally they produced a well-known 

expression to evaluate changes in the density of carriers in silicon [19]. However, this 

approach makes currently not possible to reach the requirements of low power 

consumption at high speed operations simultaneously [15].  The employment of small 

voltage values (under 2V) is necessary for reducing the power consumption as much as 

possible for allowing CMOS integration. Moreover, complex doping steps are required, 

which may give rise to high loss levels. 

 EO modulation by means of the Pockels effect has been demonstrated by breaking the 

crystal symmetry of silicon [20]. Thereby, promising results have been achieved by 

exploiting the strain induced by silicon nitride (SiN) on top of narrow silicon waveguides 

[21]. Nevertheless, recent studies have shown that free carriers have a prominent role and 

one order of magnitude lower effective Pockels coefficient has been measured at high 

frequencies [22]. 

 The integration of materials compatible with silicon CMOS photonics has therefore 

become a promising way to achieve EO modulation via Pockels effect with the best 

performance. Polymers with a high second-order nonlinearity coefficient have been used 

as cladding [23] or in silicon based slot waveguides [24]. However, high temperature 

processes are usually required which makes more difficult the integration with standard 

CMOS steps. More recently, ferroelectric oxides have been attracting an increasing 

interest due to their high EO coefficients. The most known ferroelectric oxide is lithium 

niobate (LiNbO3), which is currently used in commercial EO modulators. The main 

strength of this material is that presents a high Pockels EO effect, which let us afford high 

velocity modulation and low voltage values and insertion losses. However, although 

different attempts have been investigated, the integration of high-quality films on silicon 

has only been achieved via layer-bonding approaches [25, 26].  

 

1.2.3. Structures for modulation 

In previous section different modulation mechanisms have been introduced. As already 

discussed, the EO Pockels effect alters the refractive index of the waveguiding structure 



Chapter 1: Introduction 

8 

 

which integrates the EO material by applying an electric field. This variation in the 

refractive index implies an optical phase change of the light passing through it, hence 

acting as a phase modulator. This optical phase modulation must be converted into an 

amplitude modulation by integrating this phase shifter structure in a Mach-Zehnder 

Interferometer (MZI) or a ring resonator. Below, the basic principles of these structures 

are presented.  

 

1.2.3.1. MZIs 

In brief, the MZI mechanism consists in splitting the light from a single source into the 

two arms of this interferometric structure. When these two beams are recombined, the 

different phase shift between them induced by the application of an external electric field 

can be converted into an amplitude modulation.  

 

Figure 1.4: Basic schematic of a MZI modulator [14]. 

 The device is schematically depicted in Figure 1.4. The main advantages of an MZI 

lie in its simplicity and its large optical bandwidth. Furthermore, these devices are 

temperature independent. In contrast, the main drawback is the relatively large phase 

shifter length required. If an electric field is applied to one arm, due to the EO effect, it 

induces a change in the refractive index of this arm and therefore a change in the phase 

of the light propagating into that arm (Ф1 or Ф2). When both beams are combined with 

different phase, this phase modulation is converted into an intensity (amplitude) 

modulation.  The transfer function of the MZI is a sinusoidal function and is defined as 

follows:  

2cos
2

out

in

P

P

 
  

 
                                                  (1.1) 

where Pin is the power input, Pout is the output power and ∆Ф=Ф2-Ф1 is the phase 

difference between both arms.  
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 For our purposes, we used asymmetric MZI. The main characteristic is the fact that 

there is a difference of length between both arms. 

1.2.3.2. Ring resonators 

A ring resonator basically consists of a ring waveguide and a straight waveguide placed 

close to each other, coupling the light between both structures (Figure 1.5).  

 

Figure 1.5: Ring resonator configuration and the most important design parameters [14]. 

 

In this way, a resonance takes place when the propagation length of the resonator is 

exactly a whole number of wavelengths: 

eff in L M                                                         (1.2) 

where neff is the effective index, L is the length of the ring, M is a whole number and 𝝀 is 

the wavelength. 

 Hence, a continuous wave of a certain wavelength is injected into the ring resonator. 

Minimum transmission is achieved when the wavelength is located at a resonance. 

Furthermore, this transmission is ideally zero when the ring operates at critical coupling, 

i.e. when the coupled power is equal to the power lost in the ring (critical coupling 

condition). Therefore, ring resonators support multiple resonances.  

 An important parameter is the width at half maximum (FWHM), known as the width 

of the resonance at 3dB, while quality factor (Q) is a measure of the sharpness of the 

resonance: 

2  
 

 

gres

FWHM

n
Q



  
 


                                               (1.3) 

where 𝝀res is the resonance wavelength, ng is the group index and α is the loss per unit 

length.  
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1.2.3.3. Amplitude modulation principle 

Basic performance of an intensity modulator is shown in Figure 1.6. If an electric field is 

applied to the electrodes of an amplitude modulator due to the EO effect, it induces a 

change in the refractive index and a shift in the resonance. Hence, the spectral response 

of the ring resonator or the MZI is shifted when the effective index is modified 

consequently changing the output power.  

 
Figure 1.6: Basic performance of an intensity modulator based on an amplitude modulator [14]. 

 The effective index change can be obtained from such resonance shift by next 

equation: 

eff

active

n
FSR L

 
                                                      (1.4) 

where the FSR (Free Spectral Range) is defined as the spacing between the resonances 

and can be obtained by the following equation:  

2

g

FSR
n L


                                                           (1.5) 

where 𝝀 is the wavelength, ng is the group index and L is the length.  

 Then, particularly for each kind of above mentioned modulator, the effective index 

change from the resonance shift is defined as: 

 

eff g

active

ring

eff g

active

L
MZI n n

L

L
Ring n n

L









 
 


 

                                             (1.6) 

where Lactive is the length corresponding to the waveguide structure in contact with the 

electrodes and the active EO material. ΔL represents the difference of length between 

both arms of the MZI while Lring=2πR, being R the radius of the ring. 

Finally, from this effective index change, the induced phase shift is defined as:
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2
effL n




                                                       (1.7) 

 

 Therefore, to optimize the performance of an intensity modulator, we are interested in 

the lowest transmission at resonance to maximize the extinction ration and the narrowest 

spectrum to minimize the required frequency shift, i.e. the required external voltage and 

therefore minimize the power consumption. 

 The voltage required to obtain a phase shift of π, and also the most used figure of merit 

to quantify the efficiency of a modulator, is known as the halfway voltage (Vπ). The 

relation between the Vπ and the phase shift is: 

2
    ( )   ( )                     

2
eff effn V L n V

L
 

 



                  (1.8) 

 

1.3.   Barium titanate 

BaTiO3 has been one of the first ferroelectric materials ever discovered, and one of the 

most thoroughly investigated so far. Firstly used in ceramics [27], this material has drawn 

attention because of its enticing ferroelectric, piezoelectric and dielectric properties 

among others [28-42]. Here we realize a review of its most important properties, like its 

ferroelectricity or anisotropy, and a brief presentation of the state-of-the-art of modulators 

based on BTO. 

 

1.3.1. Ferroelectricity and domain structure 

BaTiO3 is a well-known ferroelectric oxide. The phenomenon of ferroelectricity was 

firstly discovered in Rochelle salt in 1921 [43]. The main characteristics that all 

ferroelectric materials share are the existence of spontaneous polarization and the fact that 

the polarization can be reoriented [44]. When a spontaneously polarized region possesses 

a single direction of polarization, it is called domain. In the tetragonal phase of the BTO, 

which is later explained, we can find two types of domain walls.  

 

Figure 1.7: (a) An “a” domain between two “c” domains and (b) only “a” domains. 
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 The first kind are called 90º domains and separates ferroelectric domains which are 

polarized perpendicularly to each other. The second type of domain walls is called 180º 

domain and separates ferroelectric domains which are polarized antiparallel to each other. 

More specifically, when the polarization vector is in the surface plane, the domain is 

called “a” domain. On the contrary, when it is perpendicular to the surface plane it is 

called a “c” domain [45]. Both “a” and “c” domains are shown in Figure 1.7. Probably 

the most interesting feature of a ferroelectric oxide is the hysteresis loop, depicted in 

Figure 1.8. 

 

Figure 1.8: Characteristic P-E hysteresis loops of ferroelectric materials [45]. 

 Before applying an electric field, the domains will be randomly aligned. Therefore, 

when an electric field is applied, those domains which are already oriented in the same 

direction of the field will remain aligned. However, those which are aligned in another 

direction, will experience a tendency to change their orientation towards the direction in 

which the electric field is applied. When the electric field is increased to a given value to 

switch the domains, known as the coercive field, the polarization changes rapidly and is 

saturated at higher electric fields. If now the electric field is decreased to zero, a 

permanent polarization net remains, known as remanent polarization. When reversing the 

electric field to negative values, the polarization is reduced to zero and then the sign is 

changed due to the saturation polarization that the field produces in the opposite direction. 

Therefore, the hysteresis loop is completed, as shown in Figure 1.8. 

 This ferroelectric nature is inherent to the crystal structure. Above Curie temperature 

(TC=120ºC for BTO), this member of the perovskites has a centrosymmetric cubic 

structure and thus behaves like a dielectric without spontaneous polarization. On the 

contrary, below Curie temperature (at room temperature) its crystal structure changes to 

tetragonal phase, which is illustrated in Figure 1.9, thus yielding to a stretching of the ‘c’ 

lattice parameter and a corresponding shrinking of ‘a’ and ‘b’ parameters (a=b). In this 

situation, the material is non-centrosymmetric and presents a spontaneous polarization 

parallel to the crystallographic “c” axis. In fact, during the cubic to tetragonal phase 

transformation at Curie temperature, the domain structure is formed. 
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Figure 1.9: BaTiO3 crystal structure in (a) cubic phase and (b) tetragonal phase.  

 Specifically, the tetragonal form of the crystal structure implies that the material can 

be grown with two different orientations depending on the process conditions: an in-plane 

polarization of tetragonal BTO films implies that the “c” axis is along the growth plane 

(usually defined as a-axis orientation). Oppositely, an out-of-plane polarization indicates 

a BTO film with its “c” axis perpendicular to the growth plane (usually defined as c-axis 

orientation). Furthermore, the resulting orientation of BTO film can vary from purely a-

axis to c-axis orientations, through a mixture of a and c-axes oriented configurations [46]. 

Epitaxial growth of BTO films offers the possibility to select the direction in which the 

spontaneous polarization can appear depending on the desired application [47]. 

 

1.3.2. Anisotropy 

BaTiO3 is a negative uniaxial anisotropic crystal. Anisotropy means that the properties of 

this material vary through different directions in a different way. Its permittivity and 

refractive index depends on the direction of the crystal axes. Anisotropic crystals can be 

divided regarding to its symmetry in uniaxial or biaxial, if they possess either one or two 

optical axes. In the case of BTO, as a uniaxial crystal, it presents birefringence, being the 

refractive index of one crystal axis different from the other crystal axes. Concretely, BTO 

presents an ordinary index (no = 2.444) larger than the extraordinary index (ne = 2.383) 

[51]. Due to the lower ne compared to no, BaTiO3 is defined as a negative uniaxial crystal. 

 As above mentioned, anisotropic media present different optical properties depending 

on the direction of the incident light. Therefore, as the refractive index changes with the 

direction of the light waves, it is interesting to know the refractive indexes in any direction 

of the light passing through the material. In this way, the refractive index ellipsoid depicts 

the relative magnitude and orientation of refractive indices in a crystal. Specifically, the 

refractive index ellipsoid for uniaxial anisotropic crystals in the absence of an electric 

field can be expressed as: 

2 2 2

2 2 2

0 0

1
e

x y z

n n n
                                                       (1.9) 
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1.3.3. Pockels effect 

The Pockels effect is a well-known and highly developed EO mechanism. This effect 

takes part when an electric field is applied to a crystal which lacks inversion symmetry. 

In one dimension, the electric field changes linearly the refractive index as follows: 

  3

0

1

2
effn E n r E                                                 (1.10) 

where Δn is the refractive index change, n0 is the unperturbed refractive index, reff is the 

effective Pockels coefficient and E the applied electric field. 

Pockels coefficients form a tensor, which can be expressed by this reduced matrix: 
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More concretely, in the case of BaTiO3, this tensor can be written as:  
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                          (1.12) 

where the EO coefficients values (rij) in its bulk form have been measured to be 

r13=8pm/V, r33=28pm/V and r51=800pm/V [28]. 

 Since the ferroelectric polarization and the EO properties are tensorial quantity, the 

orientation of the BTO layer will largely impact the performance of the EO devices. 
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Orientation is crucial to the implementation of EO activity. Hence, the study of the 

crystalline orientation of the BTO becomes an essential issue. 

 

Figure 1.10: Crystallographic axes, a1, a2 and c, are aligned along the coordinate system with 

axes x, y and z, respectively for (a) a-axis and (b) c-axis BTO respectively. 

 In this way, the EO effect can be modelled by using the index ellipsoid, which is 

sketched in Figure 1.10. The index ellipsoid in the presence of an electric field (Ex, Ey, 

Ez) is given by next equation: 

   2 2 2

13 13 33 51 512 2 2

1 1 1
2 2 1z z z y x

o o e

r E x r E y r E z r E yz r E zx
n n n

     
            

     
   (1.13) 

 The coordinate system with axes x, y, and z of the index ellipsoid is aligned along the 

crystallographic axes a1, a2 and c, respectively, of the BaTiO3 crystal structure.  

 Therefore, the EO performance will depend on how the BaTiO3 is grown to fabricate 

the waveguide structure. As aforementioned, the so-called a-axis or c-axis orientations 

will depend on if the optical axis (“z” axis) is in-plane or out-of-plane in the BaTiO3 layer. 

 Because of its ultra-large linear EO coefficients, BaTiO3 has been the subject of intense 

research in the last decade. Indeed, BTO bulk single crystals exhibit a Pockels coefficient 

more than 20 times higher than LiNbO3 single crystals [28], which makes BTO an 

excellent active material for the fabrication of a large variety of EO devices such as 

switches, tuning elements and optical modulators with low drive voltage, large 

bandwidth, compact size and thermal stability. 

 

1.3.4. Barium titanate on SOI 

Due to the fact that is chemically and mechanically very stable and it shows ferroelectric 

properties, BTO is suitable for practical applications. Besides, BaTiO3 is very interesting 

because of its high optical transparency and its favourable growth characteristics, as 

previously commented. 
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Material unique properties at 

1550nm optical wavelength 

Key enhanced capabilities offered 

to the silicon platform 

• Ultra-high Pockels coefficient 

• Very low optical losses 

• High refractive index 

• Bistable performance via 

ferroelectric domain switching 

 

• Ultra-fast and linear optical phase 

modulation 

• CMOS compatible drive voltages 

with low insertion losses 

• Electro-optical bistable 

performance for non-volatile 

photonic devices 

Table 1.1: BTO has disruptive properties at optical wavelengths which provide enhanced 

capabilities like ultra-small footprint and ultra-low power consumption to the silicon platform. 

 Furthermore, the potential of growing high-quality thin film crystalline layers of BTO 

on strontium titanate (SrTiO3) templated silicon and silicon on insulator (SOI) substrates 

[12, 49, 50] has recently opened a path towards the development of hybrid BTO silicon 

EO modulators with disruptive performance [51-56]. Table 1.1 summarizes the BaTiO3 

properties at 1550nm optical wavelength and the enhanced capabilities offered to the 

silicon platform. 

 

1.3.5. State-of-the-art of BTO based modulators 

BaTiO3 modulators have been mainly investigated so far on top of magnesium oxide 

(MgO) substrates [57-60]. Among the research groups that have been recently working 

on the integration of BTO for photonic applications, Wessels team at Northwestern 

University (USA) is one of the most relevant and photonic devices with promising 

performance have been demonstrated by integrating BTO thin films on magnesium oxide 

(MgO) substrates, demonstrating BTO optical waveguides with losses below 0.5 dB/cm 

at 1550 nm wavelengths [61]. In addition, BTO electro-optical modulators have been 

fabricated with poly-domain tetragonal BTO on a (100) MgO substrate, using a Si3N4 

strip-loaded wave guide, a SiO2 buffer layer and Cr/Au metal electrode layers. The 

waveguides are characterized by low propagation losses (1dB/cm at 1.55 µm) and the 

modulator has a V·L product as low as 0.5 V·cm at 1561 nm from which an effective 

Pockels coefficients reff as high as 360 pm/V was extracted [62]. Experimental results and 

numerical calculations also showed the potential for a modulation bandwidth in excess of 

40GHz [63]. On the other hand, the demonstration of nonlinear photonic crystal 

waveguide structures showed the feasibility of fabricating nano-sized optical structures 

with BTO as an active material using lithography techniques [64, 65]. To overcome the 

difficulties in patterning and etching BTO especially at nanoscale dimensions, a strip 

waveguide was used consisting of BTO as the active layer and Si3N4 slab layer to define 

the strip of the Bragg grating.  
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Group Orient. Pol. Structure tBTO WG Vπ VπL (V.cm) 

IBM Research 

[69] 

a/c-axis 

mixture 
TM 

SOI/BaTiO3 

 

50nm 

(tSi=70nm, 

taSi=220nm) 

W=575nm N/A N/A 

Yale 

University 

[49] 

a-axis TE 

SOI/BaTiO3 

 

80nm 

(tSi=taSi=110nm) 

W=800nm 

L=750µm 

20V@1550nm 1.5@1550nm 

ISG1-IT 

[57] 

both 

 

 

 

 

TE 

BaTiO3/MgO 

 

1µm 

(tslab=50nm) 

W=2µm 

L=3mm 

c-axis: 

8V@633nm 

21V@1550nm 

a-axis: 

6.3V@633nm 

9.5V@1550nm 

c-axis: 

2.4@633nm 

6.3@1550nm 

a-axis: 

1.89@633nm 

2.85@1550nm 

Northwestern 

University 

[62] 

c-axis both 

MgO/BaTiO3/Si3N4 

 

620nm 

(tSi3N4=120nm) 

 

W=2µm 

L=5mm 

 

0.5V@973nm 

1V@1561nm 

0.25@973nm 

0.5@1561nm 

 

Table 1.2: State-of-the-art of experimentally demonstrated EO modulators based on BaTiO3. The 

thickness values correspond to the thickness of the barium titanate film (tBTO), of the etched 

waveguide slab (tslab), of the silicon nitrate layer (tSi3N4), of the amorphous silicon layer (taSi), and 

of the device silicon layer (tSi), respectively. 

 EO modulation and electrically induced bistable switching have also been recently 

demonstrated in thin film BTO plasmonic interferometers on MgO substrates [66]. MgO 

has been so far the main substrate of choice for BTO due to its lower refractive index and 

optical transparency. Although this helps ensure strong optical confinement and high 

optical power density, the large lattice mismatch between the tetragonal BTO and the 

cubic MgO substrate limits the crystalline quality of the deposited layers. Indeed, as 

described in [67] the metal organic chemical vapour deposition (MOCVD) grown BTO 

must in some cases be polished after growth to reduce diffraction losses, which indicates 

a very strong surface roughness due to growth induced structural defects.  

 The advance in silicon CMOS photonics has recently pushed the development of 

integrating such material directly on silicon to open the way for realizing a new variety 

of photonic devices with disruptive performance. Since the first methods to epitaxially 

deposit perovskite oxide thin films on silicon were established, the growth process has 

been carefully optimized and single crystalline layers have been fabricated even on large-

scale 8'' substrates [68].  
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 Recently, IBM has demonstrated the integration of a ferroelectric BTO film on silicon 

exhibiting a strong linear EO effect with an effective Pockels coefficient of reff = 148 

pm/V [47]. This value exceeds previous data reported for integrated LiNbO3 by at least a 

factor of five, and for strained Si by a factor of 100. Furthermore, they also demonstrate 

the presence of ferroelectricity in the BTO film opening the way for enabling 

breakthrough photonic functionalities by exploiting the EO bistable effect. Another group 

of Yale university (USA) has been able to integrate BaTiO3 based Mach-Zehnder and 

ring modulators on SOI using a slot waveguide structure [49].  They extracted an effective 

Pockels coefficient of 213 +/- 49 pm/V, and demonstrated 4.9 GHz operation with a Vπ·L 

of 1 V.cm. Table 1.2 summarizes the state-of-the-art of EO modulators based on BTO. 

 

1.4.   Objectives and outline of the thesis 

The aim of this work has been to demonstrate EO modulation at high speed based on the 

integration of barium titanate on silicon. It must be pointed out that, for this purpose, 

strong collaboration has been realized with the Centre National de la Recherche 

Scientifique in Lyon, France and IBM Research GMBH at IBM, in Switzerland. In this 

context, cooperation in the optimization of the needed fabrication processes for the 

implementation of nanophotonic structures based on the integration of barium titanate in 

silicon photonics technology has been pursued. The study and implementation of the most 

suitable waveguide structures to exploit the unique EO properties of BaTiO3 on silicon 

has been essential towards the development of new structures based on the developed 

technology that allowed the implementation of EO modulation devices with disruptive 

performance. 

 The contents of this work are structured in four chapters. This first chapter aims to 

provide the fundamentals of silicon photonics. After a brief review of this technology, its 

benefits and opportunities have been shown as well as its challenges. The concept of an 

optical modulator has been given, besides different ways of classifying them. Special 

emphasis has been made on the main physical mechanisms used for EO modulation in 

silicon. TMOs materials have been introduced, highlighting barium titanate. Its main 

properties, like anisotropy and ferroelectricity have been presented as well as the 

discussion about the types of ferroelectric domains. Finally the state-of-the-art of EO 

modulators based on BTO has been analysed. 

 Chapter 2 contains all the design work that has been done. It starts with the 

simulations carried out in order to choose the kind of waveguide structure for modulating. 

Hence, the optical design is focused on seeking all parameters of the chosen structure in 

order to provide optical confinement and low propagation losses. Special emphasis is 

made on analysing the best performance for both a-axis and c-axis configuration. Later 

then, the process of the election of the electrodes placement and the RF design have been 

investigated to obtain the best EO performance. 
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 Chapter 3 is dedicated to fabrication processes and experimental results. The main 

technics of barium titanate deposition are described. The optimization of the amorphous 

silicon deposition is also explained, showing the experimental results that have allowed 

us to achieve a-Si waveguides with good quality and low losses. The a-Si/BTO/Si stack 

fabrication process besides the electrode fabrication steps followed during this work are 

detailed. Afterwards, the main experimental results are shown. Firstly, the optical results 

are explained for all processed samples. Then, modulating structures such as ring 

resonators and MZIs are characterized at DC performance. Henceforth, the devices that 

presented EO behaviour were characterized at RF frequencies. At the end, modulation 

results at high frequency are shown. 

 Finally, in chapter 4 the conclusions and future work are discussed. 
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Chapter 2 

 

Design of electro-optic modulators 

based on BaTiO3 in silicon 

 

2.1. Optical design 

The starting point towards developing an electro-optic (EO) modulator is the optical 

design. In this stage, passive waveguides must be designed with the aim of obtaining low 

propagation losses when the light is guided. Furthermore, for our purpose, the structure 

must be optimized with the objective of ensuring single mode operation and strong light 

confinement in the slot region, being the latter evaluated by optically estimating the upper 

bound of the overlap integral (Γmax) between the electric field and optical mode. In this 

way, a thoroughly study is carried out to accomplish the three main objectives above 

commented by properly designing all the parameters involved in the waveguiding 

structure as thicknesses and widths of the layers. 

 

2.1.1. Slot waveguide structure  

In order to exploit the EO effect in the barium titanate (BTO) layer, we have used a slot-

waveguide configuration, with the BTO material located in the slot region (Figure 2.11). 

Firstly introduced at the beginning of this century by V. R. Almeida at Cornell University 

[70], the slot waveguide basically consists of a narrow low index region sandwiched 

between two high index slabs.  

 The operating principle relies on the discontinuity of the electric field at the high 

refractive index contrast interface. For this kind of structure, Maxwell’s equations state 
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that to satisfy the continuity of electric flux density D, the corresponding electric field E 

must experience a large discontinuity. This discontinuity causes a much more intense 

electric field in the low index horizontal slot region. Therefore, the field in the slot is 

much higher than that in the high-index regions for TM polarization.  

 

Figure 2.11: Cross-section of the slot waveguide structure 

 

2.1.2. Design of the slot waveguide 

As before mentioned, our waveguide structure is based on a horizontal slot waveguide 

design enabling strong light confinement in the waveguide core. In this structure, the 

active BTO core is cladded between the Si layer of the SOI substrate and a deposited 

amorphous silicon (a-Si) layer. In the first place, two waveguiding structures were 

envisaged (Figure 2.12). 

 

Figure 2.12: Schematics of the two waveguiding architectures: (a) halfway etched waveguide with 

lateral contacting scheme and (b) fully etched waveguide with vertical contacting scheme. 

 In the halfway etched (HE) structure (Figure 2.12(a)), only the a-Si layer is etched, 

which eases the fabrication process since BTO etching is not necessary to be developed. 
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In this case, the BTO is polarized using lateral contacts. The main problem here is the 

large distance between the electrodes in order to limit absorption losses. On the other 

hand, the fully etched (FE) design (Figure 2.12(b)) is expected to provide larger optical 

confinement in the BTO layer. Now, the structure is etched down to the Si layer of the 

SOI substrate (etching is stopped somewhere in this layer) which requires to control the  

BTO etching and using vertical contacts to apply the electric field. Nevertheless, a spacer 

has to be placed between the waveguide and the top electrode to reduce absorption losses 

down to reasonable values. 

 To reduce the voltage drop and effectively polarize the BTO layer, this spacer must 

have an elevated permittivity and the Si layer of the SOI substrate as well as the a-Si layer 

must be sufficiently doped. The main advantages and drawbacks of both configuration 

are summarized in Table 2.1. 

Waveguide Structure Advantages Drawbacks 

Fully Etched  

 

• High optical confinement in 

waveguide core (small 

bending radii possible) 

 

• Good BTO etching required 

(potentially high 

propagation losses)  

• Low horizontal electric 

field in BTO slot due to 

high BTO permittivity 

 

Halfway Etched 

 

• No BTO etching required 

• Lower propagation losses 

• Strong horizontal electric 

field  

 

 

• Lower confinement in 

waveguide core (larger 

bending losses) 

Table 2.1: Benefits and disadvantages of fully etch and halfway etched configuration. 

 Furthermore, the choice between FE and HE configuration also depends on the 

orientation of the ferroelectric polarization in the BTO material. A more detailed 

description of each structure is presented beneath besides simulation results which will 

be used to determine the final waveguide structure choice. 

 

2.1.2.1. Half etched waveguide 

An important issue set at the beginning of this work was to develop a waveguide structure 

which could support both TE and TM modes simultaneously. Due to the different optical 

confinement of TE and TM modes in the waveguide, one must be aware of optical losses 

in both of them. In our case, the latter will be more affected from absorption losses due 

to its mainly horizontal confinement in the BTO region. Despite both modes have been 

taken into account at the same level of importance, the results regarding to losses 

presented here have been focused more on TM since it limits the choice of the waveguide 
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parameters mostly than TE. Initially, the influence of silicon layer thickness (tSi) on the 

waveguide performance has been evaluated. 

 

Figure 2.13: (a) Optical propagation losses as a function of a-Si thickness for different Si and 

BTO thicknesses (TM polarization, waveguide width of 1000 nm). Arrows represent the lowest 

a-Si thickness for which below 3dB/cm losses are achieved. (b) Estimation of the maximum value 

of overlap integral as a function of the BTO slot thickness for two different silicon thicknesses 

and two waveguide widths. 

For this purpose, the optical propagation losses for TM polarization as a function of 

the a-Si layer thickness (ta-Si) has been calculated as a function of tSi for two different 

BTO thicknesses, namely tslot=30 nm and tslot=50 nm, as shown in Figure 2.13(a). Almost 

negligible losses are obtained in a wide ta-Si range for low tSi (similarly, very low losses 

were also obtained for TE polarization in all cases).  

 It must be highlighted that only the points corresponding to losses below 3dB/cm are 

plotted in Figure 2.13(a). When tSi=220nm, losses below 3dB/cm can only be achieved 

for the thinnest BTO slot (30nm) with sufficiently thick a-Si thicknesses (ta-Si>220nm). 

Figure 2.13(a) also shows that low tSi values (70 or 100 nm) provides robustness of low 

losses operation against deviations of the a-Si thickness with respect to the nominal value, 

reducing the constraint on the deposition process control. 

 Light confinement of the fundamental mode has been analyzed by simulating the 

effective index change due to a uniform change of the BTO refractive index. In such a 

way, an upper bound of the EO overlap integral between the electric field and optical 

mode can be estimated. In this way, optical power confinement in the BTO layer has also 

been calculated, for tSi=70nm and 100nm and for two waveguide widths (W=500nm and 

W=1000nm) as a function of the BTO thickness tslot (Figure 2.13(b)). The estimated 

overlap integral is higher for the TM fundamental mode as expected in a horizontal slot 

configuration [71]. Furthermore, light confinement increases as tslot increases and W 

becomes smaller. The halfway etched waveguide structure with a silicon (Si) thickness 

of 100nm and a BTO thickness of 50nm have been chosen to ensure low losses, high 

optical confinement and single-mode transmission. 
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Figure 2.14: (a) Optical propagation losses as a function of silicon thickness for different 

amorphous silicon thicknesses, for TM polarization, tslot=50nm and W=1000 nm, (b) Estimation 

of the maximum value of overlap integral versus silicon layer thickness for ta-Si=220nm, tslot=50nm 

and different waveguide widths. 

 Figure 2.14(a) shows the optical losses versus tSi for different ta-Si values for TM 

polarization. Negligible losses are obtained for a 220nm thick a-Si layer in a wide range 

of Si thicknesses. Therefore, this value has been chosen for the final HE waveguide 

structure. Furthermore, when plotting the overlap integral for such value of ta-Si=220nm 

versus silicon layer thickness (Figure 2.14(b)), it can be confirmed again that tSi=100nm 

is an optimum value to obtain a high light confinement in the BTO layer with negligible 

losses. 

 

Figure 2.15: Contour of (a) optical propagation losses and (b) effective index versus amorphous 

silicon thickness and waveguide width, for TM polarization, tSi=100nm and tslot=50nm. 

  The waveguide width has also been optimized to ensure single mode condition for 

both TM and TE polarization. Figure 2.15(a) shows the evolution of the optical losses as 

a function of the waveguide width and a-Si thickness for TM polarization. Single mode 

transmission and low losses are achieved for waveguide widths ranging from 400nm to 

700nm and a-Si thicknesses ranging from 200nm to 250nm. This result confirms the 

suitability of 220nm amorphous silicon thickness. Low losses and single mode operation 
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are achieved when the effective index of fundamental TM mode increases (Figure 

2.15(b)). These results agree with those obtained for TE polarization. 

 

Figure 2.16: For the halfway etched structure with tSi=100nm and tslot=50nm: (a) Estimation of 

the maximum value of overlap integral as a function of amorphous silicon thickness for 

waveguide widths W=400nm, 500nm and W=600nm, for which single mode operation is 

achieved, (b) Effective index as a function of waveguide width.  

 Finally, simulations have been carried out to assess the dependence of light 

confinement on the waveguide width. Figure 2.16(a) confirms that, for TM, a high 

confinement of about 32% is achieved for ta-Si=220nm, and that the confinement does 

almost not depend on the waveguide width. In the case of TE polarization, the 

confinement increases when the waveguide width is reduced and a value between 12% 

and 15% is obtained for a ta-Si=220nm and W=400-600nm. Figure 2.16(b) shows the 

evolution of the effective index as a function of the waveguide width for the different 

modes of both TE and TM polarizations. The inset shows the mode profile of higher-

order modes. The effective index of TM polarization is lower than that of TE polarization 

indicating that the mode is more confined in the BTO layer. 

 

2.1.2.2. Fully etched waveguide 

In the FE case, we conceived a symmetric structure (device with same values of Si layer 

thickness and a-Si layer thickness) in which the optical mode is confined in the BTO slot 

region. Doubtlessly, the confinement increases when the BTO thickness increases. The 

BTO thickness also impacts the orientation of the ferroelectric polarization in the oxide, 

and it must also be chosen regarding this issue. A vertical electrode configuration is used 

for this geometry (Figure 2.17(a)). The main drawback of the FE design is related to the 

fact that the top electrode placed above the a-Si layer causes high absorption losses. The 

challenge here is thus to conveniently design the top contact to minimize these absorption 

losses. However, even a semiconductor with low refractive index imaginary part like 

indium tin oxide, ITO (nITO=1.6761+j0.11), is too lossy to be placed directly on top of the 

a-Si. Therefore, in order to avoid high losses, a convenient spacer should be placed 

between a-Si and the electrode to minimize the overlap between the electro-optical field 

and the contact. For this purpose, we envisaged using an amorphous strontium titanate 

(STO) spacer, grown on top of the a-Si layer. We simulated 400 nm-wide single mode 
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waveguides with silicon and a-Si both 220 nm thick, 50 nm of BTO and ITO electrodes. 

The lateral electrode was placed far enough (1 µm) from the waveguide edge and the ITO 

bottom electrode was chosen thin enough (50 nm) to minimize absorption losses.  

 

 Figure 2.17: (a) Simulated FE waveguide structure. The BTO thickness is 50 nm, and the 

waveguide width 400 nm. The lateral ITO electrode (thickness 200 nm) is placed 1 µm away from 

the waveguide edge. (b) Propagation losses as a function of STO spacer thickness.  

 In this geometry, we calculated the optical losses as a function of the thickness of the 

STO spacer (with nSTO=2.284). Results are plotted in Figure 2.17(b). Acceptable 

propagation losses (<1dB/cm) require STO spacer thicknesses larger than 550 nm, i.e. 

much larger than the BTO slot thickness, which will cause significant voltage drop in the 

spacer layer. 

 

Figure 2.18: Alternative FE waveguide considered. BTO thickness is 50nm and 400nm 

waveguide width. 

 After realizing the incompatibility of this configuration, we conceived an alternative 

FE design consisting in an asymmetric geometry with doped silicon to minimize the mode 

overlap with the top electrode and thus reduce the absorption losses (Figure 2.18). In this 

design, the top electrode is made of N++ (phosphorous implanted) polysilicon and the 

bottom electrode P++ (boron implanted) polysilicon.  
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 The lower slab in the waveguide (Si-pedestal) and the bottom electrode wings could 

be then formed through partial silicon etching at the sides of the waveguide structure, 

starting from the top polysilicon, and etching through the active layer and the bottom 

polysilicon. Moreover, the Si-pedestal has a graded p-type doping to reduce the free 

carrier density in the optical mode region and therefore the losses. A 50nm Si-pedestal 

thickness (bottom electrode), 50 nm top polysilicon electrode and 250nm a-Si layer 

thickness have been optimized by simulation to obtain minimal losses. The optimized 

doping levels are shown in Figure 2.18. Depending on the waveguide width election, we 

can achieve an overlap integral (optical confinement estimation) of 28% for TM and 

11.7% for TE polarization with low losses. 

At the end, the FE design was discarded due to the following reasons:  

• There is no enhancement in terms of optical confinement and propagation losses 

compared to the HE design. 

• The modulator efficiency is expected to be seriously penalized due to the potential 

high voltage drop across the structure, caused by limitations on the maximum 

doping levels that can be used to enable low propagation losses.  

• It is technologically more complex, especially because several ion implantation 

steps are required to define the doped regions.  

 

2.1.2.3. Final waveguide structure 

After the simulation work above presented, the chosen structure was the HE consisting 

of a thickness of 50nm combined with a-Si layer thickness of 220nm and Si layer 

thickness of 100nm. 

  

Figure 2.19: Schematic of the halfway etched waveguide with the final design parameters and the 

TE and TM mode profiles. 

The election of these parameters allows obtaining single mode operation at 1.5µm 

wavelength with near 0dB/cm propagation losses (assuming that there is no sidewall 

roughness) and a high optical confinement of 32% for the TM mode and around 15% for 
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the TE mode. The optimal structure, with the final design parameters, is sketched in   

Figure 2.19. 

 

2.2. Electro-Optical design  

Electro-optics concerns the interaction between the electromagnetic and the electrical 

states of materials. In our case, the electromagnetic field of the optical mode and the 

electrical field applied through the electrodes by a voltage difference. As explained in 

chapter 1, due to the non-centrosymmetric nature of BTO, the electric field originated by 

the applied voltage will proportionally change its refractive index.  

 

Figure 2.20: Schematic of the halfway etched waveguide with the final design parameters. 

 In order to apply the electric field, two electrodes placed horizontally on top of the 

BTO layer are envisaged (Figure 2.20). The electrode characteristics will be intrinsically 

connected with the DC and radio frequency (RF) performance of the modulator. In this 

way, the design of proper electrodes is crucial towards achieving modulation at high 

speed. To begin with, we studied the EO performance in DC regime. 

 

2.2.1. Electrode design in DC regime  

The electrode placing is a crucial point since it has to be far enough from the waveguide 

to limit absorption losses and close enough to enhance the modulation efficiency. Firstly, 

the effect of electrode spacing on the propagation losses was simulated. Figure 2.21 shows 

the propagation losses induced by the electrodes as a function of the waveguide width 

(W) and the waveguide-to-electrode separation (G). CMOS compatible aluminium (Al) 

electrodes (nAl=1.5137+j15.234) have been utilized. It can be seen that despite having 

higher confinement factor than TE, TM polarization presents higher losses due to the 

stronger interaction between the horizontal metallic contacts and the vertically oriented 

electric field component of the optical mode.  

 Furthermore, higher losses are experienced by both polarizations when the waveguide 

width decreases due to lateral expansion of the optical mode. A waveguide width of 
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W=600nm (the waveguide becomes multimode for widths above 700nm for TE 

polarization and 1100nm for TM polarization) and a waveguide/electrode spacing of 

G=1μm lead to negligible losses for both polarizations. 

 

Figure 2.21: Propagation losses due to electrodes for (a) TE and (b) TM and different 

waveguide/electrode spacing, G. The horizontal dashed line is for 1dB/cm propagation losses.  

  

2.2.2. Influence of single domain BaTiO3 ferroelectric orientation  

As it was introduced in chapter 1, the EO performance of the device will depend on the 

BTO crystal orientation with respect to the light propagation direction and electric field 

orientation. A BTO crystal can have its “a” axis or its “c” axis lying along the substrate 

and this orientation can be somehow tuned by varying the growth conditions. The 

simulations presented in the following assess the effect of BTO crystal orientation on the 

device EO performance. They are performed assuming in this section that the BTO is 

single domain and the design has been carried out with a commercial finite-element based 

mode solver [72]. 

 

2.2.2.1. EO performance for a-axis oriented BaTiO3 

Figure 2.22 shows the possible waveguide orientations with respect to the coordinate 

system defined by a-axis oriented BTO. The x-axis is perpendicular to the horizontal 

plane but the same performance would be achieved by considering the y-axis 

perpendicular. Two extreme cases can be initially distinguished: on one hand when the 

electric field is parallel to the optical axis, Figure 2.22(a), and on the other hand when the 

electric field is perpendicular to the optical axis, Figure 2.22(b). In the former case, it can 

be obtained from the ellipsoid equation introduced in chapter 1 (Eq. (1.14)) that 

modulation is determined by the r33 coefficient for TE polarization (Eq. (2.1)) and by the 

r13 coefficient for TM (Eq. (2.2)). However, in the latter, there will be no modulation, 

neither for TE nor for TM polarization. 
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Figure 2.22: Waveguide structure for a-axis oriented BTO. The optical axis (z-axis) is in-plane in 

the BTO layer and can be (a) parallel or (b) perpendicular to the applied electric field. (c) The 

waveguide can also be rotated by an angle of φ in the yz plane to enhance the EO performance. 

 The EO performance can be enhanced by rotating the waveguide in the yz plane 

(around x) by a given angle φ, as depicted in Figure 2.22(c), to achieve an effective EO 

coefficient that will be a linear combination of r13, r33 and r51. To analyse the EO 

performance, it is more convenient to define the coordinate system along the applied 

electric field and the propagation of light (z’ and y’ axes respectively in Figure 2.22(c)). 

The applied electric field is mainly in the horizontal direction so it can be assumed that 

Ex=0. The index ellipsoid in the new coordinate system is obtained by using the following 

transformation:  

   

 

' '

' '

cos sin

sin cos( )

y y z

z y z

 

 

 

  
                                                        (2.3) 

 

By considering Eq. (1.14), the refractive index and EO coefficient can be derived for TE 

polarization  
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and for TM polarization  
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 Interestingly, the refractive index for TE polarization ranges from the ordinary to the 

extraordinary value when the rotation angle ranges from 0º to 90º. On the other hand, the 

EO coefficient as a function of the rotation angle is plotted in Figure 2.23(a). It can be 

seen that the maximum value is achieved for an angle of 55º. This angle is somewhat 

higher than the 45º value that has been previously reported in a similar waveguide 

structure [49, 51]. It should be noticed that this optimum angle is independent of the 

waveguide structure as it has been analytically derived from the index ellipsoid of BTO.  

 

Figure 2.23: (a) EO coefficient for TE polarization, (b) EO overlap and (c) Vπ voltage as a 

function of the rotation angle for both polarizations. 

 By looking at Figure 2.23(a), it is also confirmed that there will not be any index 

modulation for a rotation angle of 90º and, from Eq. (2.7), the same will occur for TM 

polarization. The maximum EO coefficient for TM polarization will be given at 0º. 

However, the value is much lower than for TE polarization as only r13 coefficient is 

involved.   

 Figure 2.23(b) shows the EO overlap integral as a function of the rotation angle for 

both TE and TM polarization, which has been calculated using the following equation: 
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where Ee(φ) and Eo(φ) are the simulated amplitudes of the electric and optical fields, 

respectively, at each rotation angle. It should be noticed that the permittivity of BTO will 

also depend on the rotation angle so that we have considered that 

εz’=2200·sin(φ)+56·cos(φ) and εx=2200 [28]. 

 The EO overlap integral will be almost constant with the rotation angle, with values 

ΓTE≈11% and ΓTM≈29%. The EO overlap integral decreases at small rotation angles due 

to the low permittivity of the BTO at such angles. The refractive index and EO 

coefficients described in Eq. (2.4)-(2.7) have been used to simulate the change in the 
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effective index of the fundamental mode. Then, we can extract the Vπ voltage of the 

modulator as a function of the rotation angle. Results are shown in Figure 2.23(c) for both 

TM and TE polarization. The Vπ voltage can also be analytically calculated as 
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where λ is the wavelength, S is the separation between the electrodes, L is the active 

length and ΓTE and  ΓTM are the EO overlap integral for TE and TM polarization. In our 

case, λ=1550nm, S=2.6μm, L=2mm (we consider for simulations a Mach-Zehnder 

interferometer modulator in which the active arm, with 2mm of length, is formed by the 

HE waveguide structure), ΓTE=11% and ΓTM=29%.  

 

Figure 2.24: Vπ voltage for TE polarization and φ =55º as a function of (a) the amorphous silicon 

thickness and G=1μm and (b) the waveguide-to-electrode separation and taSi=220nm. Results are 

shown for different waveguide widths. 

 The Vπ voltages calculated by Eq. (2.9)-(2.10) have also been plotted in Figure 2.23(c). 

It can be seen that there is a very good agreement between simulation and analytic results 

except for smaller rotation angles where the EO overlap integral decreases and therefore 

the assumption of a constant value is no longer valid. The optimum EO performance is 

obtained for TE polarization and a rotation angle of 55º, in agreement with Figure 2.23(a), 

for which a Vπ voltage as low as 2V is achieved. 

 For TM polarization, although the overlap integral is almost two times higher due to 

the stronger optical confinement, a drastically higher Vπ voltage of 64V is obtained at the 

optimum angle around 10º due to its low Pockels coefficient involved. 

 The influence of the amorphous silicon thickness, waveguide width and waveguide-

to-electrode separation on the EO performance has also been analysed via simulations for 

TE polarization and the optimum rotation angle. Figure 2.24(a) shows the Vπ voltage as 

a function of the amorphous silicon thickness, taSi, for different waveguide widths. It can 

be seen that a Vπ voltage as low as 1.35 V (Vπ·L=0.27V·cm) can be achieved by using 

thinner amorphous silicon layers. However, there is a minimum thickness that cannot be 
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exceeded to avoid losses. Furthermore, the minimum thickness, which has been chosen 

to ensure propagation losses below 1dB/cm, will depend on the waveguide width. Wider 

waveguides with higher effective indices allow using thinner amorphous silicon layers. 

However, it can be seen in Figure 2.24(a) that the minimum achievable Vπ voltage is 

almost the same independently of the waveguide width. Wider waveguide should be 

preferred to minimize additional propagation losses due to sidewall roughness. Figure 

2.24(b) shows the Vπ voltage as a function of G for different waveguide widths and taking 

into account an amorphous silicon thickness of 220nm. Electrodes can be placed closer 

to wider waveguides, as shown in Figure 2.21(a), and hence the Vπ voltage can be 

decreased. Nonetheless, there is a lower bound in the minimum waveguide-to-electrode 

separation in this case to avoid losses due to the interaction of the optical mode with the 

metallic contacts. The interesting point is that there will also be a minimum achievable 

Vπ voltage independently of the waveguide width. Therefore, the optimum EO 

performance can be achieved independently of the waveguide width by optimizing the 

amorphous silicon thickness and waveguide-to-electrode separation. 

 

2.2.2.2. EO performance for c-axis oriented BaTiO3 

The waveguide structure is sketched in Figure 2.25(a) for c-axis oriented BTO. In this 

case, the optical axis (z-axis) is perpendicular to the horizontal plane.  

  

Figure 2.25: Waveguide structure for c-axis oriented BTO. (a) The optical axis (z-axis) is out-of-

plane in the BTO layer, (b) However, there is a rotation in the xz plane (θ-angle) when a voltage 

is applied in the electrodes. 

However, with the application of an electric field, the index ellipsoid is rotated around 

the y-axis and therefore the principal axes in the transversal plane are no longer aligned 

with the waveguide structure, as depicted in Figure 2.25(b). The angle between the rotated 

x’z’ and the original xz coordinates can be derived from the ellipsoid index equation (Eq. 

(1.14)): 
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 Assuming the applied electric field is mainly in the x-axis, we can therefore accept 

Ez=Ey=0. On the other hand, unlike what happens for a-axis oriented BTO, the rotation 

of the waveguide in the xy plane will not affect the EO performance.  

Figure 2.26(a) shows the induced rotation angle of the BTO principal axes in the 

transversal plane as a function of the applied voltage and for different waveguide-to-

electrode separations. The induced rotation will affect the optical signal by rotating the 

input polarization. This undesired effect can be neglected if the Vπ voltage is small enough 

to minimize the induced rotation. Furthermore, smaller Vπ voltages will be required if the 

waveguide-to-electrode separation is decreased, as depicted in Figure 2.26(a). 

 The variation of the refractive indices as a function of the applied electric field will be 

as follows: 
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The Vπ voltage for TE and TM polarizations can be derived from Eq. (1.14) as 
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when low θ-angle values (θ<10º) are considered. The square root causes a non-linear 

phase shift variation with the applied voltage, as it is shown in Figure 2.26(b). It should 

also be noticed that the phase shift will be positive (nTM<0) for TM polarization but 

negative (nTE>0) for TE polarization. 

 The absolute value of the simulated phase shift has been compared in Figure 2.26(b) 

with the one calculated analytically by assuming a constant electric field, Ex=V/S, and 
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the maximum achievable overlap integral previously obtained. In this case, BTO 

permittivity is εx=2200 and εz=56.  It can be seen that there is a good agreement between 

both results thus indicating an efficient EO performance. The Vπ voltage is smaller for 

TM (Vπ=4.5V) than for TE (Vπ=7.2V) due to the higher optical mode confinement in the 

BTO layer. However, the same waveguide-to-electrode separation (G=1μm) as well as 

amorphous silicon thickness (taSi=220nm) have been considered for both polarizations. 

From (Eq. (2.14)-(2.15)), the Vπ voltage of TE and TM polarization can be related as: 
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assuming that the ordinary and extraordinary indices have a comparable value (no≈ne). 

This expression indicates that the lower overlap integral for TE (ΓTM>ΓTE) could be 

compensated by using a smaller electrode separation (STE<STM) thus yielding to lower Vπ 

voltages. 

 

Figure 2.26: (a) Rotation angle of the BaTiO3 principal axes as a function of the applied voltage 

and for different waveguide-to-electrode separations, (b) Absolute simulated and analytic phase 

shift for both polarizations as a function of the applied voltage for G=1μm.  

 

Figure 2.27: Vπ voltage for (a) TE and (b) TM polarizations as a function of the amorphous silicon 

thickness taken into account different waveguide-to-electrode separations and a waveguide width 

of 600nm. 

 Finally, Figure 2.27 compares the Vπ voltage for (a) TE and (b) TM polarization by 

changing the amorphous silicon thickness and waveguide-to-electrode separation. It can 

be seen that a larger improvement can be achieved for TE polarization by optimizing 
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these parameters. Furthermore, the impact of minimizing the waveguide-to-electrode 

separation is stronger than that of decreasing the amorphous silicon thickness.  

 Therefore, the lowest Vπ value for TE polarization 4.75V, has been achieved by 

reducing the waveguide-to-electrode separation to 550nm and using a slightly lower 

amorphous silicon layer thickness of 210nm. The limit for each configuration has also 

been determined for having propagation losses below 1 dB/cm. Nevertheless, it should 

be noticed that the polarization rotation effect will be more accentuated for smaller 

waveguide-to-electrode separations, as it was shown in Figure 2.16(a). However, this 

effect will be almost negligible due to the low Vπ voltages achieved. In the case of TM 

polarization (Figure 2.27(b)), the amorphous silicon thickness cannot be decreased below 

220nm to avoid losses. Nonetheless, the waveguide-to-electrode separation can be 

decreased to 900nm to improve the Vπ voltage. 

 To conclude, the optimum BaTiO3 ferroelectric domain orientation to enhance EO 

modulation in a silicon CMOS compatible waveguide structure has been investigated via 

simulations. Furthermore, the expressions to calculate the Vπ voltage have also been 

derived for both BTO orientations and light polarizations. Thereby, all possible cases 

have been analyzed and compared in order to design the optimum modulation structure. 

 WG Rotation 

angle 
Polarization Vπ [V] 

W 

[nm] 
G [um] 

taSi 

[nm] 

a-axis 55º TE 1.35 400 1 220 

c-axis 
0º TM 4.25 600 0.9 220 

0º TE 4.75 600 0.55 210 

Table 2.2: Main design parameters obtained from simulations to achieve the minimum halfway 

voltage for each orientation of BaTiO3. 

  Assuming fixed values of, L=2mm, tSi=100nm and tBTO=50nm, Table 2.2 summarizes 

the lowest achievable Vπ values as well as the corresponding amorphous silicon thickness, 

waveguide width and waveguide-to-electrode separation for both a-axis and c-axis BTO 

orientation. In principle, according to simulations, and assuming a single ferroelectric 

domain, a-axis oriented BaTiO3 for TE polarization is the most suitable option to achieve 

the lowest Vπ. 

 

2.2.3. Influence of multi-domain BaTiO3 ferroelectric orientation 

In the previous section, the optimum BTO ferroelectric domain orientation to enhance the 

EO modulation was analyzed assuming a single domain orientation, achieving a 

theoretical a Vπ·L as low as 0.27V·cm..  
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Figure 2.28: (a) Schematic of the waveguide cross-section and (b) fundamental mode profile for 

TE polarization at a wavelength of 1.55 µm.  

 However, during the fabrication of thin-film BTO layers a multi-domain structure is 

usually formed [46, 47]. In the present study, we carefully analyze the influence of the 

multi-domain structure, as well as the waveguide rotation angle, on the EO modulation 

performance. 

 

Figure 2.29: (a) Top view schematic of the optical waveguide with electrodes rotated by a certain 

angle, φ, which is defined with respect to the z-axis. The influence of the multi-domain BTO 

structure is analyzed by separately considering (b) 0º and (c) 90º domains. The arrow indicates 

the spontaneous polarization present in the tetragonal form of BTO which is parallel to its 

crystallographic c-axis. 

 Figure 2.29(a) shows a top view of the rotated waveguide with the rotation angle, φ, 

defined with respect to the z-axis. Four in-plane domain variants, with their polarization 

directions represented by arrows, can be distinguished in a-axis oriented BTO films. It is 

assumed that domains along the optical waveguide do not change their orientation in the 

z direction. In order to analyze the influence of the multi-domain BTO structure, the so-

called 0º domains (see Figure 2.29(b)) and 90º domains (see Figure 2.29(c)) must be 

separately considered. 

 Focusing on 0º domains and initially considering that there are not antiparallel domains 

along the optical waveguide, the index ellipsoid when the waveguide is rotated can be 

obtained by applying a transformation from the original zy coordinate system to a new 

z’y’ coordinate system, which is defined along the applied electric field and the 

propagation of light. Thereby, the EO coefficient and BTO refractive index can be derived 

for TE polarization as: 
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 From Eq. (2.17), the EO coefficient assuming a randomly mixed BTO domain 

distribution can be modelled by the following equation:      

       ' ' ', 90ºeff z z zr r r r                                       (2.19) 

where α is related to the orientation of the domains, taking values between 0 (all domains 

0º oriented) and 1 (all domains 90º oriented). A similar expression can be derived from 

Eq. (2.18) to calculate the BTO refractive index, n(φ,α), in the presence of mixed 

domains. The presence of a multi-domain structure will give rise to an optimum rotation 

angle of the optical waveguide to have the highest effective Pockels response depending 

on the α parameter.  

 

Figure 2.30: a) Optimum rotation angle to have (b) the highest Pockels coefficient depending on 

the mixed BTO domain distribution (α parameter). 

Figure 2.30 shows the obtained results. The optimum angle shifts from 35º for α=1 to 

55º for α=0, obtaining the highest value of reff=624 pm/V in both cases. Furthermore, for 

equally-mixed domain variants, i.e. for 50% of 0º and 90º domains (α=0.5), a local 

minimum can be seen in Figure 2.30(b). 
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Figure 2.31: Vπ voltage as a function of α parameter for three different rotation angles of the 

optical waveguide. 

 Nonetheless, the effective Pockels coefficient remains high (reff=578pm/V). The 

refractive index and EO coefficient have been used to analyze the influence of the multi-

domain structure on the Vπ voltage of the modulator for different rotation angles of the 

optical waveguide. In a Mach-Zehnder modulator, the Vπ voltage can be analytically 

estimated as: 
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where λ is the wavelength, S is the separation between the electrodes, L is the active 

length and ΓTE is the EO overlap integral for TE polarization. In our case, the active length 

has been fixed to L=2mm, λ=1550nm, S=2μm and ΓTE=11.66%.  

 Figure 2.31 shows the Vπ voltage as a function of α parameter for three different 

rotation angles. It can be seen that the lowest Vπ voltage (below 1.5V) is achieved for the 

optimum rotation angle of φ=35º, which provides the highest Pockels coefficient but only 

when most of the domains are 90º oriented (α≈1). 

 However, the Vπ voltage increases when more 0º domains are present. On the contrary, 

it is interesting to notice that for a rotation angle of φ=45º, the Vπ voltage has a constant 

value of 1.64V and it does not depend on α parameter and therefore on the in-plane 

domain structure. This behaviour can be easily proved by looking at Eq. (2.19) and 

implies that a higher robustness in the EO performance will be achieved at the expense 

of a small penalty on the Vπ voltage due to a slightly smaller effective Pockels coefficient. 

On the other hand, when the rotation angle is far away from 45º, there is a large 

dependence of the Vπ voltage with respect to the multi-domain structure, as it can be 

clearly seen in Figure 2.31 for φ=15º.  
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Figure 2.32: Vπ voltage as a function of the rotation angle for different BTO domain distributions 

(α parameter). 

 Figure 2.32 depicts the Vπ voltage as a function of the rotation angle of the optical 

waveguide for different BTO domain distributions. The lowest Vπ voltage for α=0 (0º 

domains) is found at rotation angles above 45º while for α=1 (90º domains) is obtained at 

rotation angles below 45º. However, it can be seen that these low Vπ voltages will 

drastically increase for rotation angles below 15º or above 75º. 

 Furthermore, it can also be clearly observed that the dependence of the Vπ voltage with 

the BTO domain distribution significantly increases when the rotation angle is not close 

to 45º, as it was also shown in Figure 2.31. 

 

 Results shown in Figure 2.30, Figure 2.31 and Figure 2.32 have been obtained 

considering that antiparallel domains are not present independently of the α parameter. 

However, it can be deduced from Eq. (2.17) that the EO coefficient will have a different 

sign in antiparallel domains. Therefore, the phase shift accumulated by the optical mode 

will be cancelled when travelling through antiparallel domains (see Figure 2.29(a)). This 

effect can be simply modelled as a reduction of the effective active length. From Eq. 

(2.20), a lower active length will be proportional to an increase of the Vπ voltage. In the 

proposed modulator, a percentage of antiparallel domains as high as 66% of the total 

number of domains present across the active length can be supported to keep the Vπ 

voltage below 5V. 

 In summary, the influence of the multi-domain structure on the EO performance has 

been analyzed. Comparing to the single domain study for a-axis oriented BTO (see 

section 2.2.1.), the EO performance is clearly reduced. Although the variability of the Vπ 

values as a function of the rotated angle of the waveguide is important, we have ensured 

that at an angle of 45º the EO performance remain constant, independently of the a-axis 

domain distribution that forms the structure. 

 The case of a multi-domain structure for c-axis oriented BTO has not been under study 

because of its simplicity, since there are only two kinds of domain variants and 

antiparallel domains cancel each other. 
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2.3. RF design 

The main objective of an EO modulator is to transfer data at high velocity rates. For this 

purpose, we need to modulate at high frequency and therefore a suitable RF design 

becomes decisive.  

 In the radio frequency field, the most common nominal impedance value is 50Ω. The 

reason of this value resides in the compromise between maximum handling power and 

lowest attenuation. The RF electric signal generates an electromagnetic wave which is 

spread through the electrodes in the direction of the optical beam. Ideally, if the phase 

velocities of the RF signal and optical wave are perfectly matched, an efficient 

modulation could be carried out even at high frequencies.  

 The difference between both RF and optical signals gives us the theoretical EO 

bandwidth 𝛥f assuming a RF lossless medium [73]: 

 
2

m o
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f

L n n
 


                                                (2.21) 

where c is the velocity of light in the vacuum, L is the length of the modulator, nm is the 

microwave index and no the group index. 

 Therefore, to fully exploit the enormous capabilities of BTO, we have to carefully 

design the optimum electrodes to ensure RF impedance matching with low RF losses, 

high modulation efficiency (i.e. low Vπ·L) and high EO bandwidth. 

 For this end, we envisaged a design of the electrodes by placing them directly on top 

of the BTO layer, as previously described in the HE structure. In this way we focused on 

enhancing the EO effect. For the RF analysis it has been considered purely a-axis single 

domain BTO at a rotation angle of the waveguide of 55º. The modulator structure used in 

this design consisted of a MZM of 2mm length.  

 

Figure 2.33: Influence of the electrode width on the (a) impedance and (b) RF losses. 
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 In order to select suitable electrodes, the influence of the electrode width on the 

impedance and RF losses was simulated. The obtained results, depicted in Figure 2.33, 

show a clear trade-off between obtaining low RF losses and impedance around 50Ω. 

Therefore, an electrode width of 2µm was selected to achieve a good compromise 

between both values.  

 

Figure 2.34: Schematic of the waveguide cross-section. 

 The characteristic parameters of the simulated structure are depicted in Figure 2.34. 

Usually, a SiO2 layer is deposited over the optical waveguide to protect the device and 

lateral windows are opened to place the electrodes on top of the BTO layer thus enhancing 

the modulation efficiency. 

 The high permittivity of BTO (εz~56, εx~2200) reduces the RF impedance in 

comparison with usually lower dielectric constant. In such a way, the electrode 

dimensions have been designed to overcome the high permittivity of BTO. For that 

purpose, symmetric coplanar electrodes, as depicted in Figure 2.34, were chosen to 

achieve the matching impedance around 50Ω maintaining a narrow gap of 2.5µm in the 

optical waveguide with the aim of keeping the modulation efficiency as high as possible. 

 

Figure 2.35: (a) RF impedance and RF losses, (b) RF and optical group indices and (c) modulation 

efficiency as a function of the frequency. 

 Figure 2.35(a) shows the impedance and RF losses, where an impedance around 50 

and low RF losses were obtained. Figure 2.35(b) depicts the effective and optical group 

indices as a function of the frequency. Our results show an EO bandwidth higher than 40 
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GHz, ensured as a result of the velocity matching between the electrical and optical 

signals (Eq. (2.21)). The modulation efficiency variation with the RF frequency is shown 

in Figure 2.35(c). The Vπ·L product is below 1V·cm in the 40 GHz frequency range.  
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Chapter 3 

 

Fabrication and characterization 

of electro-optic modulators based 

on BTO in silicon 

 

3.1. General approach to develop photonics structures  

The methodology followed during this work takes part in three different phases: design, 

sample fabrication and experimental characterization. These three phases are connected 

as depicted in Figure 3.1. The first step was the design through simulation work and the 

analysis of different waveguide structures based on BTO on silicon, previously shown in 

chapter 2. Concurrently, it was carried out the development and optimization of the 

fabrication processes which placed restrictions in the design phase, for which a 

continuous feedback between the three stages was necessary during the project. 

 The fabrication was developed at the facilities of three different groups: the 

Nanophotonic Technology Center (NTC) of the Universitat Politècnica de València 

together with the National Institute of Lyon and the investigation group of IBM Research-

Zurich Laboratory, both experts in the deposition of BTO on silicon. Then, the fabricated 

samples were characterized at NTC facilities and this constant feedback between all 

partners was crucial to obtain the electro-optic (EO) modulation results that here are 

presented.  
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 For the fabrication of active devices, the following general approach was followed, 

which relies on three main blocks: 

• Design/fabrication/characterization of a-Si/SOI waveguides. 

• Design/fabrication/characterization of a-Si/BTO/SOI waveguides. 

• Design/fabrication/characterization of active devices exploiting the EO effect in 

BaTiO3.  

 

Figure 3.1: Methodology followed during this work. 

 

 

Figure 3.2: Route for the fabrication of active devices. 

 

3.2. BTO fabrication techniques 

As mentioned in chapter 1, this thesis is framed in the SITOGA project. Within the 

SITOGA consortium, IBM and INL partners were responsible of the BTO fabrication due 

to their experience and equipment. Therefore, as the work done in this thesis is not 

involved in BTO fabrication technique, in this chapter is shown a brief description of the 
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different fabrication processes that were used: radio frequency (RF) sputtering by INL 

and molecular beam epitaxy (MBE) by IBM. In both techniques, before BTO deposition, 

a thin layer of STO was grown by MBE to mitigate the mismatch between the lattice 

parameters of BTO and Si. 

3.2.1. RF sputtering   

The sputtering process, firstly discovered in 1852, and developed as a thin film deposition 

technique by Langmuir in 1920 [74], is a method which involves the physical removal 

from a target and the formation of a thin layer of the withdrawn material on a substrate 

by applying high-velocity particles. The process takes part in a plasma where the ions are 

accelerated towards the target and therefore, the bombardment allows the atoms of the 

target to be discharged and collected at the surface of the substrate. The most common 

technique for growing thin films by sputter deposition is by using a magnetron source, 

and depending on how the magnetron is powered, we can classify a large variety of 

methods like direct current (DC), pulsed DC, radio frequency (RF) or high power impulse 

magnetron sputtering [75].  

 

Figure 3.3: Illustration of RF-sputtering system. Courtesy of Stefan Abel [77]. 

 More concretely, RF sputtering is the technique characterized by alternating the 

electrical potential of the current in the vacuum at radio frequencies. The main advantage 

of this method is to avoid the charge build up that can occur when insulating materials 

are sputtered, resulting in a deterioration of the film quality [76]. The sputtering process 

is illustrated in Figure 3.3. 

 

3.2.2. Molecular Beam Epitaxy   

The Molecular Beam Epitaxy (MBE) technique was developed in 1968 at Bell 

Laboratories [78]. This broadly used deposition method allows growing high quality 

epitaxial films in a precise and carefully controlled way. The conditions are quite strict, 

since there is need to dispose of a very clean environment with very low pressures in the 

ultra-high vacuum (UHV) regime [77]. 
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Figure 3.4: Illustration of MBE growing technique. Courtesy of Stefan Abel [77]. 

 In this process, the substrate (silicon in our case) is heated up some hundreds of 

degrees. Thereupon, precise beams of atoms or molecules are thrown at the substrate from 

effusion cells in gas form. The molecules land on the surface of the substrate and after 

condensing, they are built up very slowly in ultra-thin layers [79]. Figure 3.4 illustrates 

MBE process. 

 

3.3. Low loss amorphous silicon  

In this section we describe the process followed towards achieving amorphous silicon (a-

Si) with low propagation losses on BTO/SOI wafers. In this way, the first step consisted 

in developing the deposition of a-Si on SiO2.  

 

Figure 3.5: Processes followed to optimize a-Si deposition on BTO/SOI. 
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Once a refractive index around 3.47 and relatively low losses were achieved, the next 

step was to use the same recipe to deposit a-Si on BTO on silicon with the aim of obtaining 

again a suitable value of the refractive index and good adhesion. Due to the fact that BTO 

was grown on Si, we used the same a-Si recipe successfully accomplished on BTO to 

deposit a-Si on SiO2 to test propagation losses. The summary of the processes followed 

is depicted in Figure 3.5. 

Process 

name 

Process 

Conditions 
Sample na-Si αTE αTM Comments 

NTC1 

SiH4: 100 

sccm  

N2: 1500 sccm  

T= 200°C  

P= 4.6 Torr 

#1 N/A 30dB/cm - High roughness 

#2 N/A 15dB/cm - 
Improved etching 

process 

#3 N/A 10dB/cm - 
Improved etching 

process 

#4 2.237 <10dB/cm >50dB/cm 
Wider waveguide in 

GDS file 

NTC2 

SiH4: 550sccm  

N2: 500 sccm  

T= 200°C  

P= 2.2 Torr 

#1 2.697 15dB/cm <10dB/cm 
Reduction of N2 

plasma gas 

NTC3 

SiH4:80 sccm 

H:260 sccm  

T= 350°C  

P= 4.6 Torr 

 

 

#1 3.534 18dB/cm <10dB/cm 
Change to H plasma 

gas 

Table 3.1: Evolution in the optimization of the a-Si deposition process at NTC. αTE and αTM are 

propagation losses for TE and TM polarizations respectively. na-Si is the refractive index of the 

amorphous silicon layer.  

 The deposition of a-Si by plasma-enhanced chemical vapour deposition (PECVD) on 

SiO2 was developed at NTC facilities. The a-Si layers were deposited onto substrates 

consisting of 2 m SiO2/Si, with a targeted a-Si thickness of 220nm and three different 

processes, whose parameters are summarized in Table 3.1. The ellipsometry 

measurements were performed to obtain the refractive index values in each case. 

 

Figure 3.6: SEM images of fabricated a-Si:H waveguides. The waveguide thickness is ~220nm. 

The waveguide width is 450nm in sample NTC1-#1 and was changed to 500nm in NTC1-#4. 
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 The starting point was a recipe that consisted on N2 as plasma gas (NTC1 process) 

with a flow of 1500 standard cubic centimetre per minute (sccm). The precursor gas was 

silane (SiH4) with a flow of 100 sccm. The evolution in the optimization of the process is 

summarized in Table 3.1. In the first samples high propagation losses were measured for 

TE polarization and no light was measured for TM polarization. High losses were 

attributed to sidewall roughness, as clearly shown in Figure 3.6, rather than absorption in 

the material. Optimization of the etching process gave rise to very low propagation losses 

for TE (<10dB/cm) despite extremely high losses for TM. The low refractive index value 

of ~2.24 was then clearly attributed to the high use of nitrogen and was also the 

explanation of high losses for TM polarization due to leakage of the mode to the substrate 

because of the lower confinement.  

 The process was adjusted and optimized to minimize the use of nitrogen (NTC2 

process). The refractive index was increased to ~2.7 but it was still too low (na-Si=3.47 

target). In this case, very low propagation losses were measured for TM due to the higher 

confinement of the mode in the waveguide. 

 However, we realized by literature that a-Si needs to be deposited in a plasma of 

hydrogen in order to passivate the dangling bonds, which are strongly absorbing in the 

infrared [80]. Then, a process based on hydrogen (NTC3 process) to increase the 

refractive index was developed. The quality of the hydrogenated a-Si (a-Si:H) that will 

be deposited onto the active BTO layers plays a fundamental role with respect to the 

waveguide and device performance. First of all, the refractive index of the layer can vary 

depending on the hydrogen content and deposition conditions. Furthermore, the losses in 

amorphous silicon are strongly dependent on the deposition conditions and can vary by 

several orders of magnitude. Therefore, to control the fabrication process is crucial 

towards achieving low-loss amorphous silicon. In this context, a refractive index of ~3.54 

was firstly estimated which was very close to the target value. Experimental 

characterization of propagation losses gave also rise to relatively good results: around 

18dB/cm for TE polarization and below 10dB/cm for TM polarization (Table 3.1). 

Despite larger propagation losses measured in NTC3 process rather than in NTC2 

process, the difference between the refractive indexes of a-Si was more important in order 

to choose the suitability of NTC3 process. 

 

Figure 3.7: SEM images of the (b) waveguide and (c) grating coupler. 
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 It must be pointed out that grating couplers were used in all cases as coupling light 

mechanism. Propagation losses were estimated by cut-back method through the use of 

waveguides with different lengths [81]. Figure 3.7 depicts scanning electron microscope 

(SEM) images of (a) waveguide and (b) grating coupler. 

 After the a-Si deposition on SiO2 was successfully developed and optimized being the 

losses properly characterized, we proceed to optimize the a-Si deposition on BTO 

samples over a silicon substrate. It must be highlighted that such task was carried out with 

the aim of fully studying the influence of the different deposition parameters on the 

quality of the material. In this way, these runs were realized for testing the quality of the 

material and the feasibility of the deposition and no light waveguiding characterization 

was achieved since no optical confinement by index contrast is obtained on simply silicon 

substrate. 

The successfully developed a-Si recipe optimized on SiO2 used a temperature as high as 

350ºC. Such temperature increases the stress of the a-Si layer when deposited on BaTiO3 

and therefore, the a-Si layer peels off from the sample. We thus decreased the temperature 

down to 200ºC (Recipe 1 in Table 3.2) but the refractive index was also decreased to 3.05.  

 

Figure 3.8: Stress problem in sample processed with recipe 2. 

 Temperature 
RF 

power 

SiH4 

flow 
H2 flow Pressure n Comments 

Recipe 1 200 ºC 100W 80sccm 260sccm 4.6Torr 3.05 Low index 

Recipe 2 225 ºC 200W 62sccm 279sccm 3Torr 3.47 High stress 

Recipe 3 200 ºC 100W 50sccm 300sccm 3Torr 3.41 
Good stress-n 

compromise 

Table 3.2: PECVD processes amorphous silicon deposition parameters developed. 

 Therefore, the influence on the refractive index of the RF-power, pressure and H2/SiH4 

ratio by using a low temperature around 200ºC was analysed with the objective of 

obtaining a refractive index around 3.47. A new recipe with a low temperature of 225ºC 
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was obtained with a refractive index of 3.47 (Recipe 2 in Table 3.2). Nevertheless, this 

recipe led to high stress in the a-Si layer and therefore the quality of the material was 

decreased. 

 The influence of the process parameters on the stress was then analysed by using 

Raman dispersion. Results showed, as expected, that the stress critically depends on the 

temperature, RF and H2 flow. The reduction of stress is obtained at expenses of decreasing 

the refractive index so there is a trade-off between them. In this context, we were able to 

develop a new recipe (Recipe 3 in Table 3.2) with a refractive index of 3.41 and low stress 

of a-Si on BTO. Hence, a good adhesion of the BTO adhesion was achieved. 

 

Figure 3.9: Normalized transmission spectra for (a) TE and (b) TM polarization of the a-Si/SiO2 

waveguides with different lengths fabricated with the final recipe. Propagation losses for (c) TE 

and (d) TM polarization. 

 Recipe 3 was then used for depositing a-Si layers on a SiO2 substrate to test optical 

losses. In this way, a refractive index of 3.41, low stress, roughness below 0.2 nm and 

optical losses below 10 dB/cm for TE and TM were achieved with the final recipe. Figure 

3.9 shows the normalized transmission spectra and the propagation losses for TE and TM 

polarization of the a-Si/SiO2 waveguides with different lengths. 

 To summarize, the a-Si deposition process based on PECVD was successfully 

developed and optimized. The main goals were to achieve a refractive index value close 

to 3.47, optical losses below 10 dB/cm and reduced stress to avoid the delamination from 

the BTO layer. The final PECVD process developed at NTC facilities was based on H2 

as plasma gas and SiH4 as precursor gas. The process parameters (temperature, RF power, 

pressure and H2/SiH4 ratio) were optimized to achieve the target goals. The stress of the 

a-Si layer was characterized using Raman dispersion and optical propagation losses were 
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characterized by fabricating and measuring the transmission spectrum of optical 

waveguides with different lengths. The roughness of the deposited a-Si layer was also 

analyzed and characterized by using AFM measurements. The main results of this study 

are the following: 

• A low temperature, around 200ºC, is required to reduce the stress of the a-Si layer 

when deposited on BTO.  

• The reduction of stress is obtained at expenses of decreasing the refractive index 

existing a trade-off between them. 

 

3.4. Fabrication of BTO based modulators 

The process steps to fabricate optical devices in the a-Si/BTO/SOI stack, which is 

summarized in Table 3.3, was developed, optimized and successfully demonstrated. 

Firstly, the BTO layer was grown either by RF sputtering or MBE as explained in 

previous section. After the a-Si deposition, the sample was cleaned and consequently the 

resist film was coated on the a-Si layer. Afterwards, the sample was exposed by a direct 

writing electron beam lithography (EBL). The resist was developed prior to a reactive-

ion etching inductively coupled plasma (RIE-ICP). Once the etching patterned the 

waveguides in the a-Si, a SiO2 upper cladding was deposited by PECVD to protect the 

devices.  

 

Figure 3.10: SEM images of (a) focused and (b) linear gratings. 

 Regular linear and focusing grating couplers were designed by means of 2D and 

3D-FDTD simulations to minimize coupling losses. The design was carried out by 

considering that the grating is fully-etched in the amorphous silicon layer to ease 

fabrication. Better results were obtained for focusing grating, for which losses below 6dB 

for both TE and TM polarizations were achieved. Figure 3.10 shows a SEM image of the 

fabricated (a) focused and (b) linear gratings. 
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 Process Technical Parameters 

1.0 

Commercial wafer 

 

Si over 2µm of SiO2 

2.0 

BTO deposition 

 

BTO deposition by either RF sputtering 

or MBE 

3.0 

a-Si deposition 

 

a-Si deposition by PECVD 

4.0 
Process: a-Si etching and SiO2 deposition (cladding) 

4.1 

Resist coating 

 

Spin-coating of HSQ resist.  

The resist film is coated on the a-Si 

layer.  

4.2 

EBL exposure 

 

Exposure in EBL system 

(VistecEBPG5000) 

The dose suggested here is used to 

fabricate waveguides in SOI technology. 

4.3 

HSQ resist Development 

 

The HSQ resist is developed. 

4.4 

RIE-ICP etching  

 

a-Si etching 

1 minute a-Si etching process  

4.5 

PECVD SiO2 deposition 

 

Upper cladding deposition 

SiO2 is deposited on the SOI sample by 

using PECVD. 

Table 3.3: Description of the steps to fabricate optical devices in the a-Si/BTO/SOI stack.
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3.5. Electrode fabrication process 

Electrode contacts on BaTiO3 were successfully fabricated and tested at NTC facilities.  

 Process Technical Parameters 

5.0 Process: silicon dioxide windows etching 

5.1 

Chromium evaporation 

 

Evaporation of Cr 

Electron-beam evaporation.  

 

5.2 

Resist Coating  

 

Spin-coating of 950K PMMA A4 from 

MicroChem Corp.100 nm thick resist layer 

 

5.3 

EBL exposure 

 

Exposure in EBL system 

(VistecEBPG5000) 

Metallic marks were used to align SiO2 

windows with a-Si waveguides. 

5.4 

PMMA resist development 

 

• Development of the resist in MIBK:IPA 

(1:10) – 45 s 

• Rinsing in IPA – 45 s 

5.5 

Metal removing 

 

Metal is removed from not protected areas.  

 

5.6 

RIE-ICP etching  

 

Silicon dioxide etching 

9 minutes SiO2 etching process  

5.7-5.9 Cleaning, Resist Coating and EBL exposure 

5.10 

Metal deposition 

 

Evaporation of Al, Ti, Cr/Au 

Electron-beam evaporation. 

 

5.11 

Lift-off 

 

Resist stripping 

 

 

Table 3.4: Description of the electrode fabrication process. 
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 Firstly, in order to place the electrodes on top of the BTO layer, there was need to open 

lateral windows in the cladding by developing a SiO2 etching process up to the BTO layer. 

For this purpose, a chromium evaporation on the cladding prior to the 100nm thick resist 

PMMA coating was realized. Thereafter, the sample was exposed by a direct EBL and 

then the resist was developed. The metal was removed from this not exposed area and a 

RIE-ICP etching process was used to remove the silica cladding. After a metal removing, 

another 100nm thick resist PPMA coating was deposited. Hence, a new EBL exposure 

was carried out to define the electrodes in the resist. Finally, metal deposition of the 

electrodes was performed by evaporation and a lift-off process was realized. The 

fabrication process of electrodes is summarized in Table 3.4. 

 

Figure 3.11: (a) Silica windows for fabricating the electrodes and (b) ring resonator with metal 

electrodes. 

 Figure 3.11 shows a SEM image of the silica window and a SEM image of a ring 

resonator with metal electrodes, respectively. 

 

3.6. Optical characterization  

Prior to demonstrating high speed EO modulators, we proceed to the passive 

characterization of the structures. The first step was to show that the light transmission 

could be achieved in the BTO based waveguides structures. Due to the late delivery of 

100nm Si wafers (optimum Si layer obtained by simulation), it obligated us to make some 

runs with standard 220nm Si thickness substrates. Although very high losses were 

measured, these runs were used to successfully demonstrate the integration of BTO on 

Si. The structures used and the results obtained in all processed samples are shown along 

next subsections. The main difference between them is the deposition technique of the 

BTO layer. While INL partner deposited BTO by RF sputter, IBM provided us samples 

with BTO grown by MBE.  
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3.6.1. Fabricated devices 

The general GDS (Graphic Database System) that we utilized consisted in sets of 

waveguides with different length to calculate propagation losses.  

 

Figure 3.12: (a) Example of a GDS used for fabrication. Inset in the (b) set of waveguides with 

different lengths, (c) a ring resonator and (d) a MZI.  

In Figure 3.12(a),(b) it can be seen an overview of a complete GDS and an example of 

the fabricated waveguides. Furthermore, we included structures that were introduced in 

chapter 1, such as ring resonators and MZI (Figure 3.12(c),(d)) with the aim of 

demonstrating EO modulation. 

 

3.6.2. Experimental set-up 

In passive characterization, an external cavity laser is employed. Directly after the laser, 

the input polarization state is set by adjusting an external polarization controller (PC), 

being the light injected into the chip with the selected polarization through vertical 

coupling with a single mode fiber. In order to monitor the received power, an optical 

power meter is used, which is also connected to a computer by a GPIB bus to measure 

the transmission spectra of the devices. Figure 3.13 shows the basic set-up with vertical 

coupling for passive characterization. 
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Figure 3.13: Schematic of the passive characterization set-up with vertical coupling.  

 

3.6.3. Samples with RF sputtered BTO 

Chronologically, we will start with INL RF sputtered BTO samples. In the first run, that 

we named #INL1 sample, the a-Si deposition was also performed at INL. In this first run, 

the thickness of the BTO layer was a bit thicker than expected (65nm) and 600nm width 

waveguides were patterned. Ring resonators were also added in the GDS (coupled to the 

shortest waveguide). The sample was covered with 750nm of SiO2 in order to protect the 

devices. Propagation losses of 250-300dB/cm were obtained for both TE and TM 

polarization, as shown in Figure 3.14(a),(c). Gratings were adequately centred 

approximately at 1550nm wavelength, as expected from the design. 

 According to the design that was previously done, no such large losses were expected. 

The main differences between simulation work and experimental characterization was the 

low refractive index of the a-Si, which was n=3.089 instead of targeted value (n=3.4758) 

and the thickness (65nm instead of 50nm) of the BTO layer. 

 na-Si ta-Si nBTO tBTO 

#INL1 3.089 220nm -- 65nm 

Table 3.5: Fabrication parameters of sample #INL1. 

 For TE polarization, it is expected that the lower refractive index of the a-Si pushes 

down the optical mode into the structure, thus decreasing the effective refractive index 
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value of the optical mode and slightly increasing optical losses. Furthermore, in the SEM 

image of the waveguide, which is depicted in Figure 3.15, it can be seen the high 

granularity that appeared on the a-Si seems to stand out as the major responsible of large 

losses. 

 

Figure 3.14: Results of optical measurements of #INL1. Transmission spectra of waveguides with 

different lengths and propagation losses for (a), (b), TE polarization and (d), (e), TM polarization, 

respectively. Blue spectra correspond to ring resonator. 

 

Figure 3.15: SEM image of the deposited a-Si waveguide. 

 The experimental results obtained in ring resonators for both polarization are shown 

in Figure 3.16. From these spectra, it can be extracted the experimental Free Spectral 

Range (FSR), the Full Width Half Maximum (FWHM) and the quality factor (Q), which 

are FSR~2nm, FWHM~0.5nm and Q~2680 for TE and FSR~1.96nm, FWHM~0.6nm and 

Q~2340 for TM polarization. 

 In order to analyse the accuracy of the results above presented, the simulation of the 

structure with the fabricated parameters and values was carried out. The group index 

ng was determined by: 
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eff
g eff

dn
n n λ

dλ
                                                    (3.1) 

where neff is the effective index and λ is the wavelength. The simulated group index was 

3.291 for TE polarization and 3.402 for TM polarization.  

 

Figure 3.16: Experimental transmission spectrum of the ring resonator for (a) TE and (b) TM 

polarization with the FSR and FWHM depicted. 

 The theoretical FSR from Eq. (1.5) can be calculated and compared with the 

experimental one. Furthermore, from the experimental Q factor extracted from the 

transmission spectra, we can obtain a value of the loss per unit length α by using Eq. (1.3). 

In order to obtain the experimental propagation losses from the transmission spectrum we 

will use: 

     1

10  / 10    ~ 4,34Lloss dB cm log e cm                            (3.2) 

 Hence, for TE polarization the theoretical results are FSR=2.04 and α=49.8cm-1 that 

corresponds to approximately 216dB/cm. Additionally, for TM polarization the estimated 

values are FSR=1.97, α=59.1cm-1 and 256dB/cm. Therefore, it can be seen that the 

experimental results are in agreement with the theory. From this sample, two ring 

resonators, one TE and one TM, were selected to undergo metallization process and be 

EO characterized. 

 In the second run (#INL2), the measured BTO layer was thinner than expected (42mn) 

with a refractive index of 2.208. The a-Si deposition was also performed at INL. In this 

case, an extra set of waveguides with W=700nm was introduced in the GDS to compare 

propagation losses with respect to W=600nm waveguides and the stitching effect. The 

sample was then covered with 750nm of SiO2. 

 na-Si ta-Si nBTO tBTO 

#INL2 3.00 240nm 2.208 42nm 

Table 3.6: Fabrication parameters of sample #INL2. 
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Figure 3.17: SEM images of the fabricated a-Si waveguides. 

 Despite the roughness was not as low as desired, the quality of the fabricated 

waveguides increased and no bubbles were detected, as seen in Figure 3.17. 

 

Figure 3.18: Results of optical measurements of #INL2 for TE polarization. Transmission spectra 

of waveguides with different lengths and propagation for (a), (b) waveguides with W=600nm and 

(c), (d) waveguides with W=700nm, respectively. Blue spectra correspond to ring resonator. 

 Comparing to the results from #INL1, it was possible to reduce significantly the 

propagation losses until approximately 100dB/cm for TE polarization, as seen in Figure 

3.18(b) and (d). 

 Due to the still low refractive index of a-Si (around 3), it would be expected that the 

optical mode was pushed down into the BTO and Si layers. Nevertheless, the thickness 

of the a-Si was 240nm instead of the 220nm designed. Increasing the thickness pushes up 

the optical mode. Therefore, we believe that both fabrication deviations counteracted each 

other avoiding the increment in the optical losses. 

 From the ring resonators spectra it can be extracted the experimental Q factor which 

is related to the ring resonator losses. The obtained value for TE polarization, Q~4340, 

gave us α value of 31.3cm-1 by using Eq (3.2). In this way, the estimated losses were 

approximately 136dB/cm, a bit larger than losses by cut-back method, probably due to 

bend losses of the ring resonators. 



3.6. Optical characterization 
 

63 

 

 Regarding to TM polarization, Figure 3.19 shows the transmission spectra obtained 

for 600nm and 700nm waveguides widths. The lack of correlation between losses and 

longer distances and the strong reflections observed in all waveguides was not a good 

sign of the accuracy of measured propagation and insertion losses. Besides, grating 

couplers were centred on 1430nm, far from the original design and TM ring resonators 

did not show resonances. 

 

Figure 3.19: Results of optical measurements of #INL2 for TM polarization. Transmission spectra 

of waveguides with different lengths for (a) waveguides with W=600nm and (b) waveguides with 

W=700nm. Blue spectra correspond to ring resonator. 

 Regarding to TM polarization, Figure 3.19 shows the transmission spectra obtained 

for 600nm and 700nm waveguides widths. The lack of correlation between losses and 

longer distances and the strong reflections observed in all waveguides was not a good 

sign of the accuracy of measured propagation and insertion losses. Besides, grating 

couplers were centred on 1430nm, far from the original design and TM ring resonators 

did not show resonances. 

 In general terms, no significant differences were observed between both W=600nm 

and W=700nm waveguides despite light reflections in the latter. Therefore, W=600nm 

waveguides were chosen for the following samples.  

 

Figure 3.20: Results of optical measurements of #INL2. Transmission spectrum of the MZI for 

TE polarization. 

 A MZI structure was firstly introduced in the GDS of this sample for each polarization. 

In Figure 3.20 it can be seen the transmission spectrum of the 2mm long MZI for TE 

polarization, where large losses were measured. In the case of the MZI for TM 
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polarization, it was not possible to measure the transmission spectrum due to extremely 

large losses. Therefore, TE ring resonators and MZI were selected to deposit electrodes 

and be EO characterized. 

 na-Si ta-Si nBTO tBTO 

#INL3 3.41 220nm 2.208 35nm 

Table 3.7: Fabrication parameters of sample #INL3. 

 

Figure 3.21: (a) SEM image of waveguide with a-Si deposited, (b) SEM image of one of the 

fabricated gratings showing the problem of over-exposition that happened during fabrication, 

transmission spectra of waveguides with different lengths for (c) TE polarization and for (d) TM 

polarization. Blue spectra correspond to ring resonator. 

 The following run (#INL3) was fabricated with slightly thinner BTO thickness than 

expected (35nm) with a refractive index of 2.208. The deposition of a-Si was successfully 

realized at NTC facilities with a refractive index of 3.41, close to the objective, and 

considerably lower roughness and granularity than in previous samples was obtained, as 

it can be seen in Figure 3.21(a). 

 Unfortunately, gratings were not perfectly fabricated due to an over-exposition effect 

(see Figure 3.21(b)). Therefore, the estimation of propagation losses by cut-back method 

was not accurate because coupling losses were not the same in all gratings. However, we 

can obtain losses inherent to the ring resonator by measuring the quality factor. The 

experimental values were Q~7980 for TE and Q~3970 for TM, which corresponded to α 

value of 16.2cm-1 and 34cm-1 respectively. In this way, the estimated losses were 

approximately 70dB/cm for TE and 147dB/cm for TM. 
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Figure 3.22: MZI with cuts in the waveguide. 

 Regarding to modulating structures, it was not possible to measure light in any MZI 

because of some cuts in the waveguides (Figure 3.22). However, as it is depicted in Figure 

3.21(c),(d), ring resonators (coupled to the shortest waveguide) for both TE and TM 

polarization showed a good extinction ratio (ER) and were metallized to be EO 

characterized. 

 The a-Si deposition at NTC facilities in #INL4 followed the same recipe developed in 

previous sample, thus obtaining an a-Si refractive index of 3.41, a BTO refractive index 

of 2.216 and roughness below 1nm. The thickness of the sputtered BTO layer was 35nm, 

again lower than expected. As in previous samples, ring resonators and MZI were 

included, all of them with a waveguide width of 600nm. Finally, the sample was covered 

by 750nm of SiO2 cladding. 

 na-Si ta-Si nBTO tBTO 

#INL4 3.41 220nm 2.216 35nm 

Table 3.8: Fabrication parameters of sample #INL4. 

 

Figure 3.23: (a) SEM image of ring resonator, (b) waveguide with a-Si deposited and (c) focused 

grating coupler. 

 SEM images of the fabricated waveguides and gratings are shown in Figure 3.23. It 

can be appreciated some granularity on the BTO surface, which according to the good 

obtained results, it did not seem to affect optical losses.  

 The transmission spectra and propagation losses are depicted in Figure 3.24, both for 

TE and TM polarization. Propagation losses for TE around 20dB/cm were measured, 

significantly decreasing the values obtained in previous samples. However, due to the fact 
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that some waveguides were damaged and high losses were measured, only few spectra 

were used to calculate losses. Hence, the accuracy of these results was not the optimum.  

 

Figure 3.24: Results of optical measurements of #INL4. Transmission spectra of waveguides with 

different lengths and propagation losses for (a), (b) TE polarization and (c), (d) TM polarization, 

respectively. 

 Regarding to TM polarization, a better performance was measured compared to 

previous samples, although still large losses, around 130dB/cm, were extracted (Figure 

3.24(d)). As in previous samples, we obtained losses inherent to the ring resonator by 

measuring the quality factor. The experimental values were Q~9250 for TE and Q~3390 

for TM, which corresponded to α value of 14.8cm-1 and 40.5cm-1 respectively. In this 

way, the estimated losses were approximately 64dB/cm for TE and 175dB/cm for TM. 

 

Figure 3.25: Results of optical measurements of #INL4. Transmission spectra of ring resonators 

for (a) TE and (b) TM polarization. Transmission spectra for MZI with different lengths for (c) 

TE and (d) TM polarization, respectively. 
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 The transmission spectra of ring resonators that presented lowest losses for both TE 

and TM polarization are shown in Figure 3.25(a),(b). The main difference between them 

was the larger losses and the lower extinction ratio (ER) of the resonances for TM 

polarization rings. The only difference between ring resonators was the distance between 

the waveguide and the ring, which values were chosen to obtain larger ER. 

 With respect to MZI, one more time we extracted better results for TE polarization 

(Figure 3.25(a)) rather than TM polarization (Figure 3.25(b)). The TE MZI spectra 

showed a good behaviour with clear resonances and an ER of approximately 10dB. TM 

MZI response presented significant larger losses and no resonances were observed. All 

TE modulating structures and TM ring resonators were metallized.  

 The last sample with BTO fabricated at INL and a-Si deposited and successfully 

characterized at NTC was #INL5. It was the first time in which the fabricated BTO 

thickness (51nm) was close to the designed one. The roughness was also low (around 

1nm) and the na-Si=3.41. The measured refractive index of the BTO was 2.213. It was 

introduced in the GDS some extra blocks of waveguides with different widths (700nm, 

1000nm and 1500nm), in order to compare propagation losses. This time, the sample was 

covered by a cladding of 500nm of SiO2.  

 na-Si ta-Si nBTO tBTO 

#INL5 3.41 220nm 2.213 51nm 

Table 3.9: Fabrication parameters of sample #INL5. 

 

Figure 3.26: Results of optical measurements of #INL5 for TE polarization. Transmission spectra 

of waveguides with different lengths and propagation losses for (a), (b) waveguides with 

W=600nm (c), (d) W=700nm, (e), (f) W=1000nm and (g), (h) W=1500nm, respectively. The TE 

modes corresponding to each waveguide width are shown in the right side. 
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 Propagation losses of 40dB/cm were obtained for W=600nm and TE polarization, as 

seen in Figure 3.26. It is expected that wider waveguides support multi-mode propagation 

and therefore, if superior order modes are excited, that would increase propagation losses.  

 However, for TE polarization we obtained lower propagation losses for wider 

waveguides widths. This is mainly due to the TE mode nature. As it can be seen in Figure 

3.26, in the 600nm waveguide width the TE mode is strongly confined in the a-Si 

waveguide. When increasing the waveguide width, TE mode becomes less confined and 

thus losses due to roughness of the waveguide fade. 

 

Figure 3.27: Results of optical measurements of #INL5 for TM polarization. Transmission spectra 

of waveguides with different lengths and propagation losses for (a), (b) waveguides with 

W=600nm (c), (d) W=700nm, (e), (f) W=1000nm and (g), (h) W=1500nm, respectively. The TM 

modes corresponding to each waveguide width are shown in the right side. 

 For TM polarization (Figure 3.27), propagation losses of 30dB/cm were measured for 

600nm width waveguides. In this case, wider waveguides did not show better 

performance in terms of propagation losses. Indeed, this can be also explained because of 

the nature of the TM mode. The confinement of the TM mode is mainly in the BTO layer. 

Hence, increasing the waveguide width slightly affects propagation losses for TM 

polarization. The summary of the results of all waveguides for TE and TM polarization 

is shown in Table 3.10 and Table 3.11. 
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Width [nm] Propagation losses  

 

 

TE 

600 40dB/cm @ 1480nm 

700 50dB/cm @ 1480nm 

1000 35dB/cm @ 1480nm 

1500 25dB/cm @ 1480nm 

 

 

TM 

600 35dB/cm @ 1470nm 

700 60dB/cm @ 1470nm 

1000 45dB/cm @ 1470nm 

1500 40dB/cm @ 1470nm 

Table 3.10: Propagation losses obtained for all sets of waveguides with different width for TE 

and TM polarization. 

 

Figure 3.28: Results of optical measurements of #INL5. Transmission spectra of ring resonators 

for (a) TE and (b) TM polarization. Transmission spectra for MZI with different lengths for (c) 

TE and (d) TM polarization, respectively. 

 With respect to modulator devices, we obtained clear resonances in ring resonators 

(Figure 3.28(a),(b)) and MZI (Figure 3.28(c),(d)) for both TE and TM polarization with 

larger ER than in previous samples. Losses inherent to the ring resonator by measuring 

the quality factor were also analysed. The experimental values were Q~10950 for TE and 

Q~4690 for TM, which correspond to α value of 12.8cm-1 and 31.4cm-1 respectively. In 

this way, the estimated losses were approximately 55dB/cm for TE and 135dB/cm for 

TM. Higher losses for TM might be attributed to bend losses due to the TM mode high 

confinement in the BTO region rather than in the a-Si waveguide. As a result of the clear 

resonances and good ER that showed all modulating devices, we proceed to metallize 

them in order to analyse their EO behaviour 
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Table 3.11: Summary of the fabrication parameters, SEM images and optical results of BTO 

sputtered samples (RR=ring resonator). 

In Table 3.11 it can be seen the summary of all samples processed by RF sputtered BTO, 

besides the obtained optical results and structures that were metallized. Through the 

different fabricated samples, we have been able to decrease losses until 20-30dB/cm 

probably linked to a reduction in the a-Si roughness and due to the better quality of the 

deposited BTO layer. 

 

3.6.4. Sample with MBE BTO 

The only sample optically characterized provided by IBM consisted in MBE grown BTO. 

The measured BTO thickness was 63nm and the refractive index 2.31.  

 na-Si ta-Si nBTO tBTO 

#IBM1 3.41 220nm 2.31 63nm 

Table 3.12: Fabrication parameters of sample #IBM1. 

 #INL1 #INL2 #INL3 #INL4 #INL5 

taSi/tBTO/tSi 

220nm a-Si 65nm 

BTO                                                          

4nm STO                                                      

100nm Si on SOI 

240nm a-Si 

42nm BTO                   

3nm STO                        

100nm Si on 

SOI 

220nm a-Si 

35nm BTO                   

3nm STO                 

100nm Si on 

SOI 

220nm a-Si 

35nm BTO                    

3nm STO                 

100nm Si on 

SOI 

220nm a-Si 

51nm BTO                   

3nm STO                 

100nm Si on 

SOI     

nBTO -- 2.208 2.208 2.216 2.213 

na-Si 3.089 3 3.41 3.41 3.41 

SEM 

Images 

     

 

 

 

Optical 

results 

(Propagati

on losses) 

αTE≈αTM≈250-

300dB/cm  
αTE≈100dB/cm  

Propagation 

losses not well 

estimated. 

Over-exposition 

problem in 

grating 

couplers.  

αTE≈20dB/cm 

αTM≈130dB/cm  

αTE≈40dB/cm 

αTM≈30dB/cm  

Metallized 

structures 
TE and TM RR. 

TE RR and 

MZI.  
TE and TM RR 

TE and TM RR 

TE MZI 

TE and TM RR 

and MZI 
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The a-Si deposition was successfully accomplished at NTC, obtaining na-Si=3.41 and 

roughness around 0.2nm. This sample was covered with 500nm of SiO2. 

 

Figure 3.29: Results of optical measurements of #IBM1. Transmission spectra of waveguides 

with different lengths and propagation losses for (a), (b) TE polarization and (c), (d) TM 

polarization, respectively. 

 Propagation losses around 40-60dB/cm were obtained for TE polarization, as shown 

in Figure 3.29(b). In the case of TM polarization, the measured propagation losses were 

larger (Figure 3.29(d)), between 100-110dB/cm. With respect to losses connected to the 

ring resonators, we extracted experimental values of Q~4650 for TE and Q~3070 for TM, 

which corresponded to α values of 28.8cm-1 and 44.5cm-1 respectively. In this way, the 

estimated losses were approximately 124dB/cm for TE and 193dB/cm for TM. Due to the 

lack of more samples, we were not able to determine whether the origin of these losses 

were related to the BTO itself or connected to fabrication process steps. 

 

Figure 3.30: Results of optical measurements of #IBM1. Transmission spectra of ring resonators 

for (a) TE and (b) TM polarization. Transmission spectra for MZI with different lengths for (c) 

TE and (d) TM polarization, respectively. 
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 In this sample, ring resonators and MZI of both TE and TM polarization, which 

showed clear resonances with high ER, were metallized in order to characterize their EO 

behaviour. After optical results, in next section we will explain the EO characterization 

that was carried out in the modulating structures. 

 

3.7. Electro-optical characterization  

Once the passive measurements were successfully carried out, we opened lateral windows 

in the ring resonators and MZIs that showed resonances and placed the electrodes to 

proceed to the EO characterization. In this section, EO measurements with DC probes 

were firstly performed. Among other EO effect that can take place, due to the Pockels 

effect present in BaTiO3, when an electric field is applied through the electrodes the 

refractive index changes and therefore the resonance shifts. After characterizing the 

modulating structures in DC regime, we applied RF signals through RF probes to the 

electrodes in order to achieve EO modulation. 

 

3.7.1. DC regime  

3.7.1.1. Experimental set-up  

Light is coupled from a laser to the chip via a lensed fiber after polarization control, as it 

has been previously explained for passive characterization. In this set-up, a DC signal is 

applied to the electrodes of the ring resonators and MZIs through DC probes. The 

transmission spectra for different voltages are measured in this kind of set-up. A 

schematic and pictures of the real set-up are shown in Figure 3.31. 

 

Figure 3.31: Experimental set-up for realizing DC measurements. 
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3.7.1.2. DC electro-optic results  

RF sputtered BTO samples 

As explained in subsection 3.5, a process for the electrode fabrication by opening lateral 

windows and metallization was developed at NTC facilities. Following such process, ring 

resonators in #INL1 were metallized (Figure 3.32) and EO characterized. 

 

Figure 3.32: SEM images of lumped electrodes on one of the fabricated racetracks in #INL5. 

 Because of the ferroelectric nature of BaTiO3, this material is formed by regions that 

have spontaneous polarization, known as domains. As aforementioned in chapter 1, when 

an electric field is applied, those domains which are oriented in the same direction of the 

electric field will remain aligned and those which are aligned in another direction, will 

experience a tendency to change their orientation towards the direction in which the 

electric field is applied. When the applied electric field is high enough to align all 

domains, the coercive field is reached and thus all domains are aligned. Hence, by 

applying some consecutive sweeps both positive and negative voltage values, we expect 

to align domains in both directions and be able to observe the characteristic butterfly 

behaviour of ferroelectric materials. In this way, we proceed to measure ring resonators 

in DC regime. 

 

Figure 3.33: (a) Resonance shift for different DC voltages and (b) phase shift as a function of 

applied DC voltage. 

 In Figure 3.33(a) it can be observed the sweep of the resonance between 0 and 10V. 

By sweeping positive and negative voltages, we obtained that both upward and backward 

paths of voltages (i.e. the response when the voltage increases and when decreases 

respectively) have the same direction (Figure 3.33(b)), where a linear wavelength shift is 

clearly observed. From the wavelength shift of the resonance due to the applied voltage 
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we can evaluate the modulation efficiency of the ring resonator by calculating the Vπ·L 

product by following equations: 
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where λ is the wavelength, 𝛥λ is the wavelength variation, FSR is the free spectral range, 

ng is the group index, Lring is the length of the ring resonator, Lactive is the active length of 

the ring resonator, 𝛥neff is the variation of the effective refractive index, 𝛥Φ is the phase 

shift, V is the applied voltage, Vπ is the half-way voltage and Lπ is the required length for 

a phase shift of π. 

 From such DC measurements, and with the formulas above mentioned, we obtained a 

modulator efficiency VπL of 1.05Vcm. Despite no butterfly behaviour was detected, the 

linear dependence of the phase shift against the applied voltage is characteristic of the 

Pockels effect for a-axis grown BTO. Furthermore, the resonance shifted to the same 

direction for both positive and negative voltages, which might be related with ferroelectric 

domain switching. However, the non-perfect butterfly shape indicates the presence of 

other physical effects besides Pockels effect, which could be the redistribution of charges 

at the BaTiO3/Si interface or charging of bandtail states in the a-Si:H layer [54,84].In any 

case, the clear indication of Pockels effect would be the demonstration of high speed 

modulation, which is sought in next subsection.  

 In sample #INL2 both ring resonators and MZI structures were metallized and 

measured in the DC regime to analyse the EO switching performance. However, no ring 

resonator showed any EO behaviour. The sweep of the resonance between 0V and 20V 

for the TE ring resonator is depicted in Figure 3.34.  

 As it can be seen, no resonance shift was observed even when applying 20V through 

the electrodes of the ring resonator. Nevertheless, when a voltage was applied to a MZI 

we did experience a clear change. Figure 3.35(a) shows the phase shift as a function of 

the applied DC voltage for the MZI structure.  
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Figure 3.34: Resonance of the TE ring resonator for different DC voltages  

 The reason of this EO behaviour difference between ring resonators and MZI within 

the same sample could be connected to a poor crystallinity of the BTO fabricated material 

since the longest length of the MZI may include some small crystalline areas whereas the 

short length of the ring resonator may not. The reduced number of devices in this sample 

did not allow us to extract broader conclusions.  

 

Figure 3.35: Phase shift as a function of the DC voltage of the MZI structure. 

 In order to evaluate the modulation efficiency of the MZI, the Vπ·L product of the MZI 

can be calculated as follows: 

( 20 ) ( 0 ) 133DC DCV V V V pm                                    (3.9) 
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· · 20 ·1.05 21 ·V L V L V cm V cm                                  (3.14) 

where L is the length of the MZI and 𝛥L is the length difference between the arms of the 

MZI. 

 With respect to the ring resonator from the #INL1, for the 2mm-long MZI modulator, 

a much lower modulation efficiency of 21V·cm was calculated. By comparing both 

results it can be highlighted several issues: 

• No hysteresis was observed in any device.  

• The phase shift variation had different slopes depending on the voltage sign in 

both devices. 

• The sign of the phase shift variation, and therefore of the effective index, for both 

structures is opposite when negative voltages are applied.  

 Therefore, it can be stated that although we were able to see an EO response, the 

obtained results were not in agreement with the expected performance for modulation 

exclusively based on Pockels effect. Indeed, the behaviour experienced of device in 

sample #INL2 can be explained due to the metallization process.  

 

Figure 3.36: SEM images of devices in sample #INL2. (a) Ring resonator modulator with lumped 

electrodes, (b) MZI modulator with travelling wave electrodes, (c) detail of opened windows in 

metallization process and (d) transversal profile of one arm of the MZI and inset of a detail of the 

a-Si/BTO/Si waveguide.  

 SEM images of some fabricated structures with electrodes are shown in Figure 3.36. 

As can be seen in Figure 3.36(d), one window was not opened in the MZI and the 

metallization was carried out onto the silica cladding. Indubitably, it affected to the EO 
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performance thus decreasing significantly the EO overlap in the BTO region and therefore 

the modulation efficiency.  

 In sample #INL3 ring resonators were metallize and were measured in DC regime to 

obtain the modulator phase shift by means of the wavelength shift as a function of the DC 

voltage.  

 

Figure 3.37: (a) Resonance shift for different DC voltages and (b) phase shift as a function of 

applied DC voltage. 

 Figure 3.37(a) the wavelength shift of the resonance when applying a voltage is shown 

for a ring resonator. Although both upward and backward paths of voltage were similar 

(Figure 3.37(b)), the short shift of the resonance gave rise to a Vπ·L product of around 

4.2V·cm for the TE ring resonator by using Eq. (3.3)-(3.8). We believed that the low 

modulation efficiency is probably caused by not optimum quality of the BTO layer. 

 In order to reduce the fabrication steps that could be damaging the BTO layer and 

therefore the EO performance, in sample #INL4 it was avoided the etching step in the 

silica cladding and electrodes were placed above 500nm of SiO2. In this sample, many 

MZI and ring resonators were tested and even when applying 20V, the resonance roughly 

move. The reason why EO measurements lacked of resonance shifting might be the large 

voltage drop across the SiO2 layer in combination with a strongly coercive field not 

accessible in the experiments [78]. Therefore, it was decided to keep opening lateral 

windows in next samples and deposit the electrodes directly on the BTO layer to increase 

the EO overlap.  

 

Figure 3.38: Phase shift as a function of the DC applied voltage for (a) 1mm and (b) 2mm long 

TE polarized MZI. 
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 By that means we proceed in sample #INL5. In this sample, we observed clear 

wavelength shifts when sweeping the applied voltage between -10V and 10V to MZI of 

both TE and TM polarization.  In Figure 3.38 it is depicted the phase shift as a function 

of the applied voltage for two TE MZI of different length. 

 Despite large variability between devices, MZI showed the called “butterfly” 

hysteresis, characteristic of ferroelectric materials. As previously discussed, the EO 

response of two antiparallel domains is cancelled. However, antiparallel domains can be 

switched by flipping their ferroelectric polarization. This happens when the applied 

electric field overcomes the coercive field. Therefore, this loop is the expected behaviour 

for ferroelectric switching. Furthermore, we demonstrate that multiple loops lie 

approximately on top of each other (Figure 3.38b)), thus making the switching 

reproducible. Undoubtedly, this is a clear signature of ferroelectric behaviour of BTO.  

 

Figure 3.39: Phase shift as a function of the DC applied voltage for 2mm long TM polarized MZI. 

 In the case of TM polarized MZI, although switching was appreciated, it was not 

possible to measure any hysteresis behaviour (Figure 3.39). From the Eq. (3.9)-(3.14) the 

modulation efficiency can be calculated by estimating the Vπ·L product of the MZIs. The 

obtained results were: 

• For the TE 1mm long MZI: Vπ·L=3.6V·cm 

• For the TE 2mm long MZI: Vπ·L=5.7V·cm 

• For the TM 2mm long MZI: Vπ·L=12.5V·cm 

Comparing to the best analyzed cases in simulation, a considerably lower modulation 

efficiency was obtained in experimental characterization. The reason might be linked to 

a mixture of a-axis and c-axis domains and the 0º oriented waveguide towards the BTO 

layer. However, in this sample, the modulation efficiency obtained for the MZIs was 

considerably improved comparing to previous samples. The reason behind this behaviour 

might be connected to the longer distance between electrodes previously utilized in the 

first 3 samples (3.6µm versus 2.5µm).  
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MBE BTO Sample 

Static EO measurements were carried out in sample #IBM1. SEM images of a fabricated 

MZI with electrodes is shown in Figure 3.40. 

 

Figure 3.40: SEM images of the fabricated waveguide with electrodes. 

 A clear resonance shift is observed in all MZI and ring resonators. Figure 3.41(a) 

shows the resonance shift when applying a DC voltage to the 1mm long TE MZI 

electrodes. In previous samples, current values around µA were measured. However, 

current values up to few mA were measured in this sample (Figure 3.41(b)) and 

consequently it cannot be assumed that Pockels effect is the only responsible of the 

resonance movement at DC regime. 

 

Figure 3.41: (a) Wavelength shift of the MZM response for different DC bias voltages and (b) 

current measured as a function of the applied voltage. 

 In fact, the thermo-optic effect is clearly dominating in the DC regime when high 

voltages are applied, hiding any possible ferroelectric behaviour. As it can be seen in 

Figure 3.42, longer MZI produce longer resonance shifts for the same DC voltage, being 

the relation between phase shift applied voltage quadratic for longer MZI.  
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Figure 3.42: Phase shift as a function of the DC applied voltage of MZM with different lengths 

for (a) TE and (b) TM polarization. 

 

Figure 3.43: Phase shift as a function of the applied power for all (a) MZM and (b) ring resonators. 

 In such cases, as expected from the dominating thermo-optic effect, the refractive 

index change is always positive for both positive and negative applied voltages. 

Moreover, the phase shift variation of all MZI and ring resonators show a clear linearly 

dependence on the electrical DC power (Figure 3.43), evidencing one more time the 

thermo-optic effect dominion in DC regime. 

 

Figure 3.44: Resistance of the MZI when applying (a) 5V and (b) 20V for different lengths. 

 The resistance of different devices were also analysed. It is interesting to notice that 

devices show different resistance depending on the applied voltage and the active length. 

In Figure 3.44 it is depicted the resistance values for all MZI when 5V and 20V are 
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applied, respectively. In fact, the resistance values can vary even one order of magnitude. 

In addition, lower resistance is obtained also in devices with longer active length. 

 The high current values measured produced a variation in losses that might be 

connected to carrier effects. Although this variation was not evidenced in all devices, if 

electrical power was reduced for high voltages, the effect of the carriers was more clearly 

revealed. Indeed, at low voltages, negative phase shifts were appreciated in some cases, 

being stronger for TM polarization. In general terms, the influence of carriers was more 

important for TM rather than TE polarization (Figure 3.45). 

 

Figure 3.45: Wavelength shift of a ring resonator response for different DC bias voltages for (a) 

TE and (b) TM polarization. Insights of the respective TE and TM mode. 

 

Figure 3.46: Vπ values for all MZI as a function of the length for (a) TE and (b) TM polarization. 

 The Vπ results were also analysed. Figure 3.46 depicts the obtained Vπ results of all 

MZI for both TE and TM polarization. The Vπ are characterized by obtaining a clear 

dependence with the active length of the modulators and being the Vπ lower for TE than 

TM. 

The main conclusions that we obtained are below listed: 

• The resistance decreases (power increases) for longer active lengths  

• The phase shift mainly depends on the power consumption  

• Same power → smaller effective index variation with longer active lengths  

• Same index variation → higher phase shift variation for TE polarization 
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 Due to the domination of the thermo-optic effect in DC regime, the contribution of 

Pockels effect remains hidden. According to the formulation, and assuming that both 

effects act independently, for c-axis grown BTO, both Pockels and thermo-optic effect 

produce a positive phase shift change for TE polarization. However, for TM polarization, 

Pockels effect produces a negative phase shift.   

TE TO TE EO c TE                                                (3.15) 

TM TO TM EO c TM                                               (3.16) 

 In the case of a-axis grown, Pockels effect would produce a negative phase shift for 

both TE and TM polarization. 

TE TO TE EO a TE                                               (3.17) 

TM TO TM EO a TM                                              (3.18) 

 This difference is evidenced in the experimental results, obtaining a higher Vπ for TM 

polarization. Furthermore, for this polarization, at low DC voltages some devices showed 

a small negative phase shift, which could be an indication of Pockels effect for c-axis 

grown BTO. In any case, to prove the presence of the Pockels effect, there is need to 

characterize the high speed performance of the MZM and ring resonators. 

 Finally, in order to find out the reason of the high current measured in all devices, 

different tests were carried out in the same run. Firstly, electrodes were deposited directly 

on the BTO layer. After running several measurement tests, it was not possible to obtain 

similar currents values as in the processed MZM.  

  

Figure 3.47: Current-Voltage behaviour for two tests. a) Sample without SiO2 cladding and b) 

sample with SiO2 cladding and lateral windows. 

 Current values lower than 1mA were detected when a voltage of 40V was applied 

(Figure 3.47(a)).Then, a piece of the same sample was covered with 500nm of SiO2 

cladding. Afterwards, lateral windows were opened and aluminium electrodes were 

placed directly on top of the BTO layer as in the original device to test if the high current 

measured was due to the electrode process. In this case, the obtained current values were 

of the same magnitude as in the previous test (Figure 3.47(b)), and again no high current 



3.7. Electro-optical characterization 
 

83 

 

was measured as in the processed sample. It must be highlighted that in both cases, the 

highest measured current value was lower than 1mA even when applying around 40V. It 

must be pointed out that these studies were carried by placing the electrodes at the same 

distance as in the original sample. Unfortunately, these tests were not decisive to 

determine the origin of the high current measured. Therefore, the origin of the high 

current is not clear and might be connected with fabrication processes carried out in the 

original sample. 

 The summary of the EO behaviour at DC regime and the modulation efficiency of the 

devices in each sample is shown in Table 3.13. 

 

 #INL1 #INL2 #INL3 #INL4 #INL5 #IBM1 

BTO 

deposition 

technique 

RF Sputtering MBE 

EO 

behaviour 

at DC 

regime 

Linear 

phase shift 

variation Vs 

DC bias. 

Different 

slope and 

negative 

effective 

index 

variation for 

both 

positive and 

negatives 

voltages.  

Linear 

phase shift 

variation Vs 

DC bias. 

Different 

slope and 

effective 

index 

variation for 

both 

positive and 

negatives 

voltages.  

 

Linear 

phase shift 

variation Vs 

DC bias. 

 

No EO 

behaviour. 

Hysteresis 

behaviour 

in TE MZI. 

Quadratic 

phase shift 

variation 

Vs DC 

bias. 

High 

current 

measured. 

Thermo-

optic effect 

dominates 

at DC 

regime. 

 

Modulation 

efficiency 

(Vπ·L) 

1.05V·cm 

in a TE ring 

resonator. 

DE =3.6µm 

21V·cm in a 

TE MZI. 

DE =3.6µm 

4.2V·cm in 

a TE ring 

resonator. 

DE =3.6µm 

-- 3.6V·cm 

and 

12.5V·cm 

in a TE and 

TM MZI. 

DE =2.5µm 

 

Table 3.13: Summary of the EO behaviour at DC regime and modulation efficiency of devices in 

all samples (DE=distance between electrodes).  

 

3.7.2. RF regime  

As before mentioned, the clear indication of Pockels effect would be the demonstration 

of high speed operation. For this purpose, we characterized at RF frequencies the devices 

which have shown an EO behaviour in DC regime. Once analogic modulation at high RF 
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frequencies is successfully demonstrated, we can introduce a sequence of bits in order to 

test the digital transmission capability. 

 

3.7.2.1. Experimental set-ups  

The method carried out to perform modulation measurements at RF frequencies consists 

in applying sinusoidal RF signals to the electrodes through high-speed ground-signal-

ground (GSG) RF probes to modulate a continuous wave signal coming from a laser.  

 

Figure 3.48: Schematic and figures of the characterization setup for the modulation at RF.  

 The output modulated optical signal is optically amplified by an erbium-doped fibre 

amplifier (EDFA) and then filtered via an optical filter (OF) to clean the noise introduced 

by the EDFA. Hence, both the modulating signal after the RF electrodes and the 

modulated signal after being photodetected are monitored by an oscilloscope. Before 
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being photodetected, the modulated signal is split to simultaneously monitor the 

photodetected temporal signal at the oscilloscope and the spectrum of the optical signal 

through the power meter to optimize the modulation performance at QB point. The 

experimental setup is shown in Figure 3.48. 

 

Figure 3.49: Schematic and figures of the characterization set-up for data transmission 

measurements. 

 To characterize the high speed data transmission capability, a non-return-to-zero 

(NRZ) pseudorandom bit sequence (PRBS) of length 27-1 delivered by a bit pattern 

generator (BPG) is applied, connected to an external clock. The input electrical signal is 

amplified through a high-speed RF amplifier to achieve the desired voltage swing and 

combined to DC bias voltage using a bias-Tee. The modulating signal is applied by high-

speed GSG RF probes to the electrodes. The output modulated optical signal is then 

optically amplified by an EDFA, then filtered via an OF and finally photo-detected prior 
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to visualize the signal at the digital communication analyser (DCA). The experimental 

setup is shown in Figure 3.49. 

3.7.2.2. RF electro-optic analogic results 

RF sputtered BTO samples 

In sample #INL1 a ring resonator was EO characterized. A low frequency signal was 

introduced into the modulator by using RF probes through lumped electrodes as above 

explained. In this way, we were able to observe modulation only up to 2MHz with a DC 

bias of 4V. Figure 3.50 shows the microscope image of the RF probes and optical fibers 

(Figure 3.50(a)) and the RF modulated signal at 100kHz (Figure 3.50(b)) and 2MHz 

(Figure 3.50(c)). 

 

Figure 3.50: (a) Microscope image showing the RF probes and optical fibers, output modulated 

signal measured at (b) f=100kHz and at (c) 2MHz. 

 Higher RF frequency operation was not possible. The main reason that was limiting 

the performance was probably the thin thickness of the metal electrodes (around 100nm) 

used in this sample, besides the large propagation losses. 

 

Figure 3.51: Output modulated signal measured at a frequency of 50MHz. 
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 Therefore, in next samples the thickness of the aluminium electrodes was increased to 

500nm. However, we were not able to experience modulation at RF frequencies until 

sample #INL5. In such sample we were able to demonstrate modulation up to 50MHz, as 

it can be see depicted in Figure 3.51. The blue line shows the input RF signal and the 

yellow one is the modulated signal. 

 Notwithstanding that the obtained modulation was significantly improved comparing 

to the first results, the RF performance was still low. Indeed, we identified the main reason 

of this unexpected low efficient modulation and probably the lack of modulation or low 

EO behaviour observed in last samples to be the poor crystallinity of the BTO layer. As 

it can be seen depicted in High Angle Annular Dark-Field (HAADF) pictures (Figure 

3.52), important amorphous regions appeared in the BTO material. The reason of this 

amorphous areas could be connected with the STO layer that is previously grown on Si 

to overcome the mismatch between the lattice parameters of BTO and Si. In this way, the 

STO amorphization seemed to lead to amorphous columns in the BTO layer. Therefore, 

if the barium titanate is grown amorphous instead of crystalline, the material does not 

present Pockels coefficient in these regions. Hence, the fact that some parts of the material 

was amorphous strongly reduced the EO response in the MZI, or even eliminated the 

possible EO response of ring resonators due to its smaller length. Obviously, this fact is 

directly linked to the low EO behaviour obtained in devices of this and previous sample. 

 

Figure 3.52: HAADF images highlighting the amorphous columns present in the BTO layer. 

 

MBE BTO sample 

In sample #IBM1 many devices presented EO behaviour when were EO characterized at 

DC regime. Therefore, we attempted to characterize them at RF frequencies. Following 

the measuring method described in section 3.7.2.1, we were able to observe EO 

modulation up to 30 GHz with an applied modulating signal of 5.6Vpp and a DC bias of 

10V. Figure 3.53(a),(b) depict measured signals at 15GHz and 30GHz where the blue 

wave corresponded to the modulated signal and the pink wave to the modulating input 

RF signal. At higher frequencies, both electrical signals were attenuated due to electrode 

losses. Nonetheless, the demonstration of EO modulation at frequencies beyond 10 GHz 



Chapter 3: Fabrication and characterization of electro-optic modulators based on BaTiO3 in silicon 
 

88 

 

discards the presence of any other effect rather than Pockels as responsible of the 

modulation.   

 The influence of the DC bias voltage was also characterized to analyse the nature of 

the BTO ferroelectric orientation since, as previously discussed, the involved Pockels 

coefficients and hence the EO modulation performance depends on the BTO ferroelectric 

orientation. The amplitude of the modulated signal at 5GHz is depicted as a function of 

the DC applied bias in Figure 3.53(c) being the optical wavelength adjusted at each DC 

bias voltage to ensure modulation at the QB point. It must be highlighted here that the 

modulated signal should be rectified without applying a DC bias, i.e. at a DC voltage of 

0V. However, this performance is not observed because an offset phase shift, which is 

thermo-optically generated by the RF signal, is always present. It is also interesting to 

point out from Figure 3.53(c) that a non-linear response is achieved when the DC bias 

increases, which would be linked to a c-axis crystallographic orientation of the BTO. 

 

Figure 3.53: High-speed EO measurements. (a) Modulation response at 15GHz. (b) Modulation 

response at 30GHz. The blue wave corresponds to the photodetected EO modulated signal while 

the pink wave is the modulating signal measured at the output of the RF electrode. Results were 

obtained applying a DC bias of 10V and using an electrical amplification, being the RF voltage 

peak to peak of 5Vpp. (c) Peak to peak voltage of the photodetected EO modulated signal as a 

function of the applied DC bias for a RF signal of 5 GHz and without electrical amplification 

(VRF=3.3Vpp). 
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Figure 3.54: Schematic to explain the influence of the DC bias polarity on the EO modulation due 

to Pockels effect in c-axis grown BTO. The symmetry in the phase response implies that the 

modulated signals should be in counter phase for the same DC bias voltage but with different 

polarity. 

 On the other hand, Pockels modulation of c-axis grown BTO also implies that the 

modulated signals should be in counter phase for the same DC bias voltage but with 

different polarity, as schematically described in Figure 3.54. For this purpose, we 

measured the EO response of the MZM at 5GHz for DC bias voltages of +10V and -10V, 

as depicted in Figure 3.55. In fact, it can be seen how the modulated signals (blue waves) 

are in counter phase when the sign of the DC bias voltage is reversed. Hence, the obtained 

results are also in agreement with Pockels modulation in c-axis grown BTO. 

  

Figure 3.55: (a) Modulation response for a DC bias voltage of +10V. (b) Modulation response for 

a DC bias voltage of -10V. The RF frequency is 5 GHz and the applied peak to peak voltage is 

3.3V. 

 Finally, out‐of‐plane and in-plane X-ray diffraction (XRD) scans on the fabricated 

sample were performed, confirming the prevailing c-axis orientation (Figure 3.56). 
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Figure 3.56: XRD pattern of the BTO film grown on SrTiO3‐SOI template by MBE for out-of-

plane and in-plane measurements. 

 #INL1 #INL2 #INL3 #INL4 #INL5 #IBM1 

BTO 

deposition 

technique 

RF Sputtering MBE 

Modulation 

results 
2MHz -- -- -- 50MHz 30GHz 

Table 3.14: Summary of the analogic modulation results of all samples. 

 

3.7.2.3. RF electro-optic digital results 

Once achieved modulation at high RF frequencies in sample #IBM1, we tested the data 

transmission capability of the modulator. The most useful figure of merit to 

experimentally evaluate the performance of a modulator in high speed digital 

transmissions is the eye diagram, in which the signal from the receiver is repetitively 

sampled and applied to the input of an oscilloscope while an external clock is used to 

trigger the horizontal sweep.  

 

Figure 3.57: Eye diagrams at (a) 5Gbit/s and at (b) 10Gbit/s. 
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 Figure 3.57 shows the obtained eye diagram for a bit rate of 5Gbit/s and 10Gbit/s. To 

the best of our knowledge, the highest digital data-rate transmission value reported for 

EO modulation in hybrid BTO on silicon devices was 300Mbit/s [49]. The obtained 

results in this thesis, showing EO modulation at 10Gbit/s, demonstrate the capability of 

high speed EO modulation in integrated BTO on silicon waveguide devices.
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Chapter 4 

 

Conclusions and future outlook 

 

This thesis provides a contribution in the field of silicon photonics by integrating a novel 

material into silicon platform like barium titanate with high electro-optic coefficients. 

 Due to the ferroelectric nature of BaTiO3, this material presents spontaneous 

polarization and it is formed by ferroelectric domains. In order to develop high efficiency 

electro-optic modulators based on BTO/Si we have firstly to thoroughly analyze the 

influence of the ferroelectric domain orientation on the EO performance. In this way, an 

exhaustive study of the EO performance has been carried out considering both single 

domain orientation and multi-domain orientation. In the former, the best EO performance 

has been achieved for a-axis oriented BaTiO3 and TE polarization. In this case, the Vπ 

voltage can be significantly improved by rotating the waveguide structure with respect to 

the principal axes of BaTiO3. Hence, a Vπ voltage as low as 1.35V has been obtained for 

a modulation length of 2mm, i.e. Vπ·L = 0.27 V·cm, at the optimum rotation angle of 55°. 

On the other hand, c-axis oriented BaTiO3 allows achieving a high EO performance for 

both TE and TM polarizations though the phase shift variation with the applied voltage 

is no longer linear as it happens for a-axis oriented BaTiO3. A Vπ voltage of 4.25V has 

been achieved for TM polarization, which is slightly smaller than the value of 4.75V 

obtained for TE polarization.  

 However, a multi-domain structure is usually formed during the fabrication of thin-

film BaTiO3 layers. Therefore, the influence of a multi-domain a-axis structure on the 

electro-optic performance has also been analyzed in this work. Results have been obtained 

for a silicon CMOS compatible slot waveguide structure but the main findings can be 

generalized for any kind of optical waveguide structure. It has been shown that the angle 

of the optical waveguide with respect to the orientation of BTO domains is critical. More 
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concretely, the lowest Vπ voltage is achieved by rotating the optical waveguide with an 

angle between 35º and 55º depending on the multi-domain structure. The most robust 

angle against variations in the domain structure is 45º but at the expenses of a slightly 

higher Vπ voltage. In the proposed modulator, a percentage of antiparallel domains as 

high as 66% of the total number of domains present across the active length can be 

supported to keep the Vπ voltage below 5V. 

 After the EO design, the fabrication and experimentally characterization of the 

proposed structures have been provided. Firstly, the a-Si deposition has been successfully 

demonstrated obtaining a refractive index close to the target as well as low propagation 

losses for both TE and TM polarization. After explaining the experimental set-up for 

passive characterization, the optical characterization of waveguides, ring resonators and 

MZI has been presented through the analyses of different samples with both RF sputtering 

and MBE growing methods of the BTO layer. Secondly, the experimental set-ups for DC 

and RF EO characterization have been introduced and hence the performance of the 

modulating devices in DC regime has been exposed. Significant differences between the 

performances of modulating devices in all samples have been obtained. Regarding to 

BTO fabricated by RF sputtering, although it has been demonstrated the characteristic 

butterfly shape that ferroelectric materials show, the poor EO behaviour at RF frequencies 

is directly linked to the amorphous regions that appeared in the BTO layer. With respect 

to the BTO sample grown by MBE, the DC performance was clearly dominated by the 

thermo-optic effect. Although the origin of the high current measured is not yet clear, we 

have been able to demonstrated EO modulation up to 30GHz. Furthermore, we obtained 

an eye diagram for a bit rate of 10Gbit/s. To the best of our knowledge, the highest digital 

data-rate transmission value reported for EO modulation in hybrid BTO on silicon devices 

has been 300Mbit/s [14]. Therefore, we have presented EO modulation at 10Gbit/s, 

demonstrating the capability of high speed EO modulation on integrated BTO/silicon 

waveguide devices. 

 In conclusion, we have demonstrated the direct integration of ferroelectric BTO thin 

films in the CMOS-compatible silicon photonics platform to achieve high speed EO 

modulation by means of linear Pockels effect. Therefore, the obtained experimental 

results confirm the potential impact of BTO material for developing high performance 

EO functionalities compatibles with the silicon platform, which could open new 

opportunities not only in the field of EO modulators but also in non-linear applications, 

quantum photonics or photonic sensors. Furthermore, in order to improve the efficiency 

of modulators based on BTO on silicon and therefore achieve higher data transmission 

capabilities, there is need to fully exploit Pockels effect and decrease optical losses by 

growing high quality layers of ferroelectric BTO material. It would also be interesting to 

control the orientation of the BTO towards obtaining purely a-axis or c-axis in order to 

align all domains in the same direction. 

 As possible direction for further research beyond this thesis, it would be interesting to 

investigate novel modulation techniques based on the induced change of the permittivity 

due to the change of thickness of the BTO layer by piezo-electric effect. Depending on 



 

94 

 

the configuration of the electrodes, this effect can have the same magnitude than the 

Pockels effect. Another important issue remains the demonstration of the non-volatility 

(bistability) effect of BTO in the silicon CMOS platform. The proposed BaTiO3 offer a 

unique solution to bring the required advanced performance due to their ability to achieve 

an ultrafast electrically induced optical bistability and thus allowing the implementation 

of novel photonic devices such as optical memories or ultra-fast latching switching 

devices. 
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