
Development of a Steering Law
Experiment platform with haptic device

Phantom Omni

by Alejandro Tatay Pascual

May 12th, 2010

supervised by :

Professor Xiangshi Ren
Kochi University of Technology, Japan

Dr. M. Carmen Juan Lizandra
Universidad Politécnica de Valencia, Spain

Table of Contents
Chapter 1 - Introduction... 1

1.1. Overview of the project.. 1
1.2. Structure of the work.. 2
1.3. Disposition of the document... 2

Chapter 2 - Literature review of Steering Law in HCI...4
2.1. Background...4
2.2. Steering Law .. 5
2.3. Haptics and Steering Law... 7

Chapter 3 - OpenHaptics.. 10
3.1. Introduction...10
3.2. QuickHaptics.. 10
3.3. HDAPI and HLAPI overview...12
3.4. Creating Haptic Environments..13

3.4.1. Force rendering... 14
3.4.2. Contact and Constraints.. 15

Chapter 4 - Steery project development... 17
4.1. The interface development..17
4.2. The SLE class... 18
4.3. OpenHaptics features..18

4.3.1. Dynamic forces... 19
4.3.2. Solid Walls.. 20
4.3.3. Surface: orientation and stiffness... 21
4.3.4. Surface textures...21
4.3.5. Tunnel fluid... 21

4.4. Types of tunnel..22
4.4.1. Basic tunnel ..23
4.4.2. Circular tunnel ..23
4.4.3. Curve ..24
4.4.4. tunnel 3D...24
4.4.5. torus 3D...25
4.4.6. Helix 3D..26

4.4.6.1 Distance to helix solution... 26
4.5. Audio feedback... 27
4.6. Lights and shadows ..28
4.7. Output data..28

Chapter 5 - Experiments, results and discussion.. 30
5.1. Verification of linear steering in 3D space..30
5.2. Verification of curved steering in 3D space..30
5.3. Boxwalls experiment.. 31

Chapter 6 - Conclusions and future work...32
Bibliography... 33
Appendix I. Steery generated documentation.. 35
Appendix II. Steery User's guide..63
Appendix III. Boxwalls experiment report...82

Chapter 1 - Introduction

1.1. Overview of the project

This project is related to the field of Human-Computer Interaction (HCI) which seeks, as

the name says, the study of interaction between users and computer devices. HCI is involved

with several fields of study such as computer science, behavioural science, design or usability,

just to mention a few.

This document describes the development of Steery, a software platform made to set up

and perform trajectory-based experiments. This type of experiments can be used to enhance

the design and development of new devices and graphical interfaces.

Particularly, the work described was focused on the haptic device Phantom Omni, an

articulated stylus with force-feedback from Sensable Technologies [1]. The system has a

configurable set of parameters that the experiment designer introduces through the interface

and then launch the experiment.

The system has been developed in C/C++ language using OpenGL Utility Toolkit (GLUT)

libraries to display the Graphical User Interface (GUI) and OpenHaptics API toolkit, which

allows the control and development of the Phantom device features.

Finally, an investigation has been done with a variety of experiments using the developed

software to study trajectory-based tasks in different environments. These experiments were

carried out by Hironori Ishiyama [2] and Onishi Yoshinobu [3] for their respective Bachelor's

Thesis. These experiments aimed the verification of Steering Law formula in three-

dimensional tunnels such as a torus and a cylinder, respectively. Subsequently, another

experiment nicknamed boxwalls was performed to study two-dimensional steering task in a

three-dimensional environment.

Therefore, the main goal of this project has been the development of an application that

allows HCI researchers to design, set and launch trajectory-based experiments fast and easily,

lightening the process by removing the programming stage.

1

1.2. Structure of the work

The work has been conducted in 4 different stages:

1. System requirements analysis and design of the use cases.

2. Construction of the GUI layer using the GLUT/GLUI prototypes.

3. Integration of the OpenHaptics toolkit and device control. Development of the different

types of experiments.

4. Usability tests and design of several experiments by different members of Ren Laboratory.

Output data and participants' subjective evaluation was gathered to interpret and understand

the utility and improvement of trajectory-based tasks in graphical interfaces.

1.3. Disposition of the document

The first part is an introduction to this project: it presents briefly the project carried out, its

structure, objectives and disposition of this document.

The second part of this document is a Literature Review about the use and study of

Steering Law in the field of HCI: initially, it introduces the reader to the field of HCI and

literature involved. After describing some technical definitions, it focus on Steering Law

related work, derived from Accot and Zhai investigation. Finally, several studies combining

Haptics research and trajectory tasks are explained briefly.

The third chapter presents in detail the OpenHaptics toolkit which was used to develop the

project. In this part this haptic library and its approach to program a haptic device is

described.

The fourth chapter is a presentation of the implemented project. Starting from the GUI

layer made with GLUT/GLUI prototypes, it continues relating the most important Steery

haptic parameters and their development. Afterwards, each type of experiment,

implementation issues and other relevant features are described.

2

The fifth chapter deals with the conducted experiments in three-dimensional environments,

resuming the results and discussion according to the data obtained.

Then, conclusions and future work are explained in the fifth chapter.

Next, the references of this thesis are reported.

Finally, a variety of appendices are attached to the document. At page 35 starts the Steery

documentation generated automatically from the source code comments -appropriately

formatted- with Doxygen, a documentation generator under GNU General Public License.

Next, at page 63, the Steery User's Guide is enclosed. This guide is expected to be used by

future researchers as a manual to utilize Steery application. At last but not least is enclosed the

boxwalls report, which presents an experiment conducted with Steery in a three-dimensional

scenario.

3

Chapter 2 - Literature review of Steering Law in HCI

2.1. Background

In the field of computer technologies, devices and graphical user interfaces have obtained

more relevancy year by year. Everyday we interact with objects, systems and machines which

are a fundamental and daily element of our lives: personal computers, cellphones, multimedia

players, cameras, e-book readers or video game consoles are some of them (Illustration 1). As

a consequence, this interaction has become a priority when it comes the time to develop a

system, when concepts such as usability, design, interactivity or visualization take over in

detriment of other system functionalities. This type of research is often studied in HCI.

Academic investigation in HCI combines the experimental methods and intellectual

framework of cognitive psychology with powerful tools from computer science. HCI benefits

from related fields such as education where computers are increasingly used in programs

ranging from elementary school through professional skills development. The theory and

measurement techniques of educational psychology are applicable to study the learning

process in novice computer users. Business system design and management decision making

are endeavours which are being increasingly shaped by the nature of the computer facilities.

Library and information services are also dramatically influenced by the availability of

computer-based systems.

Therefore, investigation and design of improved and more usable methods of interaction

4

Illustration 1: computer systems used in daily life

between human users and computer devices has become one of the main goals in the field of

HCI. Theories, paradigms and taxonomies compete to ameliorate it: reducing learning times,

faster performance on tasks, lower rate errors, higher subjective satisfaction, better human

retention over time, etc.

Particularly, trajectory-based interactions, such as navigating through nested-menus,

selecting items in menus, tracing patterns or steering through straight “tunnels” is a common

tasks while interacting with computer systems (Illustration 2). The current project has been

focused on this field of investigation, which leads to the next point, Steering Law.

2.2. Steering Law

Conversely, while HCI investigation takes place, it becomes difficult to find a thorough

technique to evaluate and compare interfaces. The advancement of HCI lies in “hardening”

the field with quantitative, engineering-like models. Extending movement theory to human

perceptual-motor system, Paul Fitts [5] found a formal relationship that models the speed

versus accuracy trade-off in aimed movements. It predicts that the time T need to cover a

target of width W and height A is logarithmically related to the inverse of spatial relative error

A
W

, which is called Index of Difficulty (ID).

5

Illustration 2: Traversing nested menus involves multiple segments of steering tasks

T=ab log2 
A
W

c 

Equation 3: Fitts' Law

 Thus, the Index of Difficulty of the target behaves according to the empirically obtained

constants a, b, and c=[0,1]. Due to its accuracy and robustness, Fitts' Law has been a popular

research topic, hence numerous studies rely on Fitts' Law to compare device performance

results. This formula revealed a rigorous an intuitive trade-off in HCI: the faster we move, the

less precise our movements are, or vice versa.

Using integral calculus, Johnny Accot and Shumin Zhai extended Fitts' Law to develop a

most general mathematical statement of it [6], also known as Steering Law. By this derivation

the formula gets simplified under the circumstance of a straight tunnel as

T=ab
A
W

Equation 4: Steering Law

In this context, the steering law is a predictive model of human movement, concerning the

time with which a user may steer a pointing device through a two-dimensional tunnel

presented on a screen. Many researchers find it surprising that the steering law model predicts

performance as well as it does, confirming the robustness of Fitts' law. Since this point, this

new paradigm becomes a useful tool to develop, design, compare and analyse new GUIs and

pointing devices, where navigation through menus may be represented as steering tasks

(trajectory-based tasks).

In addition, Accot and Zhai experimented with different types of tunnel, increasing the

complexity of the tunnel. From those experiments, theoretical models are derived to quantify

the difficulty of path steering tasks.

Other authors, as Mackenzie et al. [7] and Kattinakere [8] adapted Fitts' Law for three-

dimensional tunnels, selecting two-dimensional targets, as represented in Equation 5. The

target was a rectangle of width W and height H. They found that Fitts' Law can be adapted by

replacing the W in Equation 3 by the smaller of two sides of the target.

6

T=ab log2   A
W


2

 A
W


2

1

Equation 5: Kattinakere's derivation

Accot and Zhai demonstrated [9] that this equation 5 provides a more precise prediction as

it considers the effects of both width and height of the target.

2.3. Haptics and Steering Law

In recent years there has been much discussion about the “look and feel” of user interfaces.

The part of “look” has been constantly researching and improving with better GUI designs,

more usable, with reduced user learning times and faster performance. However, the “feel”

word brings us to a still unexploited field: haptics technology. This term comes from the

Greek word ἁπτικός (haptikos), meaning “I fasten onto, I touch”.

Haptic interaction with computers has primarily to do with input. While we have physical

contact with transducers such as mice, their design does not afford us to feel the edges of

things that we are pointing at. That is we can not feel the object that the mouse is touching. In

contrast, there are haptic output devices, usually called force-feedback devices. These devices

can provide some output by tactile either kinaesthetic feedback based on servo control

systems. In practice, the quality and appropriateness of this “feel” is crucial to determine a

device's effectiveness and acceptance in a particular context. These devices are commonly

controlled by the hand, and there is a wide variety of types in the market: data gloves

(Illustration 6) based on sensor technologies that recognize the pose of the hand; high-

precision pen-shaped grasping devices (Illustration 8) with several degrees of freedom and

end-effector force-feedback; or hand exoskeletons(Illustration 7) which adds resistive force to

each finger, these are just some examples.

7

Illustration 6: 5DT Data Glove.
Fifth Dimension Technologies©

Illustration 8: Omega 6 haptic
inferface. Force Dimension©

Illustration 7: CyberForce.
CyberGlove Systems©

Haptic technology is widely used in a variety of applications. For example, virtual reality

worlds in recreational applications as computer video games. In particular, players can sense

virtual world properties by the utilization of joysticks and steering wheels (Illustration 9).

However, more academical and professional fields can enhance with the use of haptics

technology. Namely, remote controlled robotic tools -also called teleoperators- incorporate

this feature, hence the operator can sense the force-feedback from the remote location where

the robot is working. Medical scenarios as invasive procedures with remote surgery using

teleoperators is an example of this application. The surgeon palpates and operates the patient

remotely. This way, he can perform many operations of a similar type with less fatigue and

better patient outcome statistics. Besides, medical teleoperators can also be used as a

simulation training for students practice(Illustration 10).

Likewise, haptics is used in other applications such as mobile consumer technologies

(where the user receives haptic feedback from the cellphone vibrator), graphic design,

animation or pressure in Robotics. Basically, haptic technology consists of actuators

(polymers, piezoelectric or electrostatic) that apply forces in response to an electrical

stimulus.

Haptics is also used in investigation to simulate a surface being touched. Even it does not

provide a realistic feel, it does provide useful feedback, allowing the user to discriminate and

recognize among various emulated shapes, textures and resiliencies.

Similarly, several studies such as [10] [11] [12] and [13] have shown that the performance

of steering tasks can be improved by providing users with tactile feedback during the

8

Illustration 10: LaparoscopyVR Surgical
Simulator. CAE HEalthcare©

Illustration 9: force-feedback devices.
Logitech©

movement along the tunnel. Xing-Dong et al. [14] proposes a model for force-enhanced goal

crossing task,

T=ab  A
W∗S



Equation 11: Xing-Dong's derivation

where the difficulty of the task is inversely proportional to the spring stiffness S. This value

represents the intensity of the guiding force, and the empirical constant η is determined by the

contributions of W and T. In Xing-Dong's study, force-feedback was provided by a Phantom

Omni device, the same device that this Steery project has been done for, as well (Illustration

12).

We have introduced some recent approaches that study the difficulty of steering tasks for

different environments. The purpose of Steery is to provide a software platform to design and

experiment steering tasks onto the Phantom Omni, exploiting the resources of this haptic

device.

9

Illustration 12: Phantom Omni. Sensable Technologies©

Chapter 3 - OpenHaptics

3.1. Introduction

OpenHaptics is a software toolkit developed to make programming simpler by

encapsulating the basic steps common to all haptics/graphics applications. This encapsulation

is implemented in the C++ classes of the QuickHaptics micro API. By anticipating typical use

scenarios, a wide range of default parameter settings is put into place that allow the user to

code haptically enabled applications very efficiently This SDK constructed by Sensable

Technologies [1] constituted the backbone of this project, allowing the programming and

control of the device Phantom Omni. The OpenHaptics toolkit includes the QuickHaptics

micro API, Haptic Device API (HDAPI) and Haptic Library API (HLAPI), as we can see on

Illustration 13.

3.2. QuickHaptics

QuickHaptics is a micro API that makes it fast and easy to write new haptic applications or

to add haptics to existing applications. Built-in geometry parsers and intelligent default

parameters make it possible to set up haptics/graphics scenes with a minimal amount of code.

10

Illustration 13: OpenHaptics overview

Let's see it on Illustration 14.

 QuickHaptics is implemented in C++ and it defines four primary functional classes:

• DeviceSpace class: it defines the force properties and user interaction through the

haptic workspace for a particular PHANTOM device. This class' methods manage

force effects (like friction or damping) and User Callbacks, or function calls that occur

as a response to an event.

• QHRenderer class: base class for on-screen window graphics. It renders from a camera

viewpoint and lets the user feel those shapes with a haptic device. From this class two

other classes are inherited: QHWin32 and QHGLUT. This classes are created

specifically for use with Microsoft Win32 API or the OpenGL Utility Toolkit (GLUT),

respectively. QHRenderer defines a simple display list for haptics and graphics, a

world space to PHANTOM device space transformation and a simple camera and

lighting models.

• Shape class: it defines the base class for all geometry primitives, such as Sphere,

cylinder, Cone, Box, Text, TriMesh... Each Shape has haptics and graphics properties,

including textures, colour, spin, position, friction, damping, and so on. This is

information is saved in the QHRenderer display list. Each shape defined has an

implied bounding box that encompasses the shape, and all bounding boxes combined

11

Illustration 14: OpenHaptics vs. QuickHaptics micro API Functionality

comprise a single global bounding box that contains all of the objects inside it. The

device space is mapped into this world space and clipped by front and far planes as

this diagram (Illustration 15) shows:

• Cursor class: graphical representation of the end point of the second link on the

PHANTOM device. This end point is sometimes called the haptic interface point

(HIP). The HIP is in the same corresponding location for other PHANTOM devices.

This class pulls together information from all of the three aforementioned classes

because calculating the final Cursor location requires interaction with all of the

components in a scene.

3.3. HDAPI and HLAPI overview

The HDAPI (Haptic Device API) provides low-level access to the haptic device, enables

haptics programmers to render forces directly, offers control over configuring the runtime

behaviour of the drivers, and provides convenient utility features and debugging aids.

The HLAPI (Haptic Library API) provides high-level haptic rendering and is designed to

12

Illustration 15: default clipping planes for world space

be familiar to OpenGL API programmers. It allows significant reuse of existing OpenGL code

and greatly simplifies synchronization of the haptics and graphics threads.

The HLAPI is built on top of HDAPI and provides a higher level control of haptics than

HDAPI, at the expense of flexibility comparison to HDAPI. The HLAPI is primarily designed

for ease of use to those well versed in OpenGL programming. HLAPI follows the traditional

graphics techniques as found in the OpenGL API, hence adding haptics to an object is a fairly

trivial process that resembles the model used to represent the object graphically. The HLAPI

also provides event handling for ease of integration into applications. Besides, it allows the

developer to command the haptic rendering pipeline from the graphics rendering loop, which

makes it significantly more approachable for a developer to introduce haptic rendering to an

existing graphics loop driven application.

On the other hand, HDAPI requires the developer to manage direct force rendering for the

haptic device, programming rendering/collision detection algorithms and data structures. This

is due to the high frequency of force refreshes required for stable closed-loop control of the

haptic device.

HDAPI and HLAPI can be used together. Developers can leverage pieces of functionality

from HDAPI to augment an HLAPI program. HDAPI must be used to initialize and configure

the haptic device handle (HHD). The HHD from HDAPI is used by the HL haptic rendering

context (HHLRC) to interface with the haptic device. This allows the developer to control

behaviours for the haptic device that will be realized by the haptic rendering library.

3.4. Creating Haptic Environments

In order to render stable haptic feedback, the HD servo loop runs at approximately 1KHz,

30 times faster than the graphics loop. The servo loop refers to the tight control loop used to

calculate forces to send to the haptic device. In order to maintain such a high update rate, the

servo loop is generally executed in a separate, high-priority thread. This thread is referred to

as the servo loop thread.

OpenHaptics compute the force interaction form considering the position of the device and

13

end-effector (the end of the kinematic chain of the device you hold in your hand) and its

relationship to objects in a virtual environment. When zero force is being rendered, the

motion of the device end-effector should feel relatively free and weightless, so the device

generates a force to counteract against its own weight. As the user moves the device's end-

effector around the virtual environment, OpenHaptics commands forces into the servo loop

thread. This allows the user to effectively feel the shape of objects in a virtual environment.

Nevertheless, this forces can vary to produce different effects, so the forces can make an

object surface feel hard, soft, rough, slick, sticky, etc. Furthermore, the forces generated by

the haptics rendering can be used to produce an ambient effect. For instance, inertia and

viscosity are common ways to modify the otherwise free space motion of the user in the

environment. Another common use of forces in a virtual environment is to provide guidance

by constraining the user's motion while the user is selecting an object or performing a

manipulation.

3.4.1. Force rendering

The force vector is the unit of output for a haptic device. There are three main classes of

forces that OpenHaptics can simulated: motion dependent, time dependent, and a combination

of both.

A motion dependent force means that is computed based on the motion of the haptic

device. HLAPI includes functions to generate types of motion dependent force as:

• Spring: it is the most common, versatile and simple to use force. A spring force can be

computed by applying the Hooke's Law (F=k x , where k is a stiffness constant

and x is a displacement vector)

• Damper: is a common metaphor in haptics rendering. It can be defined as a force that

reduces vibration since it opposes motion. In general, the strength of a damper is

proportional to end-effector velocity. The standard equation is F=−bv , where b is

the damping constant and v is the velocity end-effector. The force is always pointing

in the opposite direction of motion.

• Friction: a number for forms of friction can be simulated with the haptic device

14

◦ Coulombic friction: simply opposes the direction of motion with a constant

magnitude friction force, according to the formula F=−c∣∣v∣∣ , where C is the

friction constant and v is the velocity of the end-effector. It is implemented using a

damping expression with a high damping constant and a small constant force

clamp. Coulombic friction helps to create a smooth transition when changing

directions, since friction will be proportional to velocity for slow movement.

◦ Viscous friction: similar to Columbus friction, using a low damping constant and a

high clamp value.

◦ Static and dynamic friction: also referred as stick-slip friction, this friction model

switches between no relative motion and resisted relative motion. The friction

force is always opposing lateral motion along a surface, and the magnitude of the

friction force is always proportional to the perpendicular (normal) force of contact

• Inertia: force associated to a moving mass and a acceleration, not necessary related to

the device movement. It is easily calculated using Newton's Law F=ma .

On the other hand, a time dependent force means that it is computed as a function of time.

OpenHaptics can generate time dependent forces such as:

• Constant: a force with a fixed magnitude and direction. For instance, it is commonly

used for gravity compensation such as to make the end-effector feel weightless.

• Periodic: it applies a pattern that repeats over time. Patterns include saw tooth, square

or sinusoid. A period force is described by a time constant (period), an amplitude to

determine the peak of the cycle, and a force direction.

• Impulses: a force vector that is instantaneously applied. In practice, an impulse with a

haptic device is best applied over a small duration of time in the servo loop.

3.4.2. Contact and Constraints

Simulating contact with a virtual object amounts to computing forces that resist the device

end-effector from penetrating the virtual object's surface. One approach to simulate this

15

interaction is through the concept of a proxy that follows the transform of the device end-

effector in the virtual environment.

The geometry for the proxy is typically a point,

sphere or collection of points. If it is a point, it is

sometimes referred to as the SCP, Surface Contact

point. SCP attempts to follow the end-effector position

but is constrained to be on the surface of the object. In

free space the SCP is at the end-effector position as

shown in Illustration 16. When touching an object the

SCP can be calculated by moving the last SCP towards

the end-effector position without violating the surface.

The force is calculated by simulating a spring stretched

from the end-effector position to the SCP. t1 shows

penetration into the object. t2 shows further penetration.

The spring is stretched longer and hence the user will feel greater resistance.

In addition, the proxy should respect spatial coherence of contact. As a result of computing

a constrained proxy transform, forces can be determined that will impede the motion of the

haptic device end-effector from further penetrating the contacted surface. This technique of

maintaining a constrained proxy can be applied to feeling all kinds of geometry, such as

implicit surfaces, polygonal meshes, and voxel volumes. It can also be applied to feeling

geometric constraints, such as points, lines or combinations of both.

16

Illustration 16 : proxy concept to
simulate surface contacts

Chapter 4 - Steery project development

In this chapter, the steps to develop the system will be presented. First the graphic layer

will be described and then the software architecture with its classes, haptic features and

functionalities will be presented.

To explain Steery development, we have to understand first the basic idea of a Steering

Law experiment. In this kind of experiment, the designer sets up different parameters such as

tunnel width, height, inclination and so on. Each of those parameters have been assigned with

different values, generating a number of trials in a factorial design that the experiment

subjects will have to perform. By factorial design we define the generation of all the possible

combinations of the different levels (values) of each factor (width, height, etc.). Then, every

subject will perform all the trials, and the designer will recollect the trials' data and analyse it.

4.1. The interface development

OpenHaptics toolkit has been created for use with Microsoft Win32 API and GLUT. On

one side, MS Win32 API has the advantage to provide shorter source code and simpler GUI

prototypes. However, OpenGL is a standard specification defining a cross-language cross-

platform API. Seeing that, OpenGL API was chosen in this project to develop the graphic

interface layer (see Illustration 17).

17Illustration 17: Steery GLUT main window

OpenGL contains rendering commands but is designed to be independent of any window

system or operating system. Unfortunately, it is impossible to write a complete graphics

program without at least opening a window, using user input or other services from the

operating system. Therefore, Steery uses GLUT and GLUI libraries to run the graphic user

interface layer. GLUI is a C++ used interface library based on GLUT to augment its

functionality. It provides controls such as buttons, checkboxes, radio buttons, spinners and so

on in OpenGL applications. It is window-system independent, relying on GLUT to handle all

system-dependent issues, such as window and mouse management.

The system initially shows a main window where the user configures every experiment

parameter. Every time that a GUI element is changed, the GLUT loop calls a control callback

function to perform the appropriate operation. For a deeper explanation of the available

parameters, listboxes, and other functionalities in the graphic layer, see the enclosed

Appendix II. Steery User's guide.

4.2. The SLE class

Every GUI element is linked with the Steering Law Experiment class. This class, defined

and implemented in SLE.h and SLE.cpp files respectively

(Illustration 18), manages all the information and operations of the

ongoing experiment. In the main file, a global instance of the SLE

class is declared at the beginning. A more detailed overview of the

class elements and methods is explained in the Appendix I. Steery

generated documentation.

As the user launches the experiment, the SLE.init_trials() method is called to create all the

experiment trials in a factorial design. If selected, the trials of each subject are shuffled.

During the experiment, the current trial information, saved on SLE class, allows the system

to display it on the screen. Trial data such as user trajectory, standard deviation or time lapse

is recorded on this class.

To conclude the experiment, a settings selection window pops up to save the experiment

data into a file. These GUI elements are linked to SLE.output structure, which are checked in

the SaveDataToFile() function.

18

Illustration 18: Steery file
directory

4.3. OpenHaptics features

Steery takes advantage of some of the features explained on Chapter 3 - OpenHaptics to

simulate haptic feedback in the PHANTOM Omni device.

Steery haptics are mainly scheduled in an asynchronous callback (touchScene) executed in

the servo loop, so any submitted callback is run immediately regardless of priority. This

callback executes a HD Frame, that is, a haptic rendering pass, a block of code guaranteed to

be consistent. In this function, for the selected type of experiment and settings, different

forces are added to a force vector (hduVector3Dd), which is finally applied to the device.

Device button events are handled by a callback which, according to the state of the trial, it

may switch during the different trial stages.

For some special features such as surface, viscosity or damping, a HL frame is used. It

updates the current state of the haptic device and clears the current set of haptics primitives

(shapes and effects) being rendered in preparation for rendering a new or updated set of

primitives.

Every time the scene is drawn, a synchronous scheduler (copyHapticDisplayState) is called

to obtain the device display state and calculate its position and other useful values for the

current type of experiment.

Finally, the updateworkspace function is called either when a new trial starts or when the

camera has changed. This function defines the new camera projection to fit, scale and map it

into the haptics workspace, as well as the cursor. It computes the transform for going from

device coordinates to world coordinates, based on the current viewing transforms.

Next, the implemented haptics features in Steery are explained.

4.3.1. Dynamic forces

Dynamic force refers to the aforementioned spring force, based on Hooke's Law F=k x .

Steery has implemented four types of dynamic forces, belonging to the HD frame:

19

• Attractive tunnel centre: by tunnel centre we define the path that goes along the tunnel,

which is at equidistant from the tunnel walls or boundaries. If selected, a force

perpendicular to the tunnel is applied to the device in the asynchronous callback,

pushing it to the tunnel centre.

• Repulsive tunnel centre: similarly to the previous one, it exerts a tunnel centre

perpendicular force, but opposite to the tunnel centre.

• Attractive goal: each trial has a starting and an end position. If selected, a force is

applied in the same tunnel direction, pushing the device towards the end position.

• Repulsive goal: if selected a force is applied pushing the device towards the starting

position.

The implementation of these forces is not always trivial. The calculation of the force

calculation may depend on the type of tunnel, position of the device or tunnel rotations. It

differs widely to calculate the attractive goal force for a straight two-dimensional tunnel from

an attractive goal curved three-dimensional torus, as it can be seen in the next Fig. 19 and 20.

To augment the possibilities of future dynamic force experiments, another functionality

was added. The user can select the grade of the force function. Thus, the force is not only

restricted to linear forces: constant forces F=k∣∣x∣∣ , linear F=k x , quadratic F=k x2

inverse F= k
x

and logarithmic F=k log x  . Before applying the force, the callback

function calls to SLE.GradeEquation (or SLE.GradeEquationInCurve for curved tunnels)

20

Illustration 20: basic tunnel dynamic forces
Illustration 19: curve 2D tunnel

dynamic forces

4.3.2. Solid Walls

This force behaves similarly to a dynamic force. It emulates solid walls at the sides of the

tunnel by applying a force when the device cursor is farer than the width tunnel from the

centre path. This force is based on the distance to the tunnel side, growing exponentially to

the distance, hence emulating a soft -spongy- wall. It is also applied in the HD frame. In 3D

tunnels, the cursor is locked up inside the tunnel space.

4.3.3. Surface: orientation and stiffness

For two-dimensional tunnels, the experiment can be executed in horizontal (as a table) or

vertical (as a blackboard). The default position is horizontal, but if the user sets the

experiment into vertical, all the system workspace is rotated 90 degrees. Besides, several

haptic global variables are modified in order to behave in accordance with the new

coordinates.

It is also common to perform this experiments in a horizontal surface. The user can activate

a simple surface emulation, solid walls alike. In this case, the cursor is forced to stay in the Y-

axis (y=0) of the device coordinate system. If vertical orientation is selected, the coordinate

system is rotated as well, and the same force is applied. This force, implemented in the HD

frame, grows exponentially with the Y value. It is illustrated in a picture at the Appendix II.

Steery User's guide, page 72. In short, this force emulates a cursor stuck to a soft surface. For

a more realistic surface emulation, the next section has been developed.

4.3.4. Surface textures

These features take advantage of the HLAPI high-level functionality. Creating a HL frame,

it emulates a surface with graphic and haptics properties. These haptic properties are set

according to the user selected material values of damping, stiffness, damping, static friction

and dynamic friction, oscillating in range [0,1]. Besides, the surface is created in the user

selected height of the device workspace.

4.3.5. Tunnel fluid

For 3D tunnels, another HL frame is created. To evaluate haptic properties in a 3D tunnel

experiment, we face the problem of the uselessness of a surface in a three-dimensional

21

environment. For that reason, in 3D tunnels Steery can only provide the subject with free

space force effect feedback. This effect is sent to the device while the cursor is inside the

tunnel. Two types of effects can be selected:

• Viscosity: this force is based on the current velocity of the haptic device, and it is

calculated to resist the motion of the haptic device. It is calculated using the

expression F=−k v , where F is the spring force, k is the user selected value (gain)

and v is the velocity.

• Friction: as commented before, this force is applied according to the formula

F=−c∣∣v∣∣ , where the clamping value c is set by the user.

4.4. Types of tunnel

The main feature of a experiment in Steery is the type of tunnel. It defines the scenario and

environment in which the subjects will realize the trials.

Mainly, tunnels can be separated in two types: two-dimensional and three-dimensional. In

the first type, OpenGL generates an orthographic projection, whereas a perspective projection

is generated in the second type. In an orthographic projection, the viewing volume is a

rectangular parallelepiped (a box). Thus, the size of the viewing volume doesn't change from

end to the other, so distance from camera doesn't affect how large an object appears. By using

this projection, the tunnel maintain its actual size no matter how it is placed. However, in a 3D

experiment the viewing volume is a frustum of a pyramid. Objects that fall within the viewing

volume are projected toward the apex of the pyramid, where the camera is. Closer objects

appear larger because they occupy a proportionally larger amount of the viewing volume than

those that are farther away, in the larger part of the frustum.

Tunnels are mostly drawn with a OpenGL display lists (except 2D tunnel, due to its

simplicity). A display list is a group of OpenGL commands that have been stored for later

execution, improving the display loop performance. Because of tunnel physiognomy, it

becomes useful to take advantage of display list, redrawing the same geometry during the

whole trial. Thus, the display list is stored before the trial starts.

22

To control the sequence of the experiment, every trial behaves as a state machine. In the

OpenGL display loop the trial condition is checked to jump between states. In the first states

of the trial, the starting position is drawn, providing feedback to the user about where to start

the experiment. During the trial, the device position is saved in a vector to display the whole

trajectory on the screen, as well as the cursor. Once the subject reaches the end position, the

system process the trial trajectory to calculate the standard deviation, OPM and MT into the

SLE class.

A more concise description of every type of tunnel is described in the next point.

4.4.1. Basic tunnel

This two-dimensional straight tunnel is the most well-known tunnel in steering law

experiments. It is defined by a width and height. Besides, we added a third parameter called

alpha (α), in degrees, which rotates the tunnel clockwise. The size of the tunnel and camera

has been defined to occupy the same number of pixels in the screen. The starting position is

by default placed at the left side, so the subject has to steer the tunnel from left to right.

To calculate the standard deviation, it is needed to obtain the distance from each point of

the user trajectory to the tunnel centre. This

value is defined and deducted as the distance

from the cursor position to the tunnel centre line,

which starts in the starting position and finish in

the tunnel end position (Illustration 21). To

calculate the distance from a point p to a line

ab , we calculate the orthogonal projection of

the vector ap onto the line ab , generating

the vector ac . The euclidean distance

∥ pa∥ is the desired value.

23

a

b

p

c

Illustration 21: basic tunnel distance

4.4.2. Circular tunnel

The investigation of curved trajectory-based tasks in graphic interfaces is becoming an

incipient field. It was decided to curve the tunnel into a full circumference, becoming an

annulus. The amplitude was the perimeter of the

tunnel centre, and the width the thickness of the

annulus. From the width (W) an amplitude (A),

both annulus circumferences can be deducted as

r 1=r−W
2
= A

2
−W

2
and r 2=

A
2

W
2

.

Alpha value has been also implemented, rotating

the tunnel clockwise. The starting position is

placed on the right side by default. This tunnel has

the limitation of clockwise steering task only.

Due to its complexity, obtaining the standard deviation (or bias from the path centre) and

OPM it is not as trivial as the previous tunnel and requires more calculus. The system

calculates the closest point of the tunnel centre to the cursor by norming the vector to unit

vector and multiplying by r. Given the cursor position p , the tunnel centre closest point

c will be c= p
∥p∥

r . Then, the deviation from each point of the cursor trajectory is

deducted as the euclidean distance between p and c as the Illustration 22 shows.

4.4.3. Curve

This feature has been prorogued for further development. Its purpose seeks to generate free

curved tunnel sketched by the user with the device cursor, and then perform the steering task.

Due to the instability of the user hand drawn pulse and limitations of the task, this type of

tunnel was postponed after more discussion.

4.4.4. tunnel 3D

This tunnel expand the basic tunnel to the third dimension, generating a cylinder the user

can steer through. In consequence, the three degrees of freedom of the haptic device can be

24

Illustration 22: torus bias

exploited to study its steering performance. In this type, the amplitude defines the height of

the tunnel, and the width is the diameter of the cylinder base. Besides, the tunnel can be

rotated to any position by the combination of two angles alpha α and beta β. Alpha rotates the

tunnel in the Y-axis, and beta in the Z-axis. The centre of rotation stays in the middle of the

tunnel, preventing it for moving out of the camera.

This combination of rotations can be considered as a Euler transformation, applying the

Euler angles. For the implementation, custom rotation functions where used to dispense from

OpenGL functions, hence having more flexibility and control over the tunnel parameters,

matrices and positions. To apply a rotation in any of the three dimensions, the basic 3D

rotation matrices are:

Rx [1 0 0
0 −cos sin
0 sin  cos] R y [cos 0 sin

0 1 0
−sin 0 cos] R z[cos  −sin 0

sin cos 0
0 0 1]

The calculus of the deviation during the trajectory is done exactly the same as the basic

tunnel: distance from a point (cursor position) to a line (starting-end points). The only

different is that the third dimension is included in the calculation.

4.4.5. torus 3D

Similar to the torus 2D, the toroidal shape is defined by a circle of diameter W which

revolves towards a coplanar axis, generating a surface of revolution. The length of this

revolving corresponds to the amplitude value A. Thus, the revolving radius is r= A
2

. The

torus can be rotated to any position by the combination of three rotations alpha (α), beta (β)

and gamma (γ). Alpha rotates the tunnel towards the Y-axis, beta does it towards Z-axis, and

gamma rotates the tunnel in the X-axis. In the default position, the starting region is in the left

part of the screen (negative X-axis) and the user steers the tunnel in the revolving direction of

positive Y-axis, according to the right-hand rule (See Illustration 23).

25

As a result of this rotation, the bias calculation becomes more complex, as the Illustration

23 shows. In the cursor position callback, the position p is rotated backwards in the three

angles in inverse order, obtaining a second position p2 where the cursor would be in a default

torus (without rotating). Then, the orthogonal projection of p2 in the Y plane is calculated p2 y.

Finally, we proceed as section 4.4.2. Circular tunnel to calculate the point c, obtaining the

euclidean distance cp2 , or bias.

After the first alpha tests we realized that the steering direction of the trial can be

misinterpret by the experiment subject. Consequently, a

new feature was added to provide the user with new

feedback that would inform him about the direction of the

task. This feature consisted in a small red torus situated at

the left bottom corner of the screen, provided with arrows

which indicate the task direction. The same rotation

matrix was applied to this torus, thus being drawn in the

same orientation than the tunnel (Illustration 24).

26

Illustration 23: torus 3D bias

p

p2

p2 y

c
Reverse
rotation

Illustration 24: torus3D direction
feedback

4.4.6. Helix 3D

A helix is a space curve, defined by a simple function a cos t , a sin t , b t  . But a

volumetric helix requires more parameters to be constructed. In Steery, a 3D helix is a surface

of revolution generated by a revolving circle towards a coplanar axis (torus), but for each

“slice” of the torus, the circle is displaced one position into the positive direction of the

coplanar axis. Besides, the circle is revolved δ degrees, where δ=[1, 1080]. The revolving

radius, similar to the torus 3D, is r= A
2

, and W is the diameter of the revolved circle. The

height of the helix corresponds to the parameter h and, likewise the torus 3D, it can be rotated

to any position using the Euler angles α, β and γ. To put it briefly, in Steery a helix is defined

by the parameters A, W, h, α, β, γ and δ. Thus, the helix is defined by

S =r cos  , h



, rsin =S x , S y , S z

4.4.6.1 Distance to helix solution

The calculation of the closest distance of a point to a helix is nothing but trivial. In fact,

finding a solution resulted a mathematical and programming challenge.

Given a curve defined in an analytic representation S  and a point P, the distance D

from the point to the curve is defined as the euclidean distance from the point to the curve,

D= P x−S x 
2P y−S y

2P z−S z
2

. We derive the equation to find the solution which

satisfy
∂D
∂

=0 , obtaining the minimum distance from the curve to the point. However, the

polar nature of the helix definition prevents any algebraic solution for the derivative.

 ∂D
∂

=

−2h P y−
h





−r cos2r Px−r cossin

2 P zP y−
h
d


2

P x−r cos 2−rsin 

=0 Non-algebraic solution

Therefore, a programmatic approach was implemented. Given a cylinder of radius r which

contains the helix, we calculate the point B, the closest point of the enclosing cylinder to the

current position P. Both points have the same height, By=Py. Then, we calculate the vertical

27

projection of B in the helix, called C, and the horizontal projection of B in the helix, D. From

C to D a helix segment is obtained, which is covered in N segments (points) looking for the

closest point to P. This method is shown in the Illustrations 25 and 26.

Illustration 25: distance to helix
approach pseudo-code

4.5. Audio feedback

The experiment designer can activate the audio feedback checkbox in the main window.

This feature has been implemented with the Playsound function from windows library. If

selected, the system plays an asynchronous error sound loop during the trial when the cursor

gets out of the tunnel.

4.6. Lights and shadows

For every 3D tunnel, the surface of the tunnel object (cylinder, tunnel, helix, …) is

displayed with an alpha channel of 0.5, hence the cursor can be seen even inside the tunnel.

Tunnels are displayed in a light model with a diffuse and a directional light to give a more

realistic three-dimensional feedback. Then, the tunnel material is set with coefficients of

specular and shininess properties. To combine properly the alpha channel, illumination model

and material properties, a blending function is used. These parameters are set in the initGL

function.

In three-dimensional tunnels, the tunnel, start position and cursor shadows are drawn to

provide the user with more feedback to his depth perception. OpenGL does not support

shadows directly, so the Phaetos [21] projection algorithm is used to emulate this shadows.

The current matrix stack is multiplied by a projection matrix, and the object is printed a

28

Illustration 26: distance to helix
approach graphic

=arctan 
P z

P x



B=r cos ,P y ,−r sin

C=B x , h


, B z

=
B y

h
D=r cos ,B y ,−r sin

second time. The projection matrix depends on the position of the light source

L= Lx , Ly , L z , the normal vector of the plane n=nx , n y , nz in which the shadow is

projected and a point of the plane E=E x , E y , E z . From this three parameters we derive

the values d and c, and obtain the shadow projection matrix M as follows:

d =Ln d =En−d M=[Lx nxc Lx ny Lx nz −cLx−dLx

L y nx L y nyc Ly nz −cLy−dLy

Lz nx Lz ny Lz nzc −cLz−dL z

nx n y nz −d
]

The light source is positioned in an “infinite” elevation (0, 1000,0) far from the floor, of

which normal vector is (0,1,0).

4.7. Output data

The results of the experiment can be saved into a file. Using C++ fstreams, Steery saves

the data into a plain text file (TXT) or Comma-separated Value file (CSV), according to the

user selection. In case of plain text, lines of comments start with a pound sign #, for a more

comfortable data processing (Illustration 27).

It was also implemented a feature to show the results in a graphic chart where X-axis

29

Illustration 27: output TXT file sample

#Modelling steering in a boxWalls
#Subjects: 1
#trials: 10 per subject
#trialrepetitions: 1
#Tunnel walls are solid.
#parameters are: sd=standard deviation, mt=movement time(ms), opm=outside tunnel %
#A=amplitude, W=width, ID=A/W
#chart: X-axis=ID, Y-axis=MT. linear Regression line y=a+b*ID

#trial subject A W ID alfa beta gamma mt sd opm
1 1 50 15 3.33333 0 30 1 0.421 0.382426 0
2 1 70 15 4.66667 0 50 1 0.383 0.910605 0
3 1 70 15 4.66667 0 60 0 0.414 0.601093 0
4 1 10 20 0.5 0 40 1 0.136 0.085548 0
5 1 10 15 0.66667 0 30 1 0.132 0.141814 0
6 1 70 10 7 90 30 1 0.438 0.406301 0
7 1 10 20 0.5 0 50 0 0.121 0.003366 0
8 1 50 15 3.33333 90 60 0 0.213 0.022636 0
9 1 70 10 7 90 30 1 0.403 0.282496 0
10 1 70 5 14 90 40 1 0.704 0.096473 0
#Steering law parameters of this experiment are:
#MT=a+b*ID
#MT=0.103433+0.056858*ID
#regression coefficient squared r2=0.629353

corresponds to Index of Difficulty (A/W) and Y-axis is the Movement Time. This chart is

displayed with an orthographic projection in OpenGL. Besides, the user can save the chart

into a JPEG file using the mkOpenGLJPEGImage [22] library.

30

Chapter 5 - Experiments, results and discussion

Steery has been built to facilitate researchers the investigation of steering law experiments.

Accordingly, several experiments were performed by different laboratory members for their

own investigation.

5.1. Verification of linear steering in 3D space

Realized by Hironori Ishiyama [2] for his Bachelor thesis, this experiment sought to study

Steering task user range for stroke, orientation and tilt, hence examining it and contribute to

create a future interface.

The experiment used 3D tunnel type, based on a cylinder. The parameter settings where:

• Width W: 5, 15, 25, and 35 pixels. x4

• Amplitude A: 50, 75 and 100 pixels. x3

• Azimuth (α) and tilt (β): from 0 to 315º incrementing by 45º. x8 x8

• 12 subjects.

Combined in factorial design, each subject had to perform 768 trials.

Analysing each parameter separately, error rate decreases as the width increases. In 5px

width, error rate is 95% but in 25 and 35px it decreases until 20% or less. Referring to angles

α and β, error rate is lower than the direction. Results suggested that, on a diameter of three-

dimensional space operations, perpendicular tilts (β) of 0, 90,180 and 270, and an azimuth of

180 and 270 were valid for the experiment. These results are expected to help and encourage

the development of a new pen interface.

5.2. Verification of curved steering in 3D space

This experiment was performed by Onishi Yoshinobu [3] for his Bachelor thesis, as well.

Similarly to the previous experiment, this one made use of the torus 3D tunnel type with 12

subjects to study curved trajectories in three dimensions. The experiment settings where:

• Width W: 20, 30 and 40px. x3

• Amplitude A : 160, 200 and 240px. x3

31

• Azimuth (α) and tilt (β) and γ from 0 to 135º incrementing by 45º. x4 x4 x4

Combined, each subject had to perform 576 trials.

The torus tasks were found more difficult to perform in the cases where it was steered

vertically rather than horizontally. Besides, it was difficult to adjust the vertical position of the

pointer to look sideways. The results obtained are expected to be useful in future operations to

improve the usability of interfaces and modelling.

5.3. Boxwalls experiment

To test the extensibility of Steery, a new type of tunnel (therefore, a experiment) was

implemented. It consist of a virtual room with floor, lateral and front walls, thus nicknamed as

boxwalls. A straight 2D tunnel is displayed in a wall, and the subject has to steer through it.

Every trial is perform two times: first, in the front wall, and next in the “floor” wall. Walls

were provided by haptic feedback, implemented in a HL frame. The available parameters

where: amplitude A of the tunnel, width W, rotation α, and camera angle β.

In this scenario, we studied the influence of the camera to compare the front wall and floor

wall tasks. This experiment and its results are thorough and widely explained in the report

enclosed to this document, Appendix III. Boxwalls experiment report. The results of the study

showed that the rejection of wrong trials produced high error rates. Additionally, the steering

law correlation was lower than expected in this type of experiment, which commonly tends to

be R2>0.8. The user's lack of perception presented to be the main disadvantage of the

experiment, poorly balanced with graphic feedback. As a consequence, Steering Law had to

be refrained to be used in this scenario.

32

Chapter 6 - Conclusions and future work

We wanted to realize a software platform where the HCI researchers could deploy and

perform they experiments in an easy and quick methodology.

According to the experiments and results explained in the previous chapter, the application

succeed to reach its goals. Three different researchers could carry out their investigations with

Steery in a swift way, disposing of any need of application re-programming.

Another successful feature lies in the potential, flexibility and high degree of configuration

of the application: the variety of settings permits the designer to construct a wide an

heterogeneous collection of experiments.

Steery has been proved to be a good solution to accelerate a Steering experiment design.

Future works may be done by students and researchers augmenting the functionality and

configuration of the application. Specially in three-dimensional experiments, where a proper

and more thorough model hasn't been demonstrated yet.

Besides, it would be interesting to study, experiment and compare the haptics texture

emulation with real world textures such as wood, concrete, metal, rubber, and so on. This

would allow future application developments with more realistic objects in the virtual world,

where the user can feel, distinguish and discriminate between different textures.

33

Bibliography

[1] SensAble Technologies, Inc. 15 Constitution Way, Woburn, MA 01801 www.sensable.com

[2] Hironori Ishiyama. Verification of linear steering with three-dimensional space (三次元空間
上での直線のステアリング操作の検証) 4rd Ren Laboratory Symposium. Vol.10, 2009. pp.1

[3] Onishi Yoshinobu. Verification of steering round on three-dimensional space (三次元空間上で
の円形のステアリング操作の検証) 4rd Ren Laboratory Symposium. Vol 10, 2009. pp.1

[4] Doxygen documentation generator. Dimitri van Heesch. http://www.doxygen.or

[5] Fitts, P.M. The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Experimental Psychology , 47, 381-391(1954)

[6] Accot, J. and S. Zhai. Beyond Fitts' Law: Models for trajectory-based HCI tasks. ACM CHI.
P 295-302.(1997)

[7] MacKenzie, I., Buxton, W.: Extending Fitts' law to two-dimensional tasks. In: ACM CHI, pp.
219- 26 (1992)

[8] Kattinakere, R., Grossman, T., Subramanian, S.: Modelling steering within above-the-
surface inter- action layers. In: ACM CHI, pp. 317-26 (2006)

[9] Accot, J., Zhai, S.: Refining Fitts Law models for bivariate pointing. In ACM CHI, pp. 193-
200 (2003)

[10]Ahlström, D.: Modelling and improving selection in cascading pull-down menus using Fitts'
law, the steering law and force fields. In: ACM CHI, pp. 61-70 (2005)

[11]Campbell, C., Zhai, S., May, K., Maglio, P.: What You Feel Must Be What You See: Adding
Tactile Feedback to the Trackpoint. In: INTERACT, pp. 383-390 (1999)

[12]Dennerlein, J., Martin, D., Hasser, C.: Force- feedback improves performance for steering
and combined steering-targeting tasks. In: ACM CHI, pp. 423-429 (2000)

[13]Forsyth, B., MacLean, K.: Predictive Haptic Guidance: Intelligent User Assistance for the
Control of Dynamic Tasks. IEEE Transactions on Visualization and Computer Graphics
12(1), 102-113 (2006)

[14]XingDong Y., Pourang I., Boulanger P., Bischof W.: A Model for Steering with Haptic-Force
Guidance. Proceedings of the 12th IFIP TC 13 International Conference on HCI: Part II

[15]Shneiderman, Ben (Ed.). Sparks of Innovation in human-computer interaction. Ablex
Publishing Corporation. Norwood (1993) pp. 13-17

[16]Booth, Paul. An Introduction to Human-Computer Interaction. Hove, UK Lawerence
Erlbaum Associates. (1989) pp. 44-49

[17]Buxton, Bill (2003). Human Input to Computer Systems: Theories, Techniques and
Technology. Draft in the internet http://www.billbuxton.com/inputManuscript.html

[18] OpenHaptics toolkit 3.0 Programmer's Guide. Sensable Technologies, Inc. Jan 2009

[19] OpenHaptics toolkit 3.0 API Reference Manual. Sensable Technologies, Inc. Dec 2008

[20] OpenGL Programming Guide, 7th edition. Chapter 7 (1996)

[21]Shadow projection in OpenGL. A mathematical explanation of implementing shadow
projection. Phaetos. 2003. http://www.devmaster.net/articles/shadowprojection

[22]MkOpenGLJPEGImage library. Michael Kennedy, 2000. http://mkennedy.101main.com

34

http://www.sensable.com/
http://www.doxygen.or/
http://www.devmaster.net/articles/shadowprojection

Appendix I. Steery generated documentation

Steery
release candidate 1

Generated by Doxygen 1.6.3

Tue Apr 13 10:33:27 2010

35

CONTENTS 1

Contents

1 Steery platform 2
1.1 Introduction 2

2 Class Documentation 2
2.1 _outputParameters Struct Reference . 2
2.1.1 Detailed Description 3
2.1.2 Member Data Documentation . 3
2.2 _SLE Class Reference .5
2.2.1 Detailed Description . 7
2.2.2 Constructor & Destructor Documentation 7
2.2.3 Member Function Documentation 7
2.2.4 Member Data Documentation 16
2.3 _trial Struct Reference 16
2.3.1 Detailed Description 17
2.3.2 Member Data Documentation 17
2.4 HapticDisplayState Struct Reference . 18
2.4.1 Detailed Description 18
2.4.2 Member Data Documentation 18
2.5 HookeForce Struct Reference 19
2.5.1 Detailed Description 19
2.5.2 Member Data Documentation . 19
2.6 SLEParameter Struct Reference 20
2.6.1 Detailed Description 20
2.6.2 Member Data Documentation 20
2.7 SLESettings Struct Reference 20
2.7.1 Detailed Description 21
2.7.2 Member Data Documentation 21
2.8 TextureParameters Struct Reference 23
2.8.1 Detailed Description 23
2.8.2 Member Data Documentation 23

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

1 Steery platform 2

1 Steery platform

Author
Alejandro Tatay Pascual

Date
April-2010

1.1 Introduction

Steery is a Steering Law Experiment platform. Steery is suitable for research
on trajectory-based interactions in a variety of environments. Steery is
designed to work with force-feedback haptic devices. It works with any haptic
device of Sensable Technologies1 PHANTOM product line. Besides, Steery
provides a different type of environment by using the haptic properties of these
devices. Steery is extensible. It is designed to be augmented by developing
new types of experiments and functionality. Steery is an academic software
developed for Ren Laboratory and its members. Any external use should be
reported to Kochi University of Technology

2 Class Documentation

2.1 _outputParameters Struct Reference
Output settings of the experiment.
#include <SLE.h>
Public Attributes

• char file [50]
• int fileType
• int amplitude
• int width
• int id
• int sd
• int opm
• int mt
• int alfa
• int beta
• int gamma
• int delta
• int height

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.1 _outputParameters Struct Reference 3

• oat minID
• int maxID
• DWORD maxMT
• DWORD minMT

2.1.1 Detailed Description

Output settings of the experiment. Structure to control the output file and output chart.

2.1.2 Member Data Documentation

2.1.2.1 int _outputParameters::alfa

If enabled, SLE.trial[].parameter[3] will be saved for all trials

2.1.2.2 int _outputParameters::amplitude

If enabled, SLE.trial[].parameter[0] will be saved for all trials

2.1.2.3 int _outputParameters::beta

If enabled, SLE.trial[].parameter[4] will be saved for all trials

2.1.2.4 int _outputParameters::delta

If enabled, SLE.trial[].parameter[6] will be saved for all trials

2.1.2.5 char _outputParameters::file[50]

 Full path output file name

2.1.2.6 int _outputParameters::fileType

File type. If 0, output file will be a plain text file (txt). If 1, output will be saved as a
comma-separated values file (csv).

2.1.2.7 int _outputParameters::gamma

If enabled, SLE.trial[].parameter[5] will be saved for all trials

2.1.2.8 int _outputParameters::height

If enabled, SLE.trial[].parameter[2] will be saved for all trials

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.1 _outputParameters Struct Reference 4

2.1.2.9 int _outputParameters::id

If enabled, Index of difficulty will be saved for all trials

2.1.2.10 int _outputParameters::maxID

maximum Index of Difficulty value. Useful for drawing the X-axis higher boundary
of the chart

2.1.2.11 DWORD _outputParameters::maxMT

maximum Movement Time value. Useful for drawing the Y-axis higher boundary of
the chart

2.1.2.12 oat _outputParameters::minID

minimum Index of Difficulty value. Useful for drawing the X-axis lower boundary of
the chart

2.1.2.13 DWORD _outputParameters::minMT

minimum Movement Time value. Useful for drawing the Y-axis lower boundary of
the chart

2.1.2.14 int _outputParameters::mt

If enabled, Movement Time will be saved for all trials

2.1.2.15 int _outputParameters::opm

 If enabled, OPM will be saved for all trials

2.1.2.16 int _outputParameters::sd

If enabled, Standard Deviation will be saved for all trials

2.1.2.17 int _outputParameters::width

If enabled, SLE.trial[].parameter[1] will be saved for all trials
The documentation for this struct was generated from the following file:

• Visual Studio 2005/Projects/Steery/Steery/SLE.h

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 5

2.2 _SLE Class Reference

Steering Law Experiment class.
#include <SLE.h>

Public Member Functions

• _SLE (void)
class constructor

• ~_SLE (void)
class destructor

• void init_trials ()
Initialize trials.

• int trialsNumber ()
Number of trials.

• void ResetTrialsNumber ()
set trialsN to zero

• int genRandomNum (int size)
Generate random number.

• void shuf eTrials ()
Shuf e experiment trials.

• double distPoint2Point (hduVector3Dd p1, hduVector3Dd p2)
Distance between points.

• bool isCrossed (hduVector3Dd lastProjPos, hduVector3Dd currProjPos, hduVec-
tor3Dd p)
point is crossed

• bool isPointOnLine (hduVector3Dd p, hduVector3Dd b0, hduVector3Dd b1)
Point p is on the b0-b1 line segment.

• hduVector3Dd pointProj2Line (GLdouble p[], GLdouble a[], GLdouble b[])
Projected point in line.

• hduVector3Dd pointProj2Circle (GLdouble p[], GLdouble a[], GLdouble A)
Projected point in circle.

• hduVector3Dd vectorProj (hduVector3Dd a, hduVector3Dd b)
Vector projection.

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 6

• hduVector3Dd pointProj2helix (hduVector3Dd pos, int HSlices, hduVector3Dd
*torusProjPerp, hduVector3Dd *CC, hduVector3Dd *DD)
Helix projection.

• hduVector3Dd getNormal (double x1, double y1, double z1, double x2, double
y2, double z2, hduVector3Dd last)
calculates the normal vector of the plane

• hduVector3Dd GradeEquation (hduVector3Dd x, int grade, double K)
Calculates the equation vector of the dynamic force.

• hduVector3Dd GradeEquationInCurve (hduVector3Dd start, hduVector3Dd end,
int grade, double K)
Calculates the final force to be applied in curved tunnels.

• string int2string (int i)
Converts integer to a C string.

• string double2string (double i, int decimals)
Converts double to a C string with exact decimals.

• double getStandardDeviation (std::vector< hduVector3Dd > Traj, hduVec-
tor3Dd startPosition, hduVector3Dd endPosition)
calculates standard deviation of a trial

• double getOPM (std::vector< hduVector3Dd > Traj, hduVector3Dd startPosi-
tion, hduVector3Dd endPosition)
calculates OPM of a trial

• bool LinRegress (double *a, double *b, double *r)
Linear regression function.

• bool equalD (double x, double y)
compares 2 similar doubles with precision error=0.000001

• void MatrixNxNMult (HDdouble A[3][3], HDdouble B[3][3], HDdouble
Res[3][3])
Multiplication of 3x3 Matrix, Res=A*B.

• void MatrixPerPointMult (HDdouble A[3][3], HDdouble *p, HDdouble *Res)
Scalar multiplication of a matrix A and a sacalar p gives a product matrix Res=p*A.

• void RotatePoint3D (GLdouble alfa, GLdouble beta, GLdouble gamma, GLdou-
ble p[3], GLdouble p2[3])
Rotation of a point in 3D space.

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 7

• void RotateMatrix (GLdouble alfa, GLdouble beta, GLdouble gamma, GLdou-
ble M[16], GLdouble M2[16])
Matrix rotation.

• void MatrixMult (GLdouble *A, GLdouble *B, GLdouble *Res, int N)
Multiplication of NxN matrixes Res=A*B.

Public Attributes

• bool paramEnableType [7][7]
• _trial * trials
• int currentTrial
• SLEtype type
• SLESettings settings
• _outputParameters output

2.2.1 Detailed Description

Steering Law Experiment class. Structure to control the output file and output chart.

2.2.2 Constructor & Destructor Documentation

2.2.2.1 _SLE::_SLE (void)

class constructor
Initialize the paramEnableType array.

2.2.2.2 _SLE::~_SLE (void)

class destructor
It frees trials array memory

2.2.3 Member Function Documentation

2.2.3.1 double _SLE::distPoint2Point (hduVector3Dd p1, hduVector3Dd p2)

Distance between points.
Euclidean distance between 2 points in the space

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 8

Parameters
p1 starting point in a 3D space.
p2 endinf point in a 3D space

Returns
distance(p1,p2)

2.2.3.2 string _SLE::double2string (double i, int decimals)

Converts double to a C string with exact decimals.
Using iostream library converts a decimal double value, returning a C standard string
with the desired number of decimals

Parameters
i double
decimals number of decimals

Returns
double in casted string

2.2.3.3 int _SLE::genRandomNum (int size)

Generate random number.

Parameters
size maximum random value

Returns
random number

2.2.3.4 hduVector3Dd _SLE::getNormal (double x1, double y1, double z1,
double x2, double y2, double z2, hduVector3Dd last)

calculates the normal vector of the plane
Given 3 points 1, 2 and last, calculates the normal vector of the plane defined by these
three points.

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 9

Parameters
x1 first dimension value of first point
y1 second dimension value of first point
z1 third dimension value of first point
x2 first dimension value of second point
y2 second dimension value of second point
z2 third dimension value of second point
last third point

Returns
plane normal vector

2.2.3.5 double _SLE::getOPM (std::vector< hduVector3Dd > Traj,
hduVector3Dd startPosition, hduVector3Dd endPosition)

calculates OPM of a trial
calculates the Out-of-the-Path Movement percentage of a trial trajectory through the
tunnel. Percentage is calculated by the proportion of points of the trajectory out of the
current trial tunnel, from the total points of the trajectory

Parameters
Traj user trajectory vector of points
startPosition start position of the tunnel trial
endPosition end position of the tunnel trial

Returns
trial OPM

2.2.3.6 double _SLE::getStandardDeviation (std::vector< hduVector3Dd >
Traj, hduVector3Dd startPosition, hduVector3Dd endPosition)

calculates standard deviation of a trial
calculates the standard deviation of a trial trajectory through the tunnel. SD is calcu-
lated according to the formula

 N

2 s = 1 (x - x)
i N
i =1

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 10

Parameters
Traj user trajectory vector of points
startPosition start position of the tunnel trial
endPosition end position of the tunnel trial

Returns
trial standard deviation

2.2.3.7 hduVector3Dd _SLE::GradeEquation (hduVector3Dd x, int grade,
double K)

Calculates the equation vector of the dynamic force.
According to the Force grade, a proportional force is returned. Multiplies the initial
value x per K and applies the corresponding equation.

Parameters
x initial vector of the force
grade Equation grade. If 0, a force K is applied in the direction of the force,
constant value

If 1, equation is K*x, linear If 2, equation is quadratic, K*x 2 If 3, equation is K/x If
4, rquation is K*log(x), logarithmic

Parameters
K constant K

Returns
force final vector

2.2.3.8 hduVector3Dd _SLE::GradeEquationInCurve (hduVector3Dd start,
hduVector3Dd end, int grade, double K)

Calculates the final force to be applied in curved tunnels.
Depending to the current position angle, the dynamic force to be applied is different.
This function calculates this force extrapolating it from the current position angle, start
position, end position, grade and type of tunnel. Only works for torus3D, torus2D and
helix3D tunnels

Parameters
start start position of the tunnel

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 11

end end position of the tunnel
grade equation grade of the force
K constant K

Returns
force final vector

2.2.3.9 void _SLE::init_trials ()

Initialize trials.
This function is called after setting up the the experiment. allocates dinamically trials
memory and construct the parameters in a factorial design.
cp=current parameters

2.2.3.10 string _SLE::int2string (int i)

Converts integer to a C string.
Using iostream library converts a decimal integer value, returning a C standard string

Parameters
i integer

Returns
integer in casted string

2.2.3.11 bool _SLE::isCrossed (hduVector3Dd lastProjPos, hduVector3Dd
currProjPos, hduVector3Dd p)

point is crossed
Calculates if a point is situated in the space between two other points, by calcujating
the orthogonal projection of the point onto the line defined by the other two points.

Parameters
lastProjPos initial point of the line segment
currProjPos ending point of the line segment
p point to be calculated

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 12

Returns
true if is crossed. False if not

2.2.3.12 bool _SLE::isPointOnLine (hduVector3Dd p, hduVector3Dd b0,
hduVector3Dd b1)

Point p is on the b0-b1 line segment.

Parameters
p point to be checked if it is on the line or not
b0 starting point of the line segment
b1 ending point of the line segment, different from b0

Returns
true if p is in the line segment. False if not

2.2.3.13 bool _SLE::LinRegress (double * a, double * b, double * r)

Linear regression function.
Calculates linear regression from all trials, according to the formula y (x) = a + bx,
for n samples. The following assumes the standard deviations are unknown for x and y.
X values correspond to trial Index of Difficulty (ID) and Y-values to Movement Time
(MT).

Parameters
a y-intercept value of the linear regression function, point where the function in-
tercepts the Y-axis.
b slope of the linear regression function
r correlation coefficient of the linear regression

Returns
true if the calculation was correct. It will return false if trials number is smaller
than 3. Or if the slope b is infinite, so y-intercept a value does not exist

2.2.3.14 hduVector3Dd _SLE::pointProj2Circle (GLdouble p[], GLdouble a[],
GLdouble A)

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 13

Projected point in circle.
Calculates the closest point of the circumference to the point p.

Parameters
p point to be projected
a center of the circumference
A circumference perimeter

Returns
orthogonal projection point

2.2.3.15 hduVector3Dd _SLE::pointProj2helix (hduVector3Dd pos, int HSlices,
hduVector3Dd * torusProjPerp, hduVector3Dd * CC, hduVector3Dd *
DD)

Helix projection.
In the helix experiment, returns the closest point of the center of the helix to the current
position. Helix equation is {S = r * cos(angle), S = trialHeight , S = a ng le
x y z tr ia lD e lta

r * sin(angle)}
To find the minimum distance from current position to this equation:

Dist(pos, helix) = (pos - S) + (pos - S) + (pos - S) 2 2 2
x x y y z z

we derivate the equation (without v) and find the solution which satisfy the derivate=0
but this derivation from a polar equation is unaffordable, because there is no lineal
solution that satisfy 2 * pos = 2 * r(sin(angle) - cos(angle)) + * angle 2 h 2

x h d d 2

Thus, the suggested approach done in this function is:
1. Given the cylinder which contains the helix, we calculate B,the closest point of the
enclosing cylinder to current position.
2. Find C, the vertical projection point of B in the helix,
3. Find D, the horizontal projection point of B in the helix.
4. From C to D, cover the curve in N points looking for the closest one to current
position. (N=10)

Parameters
pos current cursor position
HSlices helix tessellated slices
torusProjPerp vector perpendicular to final projection, used later to calculate and
apply dynamic forces.

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 14

CC vertical projection of point B
DD horizontal projection point of B

Returns
closest point from pos to current trial helix function

2.2.3.16 hduVector3Dd _SLE::pointProj2Line (GLdouble p[], GLdouble a[],
GLdouble b[])

Projected point in line.
orthogonal projection of the a->p vector onto a->b vector. That is, the closest point
of the line a-b to the point p. Useful to project the 3D device position in a plane and
situate the cursor in a 2D experiment

Parameters
p point to be projected
a one point of the line
b other point of the line, different from b

Returns
orthogonal projection point

2.2.3.17 void _SLE::RotateMatrix (GLdouble alfa, GLdouble beta, GLdouble
gamma, GLdouble M[16], GLdouble M2[16])

Matrix rotation.
alpha, beta&gamma angles given, and a matrix M, calculates the new matrix M2 apply-
ing the intrinsec rotations (Euler) to M. A=B*C*D, M2=A*M. B,C and D correspond
to the rotation matrixes of alpha, beta and gamma. First, A is calculated by the BCD
multiplication. Then, M2 is calculated.

Parameters
alfa alpha angle, in Y-axis
beta beta angle, in Z-axis
gamma gamma angle, in X-axis
M initial matrix 4x4
M2 rotated matrix. M2=A*M, where matrix A=B*C*D.

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.2 _SLE Class Reference 15

2.2.3.18 void _SLE::RotatePoint3D (GLdouble alfa, GLdouble beta, GLdouble
gamma, GLdouble p[3], GLdouble p2[3])

Rotation of a point in 3D space.
alpha, beta&gamma angles given, and a point p, calculates the new point p2 applying
the intrinsec rotations (Euler) to the point. A=B*C*D; p2=A*p.First, p is rotated in
X-Z plane about Y-axis by alfa (Matrix D). Then, result is rotated in X-Y plane about
Z-axis by beta (Matrix C).Finally, result is rotated Y-Z plane about X-axis by gamma
(Matrix B)

Parameters
alfa alpha angle, in Y-axis
beta beta angle, in Z-axis
gamma gamma angle, in X-axis
p initial point
p2 rotated point. p2=A*p, where matrix A=B*C*D.

2.2.3.19 void _SLE::shuf eTrials ()

Shuf e experiment trials.
For every subject, trials are shuf ed

2.2.3.20 int _SLE::trialsNumber ()

Number of trials.

Returns
number of trials. If SLE.trialsN=0, calculates experiment factorial combinations
and updates SLE.trialsN according to GUI settings.

2.2.3.21 hduVector3Dd _SLE::vectorProj (hduVector3Dd a, hduVector3Dd b)

Vector projection.
orthogonal projection of the B vector onto A vector

Parameters
a vector where projection is calculated on

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.3 _trial Struct Reference 16

b vector to be projected

Returns
orthogonal projection vector

2.2.4 Member Data Documentation

2.2.4.1 int _SLE::currentTrial

current trial during the experiment, inside the interval [0, n-1]. Initial value is -1.

2.2.4.2 _outputParameters _SLE::output

output settings of the experiment instance

2.2.4.3 bool _SLE::paramEnableType[7][7]

 Parameters enabled for each type of
experiment. Syntax is paramEnableType[t][p], where t correspond to an SLEtype and
p is one of the 7 parameters amplitude, width, height, alfa, beta, gamma or delta

2.2.4.4 SLESettings _SLE::settings

 GUI panel linked settings

2.2.4.5 _trial* _SLE::trials

experiment array of trials. Memory is allocated dinamically in init_trials() function

2.2.4.6 SLEtype _SLE::type

enum type of the experiment. Value is updated everytime the listbox is changed.
The documentation for this class was generated from the following files:

• Visual Studio 2005/Projects/Steery/Steery/SLE.h
• Visual Studio 2005/Projects/Steery/Steery/SLE.cpp

2.3 _trial Struct Reference

Trial structure.
#include <SLE.h>

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.3 _trial Struct Reference 17

Public Attributes

• int parameter [7]
• oat id
• double sd
• DWORD MT
• oat OPM
• int subject

2.3.1 Detailed Description

Trial structure. Contains the input and output parameters of a experiment trial.

2.3.2 Member Data Documentation

2.3.2.1 oat _trial::id

 Index of difficulty. Value derived from Amplitude/width.

2.3.2.2 DWORD _trial::MT

movement time. It last since the start position is crossed until the user reaches the end
position

2.3.2.3 oat _trial::OPM

 We use
the OPM to measure the out of path movement. OPM is the percentage of trajectory
points outside the tunnel boundary. This metric was previously used by Kulikov and it
was defined as "OPM (Out of Path Movement, percentage of sample points outside the
Constraint lines). For example, if 100 points were sampled and 14 of those points were
outside the Constraint lines, then OPM would be 14".

2.3.2.4 int _trial::parameter[7]

Measurements and angles of the trial: amplitude, width, height, alfa, beta, gamma
and delta

2.3.2.5 double _trial::sd

 standard deviation of trial user trajectory

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.4 HapticDisplayState Struct Reference 18

2.3.2.6 int _trial::subject

 Number of the current subject
The documentation for this struct was generated from the following file:

• Visual Studio 2005/Projects/Steery/Steery/SLE.h

2.4 HapticDisplayState Struct Reference

haptic variables,structs&functions

Public Attributes

• hduVector3Dd position
• HDdouble transform [16]
• hduVector3Dd anchor
• HDboolean isAnchorActive
• HDboolean recordUserTraj

2.4.1 Detailed Description

haptic variables,structs&functions

2.4.2 Member Data Documentation

2.4.2.1 hduVector3Dd HapticDisplayState::anchor

 Cursor anchor

2.4.2.2 HDboolean HapticDisplayState::isAnchorActive

is anchor active boolean

2.4.2.3 hduVector3Dd HapticDisplayState::position

current position of the cursor

2.4.2.4 HDboolean HapticDisplayState::recordUserTraj

if active, records user trajectory

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.5 HookeForce Struct Reference 19

2.4.2.5 HDdouble HapticDisplayState::transform[16]

 transformation matrix
The documentation for this struct was generated from the following file:

• Visual Studio 2005/Projects/Steery/Steery/main.cpp

2.5 HookeForce Struct Reference

Dynamic Force structure.
#include <SLE.h>

Public Attributes

• int isON
• oat K
• oat x
• int equationGrade

2.5.1 Detailed Description

Dynamic Force structure. Represented according to Hooke’s Law F=K*x. Depending
on the equationGrade value, this force can be constant, linear, quadratic, logarithmic
or inverse

2.5.2 Member Data Documentation

2.5.2.1 int HookeForce::equationGrade

Grade. See _SLE::GradeEquation for further detail.

2.5.2.2 int HookeForce::isON

Force activator. When is equal to zero, force is disabled.

2.5.2.3 oat HookeForce::K

 coefficient of the force.

2.5.2.4 oat HookeForce::x

 distance.
The documentation for this struct was generated from the following file:

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.6 SLEParameter Struct Reference 20

• Visual Studio 2005/Projects/Steery/Steery/SLE.h

2.6 SLEParameter Struct Reference

Steering Law Experiment Parameter structure.
#include <SLE.h>

Public Attributes

• int min
• int max
• int iter

2.6.1 Detailed Description

Steering Law Experiment Parameter structure. One of the 7 parameters of a SLE: Am-
plitude, Width, Height, alfa, beta, gamma, delta. It is expressed in a min/max/iterator
way, for factorial design

2.6.2 Member Data Documentation

2.6.2.1 int SLEParameter::iter

 iterator value.

2.6.2.2 int SLEParameter::max

 maximum value.

2.6.2.3 int SLEParameter::min

 minimum value.
The documentation for this struct was generated from the following file:

• Visual Studio 2005/Projects/Steery/Steery/SLE.h

2.7 SLESettings Struct Reference

Experiment settings.
#include <SLE.h>

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.7 SLESettings Struct Reference 21

Public Attributes

• SLEParameter parameter [7]
• int type
• int solidwalls
• HookeForce repwalls
• HookeForce attrwalls
• HookeForce repgoal
• HookeForce attrgoal
• int shuf e
• int subjects
• int trialRepetitions
• int trialBreak
• int orientation
• int solidSurfaceOrientation
• int shadows3D
• int audio
• TextureParameters surface2DTexture
• HookeForce tunnelViscosity
• HookeForcetunnelFriction

2.7.1 Detailed Description

Experiment settings. Structure linked to graphical interface layer.

2.7.2 Member Data Documentation

2.7.2.1 HookeForce SLESettings::attrgoal

dynamic forces: repulsive goal. If enabled, the cursor if forced stay away from the
trial start position

2.7.2.2 HookeForce SLESettings::attrwalls

dynamic forces: attractive walls. If enabled, the cursor is forced to stay away from
the center of the path

2.7.2.3 int SLESettings::audio

If enabled, alarm sound loop is played when the user leaves the tunnel

2.7.2.4 SLESettings::HookeForcetunnelFriction

Tunnel friction. Texture parameters for 3D experiments

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.7 SLESettings Struct Reference 22

2.7.2.5 int SLESettings::orientation

only for 2D. Defines the orientation of the experiment. Default is horizontal=0 as a
table, and vertical=1 as a board.

2.7.2.6 SLEParameter SLESettings::parameter[7]

Amplitude, Width, Height, alfa, beta, gamma, delta.

2.7.2.7 HookeForce SLESettings::repgoal

dynamic forces: repulsive goal. If enabled, the cursor if forced stay away from the
trial goal position

2.7.2.8 HookeForce SLESettings::repwalls

dynamic forces: repulsive walls. If enabled, the cursor is forced to remain in the
center of the path

2.7.2.9 int SLESettings::shadows3D

If enabled, tunnel and cursor shadows are generated (only 3D experiments)

2.7.2.10 int SLESettings::shuf e

if selected, trials will be shuf ed in the SLE initialization

2.7.2.11 int SLESettings::solidSurfaceOrientation

If enabled, creates haptic feedback, forcing the cursor to stay in an imaginary surface
with Y=0. (or Z=0 in vertical orientation)

2.7.2.12 int SLESettings::solidwalls

If selected, haptic force is generated to simulate experiment’s walls

2.7.2.13 int SLESettings::subjects

 number of participants of the experiment

2.7.2.14 TextureParameters SLESettings::surface2DTexture

Texture parameters for 2D experiments

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.8 TextureParameters Struct Reference 23

2.7.2.15 int SLESettings::trialBreak

Tells the GUI when to pop-up the break window

2.7.2.16 int SLESettings::trialRepetitions

Trials will be multiplied per this number when generated

2.7.2.17 HookeForce SLESettings::tunnelViscosity

Viscosity of the tunnel. Texture parameters for 3D experiments

2.7.2.18 int SLESettings::type

integer casted from enum SLEtype. Associated to the experiment’s type of tunnel
The documentation for this struct was generated from the following file:

• Visual Studio 2005/Projects/Steery/Steery/SLE.h

2.8 TextureParameters Struct Reference

Texture parameters of the experiment.
#include <SLE.h>

Public Attributes

• int ON
• oat hap_stiffness
• oat hap_damping
• oat hap_static_friction
• oat hap_dynamic_friction
• int height

2.8.1 Detailed Description

Texture parameters of the experiment. Its parameters are linked with the GUI texture
panel.

2.8.2 Member Data Documentation

2.8.2.1 oat TextureParameters::hap_damping

 Haptic damping value.

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

2.8 TextureParameters Struct Reference 24

2.8.2.2 oat TextureParameters::hap_dynamic_friction

Haptic dynamic friction.

2.8.2.3 oat TextureParameters::hap_static_friction

 Haptic static friction.

2.8.2.4 oat TextureParameters::hap_stiffness

 Haptic stiffness value.

2.8.2.5 int TextureParameters::height

 Height position of the simulated surface.

2.8.2.6 int TextureParameters::ON

Texture Panel activator. When is equal to zero, panel is disabled
The documentation for this struct was generated from the following file:

• Visual Studio 2005/Projects/Steery/Steery/SLE.h

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

Index

~_SLE minMT, 3
_SLE, 6 mt, 3

_SLE, 4 opm, 3
~_SLE, 6 sd, 3
_SLE, 6 width, 3
_SLE, 6 _trial, 15
currentTrial, 15 id, 16
distPoint2Point, 7 MT, 16
double2string, 7 OPM, 16
genRandomNum, 7 parameter, 16
getNormal, 7 sd, 16
getOPM, 8 subject, 16
getStandardDeviation, 8
GradeEquation, 9 alfa
GradeEquationInCurve, 9 _outputParameters, 2
init_trials, 10 amplitude
int2string, 10 _outputParameters, 2
isCrossed, 10 anchor
isPointOnLine, 11 HapticDisplayState, 17
LinRegress, 11 attrgoal
output, 15 SLESettings, 20
paramEnableType, 15 attrwalls
pointProj2Circle, 11 SLESettings, 20
pointProj2helix, 12 audio
pointProj2Line, 13 SLESettings, 20
RotateMatrix, 13
RotatePoint3D, 13 beta
settings, 15 _outputParameters, 2
shuffleTrials, 14
trials, 15 currentTrial
trialsNumber, 14 _SLE, 15
type, 15 delta
vectorProj, 14 _outputParameters, 2

_outputParameters, 1
alfa, 2 distPoint2Point
amplitude, 2 _SLE, 7
beta, 2 double2string
delta, 2 _SLE, 7
file, 2 equationGrade
fileType, 2 HookeForce, 18
gamma, 2
height, 2 file
id, 3 _outputParameters, 2
maxID, 3 fileType
maxMT, 3 _outputParameters, 2
minID, 3

gamma

INDEX 26

_outputParameters, 2 isON
genRandomNum HookeForce, 18

_SLE, 7 isPointOnLine
getNormal _SLE, 11

_SLE, 7 iter
getOPM SLEParameter, 19

_SLE, 8
getStandardDeviation K

_SLE, 8 HookeForce, 18
GradeEquation

_SLE, 9 LinRegress
GradeEquationInCurve _SLE, 11

_SLE, 9 max
hap_damping SLEParameter, 19

TextureParameters, 22 maxID
hap_dynamic_friction _outputParameters, 3

TextureParameters, 22 maxMT
hap_static_friction _outputParameters, 3

TextureParameters, 23 min
hap_stiffness SLEParameter, 19

TextureParameters, 23 minID
HapticDisplayState, 17 _outputParameters, 3

anchor, 17 minMT
isAnchorActive, 17 _outputParameters, 3
position, 17 MT
recordUserTraj, 17 _trial, 16
transform, 17 mt

height _outputParameters, 3
_outputParameters, 2
TextureParameters, 23 ON

HookeForce, 18 TextureParameters, 23
equationGrade, 18 OPM
isON, 18 _trial, 16
K, 18 opm
x, 18 _outputParameters, 3

HookeForcetunnelFriction orientation
SLESettings, 20 SLESettings, 20

output
id _SLE, 15

 _outputParameters, 3 paramEnableType
_trial, 16 _SLE, 15

init_trials parameter
_SLE, 10 _trial, 16

int2string SLESettings, 21
_SLE, 10 pointProj2Circle

isAnchorActive _SLE, 11
HapticDisplayState, 17 pointProj2helix

isCrossed _SLE, 12
_SLE, 10 pointProj2Line

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

INDEX 27

_SLE, 13 SLESettings, 21
position solidwalls
HapticDisplayState, 17 SLESettings, 21

subject
recordUserTraj _trial, 16

HapticDisplayState, 17 subjects
repgoal SLESettings, 21

SLESettings, 21 surface2DTexture
repwalls SLESettings, 21

SLESettings, 21
RotateMatrix TextureParameters, 22

_SLE, 13 hap_damping, 22
RotatePoint3D hap_dynamic_friction, 22

_SLE, 13 hap_static_friction, 23
hap_stiffness, 23

sd height, 23
 _outputParameters, 3 ON, 23

_trial, 16 transform
settings HapticDisplayState, 17

_SLE, 15 trialBreak
shadows3D SLESettings, 21

SLESettings, 21 trialRepetitions
shuffle SLESettings, 22

SLESettings, 21 trials
shuffleTrials _SLE, 15

_SLE, 14 trialsNumber
SLEParameter, 19 _SLE, 14

iter, 19 tunnelViscosity
max, 19 SLESettings, 22
min, 19 type

SLESettings, 19 _SLE, 15
attrgoal, 20 SLESettings, 22
attrwalls, 20
audio, 20 vectorProj
HookeForcetunnelFriction, 20 _SLE, 14
orientation, 20
parameter, 21 width
repgoal, 21 _outputParameters, 3
repwalls, 21
shadows3D, 21 x
shuffle, 21 HookeForce, 18
solidSurfaceOrientation, 21
solidwalls, 21
subjects, 21
surface2DTexture, 21
trialBreak, 21
trialRepetitions, 22
tunnelViscosity, 22
type, 22
solidSurfaceOrientation

Gen era ted on Tu e Apr 1 3 1 0:3 3: 26 2 01 0 fo r St eery b y Do xy gen

Appendix II. Steery User's guide

STEERY USER’S

GUIDE

Ren Laboratory

Kochi University of Technology, Japan

March 2010

User's Guide Table of Contents
Appendix II. Steery User's guide..62

Preface...64
I.Getting started...65

Chapter 1 Introduction...65
 1.1. Welcome to Steery.. 65
 1.2. Authors..65
 1.3. Scope and Purpose.. 65
 1.4. Features and Capabilities.. 65

Chapter 2. Running Steery.. 66
2.1. System Requirements.. 66

 Chapter 3. First Steps... 67
3.1. Basic Concepts...67

3.1.1 SLE..67
3.1.2. Haptics... 67
3.1.3. Dynamic Forces... 67
3.1.4. Trial.. 67

 3.2. Starting the system..67
3.3. Main Window.. 68
3.4. Stopping and the system.. 68
3.5. Steery Quickies.. 69

3.5.1. Perform a 2D experiment...69
3.5.2. Graph output results... 70

II. Functionality...71
Chapter 4. GUI dialogs..71

4.1. Dialog Introduction..71
4.2. Tunnel selection... 71

4.2.1. Type..71
4.2.2. Parameters..72

4.3. Iterations.. 72
4.4. Dynamic Forces... 72
4.5. Texture Feedback... 73
4.6. Trial status bar..73
4.7. Save data.. 74

Chapter 5. Types of tunnel ..75
5.1. Trial execution... 75
5.2. 2D tunnel..75
5.3. 2D torus..76
5.4. 2D curve...76
5.5. 3D tunnel..76
5.6. 3D torus..76
5.7. 3D helix..77
5.8. boxwalls... 77

Chapter 6. Troubleshooting... 78
Appendix A. Glossary of Terms.. 79
Appendix B. Bibliography...80

64

Preface
1. About this guide
The Steery User’s Guide describes the features and usability of the Steery platform. You will find
information on how to use and perform experiments with this software.
2. Steery User Manual Authors and Contributors

Content Writers
Alejandro Tatay Pascual

Proof Reading
Lawrie Hunter, Sun Minghui, Xiangshi Ren

Graphics, Stylesheets
Alejandro Tatay Pascual

Build System, Technical Contributors
Alejandro Tatay Pascual, Minghui Sun, Xiangshi Ren, Yoshinobu Onishi, Hironori Ishiyama

65

I. Getting started

Chapter 1 Introduction

 1.1. Welcome to Steery
Steery is a Steering Law Experiment platform. Steery is suitable for research on trajectory-based
interactions in a variety of environments.

Steery is designed to work with force-feedback haptic devices. It works with any haptic device of
Sensable Technologies PHANTOM product line. Besides, Steery provides a different type of
environment by using the haptic properties of these devices.

Steery is extensible. It is designed to be augmented by developing new types of experiments. For
further information, check the Steery developer’s manual.

Steery is an academic software developed for Ren Laboratory and its members. Any external use
should be reported to Kochi University of Technology.

 1.2. Authors
The first version of the Steery was written by Alejandro Tatay Pascual. Other labmates have
contributed to its development: Sun Minghui, Yoshinobu Onishi, Hironori Ishiyama and the
support of Prof. Xiangshi Ren.

 1.3. Scope and Purpose
In the field of Human-Computer Interaction (HCI) Steering Law is a well-known predictive model
concerning the user’s performance in trajectory tasks. Nowadays, Steering Law experiments are
used frecuently, but the experiment development process can be tedious and repetitive for the
researcher.

Steery speeds up the workload of the researcher by substracting the development stage. Once the
researcher runs Steery, he only has to set up the parameters and launch the experiment.

 1.4. Features and Capabilities
The following list is a short overview of some of the features and capabilities which Steery offers:

• Variety of tunnels: 2-dimensional, 3-dimensional, straight, curved, ….

• Surface orientation in 2-dimensional tunnels

• Tunnel parameters: Iterator-based selection

• Texture material simulation

• Dynamic forces: haptic-force guidance

• Save data as txt, csv or even as a jpeg graph.

66

Chapter 2. Running Steery

2.1. System Requirements

The Steery platform requires certain hardware and software components to function properly.
• An Intel® processor based personal computer (minimum of Pentium® II class processor is

recommended) or an equivalent AMD® processor personal computer.

• IEEE-1394a-2000 complaint FireWire® port.

• Windows 2000 or Windows XP.

• A Sensable Technologies PHANTOM haptic device

• There are no specific memory requirements to run the software; however, a minimum of 64 MB RAM
is recommended for overall system performance.

• The PHANTOM Device driver (PDD), version 4.2.x. See the software documentation for any
haptically enabled applications you will be running for specific PDD requirements .

• A SensAble supplied 6-6 pin FireWire cable or a 3rd party FireWire cable that exceeds IEEE 1394
implementation recommendations. Laptop Users please note that SensAble recommends using a 6-6
pin cable and add-in card instead of 6-4 pin. See www.sensable.com for the latest information.

67

 Chapter 3. First Steps

3.1. Basic Concepts

3.1.1 SLE

Derived from Fitts’ Law, Steering Law is a predictive model of human movement in trajectory-
based tasks, concerning the speed and total time with which user may navigate through a 2-
dimensional tunnel. This tunnel is defined by its amplitude A and width W, and the Steering Law
can be expressed as

where T is the average time to navigate through the path. In a Steering Law Experiment (SLE), a
researcher can obtain a,b constants empirically, by linear regression.

3.1.2. Haptics

Haptics, or Tactile Feedback Technology, takes advantage of the user’s sense of touch by applying
forces and vibrations motions to the user. This simulation assists in the creation of virtual objects, as
wall, tunnel texture, and dynamic forces directly applied to the device, among others.

3.1.3. Dynamic Forces

Haptic-guidance during steering task can improve the task performance. Steery allows the use of a
variety of dynamic forces with several grades of force.

3.1.4. Trial

A SLE consists of a number of trials, each one with different parameters. Every trial data is
recorded during the experiment, so the experiment designer can save it into a file.

 3.2. Starting the system
The Steery platform can be opened by double clicking on the Steery.exe icon, located in the Steery
folder.

68

W

A
baT +=

3.3. Main Window

Once the system has started, the main window of the application is opened. In this starting window,
all the SLE settings can be selected. The main window is divided in four parts: tunnel, where the
parameters and type of tunnel are selected; iterations selects the general settings of the SLE;
Haptic-guidance, for dynamic forces; and Texture simulation.

Once the experiment is set up, it can already start by pressing the launch button.

3.4. Stopping and the system

To close the experiment before it starts, press Exit button in the main Window, close to the launch
button. Otherwise, if the experiment has already started, press the Cancel button at the bottom bar
(status bar). A dialog will pop up, asking for confirmation.

69

3.5. Steery Quickies

3.5.1. Perform a 2D experiment

Let’s suppose that you want to do a SLE to study the influence of the trajectory angle in the tunnel.
The experiment parameters are:

• Amplitude: 60,75,90,105, 120. x5

• Width: 10, 18, 26, 34, 42. x5

• Trajectory angle: 0, 45, 90, 135, 180, 225, 270, 315. x8

• Subjects: 5 x5

• Shuffle trials

In total, this experiment has 5x5x8x5=1000 trials.

Set every iterator parameter (A, W and angle) in iterator-based notation, that is (min, max, iterator).

Start the experiment clicking on launch button. A confirmation dialog will pop up, so you can check
if the number of trials and subjects are correct.

It is recommended to have a break between subjects, so they don’t perform other subject’s trials.
For this reason, you may be interested in setting the “have a break” spinner, so a dialog will pop up
when each subject finishes. During the experiment, in the status bar will appear information about
the remaining trials until next break.

70

After finishing all the trials, the Save data dialog pops up. You can select or deselect a variety of
fields per trial that would appear (or not) in the output file. Also, you can choose between a Text file
(txt) or a Comma-Separated Values files (csv).

3.5.2. Graph output results

Steery can represent the Index of Difficulty (
W

A
ID =) related to Movement Time in a graph,

calculating it by linear regression of all the trials. In the Save data dialog, click on Show graph
button, and the graph will be generated.

Next, save the graph as a jpeg file by clicking on the Save graph button. Notice that sometimes
graph can not be represented if the basic conditions for regression calculus are not achieved.

71

II. Functionality

Chapter 4. GUI dialogs

4.1. Dialog Introduction

Dialogues are the most common means of setting options and controls in the Steery. The most
important dialogues are explained in this section.

4.2. Tunnel selection
The tunnel selection interface covers most of the main window, and it’s composed by two panels:
type of tunnel and tunnel parameters:

4.2.1. Type

The first setting to select in a SLE is the type of tunnel, which are explained on Types of tunnel.

Any PHANTOM haptic device has a 3-dimensional workspace, but the designer may be only
interested in 2-dimensional tunnels. In 2-dimensional tunnels, Steery allows the option to choose
between horizontal or vertical orientation of the tunnel surface.

Thus, the trials will be performed in a horizontal orientation, simulating a steering task on table, or
in vertical orientation, simulating it on a blackboard.

Next to the orientation listbox there is a solid surface checkbox. By clicking on it, it forces the
PHANTOM stylus to be in y=0 during the trial. In other words, the stylus remains on the surface,
either in horizontal or vertical.

72

z

y

xz

y
x

4.2.2. Parameters

Below the type of tunnel panel there are the parameters settings. Seven parameters can be defined:
amplitude (A), width (W), height (H), α (alpha), β (beta), γ (gamma) and δ (delta). A, W and H are
lineal values, and α, β, γ and δ correspond to angles, represented by degrees, not radians.

Each parameter has three values to set up: minimum, maximum and iterator. By selecting this
values, the trials will be generated combining all the posible values from minimum to maximum by
iterator value increment.

4.3. Iterations
Below the tunnel panel there is the Experiment Iterations panel.
Here it is possible to specify the number of subjects, trial
repetitions, to shuffle trials and to select the frecuency of the
break Dialog. This dialog will pop up during the experiment
according to the value selected. If 0 is selected, no window will
pop up.

4.4. Dynamic Forces
This panel is at the right side of iteration panel. Here you can define the Dynamic Forces or set the
solid Walls on. By doing this, the tunnel walls become solid, preventing the stylus from getting
outside the tunnel. There is an exception: in boxwalls tunnel, this checkbox is used to “solidify” the
walls and floor of the box.

The final force behaves depending on the function grade selected. There are five mathematical
grades available: constant, lineal, quadratic, decelerated (1/x) and logarithmic.

73

But what are these dynamic forces? These forces are applied to the stylus every moment during the
whole trial to provide haptic-guidance to the subject. These forces vary according to a constant K
and a distance x. There are 4 forces available:

• Attractive tunnel center: x is the
distance from the cursor to the center of
the tunnel

• Repulsive tunnel center: opposite to the
previous one, they can’t be used at the
same time.

• Repulsive goal: x is the distance from
the cursor to the goal line.

• Attractive goal: opposite to the previous one, they also are incompatible.

4.5. Texture Feedback
The Feedback panel is the interface to select the texture simulation variables. For 2-dimensional

tunnels, these parameters are offered by PHANTOM API
(Application Programming Interface) and are:

• Stiffness: hardness of the surface.
• Damping: springiness of the surface.
• Static friction: resistance of the surface to tangential

motion when the cursor is not moving. In other words,
how hard it is to slide along the surface starting from a
complete stop.

• Dynamic friction: resistance of the surface to tangential
motion when the cursor is moving. That is, how hard it
is to slide along the surface once already moving.

• Surface height: position of the tunnel in the Y-axis.

In the other hand, for 3-dimensional tunnels the concept of
texture is replaced for fluid inside the tunnel. In this context,
two parameters can be set:
Viscosity: spring force opposed to the cursor movement.
Friction: resistance force opposed to the cursor movement.

At the bottom of this panel there are two checkbox: shadows, to draw the shadows in 3-dimensional
tunnels (recommended), and audio. Audio feedback plays a loop error sound during the trial every
time the cursor comes out of the tunnel boundaries, and stops it when it comes back.

4.6. Trial status bar
During the experiment, there is always a status bar at the bottom of the window which shows
information of the current trial.

It shows the number of the trial, the current subject, the trial parameters and trials left until next
break. Besides, the Cancel button allows to interrupt the experiment before it finishes, as it was

74

explained in Page 69.

4.7. Save data

Once the experiment is finished, the Save data dialog will pop up. At this point, all the trials
information is in the Steery memory, and now it can be saved to a file. First, choose the output file
type: plane text (txt) or Comma-Separated Values file (csv). The csv file type is useful to export the
data to any Spreadsheet software.

At the right side, a variety of trial
parameters can be selected to export it to the
output file. A, W, Index of Difficulty, α, β, γ,
δ, H, Standar Deviation to the center of the
tunnel, Movement Time of the trial and
OPM. Out-of-Path Movement or OPM is
the percentage of sample positions of the
cursor outside the tunnel in the trial.

Finally, type the name of the output file and
press the Save data button. The file will be
saved in: <Steery folder>/output/ folder.

Next to this button, there is the Show graph button. As explained in Page 71, if you click you will
see in the main window a chart representing the results. Notice that sometimes graph can not be
represented if the basic conditions for regression calculus are not achieved.

Next, save the graph as a jpeg file by clicking on the Save graph button. The picture will be saved
in the same location as the data file.

75

Chapter 5. Types of tunnel

There are different types of tunnel that can be used in a SLE. Every type of tunnel that Steery offers
and its parameters are explained in the next section, in order of appearance

Once the tunnel type is chosen in the listbox, the parameters will be selectable to be set up.

5.1. Trial execution

To carry out a SLE, the subject needs to know how to execute a trial. At the trial starting, a yellow
starting region is drawn. Once the cursor moves over the region, it will change to red, to notify that
the cursor is on the right place. Then, the subject press the device button, and the starting region
color will change to green, indicating that the trial can start. At this point the cursor crosses the start
position, the trial counter starts, and the subject steers the cursor to the end of the tunnel.

5.2. 2D tunnel

The basic SLE tunnel, is defined by three parameters: Amplitude, Width and angle (α). Amplitude
represents the tunnel length, and Width the tunnel height. The rotation of the tunnel is defined by
alpha, measured in degrees.

The starting position by default is at left (α=0º), so the tunnel is navigated from left to right.

In case you want to perform right-to-left steering tasks, set α=180º.

76

5.3. 2D torus

This is a circular tunnel, to perform curved steering tasks. This tunnel is formed by two
circumeferences. The parameters to be set are the same ones as the

previous tunnel: A, W, α. In this case, Amplitude is the perimeter
of the curved tunnel, so its radius r= 2π/A. Width is the

thickness between both circumferences. Thus, inner
circumference has a radius r1=r-W/2, and the outer one has
radius r2=r+W/2.

Starting position is by default at the top, and the task is
always performed clockwise. Alpha rotates the starting

position clockwise.

5.4. 2D curve
This experimental option is unavailable by default, subject to further study and development. The
purpose of this option is to shape the tunnel in a non-regular, free curve.

5.5. 3D tunnel
3D tunnel is shaped as a cylinder in a three dimensional space. The available parameters are: A, W,
alpha (α) and beta (β). Cylinder’s base radius is
r=W/2, and Cylinder’s height equal to A.

Alpha and beta rotate the tunnel in Y and Z axis,
respectively. Combining both angles, the tunnel
can be orientated in any position.

5.6. 3D torus
This tunnel is shaped as a torus or toroid, a
doughnut-shaped object. The parameters available
in this tunnel are: A, W, alpha (α), beta (β) and gamma (γ).
Similar to 2D torus, A is the perimeter of the tunnel, and W is
the thickness of the torus (diameter). The start position is by
default situated at the left side.

Alpha, beta and gamma rotate the tunnel in Y, Z and X axis
respectively. Since the combination of this three angles can
produce a confusing orientation, some user feedback is
given to help the subject understand the trial orientation.
This feedback is located at the bottom left corner of the
screen. It consist on a thiny red torus
orientated in the same way as the
tunnel, with 3 arrows representing
the task direction.

77

5.7. 3D helix
This tunnel is the most complex of Steery. It is shaped as a helix, a regular curve in three-
dimensional space, comonly called coil spring or spiral. All the seven parameters are used to draw
it: A, W, H, alpha (α), beta (β), gamma (γ) and delta (δ). A is the perimeter of the helix floor
projection (a 2D-torus); W is the thickness of the helix,
same as 3D torus; Alpha, beta and gamma rotate the
tunnel in Y, Z and X axis, repectively; delta is the angle
spinning of the helix. For instance, if delta=720º,
the helix makes 2 spins; and H is the
height of the helix.

Because of the complexity of this task, some
feedback is provided to help the subject: a red ball
situated in the center of the helix tunnel that
represents the closest point to the cursor.

5.8. boxwalls
Boxwalls is a special SLE designed specifically for our research in March 2010. This experiment
simulates a 3-dimensional space inside a room, with floor and walls. It is recommended to set the
“solid walls” checkbox on to make them solid.

The experiment creates a 2D-tunnel in both floor and front wall with the purpose of comparing both
steering tasks and camera angles.The parameters available are: A, W, alpha (α) and beta (β). As
other experiments, A is amplitude, W is width and alpha is tunnel rotation. Beta, however, is the
camera pitch, or camera angle inclination. Beta covers β=[0,90], where β=0º is equivalent to stare at
the front wall and β=90º to stare at the floor.

78

Chapter 6. Troubleshooting

Steery is an academic software subject to further development, and you can experiment some
issues. This section tries to answer some of the most common Steery issues.

I’m moving the Phantom stylus but it doesn’t appear on the screen.
1-Move the stylus to the centre of the workspace. Sometimes cursor is not drawn at the boundaries
of the workspace.
2-Check if the device is already plugged in.
3-Check that PHANTOM Device driver (PDD) is already installed. Launch Phantom Test software
to confirm that the device is detected.

Cursor is over the start region, but its colour doesn’t change. Why
can’t I reach it?
Because the cursor is not inside the start region. In 3-dimensional tunnels, it’s difficult for the
subject to perceive the depth. In those cases it’s recommended to activate shadows checkbox, so the
cursor’s shadow helps to perceive its depth.

Tunnel size overflows the screen, so I can’t reach the start position.
The parameters selected are too big for the device workspace, so please select a smaller parameters
and start again.

For any technical troubleshooting, please check the Developer’s Manual.

79

Appendix A. Glossary of Terms

Dynamic force
Simulated force that can be induced by the haptic device during the trial.

Haptic-guidance
Simulated force by the device which improves steering task skills.

Haptics
Technology that interfaces with the user through the sense of touch.

HCI
Human-Computer interaction, the study of how people interacts with computers.

Helix
Curve in 3-dimensional space mathematically defined by {cos(t), sin(t), t}.

Iterator
Object that allows to traverse through the elements of a collection.

MT
Movement time, time that takes a trial to be crossed.

OPM
Out-of-the-Path Movement, percentage of the crossing task outside the boundaries.

SD
Standard Deviation. Mathematically, dispersion variability of a collection.

SLE
Steering Law Experiment.

Steering Law
Predictive model which studies the user’s performance in trajectory tasks.

Torus
Surface of revolution generated by a revolving circle about a coplanar axis.

Trial
Unit test of a single trajectory-based task.

80

Appendix B. Bibliography

1. SensAble Technologies, Inc. 15 Constitution Way, Woburn, MA 01801 www.sensable.com

2. Steery Developer’s Documentation. Alejandro Tatay Pascual. Ren Lab. 2010

3. Ren Laboratory. Kochi University of Technology. Kochi, Japan.

81

http://www.sensable.com/

Appendix III. Boxwalls experiment report

Boxwalls experiment report: Limitations of 2D Steering tasks in
3D environments

 Alejandro Tatay Pascual

Ren Laboratory

Kochi University of Technology, Japan

March 2010

Abstract

 Interaction techniques in 3D scenarios can
be performed with indirect devices like an arm
attached stylus. Usually these techniques have a
series of drawbacks while displayed in common
screens, such as arm fatigue or user depth
perception. In this paper we study and model
trajectory based tasks in a box-like 3D
environment with haptic-guided device
Phantom Omni. Through this experiment we
analyze the validation, applicability and
limitation of Steering Law in the third
dimension.

1 Introduction

In the field of Human-Computer Interaction (HCI)
Steering Law is a well-known predictive model which
studies the user’s performance in navigating through a
tunnel. On the other hand, Phantom Omni is a 3D
haptic pointing device constituted by a stylus attached
to a robotic arm. The manufacturer[8] provides to the
developers OpenHaptics library to develop C++
applications.

Steery project[7] is a platform to design and
launch Steering Law experiment with the Haptic
Omni device, taking advantage of the OpenHaptics
API. Thus, the designer can study the performance of
the device in different environments: 2D, 3D, straight,
curved, with haptic guidance, on textured surface, ...

We discuss the prior work related to existing
models for pointing and steering. Fitt’s Law(1) is a
formal relationship that models speed/accuracy
tradeoffs in aimed movements. It predicts the time T
needed to point to a target of width W and at distance
A is logarithmically related to the inverse of the

spatial error , that is:

 (1)

where a and b are empirically determined constants,
and c is set in the interval [0,1]. The factor

, called the index of difficulty (ID),
describes the difficulty to achieve the task: the greater
ID, the more difficult task.

In the last years, researches have introduced new
models derived from this formula. Accot and Zhai et
al.[1] refine the model for 2-dimensional tunnels,
where the difficulty of the task is not related to the

logarithm of , but to . That leads to equation 2:

 (2)

Similarly, several studies such as [2], [3], [4] and [5]
have shown that the performance of steering tasks can
be improved by providing users with tactile feedback
during movement along a path. Xing-Dong et al. [6]
propose a model for force-enhanced goal crossing task
(3),

 (3)

where the difficulty of the task is inversely
proportional to the spring stiffness S that represents
the intensity of the guiding force. is an empirically
constant determinined by the contributions of W and
T.

In conclusion, Steering Law has been commonly
applied to study 2-dimensional crossing tasks.
However, a three dimensional devices with 3 or more
Degrees Of Freedom (DOF) can be exploited to study
crossing tasks in 3D scenarios. Can the Steering Law
model predict 3D crossing tasks with the same
stability and precision as it does in 2D tasks?
Obviously, this kind of tasks have several drawbacks,

82

such as arm fatigue and lack of depth perception in a
common 2D screen. But how far can the Steering Law
be applied?

Actually, this experiment doesn’t study 3D
crossing tasks, but 2D crossing tasks in a box-like 3D
scenario. The box abstraction is a natural and very
common paradigm for any user, where the camera is
placed inside a room (box) with walls and floor. Real
3D box-like interfaces can be tested and used
currently as a desktop applications, such as Bumptop
[9] or Shock Desktop 3D[10]. In these scenarios, the
limitation of the mouse prevents the use of a third
DOF, and the user can perform crossing tasks, like
dragging objects in floor and walls, while the camera
changes between different angles. Besides, this tasks
represent natural movements for the user, such as
sweeping the floor of the room or painting the walls.
Nevertheless, swapping time between floor and walls
depends mainly in the initial camera angle relative to
floor and wall, so it is crucial to choose a value
comfortable enough to navigate through the task as
well as suitable enough for a short swapping time.

2 Experiment

This study analyzes several parameters of the
Steering Law in a 3D environment. The software
displayed a scenario similar to a room, with floor and
walls, where the cursor can move with 6 degrees of
freedom. Haptic feedback was provided by the
Phantom device to simulate the floor and walls
strength, hence the user was able to feel these
surfaces. Because of the nature of this experiment, it
has been named as boxwalls.

The participants were asked to perform crossing
tasks in the front wall and floor, both horizontal and
vertical tasks. Also the camera angle varies between
middle angles close to 45 degrees to study the
performance in each angle.

2.1 Apparatus

The experiment ran on an Intel Pentium(R) 4 CPU
3.01 GHz PC with 1 GB RAM. The software used
was Steery platform[7] running on MS Windows XP
Professional SP2. A 17" TFT LCD screen with a
1280x1024 pixel resolution displayed the image. A
Phantom OMNI device[8] was used for input,
controlled by the Steery program. The device was
positioned at 43 cm from the edge of the table, and
elevated 4 cm from the table.

2.2 Participants

Twelve volunteers participated in this study, three
females and nine males between ages of 19 to 30. One
of them was left-handed, and three of them had
previous experience with the Phantom OMNI device.

2.3 Procedure

Participants where asked to hold the stylus of the
phantom device. According to each participant’s
preferred hand, the device was placed at right or left
side of the screen. All participants were seated
comfortably and controlled the Phantom OMNI stylus
with their dominant hand. Besides, they were allowed
to lean their arm on the table while completing the
task, much like a natural arm rest with a common pen.
Before starting the experiment, participants practiced
crossing tasks in the scenario until they feel ready to
start.

Figure 1: Trial starting procedure

In every trial, a straight tunnel is drawn in one of
the walls (floor or front wall). To start the trial,
participants were required to place the cursor inside a
yellow start region attached to one side of the tunnel.
Once the cursor was placed over the start region, it
changed its color to red. Then participants clicked the
stylus button to indicate the are ready to proceed, so
the start region turned into green. For a successful
trial, the cursor had to cross the tunnel from that side
to the other. Once the trial was completed, the next
shuffled trial takes place.

A trial started as soon as the cursor enters to the
tunnel, and finished as soon as the end goal was
crossed. Trials had different heights, distances, angles
(horizontal or vertical) and camera angles.

2.4 Design

Owing to the fact that the experiment studies
several values, each participant had to perform a wide
quantity of trials. Thus, study employed a 4x4x2x4

83

within-subject factorial design. The independent
variables are the width of the goals (5, 10, 15 and
20 pixels), the amplitude of the tunnel (10, 30, 50,
70), the tunnel orientation (0 horizontal or 90
vertical), the camera angle (30, 40, 50 and 60
degrees) and the wall selection (front wall or floor).
The combination of this independent variables
resulted in 256 trials. See Fig. 2.

Figure 2: Experiment parameters design

The experiment was organized into 3 blocks. Each
of these blocks contained 256 trials, and each of this
trial represented an combination.
These 3 blocks were performed by everyone of the 12
participants. This resulted in a total of 9216 trials.

It is important to explain the combination.
Alpha values were 0 and 90 degrees, and gamma
values were floor and wall. The combination of both
generated four types of crossing tasks: Floor left-to-
right, floor back-to-front, wall left-to-right and wall
down-to-top crossing tasks, as shown in Fig. 3.

Figure 3: Crossing task types

2.5 Results

Movement Time (), (Out of the Path
Movement, or time percentage that the cursor is out of
the tunnel) and standard deviation were recorded in
every trial. To discard wrong trials, we removed
outliners with a standard deviation above 3 from the
mean. Also, trials with seconds and

 were rejected. These parameters
generated 7283 correct trials, which correspond to the
79.02% of the trials, so the error rate resulted in
20.98%, higher than expected.

Data was analyzed according to the type of move,
camera angle and learning block.

Type of move

As commented above, the combination
generates four types of crossing tasks: Floor left-to-
right, floor back-to-front, wall left-to-right and wall
down-to-top. Data was divided in this four groups
looking for the steering law relation between
Movement Time and Index of Difficulty. Using a
linear regression method we estimated the value of the
empirically determined constants and in ecuation
(2) and the correlation coefficient for every group.
The results are shown at Table 1. For instance, Fig. 4
shows the obtained results in "wall L2R" tasks.

Table 1: Crossing task type

Floor L2R Floor B2F Wall L2R Wall D2T

0.104 0.079 0.077 0.067

0.594 0.436 0.547 396

Figure 4: Front wall left-to-right

84

Camera angle

The camera angle relative to the front wall was
studied to look for a optimal balance between both
walls. Trials were executed with angles of 30, 40, 50
and 60 degrees. In each of this groups, each one of the
crossing task types was separated in order to study the
correlation coefficient and the slope . Results are
shown in Fig. 5 an Fig. 6. Both charts reveal a low
correlation between the camera angle and the
difficulty of the task. Correlation coefficient fluctuates
between 0.3< <0.66, and ID slope oscillates around
the interval [0.06,0.12]. Nevertheless, higher
correlation an more linear slope can be observed for
the Floor left-to-right task.

Figure 5: Camera angle

Figure 6: Camera angle slope

Learning block

For every participant the experiment was
segmented into 3 blocks of 256 trials each. We
analyzed the learning curve of this blocks looking for
a decrement in ID, hence the subjects will improve
their ability to navigate in this scenario. However, the

results reveals that after the first block, the task
difficulty remained in the same values. Results can be
observed in Fig. 7, which shows the correlation
coefficient and the Steering Law formula slope .

Figure 7: Learning curve and

Subjective evaluation

After the experiment, participants were asked to
answer a question paper to rate the difficulty of every
type of task from 1 (very difficult) to 5 (very easy).
Subjectively, the easiest average difficulty resulted
Floor L2R Diff=3.4. As mentioned before, this task
revealed more correlation to the steering law formula
than the other task, whose subjective difficulty
average was: floor B2F=2.9, wall L2R=2.8, wall
D2T=2.8.

3 Discussion and future work

The results of our study showed that the rejection
of wrong trials produced high error rates. Aditionally,
the steering law correlation was lower than expected
in this type of experiment, which commonly tends to
be >0.8. This can be attributed to the complexity of
the task and participant’s lack of skill. Subjects had
experience in performing 2D crossing tasks with
common devices (mouse, pencil, brush, ...) in the real
world, which has 3 dimensions. Conversely,
extrapolating these tasks into a 2D screen removes the
third dimension from the scenario, hence the user
faces the lack of depth perception. This problem is
poorly balanced with cursor shadow and cursor
perspective feedback. Therefore, here lies the main
disadvantage of this experiment: depth perception
depends on each participant’s visual-spatial
intelligence, which differs widely from one participant
to another. As a consequence, Steering Law can not be
generally applied in this scenario.

85

That being said, we analyze differences among the
four types of crossing tasks. Floor L2R task revealed a
higher correlation with the Steering Law formula than
the rest. Furthermore, participants coincided to elect
this task as the easier one. This may be due to the fact
that participants have experience in crossing tasks
over horizontal surfaces, and left-to-right movements
are more suitable to human body.

Concerning camera angle, we demonstrated that
an appropiate angle reduces the difficulty of the task.
However, this improvement is not related
proportionally with the angle. On the other hand,
camera perspective distorts the tunnel shape, hence its
dimensions A,W and the distorted Index of Difficulty
derived from them makes the Steering Law harder to
apply.

In summary, we presented a experiment to have a
closer look to the limitations of Steering Law in a 3D
scenario. We found that applying the general method
for 2D steering law experiment is not enough to
analyze 3D scenarios. This suggests that future work
can focus on the search of dependent and influencing
parameters which would define crossing tasks’
behaviour in 3D scenarios, as well as 3D crossing
tasks. We expect that this report will be useful for
future students to have a better understanding of 3D
Steering Law applications.

References
[1] Accot, J., Zhai, S.: Beyond Fitts Law: Models for

trajectory-based HCI tasks. In: ACM CHI, pp. 295-
302 (1997)

[2] Ahlström, D.: Modeling and improving selection in
cascading pull-down menus using Fitts� law, the
steering law and force fields. In: ACM CHI, pp.
61�70 (2005)

[3] Campbell, C., Zhai, S., May, K., Maglio, P.: What You
Feel Must Be What You See: Adding Tactile Feedback
to the Trackpoint. In: INTERACT, pp. 383-390 (1999)

[4] Dennerlein, J., Martin, D., Hasser, C.: Force-feedback
improves performance for steering and combined
steering-targeting tasks. In: ACM CHI, pp. 423-429
(2000)

[5] Forsyth, B., MacLean, K.: Predictive Haptic
Guidance: Intelligent User Assistance for the Control
of Dynamic Tasks. IEEE Transactions on
Visualization and Computer Graphics 12(1), 102-113
(2006)

[6] XingDong Y., Pourang I., Boulanger P., Bischof W.: A
Model for Steering with Haptic-Force Guidance

[7] Tatay Pascual, A. Steery: a Steering Law Experiment
Platform with Phantom Omni, Ren Lab Symposium,
Kochi University of Technology (2010)

[8] SensAble Technologies, Inc. 15 Constitution Way,
Woburn, MA 01801 www.sensable.com

[9] BumpTop. Bump Technologies Inc.
http://bumptop.com/

[10] Shock Desktop 3D. http://www.docs.kr/

86

http://www.docs.kr/

	Chapter 1 - Introduction
	1.1. Overview of the project
	1.2. Structure of the work
	1.3. Disposition of the document

	Chapter 2 - Literature review of Steering Law in HCI
	2.1. Background
	2.2. Steering Law
	2.3. Haptics and Steering Law

	Chapter 3 - OpenHaptics
	3.1. Introduction
	3.2. QuickHaptics
	3.3. HDAPI and HLAPI overview
	3.4. Creating Haptic Environments
	3.4.1. Force rendering
	3.4.2. Contact and Constraints

	Chapter 4 - Steery project development
	4.1. The interface development
	4.2. The SLE class
	4.3. OpenHaptics features
	4.3.1. Dynamic forces
	4.3.2. Solid Walls
	4.3.3. Surface: orientation and stiffness
	4.3.4. Surface textures
	4.3.5. Tunnel fluid

	4.4. Types of tunnel
	4.4.1. Basic tunnel
	4.4.2. Circular tunnel
	4.4.3. Curve
	4.4.4. tunnel 3D
	4.4.5. torus 3D
	4.4.6. Helix 3D
	4.4.6.1 Distance to helix solution

	4.5. Audio feedback
	4.6. Lights and shadows
	4.7. Output data

	Chapter 5 - Experiments, results and discussion
	5.1. Verification of linear steering in 3D space
	5.2. Verification of curved steering in 3D space
	5.3. Boxwalls experiment

	Chapter 6 - Conclusions and future work
	Bibliography
	[1] SensAble Technologies, Inc. 15 Constitution Way, Woburn, MA 01801 www.sensable.com
	[2] Hironori Ishiyama. Verification of linear steering with three-dimensional space (三次元空間上での直線のステアリング操作の検証) 4rd Ren Laboratory Symposium. Vol.10, 2009. pp.1
	[3] Onishi Yoshinobu. Verification of steering round on three-dimensional space (三次元空間上での円形のステアリング操作の検証) 4rd Ren Laboratory Symposium. Vol 10, 2009. pp.1
	[4] Doxygen documentation generator. Dimitri van Heesch. http://www.doxygen.or
	[5] Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology , 47, 381-391(1954)
	[6] Accot, J. and S. Zhai. Beyond Fitts' Law: Models for trajectory-based HCI tasks. ACM CHI. P 295-302.(1997)
	[7] MacKenzie, I., Buxton, W.: Extending Fitts' law to two-dimensional tasks. In: ACM CHI, pp. 219- 26 (1992)
	[8] Kattinakere, R., Grossman, T., Subramanian, S.: Modelling steering within above-the-surface inter- action layers. In: ACM CHI, pp. 317-26 (2006)
	[9] Accot, J., Zhai, S.: Refining Fitts Law models for bivariate pointing. In ACM CHI, pp. 193-200 (2003)
	[10] Ahlström, D.: Modelling and improving selection in cascading pull-down menus using Fitts' law, the steering law and force fields. In: ACM CHI, pp. 61-70 (2005)
	[11] Campbell, C., Zhai, S., May, K., Maglio, P.: What You Feel Must Be What You See: Adding Tactile Feedback to the Trackpoint. In: INTERACT, pp. 383-390 (1999)
	[12] Dennerlein, J., Martin, D., Hasser, C.: Force- feedback improves performance for steering and combined steering-targeting tasks. In: ACM CHI, pp. 423-429 (2000)
	[13] Forsyth, B., MacLean, K.: Predictive Haptic Guidance: Intelligent User Assistance for the Control of Dynamic Tasks. IEEE Transactions on Visualization and Computer Graphics 12(1), 102-113 (2006)
	[14] XingDong Y., Pourang I., Boulanger P., Bischof W.: A Model for Steering with Haptic-Force Guidance. Proceedings of the 12th IFIP TC 13 International Conference on HCI: Part II
	[15] Shneiderman, Ben (Ed.). Sparks of Innovation in human-computer interaction. Ablex Publishing Corporation. Norwood (1993) pp. 13-17
	[16] Booth, Paul. An Introduction to Human-Computer Interaction. Hove, UK Lawerence Erlbaum Associates. (1989) pp. 44-49
	[17] Buxton, Bill (2003). Human Input to Computer Systems: Theories, Techniques and Technology. Draft in the internet http://www.billbuxton.com/inputManuscript.html
	[18] OpenHaptics toolkit 3.0 Programmer's Guide. Sensable Technologies, Inc. Jan 2009
	[19] OpenHaptics toolkit 3.0 API Reference Manual. Sensable Technologies, Inc. Dec 2008
	[20] OpenGL Programming Guide, 7th edition. Chapter 7 (1996)
	[21] Shadow projection in OpenGL. A mathematical explanation of implementing shadow projection. Phaetos. 2003. http://www.devmaster.net/articles/shadowprojection
	[22] MkOpenGLJPEGImage library. Michael Kennedy, 2000. http://mkennedy.101main.com

	Appendix I. Steery generated documentation
	Appendix II. Steery User's guide
	Preface
	I. Getting started
	Chapter 1 Introduction
	 1.1. Welcome to Steery
	 1.2. Authors
	 1.3. Scope and Purpose
	 1.4. Features and Capabilities

	Chapter 2. Running Steery
	2.1. System Requirements

	 Chapter 3. First Steps
	3.1. Basic Concepts
	3.1.1 SLE
	3.1.2. Haptics
	3.1.3. Dynamic Forces
	3.1.4. Trial

	 3.2. Starting the system
	3.3. Main Window
	3.4. Stopping and the system
	3.5. Steery Quickies
	3.5.1. Perform a 2D experiment
	3.5.2. Graph output results

	II. Functionality
	Chapter 4. GUI dialogs
	4.1. Dialog Introduction
	4.2. Tunnel selection
	4.2.1. Type
	4.2.2. Parameters

	4.3. Iterations
	4.4. Dynamic Forces
	4.5. Texture Feedback
	4.6. Trial status bar
	4.7. Save data

	Chapter 5. Types of tunnel
	5.1. Trial execution
	5.2. 2D tunnel
	5.3. 2D torus
	5.4. 2D curve
	5.5. 3D tunnel
	5.6. 3D torus
	5.7. 3D helix
	5.8. boxwalls

	Chapter 6. Troubleshooting
	Appendix A. Glossary of Terms
	Appendix B. Bibliography

	Appendix III. Boxwalls experiment report

