
 

Biotechnology Bachelor’s Thesis 
 (Trabajo Fin de Grado en Biotecnología) 

Academic year 2016 - 2017 

 

 

STUDENT: Anna Bailach Adsuara 
TUTOR: Prof. Lynne Yenush  

EXTERNAL TUTOR: Dr. Joaquín Dopazo 

 

València, June 2017 

 



Pathway Activity Analysis as a new class of mechanistic biomarker to predict drug responses in drug repositioning for cancer patients|I 

 

Abstract – In recent years, progress in new technologies has resulted in the capacity to 
generate massive amounts of data, this is known as the "Omics Age". The challenge now is 

data integration and analysis. Thus, Systems Biology emerges as a solution; where, previously, 

genetic studies estimated the impact of a single gene, now all gene data can be integrated. 
This allows for more precise conclusions since diseases and drug responses are caused by 

different combinations of genetic perturbations. Furthermore, it allows for simulations that 

would otherwise be prohibitively costly in terms of time and resources. 

 

In this context, here is presented a new method for the integration of available data for each 

element of a signalling pathway in the end result of said pathway, the phenotype. This system 
acts as a mechanistic biomarker, since the difference in activation level present in a pathway, 

when comparing samples, serves to expose more information about the mechanisms which 

act in a different manner. A much more informative method than descriptive biomarkers. 
Additionally, this method allows simulations. When inputting information about a drug’s 

effects, the activity level of the pathway can be modified and an estimation of the desirability 

of the effects can be made. 

 

Cancer patients frequently respond in an undesirable manner to therapy, a great problem in 
oncology that is thought to be due to a lack of predictive biomarkers. The activity of pathways 

in cancerous cells can be used as mechanistic biomarkers. This project intends to exploit this 

new tool to reposition drugs for cancer patients. 

 

Key Words –  Computational Drug Repositioning, Mechanistic Biomarker, Pathway Activity, 

Cancer. 
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Resumen – En los últimos años, los avances en nuevas tecnologías han permitido generar 
enormes cantidades de datos, la conocida “Era de las Ómicas”. El reto ahora es la integración 

de datos y su análisis. Así, la Biología de Sistemas emerge como una solución. Dónde los 

estudios genéticos una vez estimaban el impacto de un solo gen, ahora todos los datos 

disponibles para todos los genes se pueden integrar. Esto permite llegar a conclusiones más 
precisas, puesto que las enfermedades y las respuestas a fármacos están causadas por 

distintas combinaciones de perturbaciones genéticas. Incluso mejor, permite hacer 

simulaciones que de cualquier otro modo serían increíblemente costosas en términos de 
tiempo y recursos.   

 

En este contexto, se presenta aquí un nuevo método para integrar los datos disponibles para 
cada elemento de un camino de señalización en la actividad final resultante de dicho camino, 

el fenotipo.  Este sistema sirve como un biomarcador mecanístico, puesto que el diferente nivel 

de activación que presente un camino, al comparar muestras, sirve para indicar mucha más 

información sobre los mecanismos que están funcionando de forma distinta. Un método 
mucho más informativo que los biomarcadores descriptivos. Además, el método permite 

realizar simulaciones. Al introducir información sobre los efectos de un fármaco, se puede 

modificar el nivel de actividad del camino y estimar si sus efectos son deseados.  
 

Los pacientes con cáncer a menudo no responden deseablemente a una terapia, un gran 

problema en la oncología que se piensa es debido a la falta de biomarcadores predictivos. La 

actividad de los caminos de señalización en células cancerígenas puede utilizarse como 

biomarcador mecanístico. Este proyecto pretende emplear esta nueva herramienta para el 

reposicionamiento de fármacos en pacientes con cáncer. 

 

Palabras Clave –  Reposicionamiento de fármacos computacional, Biomarcador mecanístico, 

Actividad de Pathway, Cancer. 
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Resum – En els últims anys els avanços en les noves tecnologies han permés generar enormes 
quantitats de dades, la coneguda “Era de les Òmiques”. El repte ara és la integració de dades 

i el seu análisis. Així, la Biología de Sistemes surt com una sol·lució. On els estudis genètics 

estimaven l’impacte de un sol gen, ara totes les dades disponibles per a tots els genes es poden 

integrar. Açò permet arribar a conclusions més precisses, doncs tant les enfermetats com les 
respostes a fàrmcs están causades per distintes combinacions de perturbacions genètiques. 

El que és millor, permet realitzar simulacions que de qualsevol altra manera serien 

increïblement costoses en temps i recursos.  
 

En aquest contexte, es presenta ací un nou mètod per a integrar les dades disponibles per a 

cada element d’un camí de senyalització en l’activitat final resultant d’aquest camí. Aquest 
sistema s’empra com a biomarcador mecanístic perque el diferent grau d’activació que 

presente un camí de senyalitzación representa información sobre els mecanismes que están 

funcionant de forma diferent. Un mètode molt més informatiu que els biomarcadors 

descriptius convencionals. A més, el mètode permet realitzar simulacions. A l’introduir dades 
sobre fàrmacs el nivell d’activitat del camí es modifica i es pot estimar si els efectes del fàrmac 

son desitjats.  

 
Els pacients amb càncer, solen no respondre de la manera desitjada a teràpies, en gran 

mesura per la falta de biomarcadors predictius. L’activitat dels camins de senyalitzación en 

cèlules cancerígenes es pot emprar com a biomarcador mecanístic. Aquest projecte pretén 

emprar aquest nou mètode per al reposicionament de fàrmacs en pacients amb càncer.  

 

 

Paraules Clau –  Reposicionamient de fàmacs computacional, Biomarcador mecanístic, 

Activitat de Pathway, Càncer. 
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BRCA  Breast Cancer BRCA 

CCAA     Canonical Circuit Activity Analysis 

CNA   Cancer Network Activity 

ComBat Combined Association Test for Genes 

CSV  Comma-Separated Values 

DIRPP  Drug Intervention Response Prediction with Paradigm 

DMC  DrugMap Central 

GO  Gene Ontology 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

KIRC  Kidney Renal Clear Cell Carcinoma 

KO  Knock Out 

MoA  Mode of Action 

NGS  Next Generation Sequencing 

PAA  Pathway Activity Analysis 

PheWas Phenome-Wide association 

TCGA  The Cancer Genome Atlas 
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Since genome sequencing became possible after Frederick Sanger developed the first 

sequencing method, many advancements in the field have been made, and many 

sequences from several genomes have been obtained, thanks to the advancements in 
various omics disciplines. From that moment until now, Bioinformatics has been essential 

to deal with the increasing amount of information available by developing algorithms to 

assess the relationships among large data sets in order to understand complex biological 
processes. The applications of this field go from sequence assembly and evolutionary 

biology to simulations on cell biology, also known as Systems Biology. 

 

A living cell can be viewed as a dynamic system in which a large number of different 

substances react continuously with one another. In order to understand the behaviour of a 

dynamic system with numerous interacting parts, it is usually insufficient to study the 

behaviour of each part in isolation. Instead, the behaviour must be analysed as a whole 
(Kitano, 2001). Driven by advances in biology, engineering, and informatics, Systems 

Biology emerges as the engineering field that studies biological systems. 

 

 

Traditional drug discovery has focused either on phenotypic effects or on target-based 
activities of specific molecules. But simply knowing a single target and its interactions with 

a drug is not sufficient to predict the clinical success of the drug. Instead, it is the effect 

produced by the interaction of a drug with its target within the context of a complex 

biological system that has been corrupted by pathophysiological mechanisms what best 
predicts the success (Waldman & Terzic, 2013). Systems Biology processes different types of 

data, such as genes, their mutations, their level of expression or any other desired variable 

and thus, allows for enhanced comprehension of biological problems. A comprehensive, 
systems-level approach poses an optimized strategy for drug discovery. It is important to 

take a systems-level approach, in the context of highly validated predictive models, to 

maximize the discovery of effective therapeutics (Waldman & Terzic, 2013).  But not only is 
this integration essential to success in drug discovery, but it is also critical to repurpose 

established agents for new therapeutic indications (Waldman & Terzic, 2013).  
 

Developing a new drug from original idea to launch of a finished product is a complex 

process which can take 12–15 years and cost an excess of $1 billion (Hughes, Rees, 

Kalindjian, & Philpott, 2011). De novo drug discovery has been experiencing rising costs 

(Booth & Zemmel, 2004) while the number of new drugs approved has plateaued (Li et al., 
2016). Drug repositioning concerns the detection of new clinical indications for drugs 

already in the market, which decreases the length of the process tenfold (Ashburn & Thor, 

2004). With the accumulation of large volumes of omics data, bioinformatics plays an 
important role in the discovery of new indications for drugs, since it allows for new 

repositioning strategies and approaches (Li et al., 2016).  Given the large number of 
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druggable protein targets and existing drugs, it is infeasible to set up assays to test every 

interaction in the laboratory (Li & Jones, 2012).  
 

 
The first studies on drug repositioning focused on exploring common characteristics among 

drugs. One of the first aspects considered was chemical structure. It is assumed that 

chemical structures often affect proteins in similar ways, therefore similar drugs in their 
structure share a similar mode of action (MoA). But the rapid advancements in genomics 

have led to new sources of information to be considered:  genetic data, transcriptomic data, 

and phenotype data. Genetic mutations can serve as biomarkers for drug responses and 

transcriptional data allows comparison of gene expression profiles to make drug-disease 
pairs that can be used for drug repositioning purposes (Li et al., 2016). On the other hand, 

Phenome-Wide association studies (PheWas) detect associations between genetic markers 

and human diseases. Because the phenome reflects information on clinical side effects 
(Rastegar-Mojarad, Ye, Kolesar, Hebbring, & Lin, 2015), based on the assumption that similar 

side-effects may share similar therapeutic properties, drugs can be repositioned using this 

approach.   
 

Computational drug repositioning studies more and more aim to integrate information 

from all the above-mentioned categories, because strategies based on a sole category are 

incapable of capturing associations not manifested at the assessed level (Gottlieb, Stein, 
Ruppin, & Sharan, 2014).  For instance, the lack of resolution of structural data for targets 

makes drug-target predictions by chemical structure not very accurate (Li et al., 2016). To 

develop drug repositioning models, different computational approaches can be used. The 

most well-known being text mining, machine learning, and network analysis.  

 

Semantic Inference/Text Mining 
The available information from literature and databases for any disease, drug or protein is 

huge. Biological ontology makes it possible for the comparison and analysis of biological 

information from different sources. Text-mining approaches automatically retrieve relevant 

information on the disease, proteins and cell processes. From the retrieved knowledge, new 
knowledge can be inferred (Tari & Patel, 2014).  By finding relevant knowledge through text 

mining approaches it is possible to detect novel indications for existing drugs (Li et al., 2016). 

For instance, DrugMap Central (DMC), an online tool, enables the users to integrate, query, 
visualize, interrogate, and download multi-level data of known drugs or compounds quickly 

for drug repositioning studies all within one system (Fu et al., 2013). 

 
Machine learning 

Machine learning is the subfield of computer science that confers computers the ability to 

learn without being explicitly programmed for a task, so that when presented with new data 

the model is updated. For instance, the DDR unified computational framework constructs 
drug similarity and disease similarity matrixes based on genome, phenome and chemical 

structure, weighing information sources based on their contributions to the prediction, to 
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finally solve the drug–disease network analysis as an optimization problem (Zhang, Wang, 

& Hu, 2014).  
 

Network analysis 

Molecular interactions in the biological systems can be modelled, such as protein 
interactions, drug-target interactions or signalling networks. These networks have proven 

very useful in the identification of therapeutic targets or characteristics of drug targets, thus 

providing new opportunities for drug discovery or repositioning (Li et al., 2016). For example, 
the Cancer Network Activity (CNA) developed by Serra-Musach et al. (Serra-Musach et al., 

2016) uses the human interactome network with gene expression measurements from 

cancer cell lines whose sensitivity to cancer drugs is determined. Then, it assigns a score to 

each cell line and these scores are evaluated for their correlations with types of drugs and 
therapies (Serra-Musach et al., 2016).  The main limitation of this approach is that it is based 

on assays performed with drugs given to cancer cell lines, it does not use data from cancer 

patients. Even if the simulation is performed on the human interactome, it is not as realistic 
a model as it could, especially for cancer, because of the huge inter-patient and intra-

tumour heterogeneity that is characteristic of the disease. The Same problem is found in 

the Drug Intervention Response Prediction with Paradigm (DIRPP) developed by Brubaker 
et al. which assesses the response of cell lines to a drug intervention from molecular data to 

predict drug-resistant cancer cell lines and pathway mechanisms of resistance (Brubaker et 

al., 2014).  

 
The problem with the aforementioned approaches is that experimental variation from the 

different sources of data, for instance across batches for gene expression experiments, 

causes ‘noise’. In addition to this, those strategies that assess several variables become 

increasingly difficult to employ as the number of variables increases, leading to enormous 

matrixes and complex algorithms to deal with them. Thus, the network-based analysis 

seems to be the best approach.  
 

 

 

A biomarker is a characteristic that can be objectively measured as an indicator of normal 
or pathologic biological processes, or as an indicator of response to therapy. The concept 

of an actionable biomarker is based on the expectation that results of biomarker testing can 

be used to guide clinical management of disease (Robinson, Lindstrom, Cheung, & Sokolove, 

2013).  
 

Some biomarkers are products of the disease itself or of disease-induced damage. These 

descriptive biomarkers reflect the state of a disease but are not directly involved in disease 
pathogenesis. Since such biomarkers are by-products rather than players in the disease, 

they are less powerful in obtaining reliable pharmacodynamic, diagnostic or prognostic 

information (Robinson & Mao, 2016).  
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On the other hand, there are biomarkers which are rooted in the biologic mechanisms of 

disease, the mechanistic biomarkers. These biomarkers have the greatest potential for 
guiding clinical decision making and are superior to descriptive biomarkers for several 

reasons (Robinson, Lindstrom, Cheung, & Sokolove, 2013): 

1. Since mechanistic biomarkers are involved in the pathogenesis of a disease, they are 

more likely to be specific to that disease and thus proves more powerful in 

diagnosing the disease. 
2. Similarly, can be used to classify the subtype of the disease. 

3. Because it is rooted in the mechanisms, it is also a better pharmacodynamic 

biomarker, better informing of the efficacy of a treatment, rather than simply 
improving the symptoms. 

4. Similarly, in pharmacodynamic studies, provides information on the mechanism 

that is working or failing in a therapy, allowing for a more rational design of a therapy. 

5. Ideal for personalized medicine. Personalized medicine requires predictive data 
about the disease and its sensitivity to treatment.  

 

Mechanistic biomarkers can take the form of several different molecules or cell types, which 
may all contribute to the pathogenesis of a disease: genes, cytokines, antibodies, immune 

cells or even cell signalling. From these, the most promising biomarker seems to be cell 

signalling. To study a disease first one needs to consider its phenotype is multigenic. Single 
gene biomarkers frequently lack any mechanistic link to the fundamental processes 

responsible for disease progression or therapeutic response. Such processes are better 

understood as pathological alterations in the normal operation of cells caused by different 

combinations of gene perturbations (mutations or gene expression changes) (Hidalgo et al., 

2017).  

 

 

 
A major challenge in anticancer drug development is the inability to identify cancers that 

are most likely to respond to a treatment, which exposes patients to the risks of ineffective 

treatments (Fang, Mehran, Heymach, & Swisher, 2015). 
 

Signalling pathways control cell fate decisions that ultimately determine the behavior of 

cells. These cascades trigger particular effects after the transmission of a signal through all 
the elements that conform the cascade, which are all functional proteins. Therefore, 

pathological alterations are the result of different combinations of gene perturbations and 

the consequent alteration of the normal communication among proteins in the signalling 

cascades. Particularly in cancer, the alteration of signalling pathways plays a key role in its 
origin and progression. This was proven in the model developed by Fey et al. (Fey et al., 

2015) in which they modelled the JNK pathway in neuroblastoma cells revealing its central 

role in the disease. In addition to this, they successfully employed it as a biomarker to 
stratify neuroblastoma patients across different individual molecular backgrounds and 
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showed that the activity of the pathway better correlated with patients’ mortality than the 

activity of the conventional biomarker gene MICN (Fey et al., 2015).  
 

Signalling pathways are functional modules in the cell which provide a more informative 

insight of cellular function than conventional methods because their activity reflects how 
the information has been modified by all its components. It is the final level of activity of a 

pathway what will command a cell to carry out a certain function. Therefore, the dynamics 

of pathway activity may contain relevant information on prognosis different from that 
contained in the static nature of other types of biomarkers, as shown above.   

 

One of the great advantages of working from a network approach using signalling pathways 

is that the activity of each element in a network can be modified depending on the variables 
considered (such as mutations or level of expression of a gene), but the essential 

information comes from the output element, overcoming the problem of the computational 

strategies that lead to complex algorithms as the number of variables increases. These 
variables do not need to be weighed, since the final activity of the pathway is a result of the 

active proteins in the pathway. Thus, Pathway Activity Analysis (PAA) emerges as an 

alternative way of defining a new class of mechanistic biomarkers, whose activity is related 
to the molecular mechanisms that account for disease progression or drug response 

(Hidalgo et al., 2017).  

 

 

The Canonical Circuit Activity Analysis (CCAA) strategy developed by Hidalgo et al. proved 

to be a very powerful computational network-based approach to find mechanistic 

biomarkers based on PAA. In the paper, it demonstrated a high diagnostic value and related 

to disease outcomes in an extensive analysis involving 5640 patients from 12 different 

cancer types. One of the most important findings was that the expression profiles from 
different cancers resulted in the activation of the same final functions in the cell, which also 

further supported the notion that signalling pathways determine the cell fate of cancer cells, 

validating them as useful mechanistic biomarkers (Hidalgo et al., 2017).  In this case, the 

proof of concept was done in the context of cancer, but it could be used to model and study 
any other disease. In fact, two user-friendly websites are available for free for this purpose.  

 

The first one is the web tool hiPathia, for the interpretation of the consequences of the 
combined changes of gene expression levels and/or genomic mutations in the context of 

signalling pathways. It transforms uninformative gene expression and/or genomic variation 

data into signalling circuit activities, which carry information on the different cell 
functionalities triggered by them. Such signalling activities not only account for the 

underlying molecular mechanisms of diseases or the mode of action of drugs but they can 

also be used as mechanistic features for the prediction of complex phenotypes 

(http://hipathia.babelomics.org). 
 

The second one is PathAct (http://pathact.babelomics.org), which enables the study of the 

consequences that Knockouts (KOs) or over-expressions of genes can have over signalling 

http://hipathia.babelomics.org/
http://pathact.babelomics.org/
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pathways. PathAct implements robust models of signalling pathways within an advanced 

graphical interface that provide a unique interactive working environment in which 
actionable genes, that could become potential drug targets, can be easily assayed alone or 

in combinations. Also, the effect of drugs with known targets over the different signalling 

pathways can be studied. Since signals trigger functions across the pathways, the direct and 
long-distance functional consequences of interventions over genes can be 

straightforwardly revealed through this actionable pathway scenario (Salavert et al., 2016). 

 
When compared to other methods, CCAA performed better. It is highly specific, meaning it 

has a very low false positive rate, and has a high sensitivity, high true positive rate. In 

addition, this method handles loops in the signal transmission, which better represents the 

functioning of signalling pathways in the cell. But the most important aspect of the method 
is that the association of the activity of a circuit to mortality of a patient was higher than the 

individual association of any of the genes that formed the circuit (Hidalgo et al., 2017).  

 

 

The aim of this work is to employ the CCAA using PAA as a mechanistic biomarker for drug 
repositioning for cancer patients. In order to do so, drug responses are modelled at a 

functional level using the same data which validated the method in the original paper 

(Hidalgo et al., 2017) from Kidney Renal Clear Cell Carcinoma (KIRC) and Breast Cancer BRCA  

patients (BRCA).  The idea is to see how cellular functions in cancer cells can be reversed to 
a normal profile upon applying a drug.  

 

The program requires the functional annotation of the final proteins of each pathway. The 

involvement of several cell functionalities in cancer pathogenesis was validated in the study 

(Hidalgo et al., 2017).  The key words given to the program should therefore reflect relevant 

functions in the context of cancer. Annotation of drugs is also required because there is no 
data on drug-target activity shift as a result of administering the drug, so all drugs need to 

be classified either as having an activating or inhibitory effect or removed from the assay. A 

matrix is created containing the information on the drug’s real name, code, effect, targets 

and a translated target ID for the program to identify which element to modify.  
 

The program is expanded to estimate how signalling pathways are affected by a drug and 

uses functional annotations to transform values of applicable signalling pathways to values 
for each annotated function. Statistical analysis is then used to assess the difference in 

function value for normal and tumour data, and the effect drugs have on said function value. 

The program has can be used in two possible settings: either as a personalized tool or for 
massive screening of drugs for repositioning.  
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The aim of the project is to develop a program that employs the CCAA method using PAA as 

mechanistic biomarkers for drug repositioning purposes. To achieve this, several goals need 
to be accomplished first. 

 

1. Annotate relevant functions in cancer to improve the program’s predictions. 
2. Improve the algorithm that will transform the values obtained from signalling 

pathways into values of functions relevant in cancer. 

3. Categorize drugs into activating and inhibiting depending on their characteristics 

and targets to provide the program with information.  
4. Program the adequate formatting of drug data. 

5. Program the algorithm that modifies the patients’ data upon administration of a 

drug. 
6. Program the statistical analysis to have a complete tool usable in two settings, either 

for a personalized approach and the other one at cohort level.  

7. Validate the method as a tool for drug repositioning purposes: find potential drugs 
for KIRC and BRCA cancers. 
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Pathway Activity Analysis (PAA) refers to the analysis of the collective contribution of genes 

to the final signal transmission across signalling pathways. Individual contributions are 

deduced from gene expression values, mutations or any other variable which might 
contribute to a change on its activity. The method is written in the open source R 

programming language (www.R-project.org) and available in the GitHub repository for 

download (www.github.com/babelomics/hipathia). 
 

 

The method requires a description of the relationship among the proteins that form a 

pathway. The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database resource for 

understanding high-level functions and utilities of the biological system, such as the cell, 

the organism and the ecosystem, from molecular-level information, specially large-scale 
molecular datasets generated by high-throughput experimental technologies (Kanehisa, 

Sato, Kawashima, Furumichi, & Tanabe, 2016). From KEGG, sixty pathways related to 

signalling are selected to model the framework.  
 

The library igraph is freely available in a GitHub repository, and is the basis on which the 

original program is developed (https://github.com/igraph/). It is a R package that provides 
routines for simple graphs and network analysis. It can handle large graphs very well and 

provides functions for generating random and regular graphs, graph visualization, 

centrality methods and much more. With this package, KEGG networks are built in R.   

 

 

In order to transmit a signal along a pathway a protein needs to be present and functional, 
and to be activated by another protein. The activity of each protein is quantified as a 

normalized value between 0 and 1. These values are inferred from proteomic data, 

phosphoproteomic data, transcriptomic data, or any other data that can be interpreted as 
level of activity of a protein. In this case the amount of mRNA corresponding to a protein is 

used as presence of a protein. However, the intensity of the signal transmitted does not 

correspond to the level of activity of the protein itself, but is modulated by the level of the 

signal that arrives to it. Ultimately the level of the signal transmitted across the pathway 

corresponds to the final value transmitted by the last protein of the pathway, called the 

effector protein. These are the proteins that ultimately trigger the cell functions activated 

by the pathway (Hidalgo et al., 2017).  
 

In a pathway, an incoming signal initiates the signalling cascade and the signal is 

transmitted along the pathway until it reaches the final effector proteins, triggering the cell 
to perform a function. However, many different incoming signals may reach the same 

effector. Those sub-pathways that transmit an input signal from a unique receptor to a 

http://www.r-project.org/
http://www.github.com/babelomics/hipathia
https://github.com/igraph/
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unique effector node are called circuits. The effector circuits then are the combination of all 

those circuits that trigger the same output (activating the same effector), which will perform 
a function in a cell. Therefore, the triggered function is the combination of the resulting 

signals from all effectors that trigger said function (See Figure 1). 

 

FIGURE 1. Relationship among circuits, effector circuits and functions (Hidalgo et al., 2017). Left: signalling 

circuits, the sub-pathways that transmit signals from a unique receptor to a unique effector node. Centre: 

effector circuits that represent the combined activity of all the signals that converge into a unique effector 

node. Right: functional activity that represents the combined effect of the signal received by all the effectors 

that trigger a particular cell function. 

 
To compute the signal arriving to the effector proteins, the first step is to calculate the node 

activity of each node in the network. The node composition of the network is provided by 

KEGG. A node can be plain (with one or more proteins) or complex (as in a protein complex).  

For plain nodes, the value is obtained as the percentile 90 of the values of the proteins 
contained in it. For complex nodes, the limiting compound of the complex is taken as the 

node activity value. Then, the circuit is initialized with a standard input signal of one, and 

the propagation of the signal across the pathway is calculated with the following iterative 
algorithm (Hidalgo et al., 2017): 

 

Sn = Vn · [1 - ∏ (1 - Sa)Sa ϵ A ] · ∏ (1 - Si)Si ϵ I           (1) 

Where: 

Sn is the signal intensity for the current node n and V its normalized value. 

A is the total number of activation signals (Sa) arriving to the current node. 

I is the total number of inhibitory signals (Si) arriving to the node. 
 

On Figure 2 there is a schematic representation on how the node values are modified 

depending on the signals received and the final signal it transmits to the next node. To 

handle with the loops that are commonly found in signalling pathways, whenever a signal 
arrives to a node, its value is updated only if the difference between the new value and the 



Pathway Activity Analysis as a new class of mechanistic biomarker to predict drug responses in drug repositioning for cancer patients |10 

previous value is greater than a threshold (Hidalgo et al., 2017). The overall process is 

presented in Figure 3. 

 

FIGURE 2. Representation of the modification of nodes during propagation of the signal (Hidalgo et al., 

2017). The three possibilities are represented. Left: combined activity of two activators. Centre: combined 

activity of an activator and an inhibitor. Right: combined activity of two inhibitors. 

 

 
FIGURE 3. Representation of signal propagation (Hidalgo et al., 2017). On top, the normalized values of 

gene expression are assigned to the corresponding nodes in the circuits. At the bottom, the signal is 

propagated and the node values are modified. 

 

Many protein effectors can contribute to a cellular function. Therefore, an algorithm is 
required to estimate the overall contribution each effector and signalling pathways has on 

said function. The original method used an algorithm similar to the one used to estimate 

the contributions of all signals on a node. However, it seemed to saturate the activities of 
functions too much. An improved algorithm needs to be developed to solve this (Annex 3, 

Script 1).  

 

 

The program requires a file with the final effector proteins from the pathways and their 
functions in order to perform the functional analysis. Since the context is cancer, the 

functional annotation will be based on those pathways found relevant for the disease, 

based on the previous work by Hidalgo et al.  and KEGG’s human pathways on cancer. For 
instance, cell  proliferation is a cancer hallmark and therefore pathways such as cell cycle 

progression need to be annotated. These annotations are done manually based on 

bibliographic research and information from KEGG (Kanehisa, Sato, Kawashima, Furumichi, 



Pathway Activity Analysis as a new class of mechanistic biomarker to predict drug responses in drug repositioning for cancer patients |11 

& Tanabe, 2016) and UniProt, a high-quality and freely accessible resource for protein 

sequence and functional information (The UniProt Consortium, 2017). The 17 annotated 
pathways are listed in Table 1 and the complete functional annotation is found on Annex 1, 

where the pathways are organized in separate tables and each table contains information 

on the subpathway or condition and their final protein effectors, an explanation on their 
functions and the Key Words that represent those functions. 

 
TABLE 1. Annotated pathways relevant in cancer. 
 

KEGG Identifier KEGG Pathways 

hsa04010 MAPK Signalling Pathway 

has04115 p53 Signalling Pathway 

hsa04310 Wnt Signalling Pathway 

hsa04350 TGF-β Signalling Pathway 

hsa04510 Focal Adhesion Pathway 

hsa04520 Adherence Junction Pathway 

hsa04530 Tight Junction Pathway 

hsa04150 mTOR Signalling Pathway 

hsa04152 AMPK Signalling Pathway 

hsa04151 PI3K-AKT Signalling Pathway 

hsa03320 PPAR Signalling Pathway 

hsa04370 VEGF Signalling Pathway 

hsa04630 Jak-STAT Signalling Pathway 

hsa04024 cAMP Signalling Pathway 

hsa04340 Hedgehog Signalling Pathway 

hsa04110 Cell Cycle 

hsa04210 Apoptosis 

 

The most useful resources for computational methods for drug studies are datasets of 

known interactions (Li & Jones, 2012). In this case, DrugBank (Wishart, 2006) was used both 

as the source of drugs and for their annotation, along with bibliographic information. Many 
drugs have known effects and interactions, but often the mechanism behind them is not 

clear. Also, some of their effects are not descriptive of the impact they would have in a 

signalling context, meaning it is not clear whether they would contribute to an activating or 

inhibitory effect on a node in the signalling network. For these reasons, many terms need to 
be manually curated. In the Annex 2, the terms used by DrugBank are explained and 

classified into “Activating” or “Inhibiting” and some particular cases are removed.  The 

compiled data from DrugBank (Unpublished data from study, Untitled work) is processed 
with the Script 2 on Annex 3 to remove drugs which lack information on their effect and to 

format them into a manageable data frame. This data frame is then further expanded with 

the annotated activating and inhibiting actions each drug has on their targets.  
 

To perform the analysis, expression values from KIRC and BRCA cancers are employed. The 

Cancer Genome Atlas (TCGA) is a project to catalogue genetic data on cancer, using high-

throughput genome analysis techniques, and has a free repository to download data 
(https://tcga-data.nci.nih.gov/tcga/). The expression data from KIRC and BRCA cancers 

contained RNA-seq samples sequenced from tumour biopsy and samples from normal 

adjacent tissue. KIRC data has a total of 526 primary tumours and 72 of normal adjacent 

https://tcga-data.nci.nih.gov/tcga/
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tissue, while BRCA has 1057 primary tumours and 113 normal adjacent tissue. RNA-seq 

consists on Next-Generation Sequencing (NGS) of the transcripts found in a sample, so that 
expression values can be obtained by quantifying these transcripts. One of the advantages 

of having the patients’ expression profile in RNA-seq is that the batch effect caused by the 

different origin of each data can be solved applying the Combined Association Test for 
Genes (ComBat) method (Johnson, Li, & Rabinovic, 2007). 

 

To model the impact a drug has on the altered signalling pathways from tumours, the 
expression value of the drug’s target is multiplied by 0.001 for an inhibitory drug or modified 

to 0.99 in the case of an activating drug (See Annex 3, Script 3). With these parameters, the 

potential consequences of a highly effective drug can be simulated, so that conclusions can 

be drawn on the impact it could have on the altered functions of a tumour after processing 
of the signal.  

 

  

 

All steps need to be brought together in a coherent and structured way, and precise 

instructions are given to the program to perform the desired analysis (Annex 3, Script 4). 

  
The program requires as input: the experimental data and design (expression values and 

conditions), a data frame with the drug information (generated running Annex 3, Script 2), 

the annotation file for functions and a file containing the desired drugs to test. The output 
is a data frame containing the function values for each analyzed individual/sample. 

 

With the experimental data, the program creates a data frame containing all 

samples/individuals and their expression values for each gene. Then this data frame is 
extended by adding the modified Tumour data for each drug present in the given file, as 

described in the previous section (Annex 3, Scripts 3 and 4). The example on Table 2 

represents a data matrix generated from expression values for genes A – E for two 
individuals and each condition in an assay with two drugs.  

 
TABLE 2. Example for an Expression Data Frame. Columns are conditions and individuals and rows are genes. 
 

 Normal Normal Tumour Tumour Drug 1 Drug 1 Drug 2 Drug 2 

 1 2 1 2 1 2 1 2 

Gene A         

Gene B         

Gene C         

Gene D         

Gene E         
 
Applying the algorithm described in Equation 1, a data frame is generated like in Table 3. In 

the example, the original expression data contributes to the Signalling Pathways A – C. 
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TABLE 3. Example for Signalling Pathways Data Frame. Columns are conditions and individuals and rows 

are signalling pathways. 
 

 Normal Normal Tumour Tumour Drug 1 Drug 1 Drug 2 Drug 2 

 1 2 1 2 1 2 1 2 

Pathway A         

Pathway B         

Pathway C         

 

Finally, with the annotation file and the pathway values are used to estimate the values for 

each function performed by these pathways (See Annex 3, Scripts 1 and 4). In the example 
on Table 4, the pathways have contributed to Functions A and B.  

TABLE 4. Example for a Functions Data Frame. Columns are conditions and individuals and rows are 

signalling pathways. 

 Normal Normal Tumour Tumour Drug 1 Drug 1 Drug 2 Drug 2 

 1 2 1 2 1 2 1 2 

Function A         

Function B         

To estimate the effect each drug has on the tumour profile, a Mann-Whitney-Wilcoxon Test 

is performed. It is a non-parametric test that can be used to determine whether two 

dependent samples were selected from populations having the same distribution. This test 

is usually used when a normal distribution cannot be assumed, it would be the equivalent 

of a t-Test in a normal distribution. The null hypothesis for this test is that the populations 
are identical. With a cut-off value of 0.05, when comparing two distributions, if the p-value 

is lower than 0.05, then the distributions are significantly different (Kruschke, 2011).  

 
With this test, Normal and Tumour distributions can be compared and those functions 

which are significantly different in a Tumour condition are then compared to the Drug 

distributions.  R has a function called wilcox.test is implemented in the code to perform the 

analysis (Annex 3, Script 5).  

To see the resulting distributions the plotly library for R is used (https://plot.ly). Plotly 

provides online graphing, analytics, and statistics tools for individuals and collaboration, as 
well as scientific graphing libraries for Python, R, MATLAB, Perl, Julia, Arduino, and REST. 

The free version allows for customizing graphs working in R but also online.  

 

https://plot.ly/
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One of the purposes of this project was to analyse the effect on cell functions and not on the 

signaling pathways. Therefore, a file containing the functions performed by all the effector 

proteins of all pathways is required. Since the disease being studied is cancer, a manual 
annotation of the effectors of relevant pathways for the disease was required to have 

functions that are descriptive or relevant to the disease, based on literature. The written 

annotations can be found on Annex 1 and the final annotation file was named 
annot_manual_hsa.annot (Annex 3, Script 4) and saved into the annotations folder of the 

original method. The format of the annotation file is a tab-separated file with the first 

column containing the gene names in upper case and the second column containing the 

key words chosen to describe their functions. This file needs to be provided for the 

functional analysis as seen on Annex 3, Script 4. 

 

 

In the functional analysis, when using the original algorithm, it seemed to saturate the 
activities of functions. The new algorithm sets the level of activity of a function as the 

averaged values of all pathways that contribute to said function (Annex 3, Script 1). This 

approach seems to solve the problem because lower values now decrease the overall final 

activity instead of adding to it. However, this is a compromise because in a cell not all 
pathways are equally important in the triggering of a function, some might be more relevant 

than others.  

 
A way to try to model this, that has not been assessed here, would be to set the value of the 

most active pathway as the value for the function. The logic behind this is that it can be 

assumed that a pathway that leads to a higher function value will have either highly 
activated effectors or more effectors contributing to the function than the other pathways, 

so that the pathway could be considered as the most important for the function.   

 

 

For the drug analysis, a repository of drugs with the information is formatted to contain the 

information the program needs. The original Drug List, was a DrugList.RData file of 23.9Mb 

containing 8054 drug candidates downloaded from DrugBank (Unpublished data from 

study, Untitled Work). In this list, many drugs lacked targets or pharmacological effect. 
Many others didn’t, but the label provided by DrugBank for their pharmacological action 

was not informative of their effects on targets and for some others it was unknown. For this 

reason, Drugs were annotated (Annex 2) based on the descriptions from DrugBank (Wishart, 

2006) and other literature and classified as activators on inhibitors, or were removed.  
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The resulting 4316 drug candidates were organized into a data frame with their name, target 

and effect (Annex 3, Script 2), providing the program with quite an extensive repository.  
 

 

The developed program uses the initial experimental design and expression values and 

expands them with the new conditions modelled. These conditions are the drugs to be 
assayed.  

 

The function drug.exp is designed to modify expression values taking as input the tumours’ 

expression values and a drug (Annex 3, Script 3). Then, it looks for the drug targets in the 
compiled drug data matrix and for its effects on those targets. The expression values for 

those targets in the Tumour condition field of the expression values matrix are modified to 

0.99 if the drug is an activator or multiplied by 0.001 if it is an inhibitor. The function returns 
the modified data for the drug.  

 

The function drug.des is designed to modify the experimental design taking as input the 
tumour conditions from the experimental design and a drug (Annex 3, Script3). It appends 

the drug code to the samples code and sets it as a new condition.  

 

To run the program, first the experimental design and expression values are loaded together 
with the drug data and the file containing the drugs to be assessed. The file named 

drugs_to_test.txt contains the name of one drug per line. Since the genes are written with a 

unique code, the named targets in the drug matrix need to be changed to the same code, so 

that the program can recognize them. All those targets that are not present in the 

experimental design are removed and then each drug is given a unique code. For each drug 

to be assayed, the original tumour matrix and design are given to the drug.exp and drug.des 
functions, respectively, and the returned matrixes containing the modified information are 

appended to the original matrixes (Annex 3, Script 4).  

 

The process is exemplified in Figure 4, which depicts how the DrugA activates its target 
Gene1, whose code is G1, and therefore modifies the expression value for the tumour 

condition to 0.99, to finally add it to the original data frame, where it goes by its code name 

D1. In the experimental design data frame, the drug will appear as the new D1_Tumour_1, 
describing it has modified the values for Tumour_1 as the new D1 condition.  

 
 

 
 

FIGURE 4. Result of applying an activating drug. 
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After expanding and modifying the experimental data with the drugs to be assayed, the 
signaling pathways values are calculated and then transformed into cellular function values 

(Annex 3, Script 4). For analysing the results, the wilcox.function is developed to apply the 

wilcox test to the conditions assayed and the drug.type.per.function is developed to classify 

the drugs into four descriptive categories: Optimum, Underdose, Overdose, Undesired 
(Annex3, Script 5).  

 

In the first step, the Normal and Tumour conditions are compared and a small matrix called 
NT is created, which contains the p-values resulting from the wilcox test per function, and a 

column describing its significance. When the p-value is smaller than the cut-off value of 0.05, 

then the distributions are considered significantly different and Y will appear in the 

significance column, meaning Yes. Otherwise, it will display N for No (See Table 5). 

 
TABLE 5. Result of a wilcox test for the Tumour – Normal comparison of three functions and significance. 
 

 pvalueNT SignificanceNT 

Function A 0.002 Y 

Function B 0.3 N 

Function C 0.001 Y 

 

Then, the rest of Conditions (drugs) are analyzed. The same process done for the Normal 

and Tumour conditions is repeated for both the Tumour and Drug comparison and the 

Normal and Drug comparison. For each drug, a Resume matrix is then created containing 

the p-values and significance for all functions and comparisons (See Table 6).  

 
TABLE 6. Result of a wilcox test for all comparisons on three functions and significance. 
 

 
Pvalue 

NT 

Significance 

NT 

Pvalue 

DT 

Significance 

DT 

Pvalue 

DN 

Significance 

DN 

FunctionA 0.002 Y 0.001 Y 0.08 N 

FunctionB 0.3 N 0.4 N 0.07 N 

FunctionC 0.001 Y 0.003 Y 0.01 Y 

 

From this table the significantly altered functions can be detected. All those functions which 
are significantly different between Normal and Tumour, but also between Tumour and Drug, 

are considered altered by the Drug. A Significant table is then written containing only those 

functions. Using the example on Table 6, the Significant table would contain Function A and 
Function C. With this information now the effect of the drug can be classified using the 

drug.type.per.function, which uses the level of significance and the means for all 

distributions. The results are then written in the DrugType table: 

 

 Optimum: the distributions for Drug and Normal conditions are not significantly 

different. This means the drug has reversed the Tumour condition into a Normal 
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condition. For instance, from Table 6 it can be deduced the drug has an Optimum 

effect on Function A. 
 

 Underdose: the distributions for Drug and Normal conditions are significantly 

different but the Drug distribution has shifted from Tumour towards Normal. The 
impact of the Drug is positive, however it is not powerful enough. It could be argued 

an optimum effect could be attained by changing the dosage. 

 

 Overdose: the distributions for Drug and Normal conditions are significantly 
different but the Drug distribution has shifted from the Tumour towards Normal and 

beyond. The impact of the Drug is positive, however it is too powerful. It could be 

argued an optimum effect could be attained by changing the dosage. 

 

 Undesired: the distributions for Drug and Normal conditions are significantly 

different but the Drug distribution has shifted from Normal towards Tumour and 

beyond. This means the drug has caused a function to be more tumorous than it is., 
therefore the drug should be discarded as a repurposing candidate. 

 

The descriptive tables for a drug are written in a new directory created for each drug in a 

Comma-Separated Values (CSV) format (readable by Excel). Finally, the All_Drugs_Resume 
table is written, resuming the information for all functions and drugs, also in a CSV format. 

  

To see the Normal and Tumour distributions, plotly is used to plot a boxplot for each 
function using the Script 5 on Annex 3. Also, to further visualize the effect of a Drug, its 

functions can be plotted and, since plotly allows for modification of the transparency of 

each box, overlaps and shifts in the distribution can be observed for all functions at once. 
 

 

 

This method has been developed to be used in the context of cancer. To validate it, 
expression values from KIRC and BRCA cancer patients were used. The idea was to perform 

an assay with most of the drugs contained in the repository created. However, for such an 

assay a powerful server is required and due to some constrains at the laboratory this was 

not possible.  
 

Instead, the drug Goserelin was applied to KIRC’s data. Goserelin is a synthetic hormone 

that stops the production of the hormone testosterone in men, which may stimulate the 
growth of cancer cells. In women, Goserelin decreases the production of the hormone 

estradiol (which may stimulate the growth of cancer cells) to levels similar to a 

postmenopausal state. When the medication is stopped, hormone levels return to normal 
(Wishart, 2006). This drug is therefore used to treat prostate cancer in men and breast 

cancer in women. Using this drug on BRCA data should provide a good validation of the 

method, and if used in KIRC with good results, it would also become good candidate for 

repurposing.  
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However, when the method was used with BRCA data, many functions showed too much 

variation. In Figure 5, it can be seen how the box plots for some functions are too wide, 
specially in the Tumour condition (in blue) where some values have a range of 

approximately 0.2. There is too much variability.  

 
The reason for this might be these data needed to be classified first into three subtypes of 

BRCA . It has been seen that there are three main types of BRCA Cancers (Tonin et al., 1998), 

which therefore have differential expression profiles. When assayed together, they 
contribute to the high variability observed. Having so much variability when trying to model 

the effect of Goserelin, limited the fiability of the results. Also, barely two functions were 

outputted in the Resume file. 

 
 

FIGURE 5. BRCA Boxplot for Normal and Tumour conditions. Red: Normal. Blue: Tumor. 

 
However, when the method was used with KIRC data, the picture changed. The variability 

in these data is not so dramatic. The method worked beautifully. The new algorithm to 

estimate the values of the functions seemed to have solved the saturation of the signal, 
which can also be seen in the Figure 5 of BRCA. Each function has a different value of activity, 

and they do not fall too high on the 0 – 1 scale used to evaluate them (Figure 6. Also, drug 

modifications on the original data were correctly introduced, proving the Drug Repository 

is well designed. Together with the functional annotation, the modelling of the actions of 
Goserelin seemed to make sense. The DrugType resulting table can be seen on Table 7. 

 

 
 

FIGURE 6. KIRC and Goserelin Boxplot for Normal and Tumour conditions. Blue: Normal. Red: Tumour. 

Green: Goserelin (D13). 
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TABLE 7. Goserelin classification of drug effect in KIRC. 
 

 pvalue_DN SignificantDN Classification 

Phagocytosis 0,98 N Optimum 

Cancer Growth Repressor 2,75E-22 Y Undesired 

Transcription 4,14E-22 Y Undesired 

Antiapoptosis 1,17E+02 Y Underdose 

Cell Survival 3,78E-05 Y Underdose 

Cell Cycle Progression 6,76E-13 Y Underdose 

Cancer Drug Resistance 0,84 N Optimum 

Apoptotic Stress Response 0,88 N Optimum 

Inflammatory Response 8,16E-06 Y Underdose 

Cancer Transcriptional Misregulation 1,64E-07 Y Underdose 

Cell Polarity 5,00E-01 Y Underdose 

Cell Growth 5,60E+04 Y Underdose 

Stem Cell Self Renewal 5,60E+04 Y Underdose 

Stress Response 6,55E-13 Y Underdose 

Quiescense 5,96E-15 Y Underdose 

Cell Migration 3,08E-09 Y Underdose 

Antiinflammatory 1,11E+04 Y Underdose 

Metabolism 1,70E-07 Y Underdose 

Cytoskeletal Organization 1,64E-04 Y Underdose 

Cancer Survival 3,53E+02 Y Underdose 

Proliferation Arrest 9,08E-06 Y Underdose 

Chloride Ion Secretion 4,10E-05 Y Underdose 

Lipid Biosynthesis 4,97E-06 Y Underdose 

DNA Biosynthesis 1,63E-12 Y Underdose 

Inhibition of mTOR pathway 9,82E-12 Y Underdose 

Growth inhibition 9,82E-12 Y Underdose 

Cancer Invasion Inhibition 6,98E-12 Y Underdose 

Cell Differentiation 4,08E-09 Y Underdose 

Proliferation  4,08E-09 Y Underdose 

Lipid Metabolism 2,72E+04 Y Underdose 

Adipocyte Differentiation 1,70E+02 Y Underdose 

Glucose Metabolism 1,81E-05 Y Underdose 

Ubiquitination 6,17E-09 Y Underdose 

 

One of the great things about plotly is that it is an interactive plot that allows for zooming 
in and out of the plot to focus on the desired region and pops the name of the cellular 

function when placing the mouse on top of a box. When looking at the plotted data, the 

cellular functions that had shifted from the tumour are consistent with the description 
performed by the method in Table 7 (See Figure 7). Although the Cancer Growth Repressor 

and Transcription Functions are described as Undesired in Table 7, most of the functions 
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named in Figure 7 do correspond to the original effect the drug has on its prescribed cancers. 

It can be observed how the Goserelin data has shifted towards the Normal data for the 
named functions. One of the limitations of the method is that when a cellular function 

requires the presence of many proteins, the presence of only one of them is enough to 

trigger the function. This is the case of Transcription, for example, because the presence of 
one activating factor that works in combination with others is enough to consider the 

function is taking place. This limitation might explain the classification of Transcription as 

undesired.  

FIGURE 7. Relevant altered functions by Goserelin. Pink: Tumour condition. Blue: Normal condition. Green: 

Goserelin. The functions from left to right: Phagocytosis, Platelet Activation, Immune Response, Cancer Drug 

Resistance, Proliferation Arrest, Apoptotic Stress Response, Cancer Proliferation. 

 

Even if these results seem promising and the developed method works as designed, the 

method needs to be further validated. To do so, the complete assay should be performed 

with the data from BRCA cancers and including more drugs.  
 

This method could also be more fine-tuned by trying a different algorithm for the 

calculation of the cellular functions. A comparison between the current algorithm and one 

that would set the maximum value among pathways as the value for the function should be 

performed. One notable drawback in terms of time and effort is that the functional 

annotation is manual, although terms from Gene Ontology (GO) could also be used. The 
drug repository developed here is quite big, but any user could also expand it. 

 

Further validation would also come from uploading the developed methodology into a 

GitHub repository, freely available for the public, to be employed in a different context, in a 

different disease. 

 

Nevertheless, the potential applications of this method are many. Since it is a method that 
is rooted in the mechanisms of the biological processes happening in cells, it is a more 

reliable method.   Its applications include: modelling drug repositioning for any disease, it 

allows for the possibility of personalized medicine drug repositioning and evaluation of a 
therapy, and drug synergies could also be found. Drug repositioning has been proven to be 

most applicable to cancer and personalized medicine with great success, but current drug 
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combination strategies rely on clinical and empirical evidence solely, so there is a high 

demand for computational methods like the one here developed (Li et al., 2016).  

The advantages of this method in personalized medicine are many, including it can be easily 

used by any user, who has minimum knowledge of bioinformatics, to assay many drugs in 
a home computer. To perform drug repositioning analysis of many drugs on many patients, 

like it was the original purpose for validating this method, a server is required. Usually such 

an analysis is performed at centres where such servers are available, so this does not pose 
a problem.   

 

This model here developed allows for integration of many different types of data (gene 
expression, proteomics data, mutations, etc) and employs signaling pathways as 

mechanistic biomarkers to perform any analysis desired (for any disease, big scale or 

personalized medicine). When compared to the previous computational models for drug 

repositioning, this is computationally the best one, because each variable does not need to 
be scored and analyzed, all the information is integrated in the cellular functional outcome, 

simulating the dynamics of a real cell.  It is a reliable and versatile method.  
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One of the big problems faced nowadays is the enormous time and costs for the 

development of new drugs. Here is presented a new method for the integration of data from 
any Omic into activation values for signalling pathway. It is a method based on mechanistic 

biomarkers, it is the signalling pathway the one responsible for an effect in the cell, the 

phenotype. Therefore, it is a more informative method with higher predictive value, but also 
computationally more effective. All the objectives regarding the development of the 

method have been met successfully. The method, together with a repository of drug 

annotations containing more than 4000 drugs, could be freely available online. But before 

that, further validation of the method is required.  
 

The method is presented in the context of cancer. All the effector proteins in pathways 

relevant in cancer are here annotated, with relevant functions for the disease. Cancer 
patients frequently respond poorly for therapy and are in more need of drugs that are taking 

too long to be developed. Instead, repositioning methods can offer them with drugs in one 

or two years from their discovery.   
 

Not only is this method reliable, it is also versatile in terms of its applications. It can be used 

to study any disease, for drug repositioning approaches or to look for synergies. And it can 

be implemented at any scale: both for big studies and for personalized medicine.  
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 ANNEX 1. Signalling Pathways Functional Annotation | I 

 
TABLE 1. Functional annotation of the final effectors of the MAPK Signalling Pathway.  

Condition Protein Function Key Word 

JNK and 

p38 

NFKB1 NF-kB acts through the transcription of anti-

apoptotic proteins, leading to increased 

proliferation of cells and tumour growth 
(Escárcega, Fuentes-Alexandro, García-

Carrasco, Gatica, & Zamora, 2007). 

Antiapoptosis 

Misregulated transcription in cancer 
(Escárcega et al., 2007). 

Cancer 
Transcriptional 

Misregulation 

Regulates osteoclast formation, function, 

and survival and is essential for osteoclast 
precursors to differentiate into TRAP+ 

osteoclasts (Soysa & Alles, 2009) 

Differentiation 

Plays a central role in inflammation through 
its ability to induce transcription of 

proinflammatory genes (Tak & Firestein, 

2001). 

Inflammatory 
Response 

Classical 

and JNK 

  

MAPT Tubulin assembly and microtubule 

stabilization in the nervous system 

(Cleveland, Hwo, & Kirschner, 1977). 

Microtubule 

Stabilization 

 STMN1 Microtubule destabilization and transition 

from microtubule growth to shortening 

(Cassimeris, 2002). 

Microtubule 

Destabilization 

 Plays an inhibitory role in classically 
activated macrophages and its down-

regulation is required for the phenotypic 

changes and activation of macrophages (Xu 
& Harrison, 2015) 

Immunity 
Regulation 

 Merkel cell polyomavirus (MCPyV) drives 

Merkel Cell Cancer (MCC), and its highly 

metastatic nature is due to the increased 
expression and microtubule destabilization 

of stathmin (Whitehouse & Macdonald, 

2015). 

Viral 

Carcinogenesis 

 PLA2G4A Selectively hydrolyzes arachidonyl 

phospholipids in the sn-2 position releasing 

arachidonic acid. Together with its 
lysophospholipid activity, it is implicated in 

the initiation of the inflammatory response 

(The UniProt Consortium, 2017). 

 

Inflammatory 

Response 

 
 

 

(Continued) 

 



 

ANNEX 1. Signalling Pathways Functional Annotation | II 

Condition Protein Function Key Word 

Classical 

and JNK 

 

PLA2G4A 

 

Requirement for eicosanoid synthesis and 

subsequent platelet activation (Kirkby et al., 

2015) 

Platelet 

Activation 

 

ATF4 In concert with DDIT3/CHOP, activates the 

transcription of TRIB3 and promotes ER stress-

induced neuronal apoptosis by regulating the 
transcriptional induction of BBC3/PUMA 

(The UniProt Consortium, 2017). 

Apoptotic Stress 

Response 

 
Role in multidrug resistance through 

glutathione-dependent redox system (Igarashi 

et al., 2007) 

Cancer Drug 
Resistance 

 

Biomarker for Esophageal Squamous Cell 
Carcinoma (ESCC) prognosis, its dysregulation 

correlates with cell invasion and metastasis 

(Zhu et al., 2014) 

Cancer Invasion 

 
Overexpressed in solid tumours, its inhibition 

reduced proliferation (Ye et al., 2010) 

Proliferation 

 

FOS Osteoblast (Grigoriadis et al., 1994) and 

adipocyte differentiation (Luther et al., 2014) 

Differentiation 

 

Increased expression in response to growth 

factors, leading to proliferation via the 

Activating Protein-1 (AP1) complex (Angel & 

Karin, 1991). 

Proliferation 

 

MYC Dependent and independently of TP53, through 

death receptor pathways at multiple junctions 
and amplifies apoptotic signalling at the 

mitochondria (Hoffman & Liebermann, 2008). 

Apoptosis 

  

Overexpression correlates with multiple 

myeloma (A. G. Szabo et al., 2016). 

Cancer 

Transcriptional 

Misregulation 

  

Induces positive cell cycle regulators required 
for initiating replication, binds replication 

origins, antagonizes cell cycle inhibitors p21 and 

p27 (Bretones, Delgado, & León, 2015). 

Cell Cycle 
Progression 

 

 
(Continued) 



 

ANNEX 1. Signalling Pathways Functional Annotation | III 

Condition Protein Function Key Word 

Classical 

and JNK 

MYC Activates the transcription of growth-related 

genes (Dang, 1999). 

Cell Growth 

 

  Differentiation of epidermal stem cells 
(Gandarillas & Watt, 1997). It also controls the 

balance between Hematopoietic Stem Cell 

(HSC) renewal and differentiation (Wilson, 2004). 

Differentiation 

 

 HSCs are activated to self-renew and to 

differentiate at the interface between the niche 

and non-niche microenvironments (Murphy, 
Wilson, & Trumpp, 2005). 

Stem Cell Self 

Renewal 

Classical 

activates 
JNK and 

p38 inhibit 

NFATC1 Participates in the cardiovascular system 

development (Horsley & Pavlath, 2002) and 
osteoclast formation (Teitelbaum, 2007). 

Differentiation 

Transcription of cytokine genes and other genes 

involved in the immune response (Rao, Luo, & 
Hogan, 1997). 

Immune 

Response 

NFATC3 Regulation of gene expression in T cells and 
thymocytes, specially cytokine IL-2 

(The UniProt Consortium, 2017). 

Immune 
Response 

JNK 

and 

p38 

JUN DNAzymes targeting c-Jun act as inhibitors of 

angiogenesis (Folkman, 2004). Activated c-Jun is 

predominantly expressed at the invasive front in 

breast cancer and is associated with 

proliferation and angiogenesis (Vleugel, Greijer, 
Bos, Wall, & Diest, 2006). 

Angiogenesis 

 

Targets the tumour suppresor TP53, which has 
an increased expression during cell division and 

in response to growth factors (Shaulian & Karin, 

2001). 

Proliferation 

 

G1 progression through repression of tumour 

suppressor genes and induction of CCND1 

transcription (Shaulian & Karin, 2001). 

Cell Cycle 

Progression 

 

Expression is altered early during lung and liver 

carcinogenesis (E. Szabo, Riffe, Steinberg, Birrer, 

& Linnoila, 1996). 

Cancer 

Transcriptional 

Misregulation 

 

NFAT/Fos/Jun is a critical osteoclastogenic 

complex, and deletion of any of the three arrests 

osteoclast formation (Teitelbaum, 2007). 

Differentiation 

 

(Continued) 



 

ANNEX 1. Signalling Pathways Functional Annotation | IV 

Condition Protein Function Key Word 

JNK 

and 

p38 

JUND Protects cells from TP53 dependent apoptosis 

(Ameyar, Wisniewska, & Weitzman, 2003). 

Antiapoptosis 

 

 

 Negative regulator of cell growth by maintaining 

the cells in a quiescent state (“The mammalian 

Jun proteins,” 2001). 

Quiescence 

 

ATF2 In response to stress, ATF-2, a member of the 

ATF/cAMP response element-binding protein 

family, is phosphorylated by p38/Jun NH2-
terminal protein kinase and activates the 

transcription of apoptosis-related genes 

(Makino, Sano, Shinagawa, Millar, & Ishii, 2006) 

Apoptotic Stress 

Response 

 

The phosphorylated form (mediated by ATM) 

plays a role in the DNA damage response and is 

involved in the ionizing radiation (IR)-induced S 
phase checkpoint control and in the recruitment 

of the MRN complex into the IR-induced foci 

(IRIF) (The UniProt Consortium, 2017). 

DNA Damage 

Response 

 
HBZ activates transcription of ATF2 pro-survival 

genes (Mesri, Feitelson, & Munger, 2014). 

Viral 

Carcinogenesis 

 

ELK1 One of the mechanisms by which BRCA1a/1b 

proteins function as growth/tumour suppressors 

is through inhibition of the expression of Elk-1 

target genes like FOS (Chai et al., 2001). 

Growth 

Repressor 

 

Transcription factor that binds to purine-rich 

DNA sequences. Forms a ternary complex with 

SRF and the ETS and SRF motifs of the serum 
response element (SRE) on the promoter region 

of immediate early genes such as FOS and IER2 

(The UniProt Consortium, 2017). 

Transcription 

 TTP53 (See TP53 Signalling Pathway) Apoptosis 

 Cell Cycle Arrest 

 

ELK4 Forms a ternary complex with the serum 

response factor (SRF). Interaction with SIRT7 
leads to recruitment its stabilization at 

promoters, followed by deacetylation of histone 

H3 at Lys-18 and subsequent transcription 
repression (The UniProt Consortium, 2017). 

Transcription 

Regulation 
 

 

 
(Continued) 
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Condition Protein Function Key Word 

JNK 

and 
p38 

DDIT3 

 

Inducible inhibitor of adipocytic differentiation 

in response to metabolic stress (Batchvarova, 

Wang, & Ron, 1995). 

Differentiation 

Inhibition 

 

 DDIT3 

 

Intrinsic pathway. Response to toxic and 

metabolic insults that perturb function of the 

endoplasmic reticulum (ER stress) (Zinszner et 
al., 1998). 

Apoptotic Stress 

Response 

 
 Nuclear DDIT3 causes cell cycle arrest at the 

G1/S (Jauhiainen et al., 2012). 

Cell Cycle Arrest 

 
 Cytoplasmic DDIT3 inhibits cell migration 

(Jauhiainen et al., 2012). 

Cell Migration 

 
 Enhances differentiation in erythroid cells (Cui, 

Coutts, Stahl, & Sytkowski, 2000). 

Erythropoiesis 

 

 Induction of CASP4/CASP11 which induces the 
activation of CASP1 and both of these increase 

the activation of pro-IL1B to mature IL1B 

(The UniProt Consortium, 2017). 

Immune 
Response 

 

MAX Transcription regulator. Forms a sequence-

specific DNA-binding protein complex with MYC 

or MAD which recognizes the core sequence 5-

CAC[GA]TG-3. The MYC-MAX complex is a 

transcriptional activator, whereas the MAD:MAX 

complex is a repressor (The UniProt Consortium, 
2017). 

Transcription 

Regulation 

 (Kanehisa, Sato, Kawashima, Furumichi, & 

Tanabe, 2016) 

Differentiation 

 Proliferation 

 MEF2C Heart development, skeletal muscle 
differentiation, dendrite morphogenesis, control 

of vascular integrity, T-cell development, 

neuronal differentiation and survival (Potthoff & 
Olson, 2007). 

Differentiation 

 Required for B-cell survival and proliferation in 

response to BCR stimulation (Wilker et al., 2008). 

Immune 

Response 

 HSPB1 Inhibits apoptotic and necrotic pathways under 

stress (Takayama, Reed, & Homma, 2003). 

Antiapoptotic 

Stress Response 
 

(Continued) 
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Condition Protein Function Key Word 

JNK 
and 

p38 

ATF4 (See Classical Route) Apoptotic Stress 
Response 

 
  Cancer Drug 

Resistance 

 
  Cancer Invasion  

 ATF4 (See Classical Route) Proliferation 

 NLK Kinase that regulates a number of transcription 

factors (The UniProt Consortium, 2017). 

Transcription 

Regulation 

MAPK7 

pathway 

NR4A1 Via migration to the mitochondrial outer 

membrane, converts anti-apoptotic BCL2 into a 
pro-apoptotic protein (Pawlak, Strzadala, & 

Kalas, 2015). 

Apoptosis 

 

 
 
TABLE 2. Functional annotation of the final effectors of the TP53 Signalling Pathway.  
 

Condition Protein Function Key Word 

Stress 

Signalling 

CCND1 Forms a complex with and functions as 

regulatory subunit of CDK4 and CDK6, whose 

activity is required for cell cycle G1/S 
transition (Hydbring, Malumbres, & Sicinski, 

2016). 

Cell Cycle 

Progression 

 CCNE1 Essential master regulator of the G1/S 
transition which also cooperates with Cdc6 to 

allow prereplication complexes to form during 

the G0/S transition (Hwang & Clurman, 2005). 

Cell Cycle 
Progression 

 CCNB1 G2/M transition (Hydbring et al., 2016). Cell Cycle 

Progression 

 CASP3 Activated by the extrinsic and intrinsic 

pathways, cleaves and activates caspases 6, 7 

and 9, and it is processed itself is by caspases 
8, 9 and 10 (Salvesen, 2002). 

Apoptosis 

 

 
 

 

 

(Continued) 
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Condition Protein Function Key Word 

Stress 
Signalling 

IGF1 Regulates BCL2 family proteins, inhibitors of 
caspases and Signalling of death-inducing 

receptors inhibiting apoptosis in many cell 

types and in the presence of different 

apoptogenic stimuli (Kooijman, 2006). 

Antiapoptosis 

  Involved both in prenatal and postnatal 

development, enhances proliferation (Kemp, 

2009). 

Development 

 

  Important growth hormone, endocrine when 

secreted by the liver or paracrine in 

cartilagenous cells important in protein 

anabolism (Laron, 2001). 

Cell Growth 

  Local repair mechanisms: promotion of cell 
recruitment to the injured muscle and the 

subsequent resolution of the inflammatory 

response (Mourkioti & Rosenthal, 2005). 

Inflammatory 
Response 

  Enhances proliferation and survival of 

mesenchymal stem cells before differentiation 

to neural progenitor-like cells (Huat et al., 
2014). 

Proliferation 

 SERPINB5 The tumour suppressor activity of SERPINB5 

may depend in large part on its ability to 
inhibit angiogenesis (Zhang, Volpert, Shi, & 

Bouck, 2000). 

Antiangiogenesis 

 Blocks the growth, invasion, and metastatic 

properties of mammary tumours (Streuli, 

2002). 

Cancer Invasion 

Inhibition 

 SESN1 Antioxidant defense in response to oxidative 
stress (The UniProt Consortium, 2017). 

Antioxidant 

  
IGFBP3 

Induces apoptosis and mediates the effects of 
TGFb1 on programmed cell death through 

TP53 and IGF mechanisms (Rajah, 1997). 

Apoptosis 

  Inhibits proliferation of neural progenitor cells  
(Kalluri & Dempsey, 2011). 

Antiproliferation 

  Modulates the early stages of keratinocyte 

differentiation (Edmondson et al., 2005). 

Differentiation 

 
 

(Continued) 



 

ANNEX 1. Signalling Pathways Functional Annotation | VIII 

Condition Protein Function Key Word 

Stress 
Signalling 

IGFBP3 Prolongs IGF1 and IGF2 half-life in circulation 
and regulates the available amount for 

interaction with their receptors (Cerri, 

Gonzales, Ballard, & Cohen, 1999). 

Growth Inhibition 

 STEAP3 

 

Enhances susceptibility to apoptosis 

cooperating with Nix (Passer et al., 2003). 

Apoptosis 

  Augments MYT1 activity, a negative regulator 
of G2/M transition (Passer et al., 2003). 

Cell Cycle 
Inhibition 

  Transferrin uptake in erythroid cells 

(Sendamarai, Ohgami, Fleming, & Lawrence, 

2008). 

Ion Transporter 

 

 

 
TP73 In response to DNA damage (Allocati, Di Ilio, & 

De Laurenzi, 2012). 

Apoptosis 

 

 
 
TABLE 3. Functional annotation of the final effectors of the Wnt Signalling Pathway.  
 

Condition Protein Function Key Word 

Canonical MYC (See MAPK Signalling Pathway) Apoptosis 

 Cancer 
Transcriptional 

Misregulation 

 Cell Cycle 
Progression 

 Cell Growth 

 Differentiation 

 Stem Cell Renewal 

 JUN (See MAPK Signalling Pathway) Angiogenesis 

   Proliferation 

   Cell Cycle 

Progression 

   Cancer 
Transcriptional 

Misregulation 
 

(Continued) 
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Condition Protein Function Key Word 

Canonical JUN (See MAPK Signalling Pathway) Differentiation 

 FOSL1 High Fra-1 expression is associated with a more 

malignant cell phenotype (Belguise, Kersual, 

Galtier, & Chalbos, 2004). 

Cancer Invasion 

 Cancer 

Proliferation 

 Negatively regulates LPS-induced responses in 

macrophages and inhibits fracture-induced 
ossification through suppression of 

inflammation-induced chondrogenesis 

(Morishita et al., 2009). 

Antiinflammatory 

 Dimerizes with Jun family proteins forming the 

transcription factor AP-1 (Shaulian & Karin, 

2002). 

Proliferation 

 

 

 CCND1 (See TP53 Signalling pathway) Cell Cycle 

Progression 

 PPARD Pronounced anti-inflamatory effects (Kilgore & 
Billin, 2008). 

Antiinflammatory 

 Redirects fatty acids from adipose tissue to 

skeletal muscle and increases its oxidative 
capacity, genetic variations determine change 

in aerobic physical fitness and insulin resistance 

(Stefan et al., 2007). 

Lipid Metabolism 

 MMP7 Breakdown of extracellular matrix in 

development, reproduction and tissue 

remodeling. Degrades casein, gelatins of types I, 
III, IV, and V, and fibronectin. Activates 

procollagenase. (The UniProt Consortium, 

2017). 

Extracellular 

Matrix 

Degradation 

 ROCK2 

 

Acts as a negative regulator of VEGF-induced 

angiogenic endothelial cell activation 

(The UniProt Consortium, 2017). 

Antiangiogenesis 

  Involved in regulation of smooth muscle 

contraction, actin cytoskeleton organization, 

focal adhesion formation, neurite retraction 
and motility via phosphorylation of ADD1, 

BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, 

MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. 
The UniProt Consortium, 2017). 

Cell Motility 

Regulation 

  Cell Polarity 

 

 
 

 

(Continued) 
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Condition Protein Function Key Word 

Canonical ROCK2 Plays an important role in the timely initiation 
of centrosome duplication 

(The UniProt Consortium, 2017). 

Centrosome 
Amplification 

Wnt/Ca2+ NFATC1 (See MAPK Signalling Pathway) Differentiation 

 Immune Response 

 CAMK2A Plasticity at glutamatergic synapses, 

hippocampal long-term potentiation (LTP) and 

spatial learning (The UniProt Consortium, 2017). 

Learning 

 

 

 

 PRKCA Required for full endothelial cell migration, 

adhesion to vitronectin (VTN) and VEGFA-

dependent regulation of kinase activation and 
vascular tube formation. Involved in the 

stabilization of VEGFA mRNA level and mediates 

VEGFA-induced cell proliferation 
(The UniProt Consortium, 2017). 

Angiogenesis 

  Phosphorylates BCL2, required for its 

antiapoptotic activity (Ruvolo, Deng, Carr, & 
May, 1998). 

Antiapoptosis 

  Translocates from focal contacts to 

lamellipodia and participates in the modulation 

of desmosomal adhesion. Plays a role in cell 

motility by phosphorylating CSPG4, which 

induces association of CSPG4 with extensive 
lamellipodia at the cell periphery and cell 

polarity of the cell accompanied by increases in 

cell motility (The UniProt Consortium, 2017). 

Cell Motility 

  Calcium-induced platelet aggregation, 

mediates signals from the CD36/GP4 receptor 

for granule release, and activates the integrin 
heterodimer ITGA2B-ITGB3 through the 

RAP1GAP pathway for adhesion 

(The UniProt Consortium, 2017). 

Platelet 

Aggregation 

  Activates Raf1, Rap1 and Ras in the classical 

MAPK pathway, which leads to activation of 

STMN1, cPLA2, ATF4 and FOS. 
(Via FOS) 

Angiogenesis 

  Differentiation 
 

 

(Continued) 
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Condition Protein Function Key Word 

Wnt/Ca2+ PRKCA (Via ATF4 and FOS) Proliferation 

  (Via ATF4) Apoptotic Stress 

Response 

  Cancer Drug 
Resistance 

  Cancer Invasion 

  (Via STMN1) Microtubule 

Destabilization 

 PRKCA (Via STMN1) Viral 

Carcinogenesis 

   Immunity 
Regulation 

  (Via cPLA2) Immune Response 

  Phagocytosis 

  Platelet Activation 

  Promotes cell growth by phosphorylating and 
activating RAF1 (The UniProt Consortium, 2017). 

Cell Growth 

 

 

 
TABLE 4. Functional annotation of the final effectors of the TGF-β Signalling Pathway.  
 

Condition Protein Function Key Word 

BMP ID1 Can inhibit the DNA binding and transcriptional 
activation ability of basic HLH proteins with 

which it interacts. Regulates: cellular growth, 

senescence, differentiation, apoptosis, 
angiogenesis, and neoplastic transformation. 

Inhibits skeletal muscle and cardiac myocyte 

differentiation. Leads to osteoblast 

differentiation, neurogenesis, neurogenesis, 

ventral mesoderm specification 

(The UniProt Consortium, 2017). 

Transcription 
Regulation 

TGFβ CDKN2B Interacts strongly with CDK4 and CDK6 

preventing their action, thus causing a cell cycle 

arrest at the G1 phase (Hydbring et al., 2016). 

Cell Cycle Arrest 

 

 
(Continued) 
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Condition Protein Function Key Word 

TGFβ ROCK1 Acts as a negative regulator of VEGF-induced 
angiogenic endothelial cell activation, reducing 

cell interactions and mediates angiogenic 

processes (Bryan et al., 2010). 

Angiogenesis 

  Suppressor of inflammatory cell migration by 

regulating PTEN phosphorylation and stability 

(Vemula, Shi, Hanneman, Wei, & Kapur, 2010). 

Antiinflammatory 

  Rho-kinases are modulators of processes 

involving cytoskeletal rearrangement: regulation 

of smooth muscle contraction, cell adhesion and 

motility via phosphorylation of DAPK3, GFAP, 

LIMK1, LIMK2, MYL9/MYL2, PFN1 and PPP1R12A, 

promotes src-dependent blebbing 
(The UniProt Consortium, 2017). 

Cytoskeletal 

Organization 

Activin SMAD2 (Kanehisa, Sato, Kawashima, Furumichi, & 

Tanabe, 2016) 

Gonadal Growth 

SMAD3 Embryo 

Differentiation 

SMAD4 Placenta 
Formation 

Nodal PITX2 Transcriptional regulator involved in basal and 

hormone-regulated activity of prolactin. 
Involved in the development of the eye, tooth 

and abdominal organs. During embryonic 

development, exerts a role in the expansion of 
muscle progenitors (The UniProt Consortium, 

2017). 

Morphogenesis 

 

 

 
TABLE 5. Functional annotation of the final effectors of the Focal Adhesion Pathway.  
 

Condition Protein Function Key Word 

ECM – Receptor 
Interaction 

ZYX Adhesion plaque protein. Binds α-actinin and 
the CRP protein. Important for targeting TES 

and ENA/VASP family members to focal 

adhesions and for the formation of actin-rich 
structures. (The UniProt Consortium, 2017). 

Cytoskeleton 
Organization 

  Scaffold 
 

 

(Continued) 
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Condition Protein Function Key Word 

ECM – Receptor 
Interaction 

ZYX Abnormal regulation of the actin cytoskeleton 
leads to the invasive and metastatic 

phenotypes of malignant cancer cells (Olson & 

Sahai, 2009). 

Cancer Invasion 

  Molecules that link migratory signals to the 

actin cytoskeleton are upregulated in invasive 

and metastatic cancer cells leading to 

formation of invasive protrusions used by 
tumour cells, such as lamellipodia and 

invadopodia (Yamaguchi & Condeelis, 2007) 

Cancer Invasion 

 VASP 

 

 

Ena/VASP proteins are actin-associated 

proteins involved in a range of processes 

dependent on cytoskeleton remodeling and 

cell polarity such as axon guidance, 
lamellipodial and filopodial dynamics, 

platelet activation and cell migration. VASP 

promotes actin filament elongation. It 
protects the barbed end of growing actin 

filaments against capping and increases the 

rate of actin polymerization in the presence of 
capping protein. VASP stimulates actin 

filament elongation by promoting the transfer 

of profilin-bound actin monomers onto the 

barbed end of growing actin filaments. Plays a 
role in actin-based mobility of Listeria 

monocytogenes in host cells. Regulates actin 

dynamics in platelets and plays an important 
role in regulating platelet aggregation 

(The UniProt Consortium, 2017). 

Cytoskeletal 

Organization 

  Platelet 
Aggregation 

  Abnormal regulation of the actin cytoskeleton 
leads to the invasive and metastatic 

phenotypes of malignant cancer cells (Olson & 

Sahai, 2009). Molecules that link migratory 

signals to the actin cytoskeleton are 

upregulated in invasive and metastatic cancer 

cells leading to formation of invasive 
protrusions used by tumour cells, such as 

lamellipodia and invadopodia (Yamaguchi & 

Condeelis, 2007). 

Cancer Invasion 
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Condition Protein Function Key Word 

ECM – Receptor 
Interaction or 

Interaction of 

Cytokines and 

their Receptors 

ACTA1 
  

Involved in cell motility, structure, and 
integrity. It is found in two main states: G-

actin is the globular monomeric form and F-

actin forms helical polymers. Both G- and F-

actin are intrinsically flexible structures.  

Cytoskeleton 
Organization 

 

 

ECM – Receptor 

Interaction or 

Interaction of 
Cytokines and 

their Receptors 

ACTA1 Actin polymerization leads to formation of 

lamellipodia and filopodia 

(The UniProt Consortium, 2017). 

Motility 

Scaffold 

  Abnormal regulation of the actin cytoskeleton 

leads to invasive and metastatic phenotypes 

of malignant cancer cells (Olson & Sahai, 

2009). Molecules that link migratory signals to 
the actin cytoskeleton are upregulated in 

invasive and metastatic cancer cells leading 

to formation of invasive protrusions used by 
tumour cells, such as lamellipodia and 

invadopodia (Yamaguchi & Condeelis, 2007). 

Cancer Invasion 

 FLNB Connects cell membrane constituents to the 
actin cytoskeleton. May promote orthogonal 

branching of actin filaments and links actin 

filaments to membrane glycoproteins. 
Anchors various transmembrane proteins to 

the actin cytoskeleton. Interaction with FLNA 

may allow neuroblast migration from the 
ventricular zone into the cortical plate. 

Various interactions and localizations of 

isoforms affect myotube morphology and 

myogenesis (The UniProt Consortium, 2017). 

Cellular 
Community 

 

  Morphogenesis 

  Cytoskeleton 

Organization 

  Motility 

  Scaffold 

  Abnormal regulation of the actin cytoskeleton 

leads to the invasive and metastatic 

phenotypes of malignant cancer cells (Olson & 

Sahai, 2009). Molecules that link migratory 

signals to the actin cytoskeleton are 

upregulated in invasive and metastatic cancer 
cells leading to formation of invasive 

protrusions used by tumour cells, such as 

lamellipodia and invadopodia (Yamaguchi & 

Condeelis, 2007). 

Cancer Invasion 

 

 

 

 

 
 

 

 

 

(Continued) 
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Condition Protein Function Key Word 

ECM – Receptor 
Interaction or 

Interaction of 

Cytokines and 

their Receptors 

FLNB Tumour-promoting effect by interacting with 
signalling molecules. At the nucleus, interacts 

with transcription factors suppressing tumour 

growth and inhibit metastasis. It correlates 

patient prognosis, depending on its 
localization and cancer type (Savoy & Ghosh, 

2013). 

Tumour 
Suppressor 

 PAK4 Prevents caspase-8 binding to death domain 
receptors (Gnesutta, Qu, & Minden, 2001). 

Antiapoptosis 

 Roll in cell-cycle progression by 

phosphorylating RAN, if silenced induces a 

blockade at the G2/M transition (Bompard et 

al., 2010). 

Cell Cycle 

Progression 

 Stimulates cell survival by phosphorylating 

the BCL2 antagonist of cell death BAD 

(The UniProt Consortium, 2017). 

Cell Survival 

 Phosphorylates and inactivates the protein 

phosphatase SSH1 and LIMK1, leading to 

increased inhibitory phosphorylation of the 
actin binding/depolymerizing factor cofilin. 

Decreased cofilin activity may lead to 

stabilization of actin filaments. Also 

phosphorylates ARHGEF2 and activates the 
downstream target RHOA that plays a role in 

the regulation of assembly of focal adhesions 

and actin stress fibres 
(The UniProt Consortium, 2017). 

Cytoskeleton 

Regulation 

 CCND1 (See TP53 Signalling Pathway) Cell Cycle 

Progression 

 BIRC2 Inhibits apoptosis by binding to TRAF1 and 

TRAF2 and targets caspases for inactivation 
acting as a E3 ubiquitin-protein ligase 

(Darding et al., 2011). 

Antiapoptosis 

 
 

  Protects from spontaneous formation of the 
ripoptosome, a large multi-protein complex 

that has the capability to kill cancer cells, by 

ubiquitinating RIPK1 and CASP8 (Tenev et al., 

2011). 

Cancer Survival 
 

 

 

 
(Continued) 
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Condition Protein Function Key Word 

ECM – Receptor 
Interaction or 

Interaction of 

Cytokines and 

their Receptors 

BIRC2 Acts as an important regulator of innate 
immune signalling via regulation of Toll-like 

receptors (TLRs), Nodlike receptors (NLRs) 

and RIG-I like receptors (RLRs), collectively 

referred to as pattern recognition receptors 
(PRRs) (Sharma, Kaufmann, & Biswas, 2017). 

Inflammatory 
Response 

 BCL2 This gene encodes an integral outer 

mitochondrial membrane protein that blocks 
the apoptotic death of some cells, such as 

lymphocytes (The UniProt Consortium, 2017). 

Antiapoptosis 

 

 

 
TABLE 6. Functional annotation of the final effectors of the Adherens Junction Pathway.  
 

Condition Protein Function Key Word 

Nectin PARD3 Adapter protein involved in asymmetrical cell 

division and cell polarity processes, also has a 

central role in the formation of epithelial tight 

junctions (The UniProt Consortium, 2017). 

Cell Polarity 

 Scaffold 

 WASL Regulates actin polymerization by stimulating the 

actin-nucleating activity of the Arp2/3 complex. It 

is also involved in mitosis and cytokinesis. 

(The UniProt Consortium, 2017). 

Cytoskeleton 

Organization 

 WAS Interacts with the Arp2/3 complex to induce  actin 
polimerization (The UniProt Consortium, 2017). 

Cytoskeleton 
Organization 

 Mediates actin filament reorganization and the 

formation of actin pedestals upon infection by 
pathogenic bacteria (The UniProt Consortium, 

2017). 

Immune 

Response 
 

 

 IQGAP1 It interacts with components of the cytoskeleton  
and adhesion molecules and other molecules to 

regulate cell morphology and motility 

(The UniProt Consortium, 2017). 
 

Cytoskeleton 
Organization 

  Contributes to the transformed cancer cell 

phenotype by regulating signalling pathways 
involved in cell proliferation and transformation,  

Cancer 

Invasion 
 

 

(Continued) 
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Condition Protein Function Key Word 

Nectin IQGAP1 weakening of cell – cell adhesion contacts and 
stimulation of cell motility and invasion (Johnson, 

Sharma, & Henderson, 2009). 

Cancer 
Invasion 

 

 BAIAP2 Associated with formation of stress fibres and 
cytokinesis. Involved in lamellipodia and filopodia 

formation in motile cells acting synergistically with 

ENAH. Pays a role in neurite growth 

(The UniProt Consortium, 2017). 

Cytoskeleton 
Organization 

 Plays a role in the reorganization of the actin 

cytoskeleton in response to bacterial infection. 

Participates in actin bundling when associated 

with EPS8, promoting filopodial protrusions 

(The UniProt Consortium, 2017). 

Immune 

Response 

 WASF2 Associated with formation of stress fibres and 

cytokinesis. Involved in lamellipodia and filopodia 

formation in motile cells acting synergistically with 
ENAH. Pays a role in neurite growth 

(The UniProt Consortium, 2017). 

Cytoskeleton 

Organization 

 Plays a role in the reorganization of the actin 
cytoskeleton in response to bacterial infection. 

Participates in actin bundling when associated 

with EPS8, promoting filopodial protrusions 

(The UniProt Consortium, 2017). 

Immune 
Response 

Nectin and 

Cadherin 

ACTA1 (See Focal Adhesion Pathway) Cytoskeleton 

Organization 

Motility 

Scaffold 

Cancer 

Invasion 

Cadherin CTNNB1 
 

Mutations are commonly found in various cancer 
such as colorectal and ovarian cancer, 

pilomatrixoma or medulloblastoma (Forbes et al., 

2010). These mutations lead to impossible 
degradation of the protein and its translocation to 

the nucleus in the absence of external stimulus, 

where it continuously drives transcription of its 
target genes (Stamos & Weis, 2013). 

Cancer 
Development 

 

 
 

 

 
 

 

(Continued) 
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Condition Protein Function Key Word 

Cadherin CTNNB1 
 

It anchors the actin cytoskeleton and may be 
responsible for transmitting the contact inhibition 

signal that causes cells to stop dividing once the 

epithelial sheet is complete 

(The UniProt Consortium, 2017). 

Cell 
Proliferation 

Inhibition 

  Part of the complex of proteins that constitute 

adherens junctions (AJs), necessary for the 

creation and maintenance of epithelial cell layers 
by regulating cell growth and adhesion between 

cells 

Scaffold 

 LEF1 Hair cell differentiation and follicle morphogenesis 

(The UniProt Consortium, 2017). 

Cell 

Differentiation 

 SNAI2 Critical role for SNAI2 in the pathogenesis of 
mesenchymal tumours and contributes to cancer 

progression (Pérez-Mancera et al., 2005). 

Forced expression of SNAI2 in collaboration with 
Sox9 in breast cancer cells can efficiently induce 

entrance into the Tumour Initiating Cell (TIC) state 

(Ye et al., 2015). 

Cancer 
Development 

 Involved in epithelial-mesenchymal transitions 

and has antiapoptotic activity. Transcriptional 

repressor, represses BRCA2 expression in breast 

cells and ITGA3 in keratinocytes. Involved in the 
regulation of ITGB1 and ITGB4 expression and cell 

adhesion and proliferation in epidermal 

keratinocytes. Represses E-Cadherin transcription 
(The UniProt Consortium, 2017). 

EMT 

 Transcription 

Regulation 
 

 

 
 

 

 
 

 
TABLE 7. Functional annotation of the final effectors of the Tight Junction Pathway.  
 

Condition Protein Function Key Word 

CRB3 
 

 

MPP4 Localized to the outer limiting 
membrane in the retina, functions 

in photoreceptor polarity and the 

organization of specialized 
intercellular junctions 

(The UniProt Consortium, 2017). 

Polarity 

 Scaffold 

(Continued) 
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Condition Protein Function Key Word 

CRB3 CDC42 RAC1 and CDC42 are active in their 
GTP-bound state. When active, they 

bind to a variety of effector proteins 

to regulate epithelial cell polarity. 

Furthermore, RAC1 is responsible 
for growth-factor induced formation 

of membrane ruffles and promotes 

cell migration and invasion in 
glioma cells (Ensign et al., 2013). 

Cancer 
Invasion 

 Cell Polarity 

 Proliferation 

 RAC1 RAC1 and CDC42 are active in their 

GTP-bound state. When active, they 

bind to a variety of effector proteins 

to regulate epithelial cell polarity. 

Furthermore, RAC1 is responsible 
for growth-factor induced formation 

of membrane ruffles and promotes 

cell migration and invasion in 

glioma cells (Ensign et al., 2013). 

Cancer 

Invasion 

 Cell Polarity 

 Proliferation 

 DLG1 Multi-domain scaffolding protein, 

recruits channels, receptors and 
Signalling molecules to discrete 

plasma membrane domains in 

polarized cells 

(The UniProt Consortium, 2017). 

Cell Polarity 

 Scaffold 

 SCRIB Scaffold protein involved in 

different aspects of cell Cell Polarity 
processes, regulating epithelial and 

neuronal morphogenesis, such as 

the establishment of apico-basal 

cell polarity 
(The UniProt Consortium, 2017). 

Cell Polarity 

 
 

 

 

Claudin with Claudin MPP4 (See CRB3 above) Polarity 

  Scaffold 

 CDC42 (See CRB3 above) Cancer 

Invasion 

  Cell Polarity 

  Proliferation 

(Continued) 
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Condition Protein Function Key Word 

Claudin with Claudin DLG1 (See CRB3 above) Cell Polarity 

  Scaffold 

 SCRIB (See CRB3 above) Cell Polarity 

 RAC1 (See CRB3 above) Cancer 

Invasion 

  Cell Polarity 

  Proliferation 

 DLG2 Regulates surface expression of 
NMDA receptors, is part of the 

postsynaptic protein scaffold of 

excitatory synapses 
(The UniProt Consortium, 2017). 

Cell Polarity 

 Scaffold 

 DLG3 Clustering of NMDA receptors at 

excitatory synapses, regulates 
surface expression of NMDA 

receptors, is part of the 

postsynaptic protein scaffold of 

excitatory synapses 
(The UniProt Consortium, 2017). 

Cell Polarity 

 Scaffold 

 CLDN2 Major integral membrane proteins 

localized exclusively at tight 

junctions. Its increased expression 

leads to less paracellular 

permeability between cells 
(The UniProt Consortium, 2017). 

Decreased 

Permeability 

 Scaffold 

 WAS (See Adherens Junction Pathway) Cytoskeleton 
Organization 

   Immune 

Response 

 ACTN1 Actin is a ubiquitous globular 

protein that is one of the most 

highly-conserved proteins known. It 
is found in two main states: G-actin 

is the globular monomeric form, 

whereas F-actin forms helical 
polymers. Both G- and F-actin are 

intrinsically flexible structures 

(The UniProt Consortium, 2017). 

Cytoskeleton 

Organization 

 
 

 

 
 

 

(Continued) 
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Condition Protein Function Key Word 

Claudin with Claudin Arp2/3 Arp2/3-mediated actin 
polymerization both at the Golgi 

apparatus and along tubular 

membrane and actin branching 

(The UniProt Consortium, 2017). 

Cytoskeleton 
Organization 

 MYL2 Very important for cardiac muscle 

contraction via tight junction 

assembly, it increases myosin lever 
arm stiffness and myosin head 

diffusion (The UniProt Consortium, 

2017). 

Scaffold 

 VASP (See Focal Adhesion Pathway) Cytoskeleton 

Organization 

 Cancer 

Invasion 

 Platelet 
Aggregation 

Occludin with 

Occludin 

RAC1 (See CRB3 above) Cancer 

Invasion 

 Cell Polarity 

 Proliferation 

 DLG2 (See Claudins above) Cell Polarity 

  Scaffold 

 DLG3  Cell Polarity 

  Scaffold 

Occludin with 

Occludin 

CLDN2 (See Claudins above) 

 

Decreased 

Permeability 

  Scaffold 

 WAS (See Adherens Junction Pathway) Cytoskeleton 

Organization 

 Immune 

Response 

 ACTN1 (See Claudins above) Cytoskeleton 
Organization 

 

(Continued) 
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Condition Protein Function Key Word 

Occludin with 
Occludin 

Arp2/3 (See Claudins above) Cytoskeleton 
Organization 

 MYL2 (See Claudins above) Scaffold 

 VASP (See Claudins above) Cytoskeleton 
Organization 

   
Scaffold 

 PCNA Involved in the control of eukaryotic 

DNA replication by increasing the 

polymerases processibility during 

elongation of the leading strand 

(The UniProt Consortium, 2017). 

Proliferation 

 CCND1 (See TP53 Signalling Pathway) Cell Cycle 

Progression 

 ERBB2 Regulates outgrowth and 
stabilization of peripheral 

microtubules. Implicated in 

transcriptional activation of 
CDKN1A; the function involves 

STAT3 and SRC. Involved in the 

transcription of rRNA genes by RNA 

Pol I and enhances protein 

synthesis and cell growth 

(The UniProt Consortium, 2017). 

Growth 

 Cytoskeleton 

Organization 

 Runx1 Runx1 is the alpha subunit of CBF, 

which is involved in the 

development of normal 

hematopoiesis (Hart & Foroni, 
2002). 

Hematopoiesis 

 

 

 
 

JAM/JAM RAC1 (See CRB3 above) Cancer 
Invasion 

 Cell Polarity 

 Proliferation 

 DLG3 (See Claudins above) Cell Polarity 

 Scaffold 

 DLG2 (See Claudins above) Cell Polarity 

(Continued) 
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Condition Protein Function Key Word 

JAM/JAM DLG2 (See Claudins above) Scaffold 

 CLDN2 (See Claudins above) Decreased 

Permeability 

 Scaffold 

 Integrin Integrins are receptors for collagen 

and support cell migration through 
collagen rich extracellular matrix. 

They mediate dynamic interactions 

between the extracellular matrix 

and the actin cytoskeleton during 

cell motility (Huttenlocher & 

Horwitz, 2011). 

Cell Migration 

 MYL2 (See Claudins above) Decreased 
Permeability 

 Scaffold 

Bves/Bves CLDN2 (See Claudins above) Decreased 

Permeability 

Scaffold 

MarvelD3/MarvelD3 CD1 Mediate the presentation of 

primarily lipid and glycolipid 

antigens of self or microbial origin 

to T cells (Barral & Brenner, 2007). 

Cell Survival 

Immune 
Response 

CFTR PCNA/CCND1 (See Occludins above) Proliferation 

 ERBB2 (See Occludins above) Growth 

  Cytoskeleton 
Organization 

 Runx1 (See Occludins above) Hematopoiesis 

 PRKCE Assembly of the Tight Junction, PCK 
epsilon triggers the anchorage of 

the actin cytoskeleton to the 

plasma membrane via moesin 
(Newton & Messing, 2010). 

Scaffold 

aPKC/PAR6 MYL2 (See Claudins Above) Scaffold 

 
 

(Continued) 
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Condition Protein Function Key Word 

JAM4/JAM4 RAB8A Regulators of intracellular 
membrane trafficking, from the 

formation of transport vesicles to 

their fusion with membranes 

(The UniProt Consortium, 2017). 

AJ Assembly 

 Vesicular 

Transport 

 

JAM4/JAM4 RAB13 Regulates transport to the plasma 

membrane of transmembrane 

proteins, thereby, it regulates the 
assembly and the activity of tight 

junction. Key regulator of 

intracellular membrane trafficking, 

from the formation of transport 

vesicles to their fusion with 

membranes. Plays also a role in 
angiogenesis through regulation of 

endothelial cells chemotaxis 

(The UniProt Consortium, 2017). 

Angiogenesis 

 Tight Junction 
Assembly 

 Vesicular 

Transport 

Tricellulin/Tricellulin WAS (See Adherens Junction Pathway) Cytoskeleton 

Organization 

Immune 
Response 

ACTN1 (See Claudins above) Cytoskeleton 

Organization 

Arp2/3 Cytoskeleton 

Organization 

 

 

 
TABLE 8. Functional annotation of the final effectors of the mTOR Signalling Pathway.  
 

Condition Protein Function Key Word 

mTORC1 CLIP1 Promotes microtubule growth and 

microtubule bundling. Links cytoplasmic 

vesicles to microtubules and thereby plays 
an important role in intracellular vesicle 

trafficking (The UniProt Consortium, 2017). 

Microtubule 

Organization 

 GRB10 Key regulator of adiposity, thermogenesis, 
and energy expenditure (Liu et al., 2014). 

Lipolysis 
 

(Continued) 
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Condition Protein Function Key Word 

mTORC1 LPIN1 Catalyzes the penultimate step in 
triglyceride synthesis. Expression of this 

gene is required for adipocyte 

differentiation (The UniProt Consortium, 

2017). 

Differentiation 

 Lipid 

Biosynthesis 

 ULK1 Involved in autophagy in response to 

starvation. Acts upstream of 

phosphatidylinositol 3-kinase PIK3C3 to 
regulate the formation of autophagophores, 

the precursors of autophagosomes. Part of 

regulatory feedback loops in autophagy: 

downstream effector and a negative 

regulator of mTORC1 

(The UniProt Consortium, 2017). 

Autophagy 

 EIF4E component of the eukaryotic translation 

initiation factor 4F complexids in 

translation initiation by recruiting 
ribosomes to the 5'-cap structure 

(The UniProt Consortium, 2017). 

Protein 

Synthesis 

 EIF4B Required for the binding of mRNA to 
ribosomes.inds near the 5-terminal cap of 

mRNA in presence of EIF-4F and ATP. 

Promotes the ATPase activity and the ATP-
dependent RNA unwinding activity of both 

EIF4-A and EIF4-F (The UniProt Consortium, 

2017). 

Protein 
Synthesis 

 RPS6KB1 Cytoplasmic ribosomal protein that is a 

component of the 40S subunit 

(The UniProt Consortium, 2017). 

Protein 

Synthesis 

mTORC2 RHOA Role in the regulation of assembly of focal 

adhesions and actin stress fibres (Sit & 

Manser, 2011). 

Cytoskeleton 

Organization 

 PKC (See Wnt Signalling Pathway) Angiogenesis 

   Apoptosis 

   Apoptotic 

Stress 

Response 
 

(Continued) 
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Condition Protein Function Key Word 

mTORC2 PKC (See Wnt Signalling Pathway) Cancer Drug 
Resistance 

   Cancer 

Invasion 

   Cancer 

Proliferation 

   Cytoskeleton 

Organization 

   Cytoskeleton 

Regulation 

   Differentiation 

   Immunity 

Regulation 

   Immune 
Response 

   Phagocytosis 

   Platelet 

Activation 

   Proliferation 

   Viral 

Carcinogenesis 

 SGK1 SGKs are related to Akt (also called PKB), a 

serine/threonine kinase that plays a crucial 

role in promoting cell survival. Like Akt, 

SGKs are activated by the 
phosphoinositide-3 kinase (PI3K) and 

translocate to the nucleus upon growth 

factor stimulationt SGK1, like Akt, promotes 
cell survival and that it does so in part by 

phosphorylating and inactivating FKHRL1 

(Brunet et al., 2001). 

Cell Survival 
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TABLE 9. Functional annotation of the final effectors of the AMPK Signalling Pathway.  
 

Condition Protein Function Key Word 

AMPK PFKFB1 Catalyses the synthesis and degradation of 

fructose 2,6-bisphosphate, phosphorylated by 
AMPK leads to increased glycolysis 

(The UniProt Consortium, 2017). 

Glycolysis 

 G6PC Hydrolyzes glucose-6-phosphate to glucose in 
the endoplasmic reticulum. Forms with the 

glucose-6-phosphate transporter complex 

responsible for glucose production through 
glycogenolysis and gluconeogenesis. Hence, it 

is the key enzyme in homeostatic regulation of 

blood glucose level (The UniProt Consortium, 
2017). 

Gluconeogenesis 

 PCK2 Catalyzes the conversion of oxaloacetate 

(OAA) to phosphoenolpyruvate (PEP), the rate-
limiting step in the metabolic pathway that 

produces glucose from lactate and other 

precursors derived from the citric acid cycle 
(The UniProt Consortium, 2017). 

Gluconeogenesis 

 PPARGC1A Transcriptional coactivator, can regulate key 

mitochondrial genes that contribute to the 

program of adaptive thermogenesis. Plays an 

essential role in metabolic reprogramming in 

response to dietary availability through 

coordination of the expression of a wide array 
of genes involved in glucose and fatty acid 

metabolism (The UniProt Consortium, 2017). 

Gluconeogenesis 

 CCND1 (See TP53 Signalling Pathway) Cell Cycle 

Progression 

 CCNA Essential for the control of the cell cycle at the 
G1/S (start) and the G2/M (mitosis) transitions 

(The UniProt Consortium, 2017). 

Cell Cycle 
Progression 

 EEF2 Essential factor for protein synthesis, it 
promotes the GTP-dependent translocation of 

the nascent protein chain from the A-site to 

the P-site of the ribosome 
(The UniProt Consortium, 2017). 

Protein Synthesis 
 

 

 
 

 

(Continued) 
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Condition Protein Function Key Word 

AMPK SIRT1 Sirt1’s deacetylation of Peroxisome 
proliferator-activated receptor Gamma 

Coactivator-1α (PGC-1α) has been extensively 

implicated in metabolic control and 

mitochondrial biogenesis (Tang, 2016). 

Mitochondrial 
Biogenesis 

 SLC2A4 Insulin-regulated facilitative glucose 

transporter, within minutes of insulin 

stimulation, the protein moves to the cell 
surface and begins to transport glucose across 

the cell membrane (The UniProt Consortium, 

2017). 

Glucose 

Transporter 

 GYS Catalyzes the addition of glucose monomers 

to the growing glycogen molecule through the 

formation of alpha-1,4-glycoside linkages 

Glycogen 

Synthesis 

 LIPE In adipose tissue and heart, it primarily 

hydrolyzes stored triglycerides to free fatty 
acids, while in steroidogenic tissues, it 

converts cholesteryl esters to free cholesterol 

for steroid hormone production 

(The UniProt Consortium, 2017). 

Lipolysis 

 HMGCR Catalyzes the conversion of 3-hydroxy-3-

methyl-glutaryl-CoA to mevalonic acid, the 

rate limiting step in cholesterol biosynthesis 
(The UniProt Consortium, 2017). 

Cholesterol 

Synthesis 

 FAS Catalyzes the conversion of acetyl-CoA and 
malonyl-CoA to the 16-carbon fatty acid 

palmitate (The UniProt Consortium, 2017). 

Lipid Biosynthesis 

 FASN overexpression and hyperactivity is 
commonly associated with malignant cells 

(Menendez & Lupu, 2007). 

Cancer 
Transcriptional 

Misregulation 

 ACACA Catalyzes the rate-limiting reaction in the 
biogenesis of long-chain fatty acids 

(The UniProt Consortium, 2017). 

Lipid Biosynthesis 

 SCD Enzyme involved in fatty acid biosynthesis, 
primarily the synthesis of oleic acid 

(The UniProt Consortium, 2017). 

Lipid Biosynthesis 
 

 

 
 

(Continued) 
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Condition Protein Function Key Word 

AMPK CFTR Transporter, secretes chloride outside of the 
cell (The UniProt Consortium, 2017). 

Chloride 
Secretion 

 ACACB Thought to control fatty acid oxidation by 

means of the ability of malonyl-CoA to inhibit 
carnitine-palmitoyl-CoA transferase I, the 

rate-limiting step in fatty acid uptake and 

oxidation by mitochondria 

(The UniProt Consortium, 2017). 

Fatty Acid 

Oxidation 

 MLYCD Catalyses the breakdown of malonyl-CoA to 

acetyl-CoA and carbon dioxide. Malonyl-CoA is 

an intermediate in fatty acid biosynthesis, 

also inhibits the transport of fatty acyl CoAs 

into mitochondria. Consequently, the 

encoded protein acts to increase the rate of 
fatty acid oxidation (The UniProt Consortium, 

2017). 

Fatty Acid 

Oxidation 

 CPT1A Regulates the beta-oxidation and transport of 

long-chain fatty acids into mitochondria 

(The UniProt Consortium, 2017). 

Fatty Acid 

Oxidation 

Regulation 

 RPS6KB1 (See mTOR Signalling Pathway) Protein Synthesis 

 EIF4E (See mTOR Signalling Pathway) Protein Synthesis 

 PPARG Nuclear receptor that binds peroxisome 

proliferators such as fatty acids. Binds to DNA 

specific PPAR response elements (PPRE) and 

modulates the transcription of its target 

genes, such as acyl-CoA oxidase. It therefore 

controls the peroxisomal beta-oxidation 

pathway of fatty acids. Key regulator of 
adipocyte differentiation and glucose 

homeostasis (The UniProt Consortium, 2017). 

Differentiation 

 ULK1 (See mTOR Signalling Pathway) Autophagy 
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TABLE 10. Functional annotation of the final effectors of the PI3K-AKT Signalling Pathway.  
 

Condition Protein Function Key Word 

Hypoxia/AMP/LKB1 EIF4E (See mTOR Signalling Pathway) Protein Synthesis 

 EIF4B (See mTOR Signalling Pathway) Protein Synthesis 

RPS6KB1 (See mTOR Signalling Pathway) Protein Synthesis 

GF MAPK1 Translocates to the nucleus of the 
stimulated cells, where it 

phosphorylates nuclear target, 

mediating diverse biological functions 
such as cell growth, adhesion, survival 

and differentiation. Plays also a role in 

initiation and regulation of meiosis, 
mitosis, and post-mitotic functions in 

differentiated cells (Sato et al., 2011). 

Endothelial angiogenic response via 

frequency-sensitive MAPK/ERK pathway 
activation (Sheikh et al., 2013). 

Angiogenesis 

DNA Repair 

Proliferation 

PIP3 PKC (See Wnt Signalling Pathway) Angiogenesis 

   Apoptosis 

   Apoptotic Stress 

Response 

   Cancer Drug 

Resistance 

   Cancer Invasion 

   Cancer 

Proliferation 

   Cytoskeleton 

Organization 

   Cytoskeleton 

Regulation 

   Differentiation 

PIP3 PKC (See Wnt Signalling Pathway) Immunity 

Regulation 

   Immune 

Response 

   Phagocytosis 
(Continued) 
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Condition Protein Function Key Word 

PIP3 PKC (See Wnt Signalling Pathway) Platelet 
Activation 

   Proliferation 

   Viral 
Carcinogenesis 

 PKN3 Regulation of cell adhesion, cell cycle 
progression, actin cytoskeleton 

assembly, cell migration 

(The UniProt Consortium, 2017). 

Scaffold 

 Mediates malignant cell growth 

contributing to metastatic cell growth, 

required for invasive prostate cancer 

(Leenders et al., 2004). 

Cancer Invasion 

 SGK3 (See mTOR Signalling Pathway) Cell Survival 

 NOS3 Leads to NO production, which 
mediates VEGF-induced angiogenesis in 

coronary vessels and promotes blood 

clotting through the activation of 
platelets 

Angiogenesis 

 Platelet 

Activation 

 NO• is a physiological regulator of cell 

growth, directly involved in the control 
of cell cycle progression, including the 

expression and activity of diverse 

cyclins and cyclin-dependent kinases, 
their physiological inhibitors, and the 

master transcriptional regulator 

retinoblastoma protein (Villalobo, 

2006). 

Proliferation 

Arrest 

 BRCA1 Genomic stability, tumor suppressor. 

Plays a role in DNA repair of ds-breaks, 
and recombination. Regulates 

centrosomal microtubule nucleation. 

Required for cell cycle progression 

G2/M. Required for cell cycle arrest after 
ionizing irradiation in both the S-phase 

and the G2 phase of the cell cycle. 

Involved in transcriptional regulation of 
P21 in response to DNA damage 

(The UniProt Consortium, 2017). 

DNA Repair 
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Condition Protein Function Key Word 

PIP3 BRCA1 Probable predisposing mutations have 
been detected in five of eight kindreds 

presumed to segregate BRCA1 

susceptibility alleles (Miki et al., 1994). 

Cancer 
Development 

 GYS (See AMPK Signalling Pathway) Glycogen 

Synthesis 

 PCK2 (See AMPK Signalling Pathway) Gluconeogenesis 

 G6Pace (See AMPK Signalling Pathway) Gluconeogenesis 

 MYC (See MAPK Signalling Pathway) Cell Cycle 

Progression 

 Cell Growth 

 Differentiation 

 Stem Cell Self 

Renewal 

 CCND1 (See Wnt Signalling Pathway) Cell Cycle 

Progression 

 CDKN1B Regulator of cell cycle progression. 

Involved in G1 arrest. Potent inhibitor of 

cyclin E- and CCNA-CDK2 complexes. 

Forms a complex with cyclin type D-
CDK4 complexes and is involved in the 

assembly, stability, and modulation of 

CCND1-CDK4 complex activation. 
Controls the cell cycle progression at 

G1. The degradation of this protein is 

required for the cellular transition from 
quiescence to the proliferative state 

(The UniProt Consortium, 2017). 

Cell Cycle Arrest 

 RBL2 Key regulator of entry into cell division. 
Directly involved in heterochromatin 

formation by maintaining overall 

chromatin structure. In particular, that 

of constitutive heterochromatin by 
stabilizing histone methylation 

(The UniProt Consortium, 2017). 

Cell Cycle 
Progression 

 FASLG 

 

Induction of apoptosis triggered by 

binding to FAS 

(The UniProt Consortium, 2017). 

Apoptosis 

 

(Continued) 
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Condition Protein Function Key Word 

PIP3 FASLG The Fas/FASLG system plays a 
significant role in tumorigenesis. 

Research has shown that its 

impairment in cancer cells may lead to 

apoptosis resistance and contribute to 
tumor progression (Villa-Morales & 

Fernández-Piqueras, 2012). 

Cancer 
Development 

  Essential for immune system 
regulation, including activation-

induced cell death (AICD) of T cells and 

cytotoxic T lymphocyte induced cell 

death (The UniProt Consortium, 2017). 

Immune 
Response 

 BCL2L11 It has been shown to interact with other 

members of the BCL2 protein family 
and to act as an apoptotic activator. 

The expression of this gene can be 

induced by nerve growth factor (NGF), 
as well as by the forkhead transcription 

factor FKHR-L1, which suggests a role of 

this gene in neuronal and lymphocyte 
apoptosis. Transgenic studies of the 

mouse counterpart suggested that this 

gene functions as an essential initiator 

of apoptosis in thymocyte-negative 
selection (The UniProt Consortium, 

2017). 

Apoptosis 

 BCL2L1 Potent inhibitor of cell death. Inhibits 

activation of caspases. Appears to 

regulate cell death by blocking the 

voltage-dependent anion channel 
(VDAC) by binding to it and preventing 

the release of the caspase activator, 

CYC1, from the mitochondrial 

membrane (The UniProt Consortium, 

2017). 

Antiapoptosis 

 BCL2 (See Focal Adhesion Pathway) Antiapoptosis 
 

 

 

(Continued) 
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Condition Protein Function Key Word 

 CASP9 This protein can undergo 
autoproteolytic processing and 

activation by the apoptosome; this step 

is thought to be one of the earliest in 

the caspase activation cascade 
(The UniProt Consortium, 2017). 

Apoptosis 

 MCL1 Antiapoptotic, regulates apoptosis 

versus cell survival, and maintenance of 
viability. Mediates its effects by 

interacting with other regulators of 

apoptosis (The UniProt Consortium, 

2017). 

Antiapoptosis 

 MYB Essential role in hematopoiesis 

regulation (The UniProt Consortium, 
2017). 

Hematopoiesis 

 Aberrantly expressed or rearranged in 
leukemias and lymphomas, an 

oncogene (Ramsay & Gonda, 2008). 

Cancer 
Development 

 TP53 Induces growth arrest or apoptosis 
depending on the physiological 

circumstances and cell type. Involved in 

cell cycle regulation as a trans-activator 

that negatively regulates cell division. 
Apoptosis induction seems to be 

mediated either by stimulation of BAX 

and FAS antigen expression, or by 
repression of BCL2 expression. With 

PPIF is involved in activating oxidative 

stress-induced necrosis. Induces 
transcription of long intergenic non-

coding RNA p21, which participates in 

TTP53-dependent transcriptional 

repression leading to apoptosis and 

seems to have to effect on cell-cycle 

regulation. Implicated in Notch 

signalling cross-over. Prevents CDK7 
kinase activity when associated to CAK 

complex in response to DNA damage, 

thus stopping cell cycle progression 

(The UniProt Consortium, 2017). 

Apoptosis 
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TABLE 11. Functional annotation of the final effectors of the PPAR Signalling Pathway.  
 

Condition Protein Function Key Word 

PPARα/RXR 

 

HMGCS2 Catalyzes the first reaction of ketogenesis, a 

metabolic pathway that provides lipid-
derived energy for various organs during 

times of carbohydrate deprivation, such as 

fasting (The UniProt Consortium, 2017). 

Ketogenesis 

APOA1 Components of the high density lipoprotein 

(HDL) and very low density lipoproteins 

(VLDL) in plasma, promotes cholesterol 
efflux from tissues to the liver for excretion 

into plasma  (The UniProt Consortium, 2017). 

Lipid Transport 

APOA2 Lipid Transport 

APOC3 Lipid Transport 

APOA5 Lipid Transport 

PLTP Lipid Transport 

PPARα/RXR 

or 
PPARγ/RXR 

 

ME1 Generates NADPH for fatty acid biosynthesis  

(The UniProt Consortium, 2017). 

Lipid Biosynthesis 

 SCD Stearyl-CoA desaturase that utilizes O(2) and 
electrons from reduced cytochrome b5 to 

introduce the first double bond into 

saturated fatty acyl-CoA substrates  
(The UniProt Consortium, 2017). 

Lipid Biosynthesis 

 FADS2 Catalyzes biosynthesis of highly unsaturated 

fatty acidsfrom precursor essential 
polyunsaturated fatty acids  

(The UniProt Consortium, 2017). 

Lipid Biosynthesis 

 CYP7A1 Catalyzes the first reaction in the cholesterol 
catabolic pathway in the liver, which 

converts cholesterol to bile acids. which is 

the primary mechanism for the removal of 
cholesterol from the body  

(The UniProt Consortium, 2017). 

Cholesterol 
Catabolism 

 CYP8B1 Catalyzes many reactions involved in drug 

metabolism and synthesis of cholesterol, 

steroids and other lipids. Determines the 

relative amounts of cholic acid and 
chenodeoxycholic acid, both secreted in the 

bile and affect the solubility of cholesterol  

(The UniProt Consortium, 2017). 

Cholesterol 

Metabolism 

 

 
 

 

 
(Continued) 
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Condition Protein Function Key Word 

PPARα/RXR 
or 

PPARγ/RXR 

CYP27A1 Catalyzes a rate-limiting step in cholesterol 
catabolism and bile acid biosynthesis  

(The UniProt Consortium, 2017). 

Cholesterol 
Catabolism 

 NR1H3 The NR1 family members are key regulators 
of macrophage function, controlling 

transcriptional programs involved in lipid 

homeostasis and inflammation. It forms a 

heterodimer with retinoid X receptor (RXR), 
and regulates expression of target genes 

containing retinoid response elements. Plays 

an important role in the regulation of 

cholesterol homeostasis  

(The UniProt Consortium, 2017). 

Cholesterol 
Metabolism 

 Immune Response 

PPARα/RXR 
or 

PPARγ/RXR 

or 

ACBP Binds medium- and long-chain acyl-CoA 
esters with very high affinity and may 

function as an intracellular carrier of acyl-

CoA esters  (The UniProt Consortium, 2017). 

Fatty Acid 
Transport 

PPARβδ/RXR FABP1 Plays a role in lipoprotein-mediated 

cholesterol uptake in hepatocytes. Binds 

cholesterol and free fatty acids and their 
coenzyme A derivatives, bilirubin, and some 

other small molecules in the cytoplasm. May 

be involved in intracellular lipid transport  
(The UniProt Consortium, 2017). 

Fatty Acid 

Transport 

 FABP1/4 Lipid transport protein in adipocytes. Binds 

both long chain fatty acids and retinoic acid. 
Delivers them to their cognate receptors in 

the nucleus  (The UniProt Consortium, 2017). 

Fatty Acid 

Transport 

 FABP3 Intracellular transport of long-chain fatty 
acids and their acyl-CoA esters  

(The UniProt Consortium, 2017). 

Fatty Acid 
Transport 

 CD36 Glycoprotein on platelet surfaces, serves as a 

receptor for thrombospondin in platelets 

and various cell lines, binds to collagen, 

thrombospondin, anionic phospholipids, 
oxidized LDL and long chain fatty acids and 

functions in the transport and/or as a 

regulator of fatty acid transport  
(The UniProt Consortium, 2017). 

Fatty Acid 

Transport 
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Condition Protein Function Key Word 

PPARα/RXR 
or 

PPARγ/RXR 

or 

PPARβδ/RXR 

LPL LPL functions as a homodimer, and has the 
dual functions of triglyceride hydrolase and 

ligand/bridging factor for receptor-mediated 

lipoprotein uptake  

(The UniProt Consortium, 2017). 

Fatty Acid 
Transport 

 ACSL1 Activation of long-chain fatty acids for both 

synthesis of cellular lipids, and degradation 

via beta-oxidation  (The UniProt Consortium, 
2017). 

Lipid Metabolism 

 OLR1 Receptor that mediates the recognition, 

internalization and degradation of 

oxidatively modified low density lipoprotein 

(oxLDL) by vascular endothelial cells. Its 

association with oxLDL induces the 
activation of NF-kappa-B through an 

increased production of intracellular 

reactive oxygen and a variety of pro-
atherogenic cellular responses including a 

reduction of nitric oxide (NO) release, 

monocyte adhesion and apoptosis  
(The UniProt Consortium, 2017). 

Apoptosis 

 Fatty Acid 

Transport 

 Receptor for the HSP70 protein involved in 

antigen cross-presentation to naive T-cells in 
dendritic cells, thereby participating in cell-

mediated antigen cross-presentation. 

Involved in inflammatory process, by acting 
as a leukocyte-adhesion molecule at the 

vascular interface in endotoxin-induced 

inflammation. Also, acts as a receptor for 

advanced glycation end (AGE) products, 
activated platelets, monocytes, apoptotic 

cells and both Gram-negative and Gram-

positive bacteria (The UniProt Consortium, 

2017). 

Immune Response 

 EHHADH Bifunctional enzyme and is one of the four 

enzymes of the peroxisomal beta-oxidation 
pathway  (The UniProt Consortium, 2017). 

Fatty Acid 

Oxidation 

 ACAA1 Enzyme operative in the beta-oxidation 

system of the peroxisomes  
(The UniProt Consortium, 2017). 

Fatty Acid 

Oxidation 
(Continued) 
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Condition Protein Function Key Word 

PPARα/RXR 
or  

PPARγ/RXR 

SCP2 Peroxisome-associated thiolase that is 
involved in the oxidation of branched chain 

fatty acids 

Fatty Acid 
Oxidation 

or 
PPARβδ/RXR 

ACOX1 First enzyme of the fatty acid beta-oxidation 
pathway  

(The UniProt Consortium, 2017). 

Fatty Acid 
Oxidation 

 CPT1A Rate-controlling enzyme of the long-chain 
fatty acid beta-oxidation pathway in muscle 

mitochondria, required for the net transport 

of long-chain fatty acyl-CoAs from the 

cytoplasm into the mitochondria  

(The UniProt Consortium, 2017). 

Fatty Acid 
Oxidation 

 CPT2 Oxidizes long-chain fatty acids in the 
mitochondria  (The UniProt Consortium, 

2017). 

Fatty Acid 
Oxidation 

 ACADL Mitochondrial flavoenzyme involved in fatty 
acid and branched chain amino-acid 

metabolism. Catalyzes the initial step of 

mitochondrial beta-oxidation of straight-
chain fatty acid  (The UniProt Consortium, 

2017). 

Fatty Acid 
Oxidation 

 ACADM Acyl-CoA dehydrogenase specific for acyl 
chain lengths of 4 to 16 that catalyzes the 

initial step of fatty acid beta-oxidation  

(The UniProt Consortium, 2017). 

Fatty Acid 
Oxidation 

 ANGPTL4 Hypoxia-induced expression in endothelial 

cells. May act as a regulator of angiogenesis 

and modulate tumorigenesis. Can prevent 
metastasis by inhibiting vascular growth and 

tumor cell invasion. In response to hypoxia, 

the unprocessed form of the protein 
accumulates in the subendothelial 

extracellular matrix, which limits the 

formation of actin stress fibers and focal 

contacts in the adhering endothelial cells 
and inhibits their adhesion. It also decreases 

motility of endothelial cells and inhibits the 

sprouting and tube formation (Galaup et al., 
2006). 

 

Antiproliferation 

  Cancer Invasion 

Inhibition 
 

 

 
 

 

 
 

 

 

 
 

(Continued) 
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Condition Protein Function Key Word 

PPARα/RXR 
or  

PPARγ/RXR 

ANGPTL4 Serum hormone that regulates glucose 
homeostasis, lipid metabolism, and insulin 

sensitivity (The UniProt Consortium, 2017). 

Glucose 
Metabolism 

Or  Lipid Metabolism 

PPARβδ/RXR  (Kanehisa, Sato, Kawashima, Furumichi, & 

Tanabe, 2016) 

Adipocyte 

Differentiation 

 FABP4 Lipid transport protein in adipocytes. 

Delivers long-chain fatty acids and retinoic 

acid to their cognate receptors in the 

nucleus (The UniProt Consortium, 2017). 

Lipid Transport 

 (Kanehisa et al., 2016) Adipocyte 

Differentiation 

 SORBS1 CBL-associated protein which functions in 

the signalling and stimulation of insulin. 

Required for insulin-stimulated glucose 
transport (The UniProt Consortium, 2017). 

Glucose Transport 

 (Kanehisa et al., 2016) Adipocyte 

Differentiation 

 PLIN2 Involved in development and maintenance 

of adipose tissue (The UniProt Consortium, 

2017). 

Adipocyte 

Differentiation 

 ADIPOQ Antagonizes TNF-alpha by negatively 

regulating its expression in various tissues 

such as liver and macrophages, and also by 
counteracting its effects. Inhibits endothelial 

NF-kappa-B signalling through a cAMP-

dependent pathway 
(The UniProt Consortium, 2017). 

Antiinflammatory 

 Control of fat metabolism and insulin 

sensitivity, with direct anti-diabetic, anti-
atherogenic and anti-inflammatory 

activities. In the liver and the skeletal 

muscle, enhances glucose utilization and 
fatty-acid combustion 

(The UniProt Consortium, 2017). 

Glucose 

Metabolism 

 Lipid Metabolism 

 (Kanehisa et al., 2016) Adipocyte 
Differentiation 

(Continued) 
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Condition Protein Function Key Word 

PPARα/RXR MMP1 Secreted protease, breaks down the 
interstitial collagens, including types I, II, 

and III. Overexpression has a role in initiating 

tumorigenesis by degrading the stroma, 

facilitating metastasis (Poola et al., 2005). 
 

Cancer Invasion 

or  

PPARγ/RXR 

Or 
PPARβδ/RXR 

Cancer 

Transcriptional 

Misregulation 

 (Kanehisa et al., 2016) Adipocyte 

Differentiation 

 UCP1 Separates oxidative phosphorylation from 

ATP synthesis with energy dissipated as 

heat, also referred to as the mitochondrial 

proton leak. Is responsible for thermogenic 

respiration, a specialized capacity of brown 

adipose tissue and beige fat that 
participates to non-shivering adaptive 

thermogenesis to temperature and diet 

variations and more generally to the 
regulation of energy balance 

(The UniProt Consortium, 2017). 

 

Adaptive 

Thermogenesis 

 ILK Important in the epithelial to mesenchymal 

transition, and over-expression of this gene 

is implicated in tumor growth and 
metastasis (The UniProt Consortium, 2017). 

 

Cancer Invasion 

 Mediator of inside-out integrin signalling. 
Focal adhesion protein part of the complex 

ILK-PINCH. This complex is considered to be 

one of the convergence points of integrin- 
and growth factor-signalling pathway 

(The UniProt Consortium, 2017). 

 

Cell Survival 

 PDK1 Important role in cellular responses to 

hypoxia and is important for cell 

proliferation under hypoxia. Protects cells 
against apoptosis in response to hypoxia 

and oxidative stress 

(The UniProt Consortium, 2017). 

 
 

Antiapoptosis 

 

 
 

 

 

(Continued) 
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Condition Protein Function Key Word 

 UBC If polyubiquitin chains are attached in the 6th 
Lys, involved in DNA repair. Lys-11-linked, 

involved in endoplasmic reticulum-

associated degradation and in cell-cycle 

regulation. Lys-29-linked is involved in 
lysosomal degradation. Lys-33-linked is 

involved in kinase modification. Lys-48-

linked is involved in protein degradation via 
the proteasome. Lys-63-linked is involved in 

endocytosis, DNA-damage responses as well 

as in signalling processes leading to 

activation of the transcription factor NF-

kappa-B. Linear polymer chains formed via 

attachment by the initiator Met lead to cell 

signalling (The UniProt Consortium, 2017). 

Ubiquitination 

PPARγ/RXR PCK2 (See AMPK Pathway) Gluconeogenesis 

GK Key enzyme in the regulation of glycerol 
uptake and metabolism 

(The UniProt Consortium, 2017). 

Glycerol 
Metabolism 

 
AQP7 

The encoded protein localizes to the plasma 
membrane and allows movement of water, 

glycerol and urea across cell membranes. 

This gene is highly expressed in the adipose 
tissue where the encoded protein facilitates 

efflux of glycerol. In the proximal straight 

tubules of kidney, the encoded protein is 
localized to the apical membrane and 

prevents excretion of glycerol into urine 

(The UniProt Consortium, 2017). 

Glycerol Transport 

Urea Transport 

Water Transport 

 

 

 
 
TABLE 12. Functional annotation of the final effectors of the VEGF Signalling Pathway.  
 

Condition Protein Function Key Word 

VEGFR2 MAPK1 (See PIK3-AKT Signalling Pathway) Angiogenesis 

 DNA Repair 

 Proliferation 

(Continued) 
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Condition Protein Function Key Word 

VEGFR2 cPLA2 (See MAPK Signalling Pathway) Immune 
Response 

 Phagocytosis 

 Platelet 
Activation 

 MT-CO2 PTGS2 is responsible for production of 
inflammatory prostaglandins. Up-regulation of 

PTGS2 is also associated with increased cell 

adhesion, phenotypic changes, resistance to 

apoptosis and tumour angiogenesis 

(The UniProt Consortium, 2017). 

Antiapoptosis 

 Cancer 

Angiogenesis 

 Cell Adhesion 

 Inflammatory 

Response 

 PTK2 Essential role in regulating cell migration, adhesion, 

spreading, reorganization of the actin cytoskeleton, 

formation and disassembly of focal adhesions and 
cell protrusions (The UniProt Consortium, 2017). 

Cell Migration 

 PXN Cytoskeletal protein involved in actin-membrane 

attachment at sites of cell adhesion to the 
extracellular matrix (focal adhesion) 

(The UniProt Consortium, 2017). 

Cell Migration 

 HSPB1 (See MAPK Signalling Pathway) Antiapoptotic 
Stress 

Response 

 RAC1 (See Tight Junction Pathway) Cancer 
Invasion 

 Cell Polarity 

 Proliferation 

 NOS3 (See PIK3-AKT Signalling Pathway) Angiogenesis 

 Platelet 

Activation 

 Proliferation 
Arrest 

 CASP9 (See PIK3-AKT Signalling Pathway) Apoptosis 

 BAD Positively regulates cell apoptosis by forming 

heterodimers with BCL2L1 and BCL2, and reversing 

their death repressor activity 
(The UniProt Consortium, 2017). 

Apoptosis 
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TABLE 13. Functional annotation of the final effectors of the Jak-STAT Signalling Pathway.  
 

Condition Protein Function Key Word 

STAT/STAT BCL2 (See Focal Adhesion Pathway) Antiapoptosis 

MCL1 (See PIK3-AKT Signalling Pathway) Antiapoptosis 

BCL2L1 (See PIK3-AKT Signalling Pathway) Antiapoptosis 

PIM1 Contributes to cell proliferation and survival, 
and thus provides a selective advantage in 

tumorigenesis (The UniProt Consortium, 2017). 

Antiapoptosis 

Overexpressed in hematopoietic malignancies 

and in prostate cancer (Brasó-Maristany et al., 

2016). 

Cancer 

Transcriptional 

Misregulation 

MYC (See MAPK Signalling Pathway) Apoptosis 

Cancer 

Transcriptional 
Misregulation 

Cell Cycle 

Progression 

Cell Growth 

Differentiation 

Stem Cell Self 

Renewal 

CCND1 (See TP53 Signalling Pathway) Cell Cycle 

Progression 

CDKN1A Regulator of cell cycle progression at G1 
(The UniProt Consortium, 2017). 

Cell Cycle Arrest 

AOX1 Oxidase with broad substrate specificity, 

oxidizing aromatic azaheterocyclesas well as 
aldehydes. roduces hydrogen peroxide and, 

under certain conditions, can catalyze the 

formation of superoxide 
(The UniProt Consortium, 2017). 

Lipid Metabolism 

GFAP One of the major intermediate filament proteins 

of mature astrocytes. It is used as a marker to 
distinguish astrocytes from other glial cells 

during development (The UniProt Consortium, 

2017). 

Differentiation 
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TABLE 14. Functional annotation of the final effectors of the cAMP Signalling Pathway.  
 

Condition Protein Function Key Word 

cAMP PLD1 Yields Phosphatidic Acid, precursor for the 

biosynthesis of many other lipids, influencing the 
membrane (The UniProt Consortium, 2017). 

Cytoskeleton 

Organization 

 PLCE1 Catalyzes the hydrolysis of phosphatidylinositol-

4,5-bisphosphate to generate two second 
messengers: inositol 1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG), which are involved in 

calcium handling (The UniProt Consortium, 
2017). 

Calcium 

Handling 

 PAK1 Phosphorylates BAD and protects cells against 

apoptosis (The UniProt Consortium, 2017). 

Antiapoptosis 

 Plays a role in RUFY3-mediated facilitating 

gastric cancer cells migration and invasion 

(Wang et al., 2015). 

Cancer Invasion 

 Involved in the reorganization of the actin 

cytoskeleton, actin stress fibers and of focal 
adhesion complexes. Phosphorylates the tubulin 

chaperone TBCB and thereby plays a role in the 

regulation of microtubule biogenesis and 

organization of the tubulin cytoskeleton. Part of 

a ternary complex that contains PAK1, DVL1 and 

MUSK that is important for MUSK-dependent 

regulation of AChR clustering during the 
formation of the neuromuscular junction (NMJ) 

(The UniProt Consortium, 2017). 

Cytoskeleton 

Organization 

 Plays a role in the regulation of insulin secretion 
in response to elevated glucose levels 

(The UniProt Consortium, 2017). 

Insulin Secretion 

 RHOA (See mTOR Signalling Pathway) Cytoskeleton 
Organization 

 AFDN Belongs to the E-cadherin-catenin system, which 

plays a role in the organization of homotypic, 

interneuronal and heterotypic cell-cell adherens 

junctions (AJs). Nectin- and actin-filament-

binding protein that connects nectin to the actin 
cytoskeleton (The UniProt Consortium, 2017). 

Cytoskeleton 

Organization 

 

 

 
 

 

(Continued) 
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Condition Protein Function Key Word 

cAMP BDNF Binding of this protein to its cognate receptor 
promotes neuronal survival in the adult brain 

(The UniProt Consortium, 2017). 

Cell Survival 

 FOS (See MAKP Signalling Pathway) Differentiation 

 Proliferation 

 JUN (See MAKP Signalling Pathway) Angiogenesis 

 Proliferation 

 Cell Cycle 
Progression 

 Cancer 

Transcriptional 
Misregulation 

 Differentiation 

 Angiogenesis 

 GLI1 The encoded transcription factor is activated by 

the sonic hedgehog signal transduction cascade 
and regulates stem cell proliferation 

Stem Cell 

Proliferation 
Regulation 

 PTCH1 The encoded protein is the receptor for sonic 

hedgehog, a secreted molecule implicated in the 
formation of embryonic structures 

(The UniProt Consortium, 2017). 

Embryonic 

Structures 
Formation 

 Inactivation of this protein is probably a 

necessary, if not sufficient step for 

tumorigenesis. Mutations of this gene have been 

associated with basal cell nevus syndrome, 
esophageal squamous cell carcinoma, 

trichoepitheliomas, transitional cell carcinomas 

of the bladder (The UniProt Consortium, 2017). 

Tumour 

Suppressor 

 HIP1 Membrane-associated protein that functions in 

clathrin-mediated endocytosis and protein 

trafficking within the cell. The encoded protein 
binds to the huntingtin protein in the brain 

(The UniProt Consortium, 2017). 

Endocytosis 

 Protein 
Trafficking 

 

 

(Continued) 
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Condition Protein Function Key Word 

cAMP AMH This complex binds to the anti-Mullerian 
hormone receptor type 2 and causes the 

regression of Mullerian ducts in the male embryo 

that would otherwise differentiate into the 

uterus and fallopian tubes. This protein also 
plays a role in Leydig cell differentiation and 

function and follicular development in adult 

females (The UniProt Consortium, 2017). 

Development 

 Able to inhibit the growth of tumours derived 

from tissues of Muellerian duct origin 

(The UniProt Consortium, 2017). 

Tumour 

Suppressor 

 ACOX1 (See PPAR Signalling Pathway) Fatty Acid 

Oxidation 

 F2R Coagulation factor II receptor is a 7-

transmembrane receptor involved in the 

regulation of thrombotic response 
(The UniProt Consortium, 2017). 

Thrombotic 

Response 

Regulation 

 BAD (See VEGF Signalling Pathway) Apoptosis 

 LIPE (See AMPK Signalling Pathway) Lipolysis 

 MYL2 (See tight Junction Pathway) Scaffold 

 TNNI3 Inhibitory subunit of troponin, the thin filament 
regulatory complex which confers calcium-

sensitivity to striated muscle actomyosin ATPase 

activity, blocking actin-myosin interactions and 
thereby mediating striated muscle relaxation 

(The UniProt Consortium, 2017). 

Cardiac Myocyte 
Relaxation 

 PLN Major substrate for the cAMP-dependent protein 
kinase in cardiac muscle. The encoded protein is 

an inhibitor of cardiac muscle sarcoplasmic 

reticulum Ca(2+)-ATPase in the 
unphosphorylated state, but inhibition is 

relieved upon phosphorylation of the protein. 

The subsequent activation of the Ca(2+) pump 

leads to enhanced muscle relaxation rates, 
thereby contributing to the inotropic response 

elicited in heart by beta-agonists. The encoded 

protein is a key regulator of cardiac diastolic 
function (The UniProt Consortium, 2017). 

 

Cardiac Diastolic 
Function 
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Condition Protein Function Key Word 

cAMP RYR2 Calcium channel that mediates the release of 
Ca(2+) from the sarcoplasmic reticulum into the 

cytoplasm and thereby plays a key role in 

triggering cardiac muscle contraction 

(The UniProt Consortium, 2017). 

Cardiac Myocyte 
Contraction 

 GRIN3A Glutamate-regulated ion channels, and function 

in physiological and pathological processes in 

the central nervous system, such as long term 
potentiation (Lüscher & Malenka, 2012). 

Long Term 

Potentiation 

 CACNG8 Ionotropic glutamate receptor. L-glutamate acts 

as an excitatory neurotransmitter at many 

synapses in the central nervous system. Binding 

of the excitatory neurotransmitter L-glutamate 

induces a conformation change, leading to the 
opening of the cation channel, and thereby 

converts the chemical signal to an electrical 

impulse (The UniProt Consortium, 2017). 

Excitatory 

Synapses 

 CFTR Involved in the excretion of chloride ions 

(Kanehisa et al., 2016). 

Chloride 

Excretion 

 FXYD1 Ion transporter, uses ATP to contribute to the 

uptake of 2K+ coupled with the secretion of 3Na+ 

(Kanehisa et al., 2016). 

Ion Transporter 

 SLC9A1 Na+/H+ antiporter, is a plasma membrane 

transporter expressed in the kidney and 

intestine. Plays a central role in regulating pH 
homeostasis (The UniProt Consortium, 2017). 

Ion Transporter 

 ORAI1 Calcium channel, primary way for calcium influx 

into T-cells. Defects in this gene are a cause of 
immune dysfunction with T-cell inactivation due 

to calcium entry defect type 

(The UniProt Consortium, 2017). 

Ion Transporter 

 ATP2B1 Catalyses ATP coupled with the transport of 

calcium out of the cell (The UniProt Consortium, 

2017). 

Ion Transporter 

 CACNA1C Calcium channel, mediates the influx of calcium 

ions into the cell upon membrane polarization 

(Kanehisa et al., 2016). 
 

 

Ion Transporter 

 

 
 

(Continued) 
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Condition Protein Function Key Word 

 HCN2 HCN (hyperpolarization-activated, cyclic 
nucleotide-gated) channels are members of the 

cyclic nucleotide-regulated channel family along 

with cyclic nucleotide-gated (CNG) channels. 

They are cationic channels that open under 
hyperpolarization (The UniProt Consortium, 

2017). 

Ion Transporter 

 HCN4 HCN (hyperpolarization-activated, cyclic 
nucleotide-gated) channels are members of the 

cyclic nucleotide-regulated channel family along 

with cyclic nucleotide-gated (CNG) channels. 

They are cationic channels that open under 

hyperpolarization (The UniProt Consortium, 

2017). 

Ion Transporter 

 

 
TABLE 15. Functional annotation of the final effectors of the Hedgehog Signalling Pathway.  
 

Condition Protein Function Key Word 

With Hh GLI1 (See c-AMP Signalling Pathway) Stem Cell 
Proliferation 

Regulation 

PTCH1 (See c-AMP Signalling Pathway) Embryonic 

Structures 

Formation 

Tumour 

Suppressor 

HHIP Interacts with all three HH family members, SHH, 
IHH and DHH. Modulates hedgehog signalling in 

several cell types including brain and lung through 

direct interaction with members of the hedgehog 
family (The UniProt Consortium, 2017). 

Transcription 
Regulation 

CCND1 (See TP53 Signalling Pathway) Cell Cycle 

Progression 

BCL2 Integral outer mitochondrial membrane protein 

that blocks the apoptotic death of some cells such 

as lymphocytes (The UniProt Consortium, 2017). 

Antiapoptosis 
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TABLE 16. Functional annotation of the final effectors of the Cell Cycle.  
 

Condition Protein Function Key Word 

DNA 

damage 
checkpoint 

TP53 (See TP53 Signalling Pathway) Apoptosis 

Cell Cycle 

Arrest 

Cyclin D and 
CDK4/6 

E2F4 Inhibit DNA transcription of S-phase proteins 
(Dimova & Dyson, 2005). 

Cell Cycle 
Arrest E2F5 

E2F2 DNA transcription of S-phase proteins and Cyclin E 
(Dimova & Dyson, 2005). 

Cell Cycle 
Progression E2F3 

E2F1 

CCNA and 

CDK2 

CDC6 DNA synthesis, during S phase levels of CDK 

increase which phosphorylate Cdc6 and Cdt1, they 

lose their affinity for the compex and the DNA, so 

that the helicase stops being inhibited, leading to 

the double helix to be available for initiation of 

replication (The UniProt Consortium, 2017). 

Cell Cycle 

Progression 

DNA 
Biosynthesis 

ORC DNA synthesis, during S phase levels of CDK 

increase which phosphorylate Cdc6 and Cdt1, they 

lose their affinity for the compex and the DNA, so 
that the helicase stops being inhibited, leading to 

the double helix to be available for initiation of 

replication (The UniProt Consortium, 2017). 

Cell Cycle 

Progression 

DNA 
Biosynthesis 

 

 

 
 
TABLE 17. Functional annotation of the final effectors of Apoptosis.  
 

Condition Protein Function Key Word 

Extrinsic GZMB Disruption of alpha - tubulin leads to disruption 

of microtubule function, disruption of Mcl-1 leads 

to BCL2L11-mediated mitochondrial apoptotic 

events, cleavage of Lamin leads to loss of 

integrity of the nuclear membrane, cleavage of 

PARP leads to low synthesis of poly-ADP-ribose, 
and of ICAD/CAD to DNA fragmentation 

(The UniProt Consortium, 2017). 

Apoptosis 

 

 

 

 

 
 

 

 
(Continued) 
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Condition Protein Function Key Word 

Extrinsic GZMB Granizyme B is secreted by natural killer (NK) 
cells and cytotoxic T lymphocytes (CTLs) and 

proteolytically processed to generate the active 

protease, which induces target cell apoptosis. 

This protein processes cytokines and degrades 
extracellular matrix proteins, and these roles are 

implicated in chronic inflammation and wound 

healing (The UniProt Consortium, 2017). 

Inflammation 

 CASP3 Disruption of Lamin leads to loss of integrity of 

the nuclear membrane, of PARP leads to low 

synthesis of poly-ADP-ribose 

(The UniProt Consortium, 2017). 

Apoptosis 

 JUN Leads to transcription of pro-apoptotic genes 

(Fan & Chambers, 2001). 

Apoptosis 

 (See Wnt Signalling Pathway) Angiogenesis 

  Proliferation 

  Cell Cycle 

Progression 

  Cancer 

Transcriptional 

Misregulation 

  Differentiation 

  Cell Polarity 

  Cell Migration 

 AP1 (See Wnt Signalling Pathway) Angiogenesis 

  Proliferation 

  Cell Cycle 

Progression 

  Cancer 

Transcriptional 

Misregulation 

  Differentiation 

  Cell Polarity 

  Cell Migration 

 Leads to transcription of pro-apoptotic genes 
(Fan & Chambers, 2001). 

Apoptosis 
(Continued) 
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Condition Protein Function Key Word 

Extrinsic 
and 

Intrinsic 

CASP6 Disruption of Actin and Fodrin leads to cell 
shrinkage and membrane blebbing 

(The UniProt Consortium, 2017). 

Apoptosis 

CASP7 Cleavage of ICAD/CAD leads to DNA 
fragmentation (The UniProt Consortium, 2017). 

Apoptosis 

Intrinsic BAK1 Undergoes conformational change that induces 

its oligomerization leading to increased 
permeability of the external mitochondrial 

membrane, leakage of intermembrane factors 

such as cytochrome-c (The UniProt Consortium, 

2017). 

Apoptosis 

BAX After apoptotic Signalling is inserted in the 

external membrane of the mitochondria leading 
to increased permeability of the external 

mitochondrial membrane, leakage of 

intermembrane factors such as cytochrome-c 
(The UniProt Consortium, 2017). 

Apoptosis 

BCL2L1 (See PI3K/AKT Signalling Pathway) Antiapoptosis 

 BCL2 

ENDOG DNA fragmentation (The UniProt Consortium, 

2017). 

Apoptosis 

AIFM1 

NFKB1 NFKB1 (See MAPK Signalling Pathway) Antiapoptosis 

Cancer 
Transcriptional 

Misregulation 

Differentiation 

Inflammatory 

Response 

IL-3 BCL2 (See PI3K/AKT Signalling Pathway) Antiapoptosis 

 

 
 

 

 
 

 

 



 

ANNEX 1. Signalling Pathways Functional Annotation | LII 

 

Barral, D. C., & Brenner, M. B. (2007). CD1 antigen presentation: how it works. Nature Reviews 
Immunology, 7(12), 929–941. https://doi.org/10.1038/nri2191 

Bompard, G., Rabeharivelo, G., Frank, M., Cau, J., Delsert, C., & Morin, N. (2010). Subgroup II 
PAK-mediated phosphorylation regulates Ran activity during mitosis. The Journal of 

Cell Biology, 190(5), 807–822. https://doi.org/10.1083/jcb.200912056 

Brasó-Maristany, F., Filosto, S., Catchpole, S., Marlow, R., Quist, J., Francesch-Domenech, E., 

… Tutt, A. N. (2016). PIM1 kinase regulates cell death, tumor growth and 
chemotherapy response in triple-negative breast cancer. Nature Medicine, 22(11), 

1303–1313. https://doi.org/10.1038/nm.4198 

Brunet, A., Park, J., Tran, H., Hu, L. S., Hemmings, B. A., & Greenberg, M. E. (2001). Protein 
Kinase SGK Mediates Survival Signals by Phosphorylating the Forkhead 

Transcription Factor FKHRL1 (FOXO3a). Molecular and Cellular Biology, 21(3), 952–

965. https://doi.org/10.1128/MCB.21.3.952-965.2001 

Darding, M., Feltham, R., Tenev, T., Bianchi, K., Benetatos, C., Silke, J., & Meier, P. (2011). 

Molecular determinants of Smac mimetic induced degradation of cIAP1 and cIAP2. 

Cell Death and Differentiation, 18(8), 1376–1386. https://doi.org/10.1038/cdd.2011.10 

Dimova, D. K., & Dyson, N. J. (2005). The E2F transcriptional network: old acquaintances with 

new faces. Oncogene, 24(17), 2810–2826. https://doi.org/10.1038/sj.onc.1208612 

Ensign, F., Patricia, S., Mathews, I., Symons, M., Berens, M., & Tran, N. L. (2013). Implications 

of Rho GTPase Signalling in Glioma Cell Invasion and Tumor Progression. Frontiers 
in Oncology, 3. https://doi.org/10.3389/fonc.2013.00241 

Fan, M., & Chambers, T. C. (2001). Role of mitogen-activated protein kinases in the response 

of tumor cells to chemotherapy. Drug Resistance Updates, 4(4), 253–267. 
https://doi.org/10.1054/drup.2001.0214 

Forbes, S. A., Tang, G., Bindal, N., Bamford, S., Dawson, E., Cole, C., … Futreal, P. A. (2010). 

COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate 

acquired mutations in human cancer. Nucleic Acids Research, 38(Database issue), 

D652–D657. https://doi.org/10.1093/nar/gkp995 

Galaup, A., Cazes, A., Le Jan, S., Philippe, J., Connault, E., Le Coz, E., … Germain, S. (2006). 

Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability 
and tumor cell motility and invasiveness. Proceedings of the National Academy of 

Sciences of the United States of America, 103(49), 18721–18726. 

https://doi.org/10.1073/pnas.0609025103 



 

ANNEX 1. Signalling Pathways Functional Annotation | LIII 

Gnesutta, N., Qu, J., & Minden, A. (2001). The Serine/Threonine Kinase PAK4 Prevents 

Caspase Activation and Protects Cells from Apoptosis. Journal of Biological 
Chemistry, 276(17), 14414–14419. https://doi.org/10.1074/jbc.M011046200 

Goodsell, D. S. (2002). The Molecular Perspective: Tamoxifen and the Estrogen Receptor. The 

Oncologist, 7(2), 163–164. https://doi.org/10.1634/theoncologist.7-2-163 

Hart, S. M., & Foroni, L. (2002). Core binding factor genes and human leukemia. 

Haematologica, 87(12), 1307–1323. Retrieved from 

http://www.haematologica.org/content/87/12/1307 

Huttenlocher, A., & Horwitz, A. R. (2011). Integrins in Cell Migration. Cold Spring Harbor 

Perspectives in Biology, 3(9), a005074. https://doi.org/10.1101/cshperspect.a005074 

Johnson, M., Sharma, M., & Henderson, B. R. (2009). IQGAP1 regulation and roles in cancer. 

Cellular Signalling, 21(10), 1471–1478. https://doi.org/10.1016/j.cellsig.2009.02.023 

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a 

reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), 

D457–D462. https://doi.org/10.1093/nar/gkv1070 

Koonce, C. J., Walf, A. A., & Frye, C. A. (2009). Trilostane exerts antidepressive effects among 

wild-type, but not estrogen receptor [beta] knockout mice. Neuroreport, 20(12), 

1047–1050. 

Leenders, F., Möpert, K., Schmiedeknecht, A., Santel, A., Czauderna, F., Aleku, M., … Klippel, 

A. (2004). PKN3 is required for malignant prostate cell growth downstream of 

activated PI 3-kinase. The EMBO Journal, 23(16), 3303–3313. 

https://doi.org/10.1038/sj.emboj.7600345 

Liu, M., Bai, J., He, S., Villarreal, R., Hu, D., Zhang, C., … Liu, F. (2014). Grb10 Promotes 

Lipolysis and Thermogenesis by Phosphorylation-Dependent Feedback Inhibition of 

mTORC1. Cell Metabolism, 19(6), 967–980. 
https://doi.org/10.1016/j.cmet.2014.03.018 

Lüscher, C., & Malenka, R. C. (2012). NMDA Receptor-Dependent Long-Term Potentiation 

and Long-Term Depression (LTP/LTD). Cold Spring Harbor Perspectives in Biology, 
4(6). https://doi.org/10.1101/cshperspect.a005710 

Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in 

cancer pathogenesis. Nature Reviews Cancer, 7(10), 763–777. 

https://doi.org/10.1038/nrc2222 

Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., … Et, A. 

(1994). A strong candidate for the breast and ovarian cancer susceptibility gene 

BRCA1. Science, 266(5182), 66–71. https://doi.org/10.1126/science.7545954 



 

ANNEX 1. Signalling Pathways Functional Annotation | LIV 

Newton, P. M., & Messing, R. O. (2010). The substrates and binding partners of protein kinase 

Cε. The Biochemical Journal, 427(2), 189–196. https://doi.org/10.1042/BJ20091302 

Olson, M. F., & Sahai, E. (2009). The actin cytoskeleton in cancer cell motility. Clinical & 

Experimental Metastasis, 26(4), 273. https://doi.org/10.1007/s10585-008-9174-2 

Poola, I., DeWitty, R. L., Marshalleck, J. J., Bhatnagar, R., Abraham, J., & Leffall, L. D. (2005). 
Identification of MMP-1 as a putative breast cancer predictive marker by global gene 

expression analysis. Nature Medicine, 11(5), 481–483. 

https://doi.org/10.1038/nm1243 

Ramsay, R. G., & Gonda, T. J. (2008). MYB function in normal and cancer cells. Nature Reviews 

Cancer, 8(7), 523–534. https://doi.org/10.1038/nrc2439 

Sato, A., Sunayama, J., Matsuda, K., Seino, S., Suzuki, K., Watanabe, E., … Kitanaka, C. (2011). 

MEK-ERK Signalling Dictates DNA-Repair Gene MGMT Expression and Temozolomide 
Resistance of Stem-Like Glioblastoma Cells via the MDM2-p53 Axis. STEM CELLS, 

29(12), 1942–1951. https://doi.org/10.1002/stem.753 

Savoy, R. M., & Ghosh, P. M. (2013). The dual role of filamin A in cancer: can’t live with (too 
much of) it, can’t live without it. Endocrine-Related Cancer, 20(6), R341–R356. 

https://doi.org/10.1530/ERC-13-0364 

Sharma, S., Kaufmann, T., & Biswas, S. (2017). Impact of inhibitor of apoptosis proteins on 
immune modulation and inflammation. Immunology and Cell Biology, 95(3), 236–243. 

https://doi.org/10.1038/icb.2016.101 

Sheikh, A. Q., Taghian, T., Hemingway, B., Cho, H., Kogan, A. B., & Narmoneva, D. A. (2013). 

Regulation of endothelial MAPK/ERK signalling and capillary morphogenesis by low-
amplitude electric field. Journal of The Royal Society Interface, 10(78), 20120548. 

https://doi.org/10.1098/rsif.2012.0548 

Sit, S.-T., & Manser, E. (2011). Rho GTPases and their role in organizing the actin 
cytoskeleton. J Cell Sci, 124(5), 679–683. https://doi.org/10.1242/jcs.064964 

Stamos, J. L., & Weis, W. I. (2013). The β-Catenin Destruction Complex. Cold Spring Harbor 

Perspectives in Biology, 5(1). https://doi.org/10.1101/cshperspect.a007898 

Tang, B. L. (2016). Sirt1 and the Mitochondria. Moleucles and Cells, 39(2), 87–95. 

https://doi.org/10.14348/molcells.2016.2318 

Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F., … Meier, P. (2011). 

The Ripoptosome, a Signalling Platform that Assembles in Response to Genotoxic 
Stress and Loss of IAPs. Molecular Cell, 43(3), 432–448. 

https://doi.org/10.1016/j.molcel.2011.06.006 



 

ANNEX 1. Signalling Pathways Functional Annotation | LV 

The UniProt Consortium. (2017). UniProt: the universal protein knowledgebase. Nucleic 

Acids Research, 45(D1), D158–D169. https://doi.org/10.1093/nar/gkw1099 

Villalobo, A. (2006). REVIEW ARTICLE: Nitric oxide and cell proliferation: Nitric oxide and cell 

proliferation. FEBS Journal, 273(11), 2329–2344. https://doi.org/10.1111/j.1742-

4658.2006.05250.x 

Villa-Morales, M., & Fernández-Piqueras, J. (2012). Targeting the Fas/FasL signalling 

pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 85–101. 

https://doi.org/10.1517/14728222.2011.628937 

Wang, G., Zhang, Q., Song, Y., Wang, X., Guo, Q., Zhang, J., … Li, F. (2015). PAK1 regulates 

RUFY3-mediated gastric cancer cell migration and invasion. Cell Death & Disease, 6(3), 

e1682. https://doi.org/10.1038/cddis.2015.50 

Wishart, D. S. (2006). DrugBank: a comprehensive resource for in silico drug discovery and 
exploration. Nucleic Acids Research, 34(90001), D668–D672. 

https://doi.org/10.1093/nar/gkj067 

Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell 
migration and invasion. Biochimica et Biophysica Acta, 1773(5), 642–652. 

https://doi.org/10.1016/j.bbamcr.2006.07.001 

Ye, X., Tam, W. L., Shibue, T., Kaygusuz, Y., Reinhardt, F., Ng Eaton, E., & Weinberg, R. A. (2015). 
Distinct EMT programs control normal mammary stem cells and tumour-initiating 

cells. Nature, 525(7568), 256–260. https://doi.org/10.1038/nature14897 

 

 

 

 



 

 
 
 
 

 
 

 

 
 

 

 

 
 
 
 

 

 

 

 

 

 

 

 



ANNEX 2. Drug Actions Annotation | I 

 
TABLE 1. Categorization of drugs into activating or inhibiting based on Drug Bank terms and bibliography.  
 

DrugBank Term Drug-Target Explanation Action 

Acetylation Acetylsalicilic Acid - TP53 

Not known pharmacological action (Wishart, 

2006). 

Remove 

Activator Triggers the target. Activation 

Adduct Tigecycline  

Binds 30S ribosome, inhibiting translation 

(Wishart, 2006). To remove because it affects 
bacteria. 

Remove 

Vinblastine  

Binds tubulin, inhibiting mitosis at 
metaphase (Wishart, 2006). 

Inhibition 

Ethionamide 

Inhibits InhA, the enoyl reductase from 
Mycobacterium tuberculosis, by forming a 

covalent adduct with the NAD cofactor 

(Wishart, 2006).  To remove because affects 

bacteria. 

Remove 

Isoniazid 

Inhibits InhA, the enoyl reductase from 

Mycobacterium tuberculosis, by forming a 
covalent adduct with the NAD cofactor 

(Wishart, 2006).  To remove because affects 

bacteria. 
Gentamicin  

Irreversibly binds to specific 30S-subunit 

proteins and 16S rRNA (Wishart, 2006).  To 

remove because affects bacteria. 
Agonist Activates a receptor  Activation 

Agonistinhibitor Inhibits a receptor upon binding Inhibition 

Agonistmodulator Aldesleukin 
Binds to the IL-2 receptor which leads to 

heterodimerization of the cytoplasmic 

domains of the IL-2R beta and gamma(c) 
chains, activation of the tyrosine kinase Jak3, 

and phosphorylation of tyrosine residues on 

the IL-2R beta chain. These events led to the 

creation of an activated receptor complex, to 

which various cytoplasmic signalling  

Activation 
 

 

 
 

 

 

 

 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Agonistmodulator Molecules are recruited and become 

substrates for regulatory enzymes (especially 
tyrosine kinases) that are associated with the 

receptor. These events stimulate growth and 

differentiation of T cells (Wishart, 2006).   

Activation 

 

 Quinestrol  
3-cyclopentyl ether of ethinyl estradiol (the 

active metabolite). After gastrointestinal 

absorption, it is stored in adipose tissue 
where it is slowly released and metabolized 

principally to the parent compound, ethinyl 

estradiol. Ethinyl estradiol is a synthetic 
derivative of the natural estrogen estradiol 

(Wishart, 2006).   

 

Agonistpartial agonist Ergotamine  

Unknown pharmacological action on Alpha-
2B adrenergic receptors (Wishart, 2006).   

Remove 

Pseudoephedrine  

Unknown pharmacological action on Beta-1 
adrenergic receptors (Wishart, 2006).    

Ketamine  

Unknown pharmacological action on D(2) 
dopamine receptors (Wishart, 2006).   

Cariprazine  

Agonist on Dopamine receptors (Wishart, 

2006).   

Activation 

Allosteric Modulator Carglumic Acid  

Synthetic structural analogue of N-

acetylglutamate (NAG), an essential allosteric 
activator of the liver enzyme carbamoyl 

phosphate synthetase 1 (Wishart, 2006).   

Activation 

 Galantamine 
Not known pharmacological action (Wishart, 

2006).   

Remove 

 Vardenafil  

Unknown pharmacological action (Wishart, 
2006).   

 Trilostane 

In breast cancer, exerts estrogen-like actions 
through ERβ (Koonce, Walf, & Frye, 2009). 

Activation 

 
 

Allosteric Modulator Halothane 

Unknown action  (Wishart, 2006). 

Remove 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Antagonist Binds a receptor dampening a biological 

response 

Inhibition 

Antagonistagonist  Olanzapine  

Antagonism at D2 receptors  (Wishart, 2006). 

Inhibition 

Ergoloid mesylate 

Unknown pharmacological action at 
Dopamine receptors  (Wishart, 2006). To 

remove. 

Remove 

Tamoxifen 
Activates and inhibits (Goodsell, 2002). To 

remove.  

Risperidone 
Unknown pharmacological action at lpha-2B 

adrenergic receptors (Wishart, 2006). To 

remove. 

Clomifene  
Both estrogenic and anti-estrogenic 

properties (Wishart, 2006). To remove. 

Ospemifene 
Ospemifene is a next generation SERM 

(selective estrogen receptor modulator) that 

selectively binds to estrogen receptors and 
either stimulates or blocks estrogen's activity 

in different tissue types. It has an agonistic 

effect on the endometrium (Wishart, 2006). To 

remove. 
Antagonistantibody Antibody which agonizes its target. Inhibition 

Antagonistbinder  Antagonizes upon binding. Inhibition 

Antagonistblocker Antagonizes by blocking the target. Inhibition 
Antagonistinhibitor Antagonizes, inhibits the target. Inhibition 

AntagonistInhibitor Antagonizes, inhibits the target. Inhibition 

Antagonistinhibitor, 
competitive 

Competes with the target. Inhibition 

Antagonistinhibitory 

allosteric modulator 

Induces a conformational change which 

diminishes the target’s effect. 

Inhibition 

Antagonistmultitarget  Antagonist with many targets. Inhibition 
Antagonistother/ 

unknown 

Antagonizes. Inhibition 

Antagonistpartial 
agonist 

Mivacurium 
No pharmacological actions on Muscarinic 

acetylcholine receptor M2 and M3 (Wishart, 

2006). To remove.  

Remove 
 

 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Antagonistpartial 

agonist 

Tegaserod 

Agonist of  human 5-HT4 receptors  (Wishart, 
2006). 

Activation 

 Aripiprazole  

Antipsychotic activity is likely due to a 

combination of antagonism at D2 receptors in 
the mesolimbic pathway and 5HT2A 

receptors in the frontal cortex. Antagonism at 

D2 receptors relieves positive symptoms 
while antagonism at 5HT2A receptors relieves 

negative symptoms of schizophrenia  

(Wishart, 2006). 

Inhibition 

 Penbutolol 

Blocks the catecholamine activation of β1 

adrenergic receptors  (Wishart, 2006). 

Antibody Etanercept 
Etanercept is a dimeric soluble form of the 

p75 TNF receptor that can bind to two TNF 

molecules, thereby effectively removing them 
from circulation  (Wishart, 2006). 

Inhibition 

 Adalimumab  

Binds to TNF-alpha and blocks its interaction 
with the p55 and p75 cell surface TNF 

receptors  (Wishart, 2006). 

 

 Basiliximab  

Blocking the interleukin-2 receptor α-chain  
(Wishart, 2006).    

 

 Efalizumab 

Binds to CD11a, a subunit of leukocyte 
function antigen-1 (LFA-1), expressed on all 

leukocytes, as a result decreases cell surface 

expression of CD11a  (Wishart, 2006).  

 

 Natalizumab 

Binds α4b1 and α4b7 integrins expressed on 

the all leukocytes except neutrophils, and 

inhibits theiadhesion of leukocytes to their 
counter-receptor(s) (Wishart, 2006). 

 

 

 

 
 

Antibody Daclizumab  

IL-2 receptor antagonist  (Wishart, 2006). 

Inhibition 

 Eculizumab 

Blocks C5 cleavage (Wishart, 2006). 

 

 

 
(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Antibody Farletuzumab Inhibition 

 Against the FOLR1 which is overexpressed in 

ovarian cancer (Jelovac & Armstrong, 2012). 

 

 Tocilizumab 
Binds soluble and membrane-bound IL-6 

receptors, inhibiting IL-6-mediated signalling  

(Wishart, 2006).    

 

 Pertuzumab  

Binds to the HER2 receptor and inhibits the 

ability of HER2 to interact with other HER 
family members  (Wishart, 2006).   

 

 Denosumab  

Prevents RANKL from activating its receptor  

(Wishart, 2006). 

 

 Golimumab  

Inhibits soluble and transmembrane human 

TNFα  (Wishart, 2006). 

 

 Raxibacumab 

Inhibits the binding of PA to its cellular 

receptors  (Wishart, 2006). 

 

 Vedolizumab  

Inhibits the α4β7 integrin  (Wishart, 2006). 

 

 Nivolumab 

Binds programmed cell death 1 (PD-1) 
receptor, blocks interaction with its ligands 

PD-L1 and PD-L2  (Wishart, 2006). 

 

 Gemtuzumab ozogamicin  
Against the CD33 antigen expressed by 

hematopoietic cells. Binding of the anti-CD33 

antibody portion of Mylotarg with the CD33 
antigen results in the formation of a complex 

that is internalized. Upon internalization, the 

calicheamicin derivative is released inside the 

lysosomes of the myeloid cell. The released 
calicheamicin derivative binds to DNA in the 

minor groove resulting in DNA double strand 

breaks and cell death (Wishart, 2006). Too 
broad a function.  

Remove 
 

 

 
 

 

 

 
 

 

 
 

 Trastuzumab   

 Binds to the HER2 cells, leading to their 
antibody mediated killing (Wishart, 2006). 

Too broad a function. 

 
 

 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Antibody Rituximab Remove 

 Binds to the CD20 antigen, which is 
predominantly expressed on mature B cells 

and on >90% of B-cell non-Hodgkin's 

lympohomas. The antibody leads to selective 

killing of B-cells  (Wishart, 2006). Too broad a 
function. 

 

 Ibritumomab 

Targets CD20 on B-cells, radioactive yttrium 
to destroy the cell via production of beta 

particles  (Wishart, 2006).  Too broad a 

function. 

 

 Tositumomab  

CD20, binding appears to induce apoptosis, 

complement-dependent cytotoxicity and cell 

death through ionizing radiation  (Wishart, 
2006). Too broad a function. 

 

 Alemtuzumab 

 CD52 on B and T, antibody-dependent lysis of 
leukemic cells (Wishart, 2006). Too broad a 

function. 

 

 Methyl aminolevulinate 
Topical application, porphyrins accumulate 

intracellularly in the treated skin lesions, 

upon light activation in the presence of 

oxygen, singlet oxygen is formed which 
causes damage to mitochondria, 

phototoxicity  (Wishart, 2006). Too broad a 

function. 

 

 ado-trastuzumab emtansine 

Binds to the HER2 (or c-erbB2) proto-

oncogene, an EGF receptor-like protein found 
on 20-30% of breast cancer cells, leads to 

antibody mediated killing of the positive cells  

(Wishart, 2006). Too broad a function. 

 

 

 
 

 

 

 Obinutuzumab  
Binds to type II CD20, higher induction of 

antibody-dependant cytotoxicity and direct 

cytotoxic effect (Wishart, 2006). Too broad a 
function. 

 
 

 

 
 

 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Binder Antihemophilic Factor 

ASGR2 Unknown pharmacological action 
(Wishart, 2006). 

Remove 

 Antihemophilic Factor 

VWF - Promotes adhesion and aggregation of 

platelets at wound sites, thereby inducing 
platelet plug formation.  Antihemophilic 

Factor binds it  (Wishart, 2006). 

Activation 

 

 Menotropins  
Bind the FSH Receptor, which results in 

ovulation in the absence of sufficient 

endogenous LH (Wishart, 2006). 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 Interferon gamma-1b  

Agonist of IFNGR1, leading to a complex of 

IFNGR1 and IFNGR2 and activation of the 

pathway  (Wishart, 2006). 
 Palifermin  

Binds the KGF receptor and activates it  

(Wishart, 2006). 
 Somatropin recombinant  

Agonist of GH  (Wishart, 2006). 

 Interferon alfacon-1  
Interferon alfa receptors agonist (Wishart, 

2006). 

 Insulin, porcine 

Activates the insulin receptor  (Wishart, 2006). 
 Choriogonadotropin alfa  

FSHR agonist  (Wishart, 2006). 

 Octreotide  
Octreotide exerts pharmacologic actions 

similar to the natural hormone, somatostatin  

(Wishart, 2006).  
 Interferon Alfa-2b, Recombinant 

Exerts actions like the natural Interferon alfa-

2b  (Wishart, 2006). 

 Oxytocin 
Unknown pharmacological action on 

Oxytocin-neurophysin 1  (Wishart, 2006). 

 

 Thiamine 
Binds its transporter SLC19A (Wishart, 2006).  

To remove. 

 

 NADH. Remove (Continued) 



 

ANNEX 2. Drug Actions Annotation | VIII 

DrugBank Term Drug-Target Explanation Action 

Binder Folic Acid  

Binds its transporter (Wishart, 2006). 

Activation 

 Levonorgestrel  

 Synthetic form of the naturally occurring 

female sex hormone, progesterone (Wishart, 

2006).   

 

 Niacin  

Precursor of NAD and NADP (Wishart, 2006). 

 

 Guanabenz   
α-2 adrenergic agonist (Wishart, 2006). 

 

 Methoxamine 

Acting as a pure alpha-1 adrenergic receptor 
agonist (Wishart, 2006). 

 

 Potassium Chloride  

SLC12A1 transporter(Wishart, 2006). 

 

 Alglucosidase alfa  
Exogenous source of GAA (Wishart, 2006). 

 

 Teriparatide  

Substitute of endogenous PTH (Wishart, 
2006). 

 

 Tesamorelin  

Stimulates production and release of the 
endogenous hormone (hGRF)  (Wishart, 2006). 

 

 Cyclosporine  

CAMLG binds to cyclophilin, the complex then 

inhibits calcineurin  (Wishart, 2006). 
PPIF 

Unknown pharmacological action (Wishart, 

2006). To remove. 

Inhibition 

 

 
Remove 

 Chlorpromazine  

Inhibits DRD4 (Wishart, 2006). 

HTR2A, ORM1, HTR6/7 and HRH4 
Unknown pharmacological action (Wishart, 

2006). To remove. 

Inhibition 

 

Remove 
 

 

Binder Loxapine 

Unknown pharmacological action (Wishart, 
2006). To remove. 

Remove 

 Intravenous Immunoglobulin for C3/4A/4B/5 

Inhibits the complement cascade (Wishart, 

2006). 

Inhibition 

 

 
(Continued) 

 



 

ANNEX 2. Drug Actions Annotation | IX 

DrugBank Term Drug-Target Explanation Action 

Binder Botulinum Toxin Type B 

Binds to and cleaves the synaptic VAMP, 
inhibits acetylcholine release at the 

neuromuscular junction (Wishart, 2006). 

Inhibition 

 Citalopram  
 Inhibits HRH1 ADRA1A CHRM1 with less 

affinity than to SLC6A4 (Wishart, 2006) 

 

 Trimipramine 
Unknown pharmacological actions (Wishart, 

2006). To remove. 

Remove 

 Metyrosine 

Inhibits tyrosine hydroxylase (Wishart, 2006). 

Inhibition 

 Gliclazide 

ABCC8 blockade of the channels (Wishart, 

2006). 
 Halothane  

Alters the flow of potassium in cells, functions 

as anesthetic (Wishart, 2006). Too broad. 

Remove 

 Ciclopirox 

Acts via chelation of polyvalent metal cations, 

leading to inactivation of the enzymes which 

use them (Wishart, 2006). 

Inhibition 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 Glatiramer Acetate  

Strong and promiscuous binding to MHC 

molecules, and consequent competition with 
various myelin antigens for their presentation 

to T cells (Wishart, 2006). 

 Canakinumab 
Neutralizes IL1B (Wishart, 2006). 

 Rilonacept  

Blocks IL-1 (Wishart, 2006). 

 Cabazitaxel 
Microtubule inhibitor (Wishart, 2006). 

 Aflibercept  

Anti-VEGF drug (Wishart, 2006). 

Binder Denileukin diftitox  
The diphtheria toxin associated with Ontak 

then selectively kills the IL-2 bearing cells 

(Wishart, 2006). 

Remove 

 Pegademase bovine  

Unknown pharmacological action (Wishart, 

2006). 

 

 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Binder Muromonab  Remove 

 Binds to the T-cell CD3 epsilon chain. Kills CD-
3 positive cells by inducing Fc mediated 

apoptosis, antibody mediated cytotoxicity 

and complement-dependent cytotoxicity 

(Wishart, 2006). Too broad an action. 

 

 L-Phenylalanine  

Unknown pharmacological action (Wishart, 
2006). To remove. 

 

 L-Tyrosine 

Unknown pharmacological action (Wishart, 

2006). To remove. 

 

 L-Proline  

Unknown pharmacological action (Wishart, 

2006). To remove. 

 

 Amphetamine  

Unknown pharmacological action on SLC6A4 

and DR2 (Wishart, 2006). 

 

 Methysergide 

Unknown pharmacological action on 

HTR1B/F/W (Wishart, 2006). 

 

 Cabergoline 
Unknown pharmacological action on 

ADRA1A/1B/1D ADRB1/2 (Wishart, 2006). 

 

 Atomoxetine 
Unknown pharmacological action on SLC6A3 

 

 Amitriptyline  

Unknown pharmacological action on HRH4, 
HTR2C, HTR1D, OPRM1, HTR1B, ADRB1 

(Wishart, 2006). To remove. 

 

 Terfenadine  

Unknown pharmacological action on 
CHRM1/2/4/5 (Wishart, 2006). To remove. 

 

 Norepinephrine  

Unknown pharmacological action on 

SLC18A1/2 (Wishart, 2006). To remove. 

 

 Mirtazapine  

Unknown pharmacological action on 
ADRA1A/2C, ADRB1/2/, DRD1/2,  SLC6A2/3/4, 

HTR2B (Wishart, 2006). To remove. 

 

 
 

 

 

 
(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Binder Spironolactone  

Unknown pharmacological action on SHBG 
(Wishart, 2006). To remove. 

Remove 

 
 

 Pethidine  

Unknown pharmacological action on CHRM1 

(Wishart, 2006). To remove. 

 

 Prazosin  

Unknown pharmacological action on 

ADRA2A/B (Wishart, 2006). To remove. 

 

 Imipramine  

Unknown pharmacological action on DRD1/2 

AND HTR6 (Wishart, 2006). To remove. 

 

 Oxycodone  

Unknown pharmacological action on ORM1 

(Wishart, 2006). To remove. 

 

 Dextromethorphan  
Unknown pharmacological action on 

PGRMC1 (Wishart, 2006). To remove. 

 

 Nortriptyline  
Unknown pharmacological action on HTR6, 

PGRMC1 (Wishart, 2006). To remove. 

 

 Amoxapine 
Unknown pharmacological action on SLC6A3, 

HRH4, GABRA1 

 

 Cinnarizine 

Unknown pharmacological action on DRD1, 
CHRM1 (Wishart, 2006). To remove. 

 

 Insulin  

Unknown pharmacological action on CFT 
(Wishart, 2006). To remove. 

 

 Procaine  

Unknown pharmacological action on 
KCNMA1 (Wishart, 2006). To remove. 

 

 

 Tolazoline 

Unknown pharmacological action on 

ADRA2B/C (Wishart, 2006). To remove. 

 

 Cysteamine 

Unknown pharmacological action on SST 

(Wishart, 2006). To remove. 

 

 Maprotiline 

Unknown pharmacological action on 

HTR2A/C and DRD2 (Wishart, 2006). To 
remove. 

 

 

 
(Continued) 



 

ANNEX 2. Drug Actions Annotation | XII 

DrugBank Term Drug-Target Explanation Action 

Binder Oxymetazoline 

Unknown pharmacological action on ADRA2B 
(Wishart, 2006). To remove. 

Remove 

 

 Glycopyrrolate 

Unknown pharmacological action on CHRM2 

(Wishart, 2006). To remove. 

 

 Dopamine  

Unknown pharmacological action on HTR1A 

and HTR7 (Wishart, 2006). To remove. 

 

 Guanfacine 

Unknown pharmacological action on ADRA2B 

(Wishart, 2006). To remove. 

 

 Ketoconazole 

Unknown pharmacological action on AR 

(Wishart, 2006). To remove. 

 

 Thalidomide 
Unknown pharmacological action on ORM1 

(Wishart, 2006). To remove. 

 

 Memantine 
Unknown pharmacological action on GRIN1 

 

 Ibuprofen 

Unknown pharmacological action on FABP2 
(Wishart, 2006). To remove. 

 

 Doxepin  

Unknown pharmacological action on HTR6 

HRH4 (Wishart, 2006). To remove. 

 

 Desipramine  

Unknown pharmacological action on 

HTR1A/C DRD2 ADRA2A (Wishart, 2006). To 
remove. 

 

 Ketamine  

Unknown pharmacological action on OPRD1 

OPRM1 CHRM1 (Wishart, 2006). To remove. 

 

 Bepridil 

Unknown pharmacological action on CALM1 

(Wishart, 2006). To remove. 

 

 Docetaxel 

Unknown pharmacological action on  NR1I2 

(Wishart, 2006). To remove. 

 

 Aluminium 
Astringent (Wishart, 2006). To remove. 

 
 

 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Binder Dehydroepiandrosterone 

Unknown pharmacological action on ESR1 
(Wishart, 2006). To remove. 

Remove 

 Indirubin-3'-Monoxime   

 Unknown pharmacological action on CDK1 

(Wishart, 2006). To remove. 

 

 Olomoucine 

Unknown pharmacological action on CDK1 

(Wishart, 2006). To remove. 

 

 SU9516 - Not found   

 Nicotinamide 

Unknown pharmacological action on PARP1 
(Wishart, 2006). To remove. 

 

 Nesiritide  

Unknown pharmacological action on NPR1 

(Wishart, 2006). To remove. 

 

 Mianserin 

Unknown pharmacological action on HRH4/6 

HTR2B/1F DRD1/3 SLC6A3 (Wishart, 2006). To 
remove. 

 

 Tinzaparin 

Unknown pharmacological action on CXCL12 
(Wishart, 2006). To remove. 

 

 Hyaluronic acid 

Unknown pharmacological action on VCAN 

C1QBP HAPLN1 HAPLN3 HAPLN4 HABP2 LAYN 
STAB2 TNFAIP6 IMPG2 HABP4 (Wishart, 2006). 

To remove. 

 

Binding Mirtazapine 
Unknown pharmacological action on HTR7 

(Wishart, 2006). To remove. 

Remove 

 Pethidine 
Unknown pharmacological action on SLC6A4  

(Wishart, 2006). To remove. 

 

 Dimethyl fumarate  

Unknown pharmacological action on KEAP1 
(Wishart, 2006). To remove. 

 

 

 Acetylsalicylic acid 

Unknown pharmacological action on HSPA5 
(Wishart, 2006). To remove. 

 

Blocker Inhibits the target’s action upon binding. Inhibition 

(Continued) 



 

ANNEX 2. Drug Actions Annotation | XIV 

DrugBank Term Drug-Target Explanation Action 

Chaperone Aids in folding, may help stabilize the protein 

or may tag the protein for degradation. To 
remove. 

Remove 

Cleavage Breakage of peptide bonds. Inhibition 

Cofactor Necessary component to carry out the effect. Activation 

Desensitize the target Diminishes the response. Inhibition 
Inducer Transcriptional activator. Activation 

inhibitor Decreases the target’s activity. Inhibition 

Inhibitor Decreases the target’s activity. Inhibition 
Inhibitor, competitive Competes with the substrate with the active 

site of an enzyme. 

Inhibition 

Inverse agonist Opposite action of an agonist. Inhibition 
Intercalation Insertion between planar structures.  Inhibition 

Ligand Binds its target to form an active complex. Activation 

Modulator Toremifene compete with estrogen for 

binding sites in the cancer (Wishart, 2006). 

Inhibition 

 Rufinamide prolongs the inactive state of 

voltage gated sodium channels  (Wishart, 

2006). 
 Antihemophilic Factor 

Unknown pharmacologic action on LRP1 

MACFD2  (Wishart, 2006). 

Remove 

 

 

Modulator Loperamide 

Unknown pharmacologic action on POMC 
(Wishart, 2006). 

Remove 

 Glyburide 

Unknown pharmacologic action on ABCC8/9 

KCNJ11 (Wishart, 2006). 

 

 Minocycline  

Unknown pharmacologic action on ILB1 

(Wishart, 2006). To remove. 

 

 Ibuprofen  

Unknown pharmacologic action on BCL2 

THBD  (Wishart, 2006). To remove. 

 

 Carvedilol 

Unknown pharmacologic action on HIF1A  

(Wishart, 2006). To remove. 

 

 Fingolimod  
Binds with high affinity to sphingosine 1-

phosphate receptors 1, 3, 4, and 5. The 

mechanism in multiple sclerosis may involve 
reduction of lymphocyte migration into the 

central nervous system (Wishart, 2006). 

 
 

 

 
 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Multitarget Drotrecogin alfa  

Inhibits factor Va and VIIIa  (Wishart, 2006). 

Inhibition 

 Dasatinib  

 Unknown pharmacologic action for SRC, 

ABLS2, FYN, LCK, ABL1  (Wishart, 2006). To 

remove. 

Inhibition 

 Sunitinib  

Unknown pharmacological action  on KDR, 

FLT3  (Wishart, 2006). To remove 

Remove 

 Ramelteon  

Melatonin receptor agonist  (Wishart, 2006). 

Activation 

Negative Modulator Allosteric negative modulator. Inhibition  
Neutralizer Inhibits the target’s effect. Inhibition 

Other Lovastatin 

Unknown pharmacological action on HDAC2 

(Wishart, 2006). To remove. 

Remove 

 Vancomycin  

Unknown pharmacological action on GFTA 

(Wishart, 2006). To remove. 

 

 

 Simvastatin 

Unknown pharmacological action on ITGB2 

(Wishart, 2006). To remove. 

Remove 

 Oseltamivir 

Binds CES1, which converts it to active form 

(Wishart, 2006). 

Activation 

 Levonorgestrel  
The affinity for the ESR1 is very low (Wishart, 

2006). 

Remove 

 Sirolimus binds to FKBP-12 activating its 
immunosuppressive actions (Wishart, 2006). 

Activation 

 Riboflavin  

Binding to ribE on Ecoli. To remove. (Wishart, 
2006). 

Remove 

 

 Lorazepam  

Binds the  transporter TSPO (Wishart, 2006). 

To remove. 

 

 Hydroxocobalamin  

Unknown pharmacological action on MTRR 

TCN1 AMN CUBN MMAB (Wishart, 2006). To 
remove. 

 

 Temazepam  

Binds the transporter protein TSPO (Wishart, 
2006). To remove 

 

 
(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Other Chloramphenicol Remove 

 Unknown pharmacological action on CD55 
(Wishart, 2006). To remove. 

 

 Quinine  

Unknown pharmacological action on GP9 

(Wishart, 2006). To remove. 

 

 Aminocaproic Acid 

Unknown pharmacological action on LPA 

(Wishart, 2006). To remove. 

 

 Lactulose  

Binds ebgA , a sugar receptor on EColi 

(Wishart, 2006). To remove. 

 

 Diclofenac  

Unknown pharmacological action on 

KCNQ2/3 (Wishart, 2006). To remove. 

 

 Verapamil 
Unknown pharmacological action on SCN5A 

(Wishart, 2006). To remove. 

 
 

 

 Sufentanil   

Unknown pharmacological action on OPRK1 

(Wishart, 2006). To remove. 

 

 Adefovir Dipivoxil 

Unknown pharmacological action on virus 

HBV (Wishart, 2006). To remove. 

 

 Pentamidine  

Unknown pharmacological action on TRDMT1 

(Wishart, 2006). To remove. 

 

 Etodolac  
Unknown pharmacological action on RXRA 

(Wishart, 2006). To remove. 

 

 Triazolam  
Binds translocator protein TSPO (Wishart, 

2006). To remove. 

 

 Meclofenamic acid  
Unknown pharmacological action on 

KCNQ2/3 (Wishart, 2006). To remove. 

 

 Zaleplon  

Binds transporter TSPO (Wishart, 2006). To 
remove. 

 

 Ezetimibe 

Unknown pharmacological action on  ANPEP 
(Wishart, 2006). To remove. 

 

 
 

(Continued) 



 

ANNEX 2. Drug Actions Annotation | XVII 

DrugBank Term Drug-Target Explanation Action 

Other Ketoprofen  Remove 

 Unknown pharmacological action on CXCR1 
(Wishart, 2006). To remove. 

 

 Felodipine  

 Unknown pharmacological action on CALM1 

TNNC2 TNNC1 (Wishart, 2006). To remove. 

 

 Procainamide 

Unknown pharmacological action on DNMT1 

(Wishart, 2006). To remove. 

 

 Flucytosine 

Unknown pharmacological action on DNMT1 

(Wishart, 2006). To remove. 

 

 Diazoxide 

Unknown pharmacological action on ATP1A1 

KCNMA1 (Wishart, 2006). To remove. 

 

 Carvedilol 
Unknown pharmacological action on EGFA 

NPPB GJA1  (Wishart, 2006). To remove. 

 
 

 Desipramine  

Unknown pharmacological action on ADRB1  

(Wishart, 2006). To remove. 

 

 Halothane 

Unknown pharmacological action on RHO 

(Wishart, 2006). To remove. 

 

 Bepridil 

Unknown pharmacological action on TNNC1 

(Wishart, 2006). To remove. 

 

 Chenodeoxycholic acid 
Binds NR1H4, suppresses hepatic synthesis of 

both cholesterol and cholic acid, gradually 

replacing the latter and its metabolite 
Chenodeoxycholic acid (Wishart, 2006). To 

remove. 

 

Other/unknown Unknown. Remove 
Partial agonist Partial activating effect on the target. Activation 

Partial antagonist Partial inhibiting effect on the target. Inhibition 

Positive allosteric 

modulator 

Binds to a site distinct from that of the 

orthosteric agonist binding site inducing the 
activation of the target. 

Activation 

Positive modulator Binds to a site distinct from that of the 

orthosteric agonist binding site inducing the 
activation of the target. 

Activation 

 
 

(Continued) 
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DrugBank Term Drug-Target Explanation Action 

Potentiator Enhances sensitization. Activation 

Product of  Unknown. Remove 
Stimulator Excites the functional activity. Activation 

Suppressor Inhibits the target’s effects. Inhibition 

Unknown Unknown. Remove 

Goodsell, D. S. (2002). The Molecular Perspective: Tamoxifen and the Estrogen Receptor. 

The Oncologist, 7(2), 163–164. https://doi.org/10.1634/theoncologist.7-2-163 

Jelovac, D., & Armstrong, D. K. (2012). Role of farletuzumab in epithelial ovarian carcinoma. 
Current Pharmaceutical Design, 18(25), 3812–3815. 

Koonce, C. J., Walf, A. A., & Frye, C. A. (2009). Trilostane exerts antidepressive effects among 

wild-type, but not estrogen receptor [beta] knockout mice. Neuroreport, 20(12), 
1047–1050. 

Wishart, D. S. (2006). DrugBank: a comprehensive resource for in silico drug discovery and 

exploration. Nucleic Acids Research, 34(90001), D668–D672. 

https://doi.org/10.1093/nar/gkj067 



 



 



ANNEX 3. R Scripts | I 

# FUNCTIONS TO BE SOURCED 
 
# Read experimental data 
read.expression.matrix <- function(file){ 
    data.matrix(read.table(file, header=T, sep="\t", stringsAsFactors=F, row.names=1, 
comment.char=""))   
} 
 
read.experimental.design <- function(file){ 
    des <- read.table(file,header=F,stringsAsFactors=F,row.names=1) 
    colnames(des)[1] <- c("Condition") 
    return(des) 
} 
 
 
# Functional analysis function 
prettyfuns.average <- function(results, pathigraphs, dbannot, entrez2hgnc){ 
     
    # Calculates a value per function by estimating the average of the values obtained in 
those pathways that lead to that function  
    annofuns <- do.call("rbind", lapply(pathigraphs,function(pathigraph){ 
        new.pathigraph <- pathigraph 
        new.pathigraph$graph <- induced.subgraph(new.pathigraph$graph, 
V(new.pathigraph$graph)$name[!grepl("_func", V(new.pathigraph$graph)$name)]) 
        funs <- get.pathway.functions(new.pathigraph, dbannot, entrez2hgnc, 
use.last.nodes=T) 
        paths <- lapply(names(funs), function(path) rep(paste0(pathigraph$path.id, "__", 
path), times=length(funs[[path]]))) 
        df <- data.frame(paths = unlist(paths), funs=unlist(funs), stringsAsFactors=F) 
    })) 
     
    annofuns <- annofuns[!is.na(annofuns$funs),] 
    fun.names <- unique(annofuns$funs) 
    fun.vals <- matrix(0, ncol=ncol(results$all$effector.path.vals), nrow = 
length(fun.names), dimnames = list(fun.names, colnames(results$all$effector.path.vals)) ) 
     
    # By using the mean value, saturation of the signal is avoided 
    for( fun in fun.names){ 
        print(fun) 
        paths <- annofuns$paths[annofuns$funs==fun] 
        minimat <- results$all$effector.path.vals[paths,,drop=F] 
        fun.vals[fun,] <- apply(minimat, 2, mean) 
         
    } 
    print(dim(fun.vals)) 
    return(fun.vals) 
} 

 

 

 

 

 

 



 

ANNEX 3. R Scripts | II 

# Drug Data comes in a complex list that needs to be organized 
# Drugs that do not meet the criteria are removed: have targets and actions 
# Actions are categorized as “activation” or “inhibition” 
 
drugs.into.data.frame <- function(data){ 
# Selects drugs for which targets and actions are known 
# Returns data.frame 
     
drugs <- names(data) 
    d <- data.frame(Drug = NA, Targets = NA, Actions = NA) 
     
    for(i in 1:length(drugs)){ 
        targets <- names(data[[i]]$targets) 
        if(is.character(targets)){ 
            drug <- drugs[i] 
            for(j in 1:length(targets)){ 
                target_name <- data[[i]]$targets[[j]]$geneName 
                drug_action <- data[[i]]$targets[[j]]$actions 
                lista <- c(Drug = drug, Targets = target_name, Actions = drug_action) 
                d <- rbind(d, lista) 
            } 
        } 
    } 
     
 
    # Remove NA and empty strings 
    d <- d[complete.cases(d),] 
    d <- d[!apply(d, 1, function(x) any(x == "")),]  
 
     
    # See all posible actions drugs have to decide if they activate or not 
    Actions <- sort(unique(d$Actions)) 
     
     
    # Manually curated activating and inhibition actions 
    activatingActions <- c("acetylation", "activator", "agonist", "agonistimodulator",  
                           "agonistpartial agonist", "cofactor", "inducer", "ligand", 
                           "partial agonist", "positive allosteric modulator",  
                           "positive modulator", "potentiator", "stimulator" ) 
     
    inhibitingActions <- c("adduct", "agonistinhibitor", "antagonist",  
                           "antagonistantibody", "antagonistbinder", "antagonistblocker", 
                           "antagonistinhibitor", "antagonistInhibitor",  
                           "antagonistinhibitor, competitive",  
                           "antagonistinhibitory allosteric modulator", 
"antagonistmultitarget", 
                           "antagonistother/unknown", "antibody","blocker", "cleavage", 
                           "desensitize the target", "inhibitor", "Inhibitor",  
                           "inhibitor, competitive", "inverse agonist", "intercalation", 
                           "negative modulator", "neutralizer", "partial antagonist", 
"suppressor") 
     
     
    # Some actions need to be removed 
    actionsToDelete <- c("acetylation","other/unknown", "product of", "unknown", "binding", 
"chaperone") 
    d <- subset(d, !d$Actions %in% actionsToDelete ) 
     
     
    # Replace actions on the data.frame to inhibiting or activating 



 

ANNEX 3. R Scripts | III 

    activatingRows <- d$Actions %in% activatingActions 
    d$Actions[activatingRows] <- "activation" 
     
    inhibitingRows <- d$Actions %in% inhibitingActions  
    d$Actions[inhibitingRows] <- "inhibition" 
     
     
    # Special Cases that need to be removed 
    d <- d[!(d$Actions == "allosteric modulator" & d$Drug == "Vardenafil"),] 
    d <-  d[!(d$Actions == "allosteric modulator" & d$Drug == "Halothane"),] 
    d <-  d[!(d$Actions == "antagonistagonist" & d$Drug == "Risperidone"),] 
    d <-  d[!(d$Actions == "antagonistagonist" & d$Drug == "Tamoxifen"),] 
    d <-  d[!(d$Actions == "antagonistagonist" & d$Drug == "Clomifene"),] 
    d <-  d[!(d$Actions == "antagonistagonist" & d$Drug == "Ospemifene"),] 
    d <-  d[!(d$Actions == "antagonistpartial agonist" & d$Drug == "Mivacurium"),] 
    d <-  d[!(d$Actions == "agonistpartial agonist" & d$Drug == "Ergotamine"),] 
    d <-  d[!(d$Actions == "agonistpartial agonist" & d$Drug == "Pseudoephedrine"),] 
    d <-  d[!(d$Actions == "agonistpartial agonist" & d$Drug == "Ketamine"),] 
    d <-  d[!(d$Actions == "antibody" & d$Drug == "Trastuzumab"),] 
    d <-  d[!(d$Actions == "antibody" & d$Drug == "Rituximab"),] 
    d <-  d[!(d$Actions == "antibody" & d$Drug == "Ibritumomab"),] 
    d <-  d[!(d$Actions == "antibody" & d$Drug == "Tositumomab"),] 
    d <-  d[!(d$Actions == "antibody" & d$Drug == "Alemtuzumab"),] 
    d <-  d[!(d$Actions == "antibody" & d$Drug == "Methyl aminolevulinate"),] 
    d <-  d[!(d$Actions == "antibody" & d$Drug == "ado-trastuzumab emtansine"),] 
    d <-  d[!(d$Actions == "antibody" & d$Drug == "Obinutuzumab"),] 
    d <-  d[!(d$Actions == "adduct" & d$Drug == "Ethionamide"),] 
    d <-  d[!(d$Actions == "adduct" & d$Drug == "Isoniazid"),] 
    d <-  d[!(d$Actions == "adduct" & d$Drug == "Gentamicin"),] 
    d <-  d[!(d$Actions == "adduct" & d$Drug == "Tigecycline "),] 
    d <-  d[!(d$Targets == "DRD1" & d$Drug == "Aripiprazole"),] 
    d <-  d[!(d$Targets == "DRD5" & d$Drug == "Aripiprazole"),] 
    d <-  d[!(d$Targets == "DRD3" & d$Drug == "Aripiprazole"),] 
    d <-  d[!(d$Targets == "DRD4" & d$Drug == "Aripiprazole"),] 
    d <-  d[!(d$Targets == "ATP1A1" & d$Drug == "Aripiprazole"),] 
    d <-  d[!(d$Targets == "ASGR2" & d$Drug == "Antihemophilic Factor"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Oxytocin"),] 
    d <-  d[!(d$Drug == "NADH"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Niacin"),] 
    d <-  d[!(d$Targets == "PPIF" & d$Drug == "Cyclosporine"),] 
    d <-  d[!(d$Targets == "HTR2C" & d$Drug == "Chlorpromazine"),] 
    d <-  d[!(d$Targets == "HTR2A" & d$Drug == "Chlorpromazine"),] 
    d <-  d[!(d$Targets == "ORM1" & d$Drug == "Chlorpromazine"),] 
    d <-  d[!(d$Targets == "HTR6" & d$Drug == "Chlorpromazine"),] 
    d <-  d[!(d$Targets == "HTR7" & d$Drug == "Chlorpromazine"),] 
    d <-  d[!(d$Targets == "HRH4" & d$Drug == "Chlorpromazine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Loxapine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Trimipramine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Thiamine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Folic Acid"),] 
    d <-  d[!(d$Drug == "Metyrosine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Halothane"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Pegademase bovine"),] 
    d <-  d[!(d$Drug == "L-Phenylalanine"),] 
    d <-  d[!(d$Drug == "L-Tyrosine"),] 
    d <-  d[!(d$Drug == "L-Proline"),] 
    d <-  d[!(d$Targets == "SLC6A4" & d$Drug == "Amphetamine"),] 
    d <-  d[!(d$Targets == "DRD2" & d$Drug == "Amphetamine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Methysergide"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Cabergoline"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Atomoxetine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Amitriptyline"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Terfenadine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Norepinephrine"),] 
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    d <-  d[!(d$Actions == "binder" & d$Drug == "Mirtazapine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Spironolactone"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Pethidine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Prazosin"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Imipramine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Oxycodone"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Dextromethorphan"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Nortriptyline"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Amoxapine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Cinnarizine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Inulin"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Procaine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Tolazoline"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Cysteamine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Maprotiline"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Oxymetazoline"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Glycopyrrolate"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Dopamine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Guanfacine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Ketoconazole"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Thalidomide"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Memantine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Ibuprofen"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Doxepin"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Desipramine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Ketamine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Bepridil"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Docetaxel"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Aluminium"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Almitrine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Dehydroepiandrosterone"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Indirubin-3'-Monoxime"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Olomoucine"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Nicotinamide"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Brentuximab vedotin"),] 
    d <-  d[!(d$Drug == "SU9516"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Nesiritide"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Mianserin"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Tinzaparin"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Hyaluronic acid"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Dimethyl fumarate"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Muromonab"),] 
    d <-  d[!(d$Actions == "binder" & d$Drug == "Denileukin diftitox"),] 
    d <-  d[!(d$Actions == "modulator" & d$Drug == "Antihemophilic Factor"),] 
    d <-  d[!(d$Actions == "modulator" & d$Drug == "Loperamide"),] 
    d <-  d[!(d$Actions == "modulator" & d$Drug == "Glyburide"),] 
    d <-  d[!(d$Actions == "modulator" & d$Drug == "Minocycline"),] 
    d <-  d[!(d$Actions == "modulator" & d$Drug == "Ibuprofen"),] 
    d <-  d[!(d$Actions == "modulator" & d$Drug == "Carvedilol"),] 
    d <-  d[!(d$Actions == "modulator" & d$Drug == "Fingolimod"),] 
    d <-  d[!(d$Actions == "multitarget" & d$Drug == "Dasatinib"),] 
    d <-  d[!(d$Actions == "multitarget" & d$Drug == "Sunitinib"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Lovastatin"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Vancomycin"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Simvastatin"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Levonorgestrel"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Sirolimus"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Riboflavin"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Lorazepam"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Hydroxocobalamin"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Temazepam"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Chloramphenicol"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Quinine"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Aminocaproic Acid"),] 
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    d <-  d[!(d$Actions == "other" & d$Drug == "Lactulose"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Diclofenac"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Verapamil"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Sufentanil"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Adefovir"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Adefovir Dipivoxil"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Pentamidine"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Etodolac"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Triazolam"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Meclofenamic acid"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Zaleplon"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Ezetimibe"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Ketoprofen"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Felodipine"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Procainamide"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Flucytosine"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Diazoxide"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Carvedilol"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Desipramine"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Halothane"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Bepridil"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Chenodeoxycholic acid"),] 
    d <-  d[!(d$Actions == "other" & d$Drug == "Iron Dextran"),] 
     
     
    #  Special Cases that need to be modified 
    d <- within(d, Actions[ Drug == "Galantamine" & Actions == "allosteric modulator" ] <- 
"inhibition") 
    d <- within(d, Actions[ Drug == "Trilostane" & Actions == "allosteric modulator" ] <- 
"activation") 
    d <- within(d, Actions[ Drug == "Aldesleukin" & Actions == "agonistmodulator" ] <- 
"activation") 
    d <- within(d, Actions[ Drug == "Carglumic Acid" & Actions == "allosteric modulator" ] 
<- "activation") 
    d <- within(d, Actions[ Drug == "Quinestrol" & Actions == "agonistmodulator" ] <- 
"activation") 
    d <- within(d, Actions[ Drug == "Olanzapine" & Actions == "antagonistagonist" ] <- 
"inhibition") 
    d <- within(d, Actions[ Drug == "Ergoloid mesylate" & Actions == "antagonistagonist" ] 
<- "activation") 
    d <- within(d, Actions[ Drug == "Tegaserod" & Actions == "antagonistpartial agonist" ] 
<- "activation") 
    d <- within(d, Actions[ Drug == "Aripiprazole" & Targets == "DRD2" ] <- "inhibition") 
    d <- within(d, Actions[ Drug == "Aripiprazole" & Targets == "HTR1A" ] <- "inhibition") 
    d <- within(d, Actions[ Drug == "Penbutolol" & Actions == "antagonistpartial agonist" ] 
<- "inhibition") 
    d <- within(d, Actions[ Drug == "Menotropins"] <- "activation") 
    d <- within(d, Actions[ Drug == "Interferon gamma-1b"] <- "activation") 
    d <- within(d, Actions[ Drug == "Palifermin"] <- "activation") 
    d <- within(d, Actions[ Drug == "Somatropin recombinant"] <- "activation") 
    d <- within(d, Actions[ Drug == "Interferon alfacon-1"] <- "activation") 
    d <- within(d, Actions[ Drug == "Insulin, porcine"] <- "activation") 
    d <- within(d, Actions[ Drug == "Choriogonadotropin alfa"] <- "activation")  
    d <- within(d, Actions[ Drug == "Octreotide"] <- "activation")  
    d <- within(d, Actions[ Drug == "Interferon Alfa-2b, Recombinant"] <- "activation")  
    d <- within(d, Actions[ Drug == "Thiamine" & Actions == "binder"] <- "activation")  
    d <- within(d, Actions[ Drug == "Antihemophilic Factor" & Targets == "VWF"] <- 
"activation")  
    d <- within(d, Actions[ Drug == "Folic Acid" & Actions == "binder"] <- "activation")  
    d <- within(d, Actions[ Drug == "Levonorgestrel" & Actions == "binder"] <- 
"activation")  
    d <- within(d, Actions[ Drug == "Guanabenz" & Actions == "binder"] <- "activation")  
    d <- within(d, Actions[ Drug == "Methoxamine" & Actions == "binder"] <- "activation")  
    d <- within(d, Actions[ Drug == "Potassium Chloride"] <- "activation")  
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    d <- within(d, Actions[ Drug == "Alglucosidase alfa"] <- "activation")  
    d <- within(d, Actions[ Drug == "Teriparatide"] <- "activation")  
    d <- within(d, Actions[ Drug == "Tesamorelin"] <- "activation")  
    d <- within(d, Actions[ Drug == "Cyclosporine" & Actions == "binder"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Chlorpromazine" & Actions == "binder"] <- 
"inhibition")  
    d <- within(d, Actions[ Drug == "Intravenous Immunoglobulin" & Actions == "binder"] <- 
"inhibition")  
    d <- within(d, Actions[ Drug == "Botulinum Toxin Type B" ] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Citalopram"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Gliclazide"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Ciclopirox"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Glatiramer Acetate"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Canakinumab"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Rilonacept"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Cabazitaxel"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Aflibercept"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Toremifene"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Rufinamide" & Actions == "modulator"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Drotrecogin alfa"] <- "inhibition")  
    d <- within(d, Actions[ Drug == "Ramelteon"] <- "activation")  
    d <- within(d, Actions[ Drug == "Oseltamivir" & Actions == "other"] <- "activation")  
    d <- within(d, Actions[ Drug == "Sirolimus" & Actions == "other"] <- "activation")  
    } 
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# MODIFY EXP 
drug.exp <- function(drug, expD = expT, effect = drugEffect){ 
     
    # Drug targets in xref  
    affected_genes <- effect[which(effect$Drug == drug),]$ID 
     
    # Drug effect on targets 
    effect_on_genes <- effect[which(effect$Drug == drug),]$Actions 
     
    # Copies the original exp for tumors and adds the drug name to the column name 
    colnames(expD) <- paste(unique(drugEffect$DrugCode[drugEffect$Drug == drug]), 
colnames(expD), sep = "_") 
     
     
    # Calculate new values for the affected genes 
    iteration <- 1 
    for(gen in affected_genes){ 
         
        action <- effect_on_genes[iteration] 
         
        if(action == "inhibition"){expD[rownames(expD) %in% gen, ] <- 
expD[rownames(expD) %in% gen, ]*0.001} 
        else if(action == "activation"){expD[rownames(expD) %in% gen, ] <- 0.99} 
         
        iteration <- iteration +1  
    } 
     
    # Returns a modified exp after applying a drug 
    return(expD) 
} 
 
 
# MODIFY DES 
drug.des <- function(drug, desD = desT, effect = drugEffect){ 
     
    d <- unique(effect$DrugCode[effect$Drug == drug]) 
    # Condition is drug name 
    desD$Condition <- d 
     
    # rows maintain name and add drug as a prefix 
    rownames(desD) <- paste(unique(effect$DrugCode[effect$Drug == drug]), rownames(desD), 
sep = "_") 
     
    # Returns a modified des after applying a drug 
    return(desD) 
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# ORIGINAL CODE NEEDS TO BE SOURCED (GitHub HiPathia repository) 
# igraph version 0.7.0. 
library("igraph") 
source("prettyways.R") 
source("stats.R") 
source("utils.R") 
source("functions.r") 
 
# Source developed code 
source("drugs.into.data.frame.R") 
source("functions.drug.analysis.R") 
source("drug.statistics.R") 
source("other.functions.R") 
 
# OBTAIN DATA 
# Load graphs and xref 
load("files/meta_graph_info_hsa.RData") 
for(pw in names(metaginfo$pathigraphs)){ 
    metaginfo$pathigraphs[[pw]]$graph    
   for(eff in names(metaginfo$pathigraphs[[pw]]$effector.subgraphs)){ 
       metaginfo$pathigraphs[[pw]]$effector.subgraphs[[eff]]  
    } 
} 
 
load("files/xref/hsa/xref.rdata") 
 
# Load experimental data 
des <- read.experimental.design("KIRC_des.txt") 
exp <- 
read.expression.matrix("exp_KIRC__hiseq_data_combat_WO_batch_corrected_by_gcc_and_plate.txt
") 
 
# Load drug data 
load("drugList.RData") 
drugEffect <- drugs.into.data.frame(drugList) 
 
 
# PREPARE EXPERIMENTAL DATA 
exp <- translate.matrix(exp,xref) 
exp <- normalize.data(exp, by.quantiles=F, by.gene=F, percentil=F) 
exp <- add.missing.genes(exp, genes=metaginfo$all.genes) 
 
 
# PREPARE DRUG DATA 
# Eliminate targets that are not in the experimental data 
toRemove <- setdiff(unique(ID), rownames(exp)) 
drugEffect <- drugEffect[which( !drugEffect$ID %in% toRemove), ] 
 
# Add column with targets translated to xref  
drugEffect$ID <- unname(translate.ids(drugEffect$Targets, xref)$translation) 
 
# Set unique code for each drug 
drugEffect <- transform(drugEffect, DrugCode = match(Drug, unique(Drug))) 
drugEffect$DrugCode <- sprintf('D%i', drugEffect$DrugCode) 
 
 
# EXTEND EXPERIMENTAL DATA WITH DRUG MODIFICATIONS TO PATIENTS 
# File with the drugs to be tested  
dat <- readLines("drugs_to_test.txt") 
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# Copy the original data for the tumor conditions to modify 
expT <- exp[,which(des$Condition == "Tumor")[1]:nrow(des)] 
desT <- des[des$Condition %in% c("Tumor"),1, drop = FALSE] 
 
# Create a new modified matrix per drug and add it to the original data 
for(d in dat){ 
    # For each drug given creates a new matrix modifying the original tumor data 
    new_expD <- drug.exp(drug = d) 
     
    # Append the new matrix to the full matrix 
    exp <- cbind2(exp, new_expD) 
     
    # Same for des 
    new_desD <- drug.des(drug = d) 
    des <- rbind2(des, new_desD) 
} 
 
 
# PATHWAY ANALYSIS 
pathway_data <- prettyways(exp, metaginfo$pathigraphs, verbose=T) 
 
 
# FUNCTIONAL ANALYSIS 
# Load the manual annotations file 
entrez2hgnc <- 
read.table("files/annotations/hsa/entrez_hgnc_hsa.annot",header=F,sep="\t",stringsAsFactors
=F) 
annot <- load.annot.file("files/annotations/hsa/annot_manual_hsa.annot") 
annot <- unique(annot) 
 
# Pathways into Functions 
functions <- prettyfuns.average(pathway_data, metaginfo$pathigraphs, annot, entrez2hgnc) 
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# wilcox function 
wilcox.function <- function(A, B, c){ 
    column <- data.frame(ncol = NA) 
    colnames(column) <- c 
    for(i in 1:nrow(A)){ 
        column <- rbind2(column, wilcox.test(A[i,], B[i,])$p.value)} 
    column <- na.omit(column) 
    rownames(column) <- rownames(A) 
    return(column) 
} 
 
 
# Classification function 
drug.type.per.function <- function(mD, mN, mT, df){ 
    # Per function it estimates the type of drug it is 
    for(i in 1:nrow(df)){ 
        if(df$SignificantDN[i] == "N"){df$Classification[i] <- c("Optimum")} 
        if(df$SignificantDN[i] == "Y"){ 
            if(mN[i,] < mT[i,]){ 
                if(mD[i,] < mN[i,]){df$Classification[i] <-c("Overdose")} 
                else if(mN[i,] < mD[i,] & mD[i,] < mT[i,]){df$Classification[i] <-
c("Underdose")} 
                else if(mT[i,] < mD[i,]){df$Classification[i] <-c("Undesired")} 
            } 
            if(mN[i,] > mT[i,]){ 
                if(mD[i,] > mN[i,]){df$Classification[i] <-c("Overdose")} 
                else if(mN[i,] > mD[i,] & mD[i,] > mT[i,]){df$Classification[i] <-
c("Underdose")} 
                else if(mT[i,] > mD[i,]){df$Classification[i] <-c("Undesired")} 
            } 
        } 
    } 
     
    return(df) 
} 
 
 
# TUMOR & NORMAL ANALYSIS 
Tumor <- functions[,which(des$Condition == "Tumor")] 
Normal <- functions[,which(des$Condition == "Normal")] 
 
# Functions significantly different are set as Y 
NT <- wilcox.function(Normal, Tumor, c = "pvalue_NT") 
NT$SignificantNT[NT$pvalue <= 0.05]<- c("Y") 
NT$SignificantNT[NT$pvalue > 0.05] <- c("N") 
 
 
# DRUGS ANALYSIS 
Conditions <- unique(des$Condition) 
Conditions <- setdiff(Conditions, c("Tumor", "Normal")) 
 
# All_Drugs_resume will oontain pvalues for all drugs compared 
All_Drugs_Resume <- NT 
 
for(Condition in Conditions){ 
 
    dir.create(Condition) 

    D <- functions[, which(des$Condition == Condition)] 
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    # 1. COMPARISONS 
    # Wilcoxt test Drug vs Tumor 
    DT <- wilcox.function(D, Tumor, c = "pvalue_DT") 
    DT$SignificantDT[DT$pvalue <= 0.05]<- c("Y") 
    DT$SignificantDT[DT$pvalue > 0.05] <- c("N") 
     
    # Wilcox test Drug vs Normal 
    DN <- wilcox.function(D, Normal, c = "pvalue_DN") 
    DN$SignificantDN[DN$pvalue <= 0.05]<- c("Y") 
    DN$SignificantDN[DN$pvalue > 0.05] <- c("N") 
     
    # Combine the information in aResume file of the drug for the folder 
    # Combine the Resume with the global Resume for all Drugs 
    Resume <- cbind2(NT, DT) 
    Resume <- cbind2(Resume, DN) 
    All_Drugs_Resume <- cbind2(All_Drugs_Resume,DT) 
    All_Drugs_Resume <- cbind2(All_Drugs_Resume, DN) 
     
    # Significant functions are those different between NT and DT 
    Significant <- Resumen[Resumen$pvalue_NT <= 0.05,] 
    Significant <- Significant[Significant$pvalue_DT <= 0.05,] 
     
    # 2. HOW IS THE DIFFERENCE WITH THE NORMAL? 
    # Get the average per function for those tumoral functions 
    # Original data reduced to siginificant for TN and DT comparisons 
    Tum <- Tumor[which(NT[,1] <= 0.05 & DT[,1] <= 0.05),] 
    Nor <- Normal[which(NT[,1] <= 0.05 & DT[,1] <= 0.05),] 
    D <- D[which(NT[,1] <= 0.05 & DT[,1] <= 0.05),] 
     
    # The means for N and T data and D per function: 
    meansN <- data.frame(unname(rowMeans(Nor, na.rm = FALSE, dims = 1))) 
    rownames(meansN) <- rownames(Nor) 
    colnames(meansN) <- c("meansN") 
     
    meansT <- data.frame(unname(rowMeans(Tum, na.rm = FALSE, dims = 1))) 
    rownames(meansN) <- rownames(Tum) 
    colnames(meansN) <- c("meansT") 
     
    meansD <- data.frame(unname(rowMeans(D, na.rm = FALSE, dims = 1))) 
    rownames(meansD) <- rownames(D) 
    colnames(meansD) <- Condition 
     
    DrugTypeData <- DN[which(NT[,1] <= 0.05 & DT[,1] <= 0.05),] 
    DrugType <- drug.type.per.function(mD = meansD, mN = meansN, mT=meansT, df = 
DrugTypeData) 
     
    # 3. WRITE THE OUTPUT 
    write.csv(Resume, 'Resume.csv', row.names=T) 
    write.csv(Significant, 'Significant.csv', row.names=T) 
    write.csv(DrugType, 'DrugType.csv', row.names=T) 
  
    setwd('Prettyways') 
 
    } 
 
 
write.csv(Resume, 'All_Drugs_Resume.csv', row.names=T) 
 
 
# Get Plot for Normal and Tumor 
m <- cbind(Normal,Tumor) 
m <- t(m) 
m <- data.frame(m) 
m$Condition <- des$Condition 
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#### PLOTS 
 
# Load Libraries  
library(reshape) 
library("plotly") 
 
m <- melt(m, id.var = "Condition" ) 
X <- list(title = "") 
Plot<- m, x = ~variable, y = ~value, color = ~Condition, colors = c("red", "blue"), type = 
"box", opacity = 0.4) %>% layout(xaxis = ax) 

 


