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On pseudo-k-spaces

Annamaria Miranda

Abstract. In this note a new class of topological spaces generalizing

k-spaces, the pseudo-k-spaces, is introduced and investigated. Particu-

lar attention is given to the study of products of such spaces, in analogy

to what is already known about k-spaces and quasi-k-spaces.
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1. Introduction

The first example of two k-spaces whose cartesian product is not a k-space
was given by Dowker (see [2]). So a natural question is when a k-space satisfies
that its product with every k-spaces is also a k-space. In 1948 J.H.C. Whitehead
proved that if X is a locally compact Hausdorff space then the cartesian product
iX × g, where iX stands for the identity map on X , is a quotient map for every
quotient map g. Using this result D.E. Cohen proved that if X is locally
compact Hausdorff then X × Y is a k-space for every k-space Y (see Theorem
3.2 in [1]). Later the question was solved by Michael who showed that a k-space
has this property iff it is a locally compact space (see [5]).

A similar question, related to quasi-k-spaces, was answered by Sanchis (see
[8]). Quasi-k-spaces were investigated by Nagata (see [7]) who showed that “a
space X is a quasi-k-space (resp. a k-space) if and only if X is a quotient space
of a regular (resp. paracompact) M -space (see [6]).

The study of quasi-k-spaces suggests to define a larger class of spaces simply
replacing countable compactness with pseudocompactness in the definition.

This note begins with the study of general properties about pseudo-k-spaces
which leads on results about products of pseudo-k-spaces, in analogy with those
known about k-spaces and more generally about quasi-k-spaces.

For terminology and notations not explicitly given we refer to [3].
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2. Pseudo-k-spaces

We consider pseudocompact spaces which are not necessarily Tychonoff. Recall
that

Definition 2.1. A topological space X is called pseudocompact if every con-
tinuous real-valued function defined on X is bounded.

Definition 2.2. A topological space X is called locally compact (resp. locally
countably compact) if each point of X has a compact (resp. countably compact)
neighborhood.

In analogy with the definitions of locally compact (resp. locally countably
compact) space we have the following

Definition 2.3. A topological space X is called locally pseudocompact if each
point of X has a pseudocompact neighborhood.

Clearly a locally compact space is locally pseudocompact and we have

Proposition 2.4. The cartesian product of a locally pseudocompact space X
and a locally compact space Y is locally pseudocompact.

Proof. It suffices to observe that Corollary 3.10.27 in [3] holds even if the pseu-
docompact factor is not necessarily Tychonoff. �

Proposition 2.5. If all spaces Xs are pseudocompact then the sum ⊕s∈SXs,
where Xs 6= ∅ for s ∈ S, is locally pseudocompact.

Now we are going to define a new class of spaces which is larger than the
class of k-spaces.

Definition 2.6. A topological space X is called a pseudo-k-space if X is a
Hausdorff space and X is the image of a locally pseudocompact Hausdorff space
under a quotient mapping.

In other words, pseudo-k-spaces are Hausdorff spaces that can be represented
as quotient spaces of locally pseudocompact Hausdorff spaces. Clearly every
locally pseudocompact Hausdorff space is a pseudo-k-space.

We can compare this kind of spaces with the one of quasi-k-spaces. To this
aim recall that

Definition 2.7. A Hausdorff space X is a quasi-k-space if, and only if, a
subset A ⊂ X is closed in X whenever the intersection of A with any countably
compact subset Z of X is closed in Z.
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Condition (2) in Theorem 2.11 yields

Proposition 2.8. Every quasi-k-space is a pseudo-k-space.

The following example will show that the class of quasi-k-spaces is strictly
contained in the class of pseudo-k-spaces.

Definition 2.9. A Hausdorff space X is called H-closed if X is a closed sub-
space of every Hausdorff space in which it is contained.

For a Hausdorff space X , this definition is equivalent to say that every open
cover {Us}s∈S of X contains a finite subfamily {Us1

, Us2
, ..., Usk

} such that
Us1

∪ Us1
∪ ... ∪ Us1

= X .

Example 2.10. A H-closed space which is not a quasi-k-space.

Let ℑ be the family of all free ultrafilters on N, let kN = N∪ℑ be the Katětov
extension of N. We have that

(1) kN is a H-closed space;
(2) kN is not a quasi-k-space.

It is enough to show that all countably compact subsets of kN have finite
cardinality. Let Y ⊂ X = kN be countably compact. ℑ is closed and discrete
in X so Y ∩ ℑ is closed and discrete in Y , therefore Y ∩ ℑ = {p1, . . . , pn}.
Hence Y = S ∪ {p1, . . . , pn}, where S ⊂ N.
Assume that S is infinite. Since p1, . . . , pn are distinct ultrafilters, there exists
S1 ⊂ S such that |S1| = ω, S1 ∈ p1 and S1 /∈ pi for every i 6= 1. In fact let

Hi ∈ p1 such that Hi /∈ pi for every i 6= 1, then S1 =
n⋂

i=1

Hi ∈ p1 and S1 /∈ pi

for every i 6= 1, otherwise S1 ∈ pi and S1 ⊂ Hi implies Hi ∈ pi. Moreover
S1 is infinite. Indeed, if p is an ultrafilter, A = {x1, . . . , xn} and A ∈ p, then

{xi} /∈ p implies that N\{xi} ∈ p, for every i, so
n⋂

i=1

N\{xi} = N\A ∈ p, a

contradiction.
Now, let G ⊂ S1 such that |G| = ω and |S1\G| = ω. Then G ∈ p1 or
N\G ∈ p1. Since S1 ∈ p1 it follows that G ∈ p1 or S1\G ∈ p1. Let us suppose
that S1\G ∈ p1. Then G /∈ p1. Therefore G /∈ pi for every i.
Since G /∈ pi ∀ i ∈ {1, . . . , n}, it follows that for every i there exists Ai ∈ pi

such that G ∩ Ai = ∅, so Vi = Ai ∪ {pi} is an open neighborhood of pi such
that Vi ∩G = ∅, therefore pi /∈ G for every i, hence G is closed in Y and, since
G ⊂ N, G is also discrete. So G is an infinite closed discrete subspace of the
countably compact space Y , a contradiction. Hence S is finite.

In conclusion, since any H-closed space is a pseudocompact space, kN is a
pseudo-k-space which is not a quasi-k-space.

Now we give two useful characterizations of pseudo-k-spaces.
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Theorem 2.11. Let X be a Hausdorff space. The following conditions are
equivalent:

(1) X is a pseudo-k-space.
(2) For each A ⊂ X, the set A is closed provided that the intersection of

A with any pseudocompact subspace Z of X is closed in Z.
(3) X is a quotient space of a topological sum of pseudocompact spaces.

Proof. (1)⇒(2) Let X be a pseudo-k-space and let f : Y → X be a quotient
mapping of a locally pseudocompact Hausdorff space Y onto X . Suppose that
the intersection of a set A with any pseudocompact subspace P of X is closed
in P . Take a point y ∈ f−1(A) and a neighborhood U ⊂ Y of the point y
such that U is pseudocompact. Since the space f(U) is pseudocompact (see
Theorem 3.10.24 [3] which holds even if the range space Y is not Tychonoff),
the set A ∩ f(U) is closed in f(U).

Now, if y 6∈ f−1(A) then f(y) 6∈ A ∩ f(U) so there exists an open set T in
X containing f(y) such that T ∩ (A ∩ f(U)) = ∅.
It follows that f−1(T ) ∩ f−1(A) ∩U = ∅ where the set f−1(T ) ∩U represents
a neighborhood of y disjoint from f−1(A). This is a contradiction. Then
y ∈ f−1(A).

(2)⇒(3) Now consider a Hausdorff space X and denote by P(X) the family

of non-empty pseudocompact subspaces of X . Let X̃ = ⊕{P : P ∈ P(X)}.

The surjective mapping f : ∇P∈P(X), iP : X̃ → X , where iP is the embedding
of the subspace P in the space X , is continuous (see Proposition 2.1.11 [3]).

Suppose now that A is closed in X̃, this means A ∩ P closed in P , for every
pseudocompact subset P of X . Then, by (2), A is closed in X . It follows that
f is a quotient map.

(3)⇒(1) If X is a quotient space of a topological sum of pseudocompact
spaces then X is a pseudo-k-space, by Proposition 2.5. �

Corollary 2.12. A Hausdorff space X is a pseudo-k-space if, and only if, a
subset A ⊂ X is open in X whenever the intersection of A with any pseudo-
compact subset P of X is open in P .

Regarding the continuity of a mapping whose domain is a pseudo-k-space
we have the following

Theorem 2.13. A mapping f of a pseudo-k-space X to a topological space
Y is continuous if and only if for every pseudocompact subspace P ⊂ X the
restriction f |P : P → Y is continuous.

From the definition of a pseudo-k-space we obtain

Theorem 2.14. If there exists a quotient mapping f : X → Y of a pseudo-k-
space X onto a Hausdorff space Y , then Y is a pseudo-k-space.
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Theorem 2.11 yields

Theorem 2.15. The sum ⊕s∈SXs is a pseudo-k-space if and only if all spaces
are pseudo-k-spaces.

3. On products of pseudo-k-spaces

The cartesian product of two pseudo-k-spaces need not be a pseudo-k-space.
So, when a pseudo-k-space satisfies that its product with every pseudo-k-space
is also a pseudo-k-space?
Proposition 2.4 states that the cartesian product of a locally compact space
and a locally pseudocompact Hausdorff space is a locally pseudocompact space.
This result, together with Definition 2.6, yields

Theorem 3.1. The cartesian product X × Y of a locally compact Hausdorff
space X and a pseudo-k-space Y is a pseudo-k-space.

Proof. Let g : Z → Y be a quotient mapping of a locally pseudocompact
Hausdorff space Z onto a pseudo-k-space Y . The cartesian product f : idX×g :
X × Z → X × Y is a quotient mapping, by virtue of the Whitehead Theorem
(see Lemma 4 in [9], or Theorem 3.3.17 in [3]). Now, since, by Proposition 2.4,
X × Z is a locally pseudocompact Hausdorff space, it follows that X × Y is a
pseudo-k-space. �

The previous Theorem gives a sufficient condition to obtain that the cartesian
product of two pseudo-k-spaces is a pseudo-k-space. This condition, for regular
spaces, is also necessary, as we will see in Theorem 3.4.

Now, starting from a regular space X which is not locally compact, we define,
following a construction introduced by Michael in [5], a normal pseudo-k-space
Y (X) such that the product X × Y (X) is not a pseudo-k-space. This enable
us not only to give examples of two pseudo-k-spaces whose product is not a
pseudo-k-space, but also to show Theorem 3.4.

Suppose that X is a regular space which is not locally compact at some x0 ∈ X .
Let {Uα}α∈A be a local base of non-compact closed sets at x0. For every α ∈ A
let λ(α) be a limit ordinal and {Fλ}λ<λ(α) be a well-ordered family of non-
empty closed subsets of Uα whose intersection is empty.
Each λ(α)+1, equipped with the order topology, is a compact Hausdorff space.
Therefore λ(α) + 1 is a normal pseudo-k-space.
Then, by Theorem 2.15 jointly with Theorem 2.27 in [3], the topological sum
Λ = ⊕{λ(α) + 1 : α ∈ A} is a normal pseudo-k-space.

Now, let us denote by Y (X) the quotient space obtained by identifying all
the final points λ(α) ∈ λ(α) + 1 to a single points y0.
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We have the following

Theorem 3.2. The space Y (X) is a normal pseudo-k-space. Moreover, if P
is a pseudocompact subset of Y (X), then |{α ∈ A : P ∩ λ(α) 6= ∅}| < ω.

Proof. Let us denote by g : Λ −→ Y (X) the canonical projection defining
Y (X). It is easy to verify that g is a closed mapping. So, since the normality
preserves under closed mappings, it follows that Y (X) is normal. Moreover,
since g is a continuous surjective closed map, then g is a quotient mapping.
Then, by Theorem 2.14, the space Y (X) is a pseudo-k-space.

Now, suppose that there exists B ⊂ A, |B| ≥ ω, such that a pseudocompact
subset P of Y (X) meets each element of the family {λ(α) : α ∈ B}. Observe
that for every α ∈ A, since λ(α) is open in Y (X), the set λ(α) ∩ P is open in
P . Then the set {λ(α) ∩ P : α ∈ B} is a locally finite family of non-empty
open subsets of P . Since P is a Tychonoff space, this is equivalent to say that
P is not pseudocompact (see Theorem 3.10.22 in [3]), a contradiction. �

Theorem 3.3. Let X be a regular space which is not locally compact at a point
x0. The cartesian product X × Y (X) is not a pseudo-k-space.

Proof. Let X be a regular space which is not locally compact at a point x0.
Let us show that the cartesian product X × Y (X) is not a pseudo-k-space.
It suffices to find a subset H of X × Y (X), which is not closed even if the
intersection of H with any pseudocompact subspace P of the space X × Y (X)
is closed in P .
Recall that, in the definition of Y (X), the set A denotes an index set and to
each α ∈ A is associated a limit ordinal λ(α) such that

⋂
λ<λ(α)

Fλ is empty.

Now fix α ∈ A and λ ∈ λ(α) + 1 and define Eλ =
⋂

µ<λ

Fµ. Then Eλ(α) = ∅.

Moreover the set Sα = ∪{Eλ ×{λ} λ ∈ λ(α)+ 1} is closed in X × (λ(α)+ 1),
which implies that it is closed in X × Λ.
Denote by g the canonical projection g : Λ −→ Y (X) and by h the function
idX × g, and define the set

H =
⋃

α∈A

h(Sα) ⊂ X × Y (X).

We shall show that H is the set we are searching for.
First let us prove that the intersection of H with any pseudocompact subset P
of X × Y (X) is closed in P . The projection py(P ) is a pseudocompact subset
in Y (X) so, by virtue of Theorem 3.2, we have

|{α ∈ A : py(P ) ∩ λ(α) 6= ∅}| < ω

Then P meets finitely many X × g(λ(α) + 1) = X × (λ(α) ∪ {y0}) ⊃ h(Sα).
Now, since h(Sα) is closed in X × Y (X) for each α ∈ A, it follows that the set
H ∩ P =

⋃
α∈A

(h(Sα) ∩ P ) is closed in P .
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Now let us show that H is not closed in X × Y (X). The point (x0, y0) ∈
X×Y (X) belongs to H but does not belong to H . Take a neighborhood U ×V
of (x0, y0), U open in X, V open in Y (X), and let Uβ a closed non-compact
neighborhood Uβ ⊂ U , for some β ∈ A. Now, consider the canonical projection
g : Λ → Y (X) , and fix λ ∈ g−1(V ) ∩ λ(β). The set h(Eλ × {λ}) 6= ∅ is
contained in (U × V ) ∩ H . Therefore (x0, y0) ∈ H .
Suppose that (x0, y0) ∈ H , then (x0, y0) ∈ h(Sα) for some α ∈ A. This is a
contradiction.

�

Theorems 3.1 and 3.3 provide the following characterization for locally compact
spaces.

Theorem 3.4. Let X be a regular space. The following conditions are equi-
valent:

(1) X is locally compact.
(2) X × Y is a pseudo-k-space, for each pseudo-k-space Y .

Proof. (1)⇒(2) It follows from Theorem 3.1.
(2)⇒(1) Let X be a regular space which is not locally compact at a point x0.
Then, by virtue of Theorems 3.2 and 3.3, the space Y (X) is a pseudo-k-space
such that X × Y (X) is not a pseudo-k-space. �

In terms of products of mappings we have

Theorem 3.5. Let X be a regular space. The following conditions are equi-
valent:

(1) X is locally compact.
(2) idX × g is a quotient map with domain a locally pseudocompact Haus-

dorff space, for every quotient map g with domain a locally pseudocom-
pact Hausdorff space Y .

Proof. (1)⇒(2) It comes directly from Whitehead Theorem (see Theorem 3.3.17
in [3]) and Proposition 2.4.
(2)⇒(1) If X is not locally compact then we can consider Y (X), defined as
before, and the projection map g : Λ → Y (X), which is a quotient map with
domain the locally pseudocompact Hausdorff space Λ. It is easy to show that
h = idX × g is not a quotient map with domain a locally pseudocompact
Hausdorff space. Indeed if h was a quotient map with domain a locally pseu-
docompact Hausdorff space then X × Y (X) should be a pseudo-k-space, but
X × Y (X) is not a pseudo-k-space by virtue of Theorem 3.3. �



184 A. Miranda

References

[1] D. E. Cohen, Spaces with weak topology, Quart. J. Math., Oxford 5 (1954), 77–80.
[2] C. H. Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952), 555–577.
[3] R. Engelking, General Topology, Sigma Ser. Pure Math. 6 (Heldermann, Berlin, 1989).
[4] T. Jech, Set Theory, Academic Press, 1978.
[5] E. Michael, Local compactness and cartesian product of quotient maps and k-spaces,

Ann. Inst. Fourier 18 (1968), 281–286.
[6] K. Morita, Product of normal spaces with metric spaces, Math. Ann. 154 (1964), 365–

382.
[7] J. Nagata, Quotient and bi-quotient spaces of M-spaces, Proc. Japan Acad. 45 (1969),

25–29.
[8] M. Sanchis, A note on quasi-k-spaces, Rend. Ist. Mat. Univ. Trieste Suppl. XXX (1999),

173–179.
[9] J. H. C. Whitehead, A note on a theorem due to Borsuk, Bull. Amer. Math. Soc. 54

(1948), 1125–1132.

Received February 2007

Accepted October 2007

A. Miranda (amiranda@unisa.it)
Dip. di Matematica e Informatica, Università di Salerno, Via Ponte Don
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