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Probability measure monad on the category of
ultrametric spaces

O. B. Hubal’ and M. M. Zarichnyi

Abstract. The set of all probability measures with compact sup-
port on an ultrametric space can be endowed with a natural ultra-
metric. We show that the functor of probability measures with finite
supports (respectively compact supports) forms a monad in the cate-
gory of ultrametric spaces (respectively complete ultrametric spaces)
and nonexpanding maps. It is also proven that the G-symmetric power
functor has an extension onto the Kleisli category of the probability
measure monad.
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1. Introduction

The space P (X) of probability measures with compact supports on a metric
space X can be endowed with different topologies. One of them is that induced
by the Hutchinson metric ([6]). More precisely, if (X, d) is a metric space then

the Hutchinson metric d̃, on the set PX of probability measures with compact
support is defined as follows:

d̃(µ, ν) = sup{|µ(ϕ) − ν(ϕ)| | ϕ : X → R is 1-Lipschitz}.

In this note we show that the functor P of probability measures with compact
supports determines a monad in the category UMET of ultrametric spaces and
nonexpanding maps. This functor was first defined in [8] (see also [4]) and since
then turned out to be a natural tool in the metric approach to programming
language semantics.

We prove that the G-symmetric power functor has an extension onto the
Kleisli category of the probability measure monad (i.e. the category of ultra-
metric spaces and nonexpanding measure-valued maps).

Note that the probability measure monad on the category of compact Haus-
dorff spaces was investigated by different authors; see, e.g. [7]. The category
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of algebras of this monad is known to be isomorphic to the category of com-
pact convex sets and affine continuous maps. Therefore, establishing a monad
structure for the probability measure functor in the category UMET allows us
to introduce a counterpart of the notion of convexity for ultrametric spaces.

It is known that the space P (X) is complete if so is an ultrametric space X
(see [4]). We denote by CUMET the full subcategory of UMET, whose objects
are complete ultrametric spaces. We show that, for the category CUMET, one
can find counterparts of the mentioned results.

2. Monads and Kleisli categories

We provide some basic definitions concerning monads; see, e.g. [2] for details.
If T is an endofunctor in a category C, by T n we denote the nth iteration of

T . If η : 1C → T and µ : T 2 → T are natural transformations, then T = (T, η, µ)
is called a monad on the category C if the diagrams

T
ηT

//

1T

  B
BB

BB
BB

B

Tη

��

T 2

µ

��

T 2
µ

// T

T 3
µT

//

Tµ

��

T 2

µ

��

T 2
µ

// T

commute.
Then η is called the unity and µ the multiplication of T.
Let T = (T, η, µ), T

′ = (T ′, η′, µ′) be two monads in a category C. We say
that a natural transformation α : T → T ′ is a morphism of T into T

′ if αη = η′

and µ′αT ′Tα = αµ. If all the components of α are monomorphisms, we say
that T is a submonad of T

′.
For an arbitrary monad T = (T, η, µ) in C a pair (X, f), where f : TX → X

is a morphism in C, is called a T-algebra if the following commute :

X
ηX

//

1X
!!C

CC
CC

CC
C TX

f

��

X

T 2X
µX

//

Tf

��

TX

f

��

TX
f

// X

A morphism ϕ : X → Y is called a map of algebras (X, f) → (Y, g) if and
only if the diagram

TX
Tϕ

//

f

��

TY

g

��

X ϕ
// Y

commutes. The T-algebras and their morphisms form the category, which is
denoted by CT.

The Kleisli category, CT, of a monad T = (T, η, µ) in a category C is defined
as follows. The objects of CT are those of C and the set of morphisms CT(X,Y )
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coincides with C(X,Y ). The composition g∗f of f ∈ CT(X,Y ) and g ∈ CT(Y, Z)
is defined as g ∗ f = µZ ◦ Tg ◦ f .

The following criterion for existence of extensions of functors in C onto the
Kleisli category is given in [2].

Proposition 2.1. A functor F : C → C admits an extension onto the category

CT for a monad T = (T, η, µ) in a category C if and only if there exists a natural

transformation ξ : FT → TF such that

(1) ξ ◦ Fη = ηF ;

(2) µF ◦ Tξ ◦ ξT = ξ ◦ Fµ.

3. Metric on the set of probability measures

Recall that a metric d on a set X is said to be an ultrametric if the following
strong triangle inequality holds:

d(x, y) ≤ max{d(x, z), d(z, y)}

for all x, y, z ∈ X .
Let (X, d) be an ultrametric space. Given y ∈ X , we denote by Or(y) the

open r-ball centered at y. If A ⊂ X , then Or(A) = ∪{Or(y) | y ∈ A}.
By expX we denote the set of all nonempty compact subsets in X endowed

with the Hausdorff metric:

dH(A,B) = inf{ε > 0 | A ⊂ Oε(B), B ⊂ Oε(A)}.

For a continuous map f : X → Y the map exp f : expX → expY is defined
as exp f(A) = f(A). It is well-known that exp f is a nonexpanding map if so
is f . Thus, we obtain a functor exp in the category UMET (the hyperspace
functor). We denote by sX : X → expX the singleton map, sX(x) = {x}.
It is well-known that sX is an isometric embedding. By uX : exp2(X) →
exp(X) we denote the union map. It is well-known that uX is well-defined and
nonexpanding and that u = (uX) is a natural transformation of exp2 into exp.
The triple H = (exp, s, u) is a monad on the category UMET (the hyperspace
monad).

By P (X) we denote the set of all probability measures with compact support

on X . Following [4], we endow P (X) with the following metric, d̂,

d̂(µ, ν) = inf{ε > 0 | µ(Oε(x)) = ν(Oε(x)) for every x ∈ X}.

Proposition 3.1. The identity map 1X : (PX, d̂) → (PX, d̃) is continuous.

Proof. Suppose that d̂(µ, ν) < ε, then µ(Oε(x)) = µ(Oε(x)) for every x ∈
X . Given a 1-Lipschitz function ϕ on X , choose a disjoint cover of the set
supp(µ) ∪ supp(ν) by closed balls, Oε(x1),. . . , Oε(xm). Let ψ : X → R be a
function defined by the condition ψ|Oε(xi) = ϕ(xi), i = 1, . . . , n. Then

|µ(ϕ) − ν(ϕ)| ≤ |µ(ϕ) − µ(ψ)| + |µ(ψ) − ν(ψ)| + |ν(ψ) − ν(ϕ)| ≤ 2ε,
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because

|µ(ψ) − ν(ψ)| =

∣

∣

∣

∣

∣

m
∑

i=1

ψ(xi)(µ(Oε(xi)) − ν(Oε(xi)))

∣

∣

∣

∣

∣

= 0.

This implies that the map 1X is 2-Lipschitz. �

For any x ∈ X , by δx we denote the Dirac measure concentrated at x.

Proposition 3.2. The set Pω(X) of all measures with finite supports is dense

in P (X).

Proof. Let ε > 0. Given µ ∈ P (X), decompose the set supp(µ) into the union

of disjoint balls of radius ε, supp(µ) = B1 ∪ · · · ∪Bk. Put µ′ =
∑k

i=1 µ(Bi)δxi
,

where xi is an arbitrary point of Bi, i = 1, . . . , k. It follows from the construc-

tion that d̂(µ, µ′) ≤ ε. �

One can also prove that the set of probability measures with finite supports
from a dense subset in X is dense in P (X).

It is known [8] that the construction P is functorial on the category UMET
of ultrametric spaces and nonexpanding maps. Recall that P i denotes the ith
iteration of P .

Let M ∈ P 2(X). We suppose that the set suppP (X)(M) is finite (i.e.,

M ∈ Pω(P (X)) and, moreover, for every µ ∈ suppP (X)(M) the set supp(µ) is
also finite. Denote the set of all metrics described by the above condition, by
D. As already remarked, D is dense in P 2(X).

Thus every M ∈ D can be represented as follows:

M =
∑

i

αiδµi
, where µi =

∑

j

βijδxij
, xij ∈ X.

We then define ψX(M) =
∑

i,j αiβijδxij
.

In other words, if M =
∑

i αiδµi
, then ψX(M) =

∑

i αiµi.

Proposition 3.3. The map ψX : D → P (X) is nonexpanding.

Proof. Suppose thatM,M ′ ∈ D,M =
∑

i αiδµi
, M ′ =

∑

i α
′
iδµi

, and
ˆ̂
d(M,M ′) <

ε. Let B̂1 ⊔ B̂2 ⊔ . . . ⊔̂Bk be a decomposition of suppP (X)(M) ∪ suppP (X)(M
′)

into the sum of disjoint balls in P (X) of radius ε. Then M(B̂i) = M ′(B̂i),

i = 1, . . . , k. Let M |B̂i =
∑ji

p=1 αipδµip
, M ′|B̂i =

∑ji
p=1 α

′
ipδµip

. Then
∑ji
p=1 αip =

∑ji
p=1 α

′
ip.

Note that, for every p, l ∈ {1, . . . , ji}, we have d̂(µip, µil) < ε. This implies
that, for any x ∈ X , we have µip(Oε(x)) = µil(Oε(x)).
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Let x ∈ X . Then

ψX(M)(Oε(x)) =

k
∑

i=1

ji
∑

p=1

αipµip(Oε(x))

=
k

∑

i=1

ji
∑

p=1

α′
ipµip(Oε(x))

=ψX(M)(Oε(x)).

Therefore d̂(ψX(M), ψX(M ′)) < ε.
�

Proposition 3.3 allows us to define the map ψX : P 2(X) → P (X) as a unique
continuous extension of the above map defined on D. Clearly, this extension is
also nonexpanding.

The proof of the following proposition is obvious.

Proposition 3.4. The map ηX : X → P (X), ηX(x) = δx, is an isometric

embedding.

Theorem 3.5. The triple P = (P, η, ψ) is a monad on the category UMET.

Proof. Since the measures with finite supports are dense in the spaces of proba-
bility measures, one has to establish the identities from the definition of monad
for such measures. But this is essentially verified in, e.g., [7]. �

The support map supp = suppX : P (X) → expX is nonexpanding (see, e.g.
[8]) for any ultrametric space X and therefore a morphism in UMET. It is easy
to see that supp is a natural transformation of the probability measure functor
P into the hyperspace functor exp.

Proposition 3.6. The natural transformation supp is a morphism of the

monad P to the monad H.

Proof. It is obvious that the diagram

X
ηX

}}{{
{{

{{
{{ sX

""F
FFF

FFFF

PX supp
// expX

is commutative. One has to show that the diagram

P 2X
exp(supp) suppPX

//

ψX

��

exp2X

∪

��

PX supp
// expX
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is also commutative. Let M ∈ Pω(PωX), M =
∑k

i=1 αiδµi
, where µi =

∑li
j=1 βijδxij

, xij ∈ X . Without loss of generality, one may assume that αi 6= 0

and βij 6= 0, for all i, j. Then ψX(M) =
∑k

i=1

∑li
j=1 αiβijδxij

and

supp(ψX(M)) ={xij | 1 ≤ i ≤ k, 1 ≤ j ≤ li}

= ∪ {{xij | 1 ≤ j ≤ li} | i = 1, . . . , k}

= ∪ exp(supp)suppP (X)(M).

Since the set Pω(PωX) is dense in P 2(X), we are done. �

Recall that, for every ultrametric spaces X and Y , and every µ ∈ P (X),
ν ∈ P (Y ), by µ⊗ ν we denote the product of µ and ν.

Proposition 3.7. Let Xi, i = 1, . . . , n, be metric spaces. The natural map

PX1 × · · · × PXn → P (X1 × · · · ×Xn), (m1, . . . ,mn) 7→ m1 ⊗ · · · ⊗mn,

is nonexpanding.

Proof. Suppose that c > 0, (m1, . . . ,mn), (m
′
1, . . . ,m

′
n) ∈ PX1×· · ·×PXn, and

d̂(mi,m
′
i) < c for every i = 1, . . . , n. Then for every (x1, . . . , xn) ∈ X1×· · ·×Xn

we have

(m1 ⊗ · · · ⊗mn)(Oc(x1, . . . , xn)) = m1(Oc(x1)) × · · · ×mn(Oc(xn))

=m′
1(Oc(x1)) × · · · ×m′

n(Oc(xn)) = (m′
1 ⊗ · · · ⊗m′

n)(Oc(x1, . . . , xn)),

whence the result follows. �

4. G-symmetric power functor

Let Sn denote the permutation group of the set {1, 2, . . . , n}. Any subgroup
G of Sn acts on the nth power Xn of a space X by permutation of coordinates.
Let SPnG(X) denote the orbit space of this action. By [x1, . . . , xn] (or briefly
[xi]) we denote the orbit containing (x1, . . . , xn) ∈ Xn.

If (X, d) is a metric space, we endow SPnG(X) by the following metric, d̃,

d̃([xi], [yi]) = min{max{d(xi, yσ(i)) | i = 1, . . . , n} | σ ∈ G}.

Proposition 4.1. The space (SPnG(X), d̃) is an ultrametric space.

Proof. One has only to check that d̃([xi], [yi]) ≤ max{d̃([xi], [zi]), d̃([zi], [yi])}
for any [xi], [yi], [zi] ∈ SPnG(X). There exist σ, τ ∈ G such that

d̃([xi], [zi]) = max{d(xi, zσ(i)) | i = 1, . . . , n},

d̃([zi], [yi]) = max{d(zi, yτ(i)) | i = 1, . . . , n}.
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Then

d̃([xi], [yi] ≤ max{d(xi, yτ(σ(i))) | i = 1, . . . , n}

=max{max{d(xi, zσ(i)), d(zσ(i), yτ(σ(i)))} | i = 1, . . . , n}

=max{max{d(xi, zσ(i)) | i = 1, . . . , n},max{d(zσ(i), yτ(σ(i))) | i = 1, . . . , n}}

=max{d̃([xi], [zi]), d̃([zi], [yi])}.

�

One can easily verify that, for any nonexpanding map f : X → Y of ultra-
metric spaces, the map SPnG(f) is nonexpanding as well. Thus, we have defined
the G-symmetric power functor SPnG in the category UMET.

The proof of the following simple proposition is left to the reader.

Proposition 4.2. The natural map

πG = πGX : Xn → SPnG(X), πG(x1, . . . , xn) = [x1, . . . , xn],

is nonexpanding.

Theorem 4.3. The G-symmetric power functor admits an extension onto the

Kleisli category of the monad P.

Proof. We apply Proposition 2.1. Similarly as in [9] define the map ξX : SPnGPX →
PSPnGX by the formula

ξX [µ1, . . . , µn] =
1

|G|

∑

σ∈G

PπGX(µ1 ⊗ · · · ⊗ µn).

We are going to show that ξX is a nonexpanding map. Given

[µ1, . . . , µn], [ν1, . . . , νn] ∈ SPnGPX

such that d̂([µ1, . . . , µn], [ν1, . . . , νn]) ≤ ε, without loss of generality, we may

assume that d̂(µi, νi) ≤ ε for all i. Given (x1, . . . , xn) ∈ Xn, we see that
Oε(x1, . . . , xn) =

∏n

i=1Oε(xi). Then

(µσ(1) ⊗ · · · ⊗ µσ(n))(Oε(x1, . . . , xn)) =

n
∏

i=1

µσ(i)(Oε(xi))

=
n

∏

i=1

νσ(i)(Oε(xi)) = (νσ(1) ⊗ · · · ⊗ νσ(n))(Oε(x1, . . . , xn)),

whence d̂(µσ(1) ⊗ · · · ⊗ µσ(n), νσ(1) ⊗ · · · ⊗ νσ(n)) ≤ ε.
Since the map πGX is nonexpanding, so is PπGX and we see that

d̂(PπGX(µσ(1) ⊗ · · · ⊗ µσ(n)), PπGX(νσ(1) ⊗ · · · ⊗ νσ(n))) ≤ ε.

Since PπGX(νσ(1) ⊗ · · · ⊗ νσ(n)) = PπGX(ν1 ⊗ · · · ⊗ νn), we are done.
The proof of [9, Theorem] can be rewritten verbally in order to demonstrate

that the natural transformation ξ satisfies the conditions of Proposition 2.1.
Therefore, SPnG can be extended over the category UMETP. �
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5. Category CUMET

It is known (see, e.g., [4] and [1]), that the spaces exp(X) and P (X) are
complete if so is an ultrametric space X . This allows us to consider exp and P
as endofunctors in the category CUMET.

Proposition 5.1. Let (X, d) be a complete ultrametric space. Then the space

(SPnG(X), d̃) is complete as well.

Proof. Let ([x
(j)
1 , . . . , x

(j)
n ])∞j=1 be a Cauchy sequence in SPnG(X). Without loss

of generality, one may assume that

d(x
(j)
i , x

(k)
i ) ≤ d̃([x

(j)
1 , . . . , x(j)

n ], [x
(k)
1 , . . . , x(k)

n ]),

for all i = 1, . . . , n and all j, k. Let xi = limj→∞ x
(j)
i . Then, clearly,

[x1, . . . , xn] = lim
j→∞

[x
(j)
1 , . . . , x(j)

n ]

and we are done. �

Therefore, the G-symmetric power functor can also be regarded as an end-
ofunctor in CUMET. Clearly, the results of the previous sections can be ex-
tended over the case of the category CUMET.

6. Remarks and open questions

6.1. The monad P in the category UMET has its counterpart in topological
categories, in particular, in the category COMP of compact Hausdorff spaces
and continuous maps. It is known [7] that the category of algebras of the latter
monad is isomorphic to the category of compact convex sets (in locally convex
spaces) and continuous affine maps.

Problem 6.1. Characterize the category of P-algebras.

Note that no finite ultrametric space of cardinality ≥ 2 can be endowed with
a structure of P-algebra. Indeed, let X be such a space and Y = {x1, . . . , xk} ⊂
X , xi 6= xj , whenever i 6= j, be the set of points that realize the minimal
mutual distance, which is supposed to be equal to c > 0). Let f : X → X be a
homeomorphism whose set of fixed points precisely X \ Y . Suppose now that

(X, ξ) is a P-algebra, then µ =
∑k

i=1
1
k
δxi

is a fixed point of the map P (f)
and fξ(µ) = ξP (f)(µ) = ξ(µ) whence ξ(µ) is a fixed point of f . Therefore,

ξ(µ) ∈ X \ Y (thus Y 6= ∅). We see that d̂(δx1
, µ) = c while d(ξ(δx1

), ξ(µ)) =
d(x1, ξ(µ)) > c.

Problem 6.2. Is the space of p-adic numbers a P-algebra?

One can easily see that the functor Pf of P of probability measures with
finite supports is the functorial part of a submonad Pf of the monad P. Note
that the results concerning the monad P on the category UMET have their
natural counterparts also for the monad Pf .
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6.2. A metric space (X, d) is said to be uniformly disconnected [3], [5] if there
exists c ∈ (0, 1) such that, for every natural n and every x0, x1, . . . , xn ∈ X , we
have

cd(x0, xn) ≤ max{d(xi−1, xi) | i = 1, . . . , n}.

The uniformly disconnected spaces and Lipschitz maps form a category. We
leave as an open question that of extension of the results of this note over this
category.
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[7] T. Świrszcz, Monadic functors and convexity. Bull. Acad. Polon. Sci. Ser. Sci. Math.

Astronom. Phys. 22 (1974), 39–42.
[8] E. P. de Vink and J. J. M. M. Rutten, Bisimulation for probabilistic transition systems:

a coalgebraic approach, Theoretical Computer Science 221, no. 1/2 (1999), 271–293.
[9] M. M. Zarichny̆ı, Characterization of functors of G-symmetric degree and extensions

of functors to the Kleisli categories. (Russian) Mat. Zametki 52, no. 5 (1992), 42–48,
141; translation in Math. Notes 52, no. 5-6 (1992), 1107–1111 (1993).

Received May 2007

Accepted May 2008

O. B. Hubal’

Lviv National University, Universytetska Str., 79000 Lviv, Ukraine

M. M. Zarichnyi (mzar@litech.lviv.ua)
Lviv National University, 1 Universytetska Str., 79000 Lviv, Ukraine and Insti-
tute of Mathematics, University of Rzeszów, 16A Rejtana Str., 35-310 Rzeszów,
Poland


